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Abstract

Estimating causal effects from real-world rela-
tional data can be challenging when the underlying
causal model and potential confounders are un-
known. While several causal discovery algorithms
exist for learning causal models with latent con-
founders from data, they assume that the data is
independent and identically distributed (i.i.d.) and
are not well-suited for learning from relational data.
Similarly, existing relational causal discovery al-
gorithms assume causal sufficiency, which is un-
realistic for many real-world datasets. To address
this gap, we propose RelFCI, a sound and com-
plete causal discovery algorithm for relational data
with latent confounders. Our work builds upon the
Fast Causal Inference (FCI) and Relational Causal
Discovery (RCD) algorithms and it defines new
graphical models, necessary to support causal dis-
covery in relational domains. We also establish
soundness and completeness guarantees for rela-
tional d-separation with latent confounders. We
present experimental results demonstrating the ef-
fectiveness of RelFCI in identifying the correct
causal structure in relational causal models with
latent confounders.

1 INTRODUCTION

The goal of causal discovery is to reveal causal information
by analyzing observational data. Most causal discovery al-
gorithms assume that the data is independent and identically
distributed (i.i.d.), and that the data generation is based on
a directed acyclic model [Heinze-Deml et al., 2018]. How-
ever, many real-world data sources, including biological
and social networks, do not meet the i.i.d. assumption and
contain entities which interact with each other and exhibit
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causal dependencies among their attributes. To capture such
dependencies and enable causal reasoning in relational data,
more expressive classes of directed graphical models [Maier
et al., 2014, Lee and Honavar, 2016a, Ahsan et al., 2022]
and algorithms for relational causal discovery [Maier et al.,
2013, Lee and Honavar, 2016a, 2020, Ahsan et al., 2023]
have been developed over the past decade.

Existing relational causal discovery algorithms rely on the
strong assumption of causal sufficiency, i.e., all common
causes of observed variables have been measured and in-
cluded in the data. However, this assumption rarely holds
for real-world data where the presence of latent confounders
can invalidate the causal discovery and causal effect esti-
mation processes. This is especially true in relational do-
mains where capturing latent confounders in causal models
is key to separating homophily-based correlations from con-
tagion [Shalizi and Thomas, 2011, Lee and Ogburn, 2021].
While multiple algorithms exist for causal discovery with
latent confounders in i.i.d. data (e.g., Spirtes et al. [2000],
Colombo et al. [2012]), none address relational data. To fa-
cilitate more realistic causal discovery in relational domains,
it is necessary to formalize latent confounders in relational
causal models and lift the assumption of causal sufficiency.

In this work, we introduce novel graphical models and a
novel relational causal discovery algorithm, RelFCI, that can
capture latent confounders in relational data. We build upon
the representations and algorithms for Fast Causal Inference
(FCI) [Spirtes et al., 2000] and Relational Causal Discovery
(RCD) [Maier et al., 2013], neither of which is sufficient
on its own. FCI performs causal discovery with latent con-
founders but does not address relational data, whereas RCD
performs relational causal discovery through relational d-
separation but assumes causal sufficiency. We introduce new
relational graphical models, Latent Relational Causal Mod-
els (LRCMs), Maximal Ancestral Abstract Ground Graphs
(MAAGGs), and Partial Ancestral Abstract Ground Graphs
(PAAGGs), and provide a set of assumptions necessary for
causal discovery with latent variables on relational causal
models. These models address the unique challenges of re-
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lational data, such as variable construction across relational
paths and partial observation of entities. We then show that
with these new models and under our specified assump-
tions, the rules of FCI, combined with the rules of RCD and
applied to the PAAGGs, yield a sound and complete proce-
dure for relational causal discovery. Specifically, we prove
soundness and completeness guarantees of RelFCI up to a
bounded hop threshold in the presence of latent variables.
We demonstrate the algorithm’s correctness on experimental
datasets, comparing it to existing algorithms.

2 RELATED WORK

Related work falls broadly into two categories: causal dis-
covery in the presence of latent variables and relational
causal discovery. Several causal discovery methods support
latent confounders, but only for propositional data. Spirtes
et al. [2000] introduce FCI, a generalization of PC algo-
rithm explicitly designed for acyclic causal models with
latent confounders. Zhang [2008] augments FCI with an ad-
ditional set of edge-orienting rules, providing completeness
of the resulting algorithm. Mooij and Claassen [2020] show
that FCI is sound and complete for cyclic models under
σ-separation criteria.

Maier et al. [2014] considered d-separation semantics on
relational causal models, using abstract ground graphs, a
lifted representation. Maier et al. [2014] further provide
soundness and completeness of m-separation, an analogue
of d-separation on mixed graphs [Richardson and Spirtes,
2002], on abstract ground graphs. Maier et al. [2013] in-
troduce RCD, a sound and complete algorithm for discov-
ery on abstract ground graphs under the assumptions of
d-faithfulness, sufficiency, and acyclicity. Lee and Honavar
[2016a] develop a more efficient version of RCD, RCD-
Light, that requires polynomial time and space to com-
pute. Additionally, using a novel characterization of rela-
tional causal models under different path semantics, they
present an alternate technique for causal discovery [Lee and
Honavar, 2016b]. Our work can be seen as an extension of
these works, which relaxes causal sufficiency in order to
more closely mirror real-world cases [Rothenhäusler et al.,
2015, Strobl, 2019].

3 BACKGROUND

We provide an overview of relational theory, which serves
as the foundation for our proposed RelFCI algorithm and its
proofs of correctness. We follow the theoretical definitions
provided by Maier et al. [2014]. We also go over the theory
underlying causal discovery using latent confounders and
partial ancestral graphs for Bayesian networks as specified
by Spirtes et al. [2000] for the FCI algorithm. Finally, we
provide the set of assumptions used in this work for rela-
tional causal discovery with latent variables. Appendices

A.1 and A.2 contain accompanying figures that illustrate the
concepts presented in this section.

3.1 RELATIONAL DATA AND RELATIONAL
CAUSAL MODELS

A Relational Schema S = (E ,R,A, card) is a collection of
a set of entity types E ; a set of relationship typesR, where
Ri = ⟨Ei

1, ..., E
i
a⟩ ∈ R, with Ei

j ∈ E and a the arity of
the relation; a set of attribute classes A(I) for each entity
or relationship and a cardinality function card: R× E →
{ONE, MANY}. As a running example, we will consider
a schema with two entity types, USER (U) and POST (P),
and the relationship between them, REACTS (R). USER
has three attributes (U.Type, U.Activity and U.Sentiment),
POST has two attributes (P.Engagement, P.Content), and
REACTS has one attribute (R.Frequency).

Given a relational schema, a Relational Variable
[IX ...IY ].Y consists of a Relational Path [IX ...IY ], an al-
ternating sequence of connected entities and relations, and
an attribute Y of the last class reached by said path. The
first class IX of this relational variable is called perspec-
tive. For example, from the described schema example,
[U,R, P ].Engagement is a relational variable from the
perspective USER, which captures the set of Engagements
of all posts that a user reacts to.

A Relational Dependency [IX ...IY ].Y → [IX ].X is a pair
of two relational variables with a common perspective. Rela-
tional paths allow us to model causal dependencies between
attributes of different entities, e.g., [P,R,U ].Sentiment→
[P ].Engagement indicates that the engagement of a post
depends on the sentiment of the user reacting to that post.
The dependency is called canonical if the path of the out-
come variable (in the example, [P ].Engagement) has a
path of length 1. A Relational Causal Model MΘ(S,D)
is a set of relational dependencies D defined over schema
S , with Θ denoting the set of conditional probability distri-
butions for each attribute A(I) of every class I ∈ E ∪ R
over its parents. The arrow corresponds to a relational de-
pendency. The example relational causal model in Figure 1
shows that the user’s sentiment and the post’s content influ-
ence the engagement of the post. A Relational Skeleton σ, is
an instantiation of the schema for all entities, relationships,
and attributes which follows the cardinality requirements
specified by card. In other words, this is the data realization
of the schema. For example, one relational skeleton could
have two entities of type USER, Bob and Anna, and one
entity of type POST, a food recipe, that Bob and Anna react
to. We denote the set of all possible relational skeletons for
a schema S as ΣS .

Each relational causal modelMΘ and relational skeleton σ
correspond to a Ground Graph GGMσ. The nodes in this
graph are the attributes of all Entities and Relation instances



in the skeleton σ, while the edges between instances of vari-
ables represent all dependencies inM. Graphical examples
of these representations can be seen in Appendix A.1. An
Abstract Ground Graph AGGMBh, for the relational causal
modelM, perspective B and hop-threshold h, is a graph
that captures dependencies between relational variables that
hold for all possible ground graphs GGMσ, with σ ∈ ΣS .
Abstract ground graphs are defined for each perspective B
and relational path length fixed to h.

AGGMBh contains edges between relational variables if
the instantiations of those relational variables contain a de-
pendent pair in some ground graph. The edges are obtained
using the extend method [Maier et al., 2014], which con-
structs relational paths from the current perspective to a
dependency’s source attribute. Formally, given a relational
dependency [IY , . . . , IZ ].Y → [IX ].X , and a current per-
spective path [IB , . . . , IX ], the method finds all valid pivot
points between the reversed path [IX , . . . , IB ] and the de-
pendency path, and concatenates them at the pivot to gen-
erate new paths of the form [IB , . . . , IX , . . . , IZ ]. The pro-
cess ensures that dependencies are appropriately lifted to
the abstract ground graph, regardless of original perspective.
Furthermore, intersection variables inherit the edges from
both the variables in the pair.

A single dependency inM, with the extend method, may
support multiple edges in AGGMBh. Additionally, a single
modelM produces multiple AGGs, one for each perspec-
tive. A more complete description of AGGs components
and the extend method are provided in Appendix A.1. Maier
et al. [2014] showed that d-separation applied to abstract
ground graphs (i.e., relational d-separation) allows the iden-
tification of conditional independences that hold across all
ground graphs.

USER POST
REACTS

MANY MANY

Sentiment

Type

Activity Frequency

Engagement

Content

Figure 1: Example of a Relational Causal Model

3.2 PARTIAL ANCESTRAL GRAPH

The variables of a causal graph, V ∈ G, can be divided
into three categories: observed (O), selection (S), and latent
(L) variables, denoted as G(O,S,L). In this work, we focus
on latent variables and assume there are no selection ones,
i.e., S = ∅. We denote Cond as the set of conditional in-
dependence relations among variables in O, and define the
equivalence class of graphs that meets the conditional inde-

pendence O-Equiv(Cond) as follows: for a graph G(O,L)
belonging to O-Equiv(Cond), given three sets of variables
X, Y and Z, G(O,L) entails that X ⊥⊥ Y | Z if and only if X
⊥⊥ Y | Z ∈ Cond.

An ancestral graph [Zhang, 2008] is a causal graph that can
be used to represent conditional independence and causal
relations of a DAG with latent variables, using only the
observed variables. A path p between any two vertices
X,Y ∈ O is called an inducing path relative to ⟨L⟩ if
every non-endpoint vertex on p is either in L or a collider,
and every collider in p is an ancestor vertex of either X
or Y . A path is called primitive when L is empty. A Maxi-
mal Ancestral Graph (MAG) is an ancestral graph having
no primitive inducing path between any two non-adjacent
vertices.

The FCI algorithm learns a Markov equivalence class of
a MAG called Partial Ancestral Graph (PAG), with edges
ends having three possible marks, ◦, -, >, which indicate
the following relationships: [1] A → B implies that A
causes B; [2] A↔ B implies a common latent confounder
between the two observed variables. An edge has an arrow-
head > or tail - mark between two variables if and only if
all DAGs in O-Equiv(Cond) share the same arrowhead (or
tail) mark for those variables, i.e. the mark is invariant. On
the other hand, if there exist two DAGs with a different edge
mark between two variables, the PAG will contain a ◦ mark,
i.e. the mark is variant. If every circle mark corresponds to
an invariant in O-Equiv(Cond), the PAG is called maximally
informative for the equivalence class. Examples of MAG
and PAG are available in Appendix A.2.

3.3 ASSUMPTIONS FOR RELATIONAL CAUSAL
DISCOVERY

In this subsection, we define and discuss some key assump-
tions used for causal discovery in relational data, including
the maximum hop threshold, d-faithfulness, acyclicity, and
absence of latent descendants for latent variables.

• Maximum Hop Threshold (h): The maximum hop
threshold defines the largest permissible path length
(or number of relational hops) between entities in a
relational causal model that will be considered when
constructing causal dependencies. Setting h limits the
computational complexity and ensures that the discov-
ered relationships are both interpretable and relevant.
For instance, in a social network, h = 2 might capture
direct friendships and friends-of-friends relationships
while ignoring more distant connections.

• D-Faithfulness: D-faithfulness (Dependency-
Faithfulness) posits that any conditional independence
observed in the data is also represented in the
underlying causal graph, and vice versa. This ensures
that the causal relationships inferred from the data



align with the observed statistical dependencies in the
relational causal model.

• Acyclicity: Acyclicity mandates that the causal graph
representing the relationships among variables and en-
tities is a directed acyclic graph (DAG). This means
there are no directed cycles in the relational causal
model.

• Absence of latent descendants for latent variables: For
this work, we assume that latent variables cannot be
descendants of each other, i.e. all the parents and chil-
dren of a latent variable are observed. This assumption
is standard in constraint-based latent variable models
[Evans, 2016]. Spirtes et al. [1995] note that conclu-
sions about the equivalence class over observed vari-
ables remain valid regardless of the causal relations
among latent variables.

4 RELATIONAL CAUSAL DISCOVERY
WITH LATENT VARIABLES

In this section, we define latent variables in relational causal
models, show why existing algorithms cannot perform re-
lational causal discovery with latent variables, define the
graphical models necessary for such discovery, and propose
an algorithm for it. The full proofs of all theoretical findings
in this paper are available in Appendix G.

4.1 LATENT VARIABLES IN RELATIONAL
CAUSAL MODELS

To perform causal discovery with latent confounders, we
first define them in the relational context. Considering the
set of latent variables L, we need to define what constitutes
a latent relational variable [IX ...IY ].Y ∈ L. We assume
that all entities in E and relationships in R are observed
in the relational schema and the model and, consequently,
in the variable’s relational path. We define the set of latent
attributes in a schema S as the set AL. We can then look at
the definition that follows:

Definition 1 (Latent Relational Variable). A relational vari-
able RV : [IX ...IY ].Y is considered latent, i.e., RV ∈ L if
and only if its attribute class Y ∈ A(IY ) is unobserved in
the schema, meaning Y ∈ AL.

Consequently, a relational variable RV : [IW ...IZ ].Z is ob-
served, i.e., RV ∈ O if its attribute class Z ∈ A(IZ) is ob-
served, indicating that it is a member of the set of observed
attributes classes in the schema, which we respectively de-
fine as AO. A model’s set of relational dependencies D is
thus divided into two groups:

1. Set DO of observed dependencies RV1 → RV2

defined only over observed relational variables i.e.,
RV1, RV2 ∈ O;

2. SetDL of latent dependencies RV1 → RV2 containing
at least one latent relational variable i.e., RV 1 ∈ L ∨
RV2 ∈ L;

The modified relational causal model can now be defined as
follows:

Definition 2 (Latent Relational Causal Model (LRCM)). A
relational causal model with latent variablesMΘL consists
of two parts:

1. The structureML = (S,D): the schema S , containing
a set of latent attributes AL; the set of dependencies
D = DO ∪ DL defined over all relational variables;

2. Parameters Θ: a conditional probability distribution
P ([Ij ].X | parents([Ij ].X)) for all relational vari-
ables of the form [Ij ].X [Maier et al., 2014].

An example LRCM can be seen in figure 2a. The latent
AGG is constructed from LRCMML, similarly to conven-
tional relational causal models [Maier et al., 2014]. The
construction divides the edges of the abstract ground graph
into observed and unobserved edges, based on whether the
underlying dependency from which the edge is yielded be-
longs to DL, i.e., is unobserved.

USER POST
REACTS

MANY MANY

Sentiment

Type

Activity Frequency

Engagement
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(a) Latent RCM. Unobserved variables and dependencies
marked with segmented lines

[U].Sentiment

[U].Type

[U].Activity

[U, R, P].Engagement

[U, R, P].Content [U, R, P, R, U].Sentiment

[U, R, P, R, U].Type

[U, R, P, R, U].Activity[U, R].Frequency

(b) True LAGG for perspective U

[U].Sentiment

[U].Type

[U].Activity

[U, R, P].Engagement

[U, R, P].Content
[U, R, P, R, U].Sentiment

[U, R, P, R, U].Type

[U, R, P, R, U].Activity

(c) RCD output AGG for perspective U

Figure 2: Counterexample that shows RCD does not produce
the correct output AGG for LRCM with a faithful oracle

Definition 3 (Latent Abstract Ground Graph (LAGG)).
Given a relational causal modelML a maximum hop thresh-
old h, and a perspective B, the LAGGMLBh is the abstract
ground graph of the latent relational causal model. It con-
tains both variables in the sets O and L over perspective



B, plus intersection variables divided into observed inter-
section variables (both participating variables in the inter-
sections are observed), and latent ones (i.e., at least one
participating variable is latent). The set of edges E yielded
from the dependencies in DO and DL, using the extend
method [Maier et al., 2014], is partitioned respectively into
the set of observed (EO) and unobserved (EL) edges.

Consider the LRCM shown in figure 2a and a hop thresh-
old h = 2. The Frequency attribute for REACT is unob-
served. There are six relational dependencies in the model:
1) [U].Type→ [U].Activity, 2) [U].Type→ [U].Sentiment,
3) [P, R, U].Sentiment→ [P].Engagement, 4) [P].Content
→ [P].Engagement, 5) [U, R].Frequency → [U].Activity,
6) [P, R].Frequency → [P].Engagement. The last two are
unobserved dependencies in DL. The respective LAGG for
the described LRCM is shown in figure 2b.

4.2 LATENT RELATIONAL CAUSAL DISCOVERY

The RCD algorithm is the first sound and complete pro-
cedure that learns the dependencies of a relational causal
model [Maier et al., 2013]. It works under several assump-
tions, described in detail in Appendix 3.3: maximum hop
threshold h, d-faithfulness, acyclicity, and causal sufficiency.
Causal sufficiency in particular implies that RCD was not
originally designed for models with latent variables. Given
that some forms of latent confounding can be detected via
simple dependence tests [Arbour et al., 2016], it is natural
to ask whether RCD is still sound and complete when the
casual sufficiency assumption is lifted. To the best of our
knowledge, no prior research has addressed this question
in detail. The following counterexample shows that RCD is
neither sound nor complete for relational causal discovery
with latent variables.

Counterexample Figure 2c shows the output AGG pro-
duced by RCD using an oracle faithful to the underlying
distribution. As we can see, the actual LAGG in figure 2b
contains outgoing edges from [U].Type and from [U, R, P,
R, U].Type; however, the output AGG (Fig. 2c lacks these
edges. This indicates that RCD fails to identify the rela-
tional dependencies 1) and 2). Furthermore, without latent
variables, RCD cannot capture and detect the presence of
a latent confounder on the AGG using only directed edges.
As seen in Figure 2, the fundamental problem that renders
RCD neither sound nor complete for LRCM is the lack of
identification of latent variables. This suggests that a more
expressive representation than AGGs is required for the
correct causal discovery in the presence of latent variables.

[U].Sentiment

[U].Type

[U].Activity

[U, R, P].Engagement

[U, R, P].Content
[U, R, P, R, U].Sentiment

[U, R, P, R, U].Type

[U, R, P, R, U].Activity

(a) MAAGG from the LRCM in Figure 2a for perspective U

[U].Sentiment

[U].Type

[U].Activity

[U, R, P].Engagement

[U, R, P].Content
[U, R, P, R, U].Sentiment

[U, R, P, R, U].Type

[U, R, P, R, U].Activity

(b) PAAGG of O-Equiv(DO) for perspective U
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(c) PARM of O-Equiv(DO)

Figure 3: New representations to enable relational causal
discovery in LRCMs

4.3 PARTIAL ANCESTRAL ABSTRACT GROUND
GRAPHS

To enable causal discovery in latent relational causal models,
we first need to define the necessary graphical models. Fig-
ure 3 shows an example of the models we introduce in this
section. We will do so by considering an extension of the
graphical models used in FCI to the relational setting, with
a representation that expresses the underlying dependencies
D over a set of observed variables O (i.e., DO):

Definition 4 (Maximal Ancestral Abstract Ground Graph
(MAAGG)). Given a latent relational causal model
ML(S,D) with a hop threshold h, any perspective
B, and the resulting Latent Abstract Ground Graph
LAGGMLBh, the maximal ancestral abstract ground graph
MAAGGMBh′ is a graph, with a hop threshold h′ ≥ h
comprising:

• One node for each relational variable of the LAGG
in O and the respective set of observed intersection
variables;

• Three types of edges:→, —, and↔, which are used to
represent the underlying dependencies DO.

The MAAGG G defined over the variables in O, following
the definition of Zhang [2008], probabilistically represents
the respective LAGG defined over O and L, specifically:

• Two variables A,B ∈ O are adjacent in G if and only
if there is an inducing path relative to ⟨L⟩ in the true
LAGG;



• The orientation entails the same concept of non-
causality and ancestry between two variables for
MAGs and PAGs.

We now introduce a lemma that is necessary for proving the
soundness and completeness of our proposed method:

Lemma 1. Given a relational causal model structureM
and perspective B, an abstract ground graph AGGMB is
ancestral if and only if all ground graphs GGMσ, with
skeleton σ ∈

∑
S , are ancestral.

Generally, the set underlying dependencies DO is not asso-
ciated with a single MAAGG, but with the class of Markov
equivalence defined as O-Equiv(DO). Therefore, we define
another abstraction, based on PAGs and AGGs, that repre-
sents this equivalence class:

Definition 5 (Partial Ancestral Abstract Ground Graph
(PAAGG)). Given a relational causal model ML(S,D)
with hop threshold h, the respective MAAGGMBh′ , and
its equivalence class O-Equiv(DO), and a perspective B, the
partial ancestral abstract ground graph PAAGGMBh′ is
a bidirected PAG, with hop threshold h′ ≥ h comprising:

• The same set of nodes and adjacencies as the MAAGG;

• Edges containing three kinds of marks: ◦, —and→, which
are used to represent the variance and invariance of the
equivalence class O-Equiv(DO).

The following proposition provides a description of the
soundness and completeness of the new representation:

Proposition 1. Given a relational causal modelML(S,D)
with hop threshold h, and its respective latent abstract
ground graph G, the constructed MAAGG probabilistically
and causally represents G and thus the underlying rela-
tional causal model. Furthermore, assuming a sound and
complete procedure to construct the PAAGG G′, it correctly
represents the Markov equivalence class of the produced
MAAGG and, therefore, of G and the underlying modelML.

The equivalence class of MAAGGs represented by the
PAAGG corresponds to multiple LRCMs that share the
same set of dependencies over DO. Thus, it is possible to
define a new model from the PAAGG, which represents the
equivalence class O-Equiv(DO):

Definition 6 (Partial Ancestral Relational Model
(PARM)). Given a LRCM ML(S,D) and its respective
PAAGGMBh′ for the equivalence class O-Equiv(DO),
a partial ancestral model M(SO,D′) is the relational
causal model abstracted by the PAAGG that represents
O-Equiv(DO). The PARM is defined over a relational
schema containing only observed attribute classes
SO = (E ,R,AO, card) and a set D′ of dependencies,
which are used to represent the causality information for all
models in O-Equiv(DO).

The definitions of MAAGG and PAAGG allow a limit on
the hop threshold higher than that of the underlying equiv-
alence class of models. This is because the set of possible
underlying dependencies with at most the same hop thresh-
old would not capture paths that, in addition to the allowed
threshold for observed variables, include unobserved vari-
ables. The higher hop threshold implied by definition 2 for
PAAGGs is required to obtain an abstraction that correctly
represents the presence of latent confounders in the underly-
ing model. This is due to the presence of latent confounders
(Definition 3) in a relational causal model and to the absence
of latent parents and children for latent variables.

Proposition 2. Given a latent relational causal model
ML(S,D) with hop threshold h and its corresponding
PARM M, the hop threshold h′ of the PAAGGMB for
any perspective B can be at most 2h.

4.4 THE RELFCI ALGORITHM

In this section, we present the Relational Fast Causal In-
ference (RelFCI) algorithm, a sound and complete proce-
dure for determining causal relationships from relational
data when unobserved variables are present. RelFCI fol-
lows a three-step approach similar to the FCI algorithm for
Bayesian networks (Spirtes 2013). RelFCI adapts the FCI
procedure to relational causal models, similar to how RCD
[Maier et al., 2013] does with the PC algorithm [Spirtes
et al., 2000]. Given that FCI is an extension of PC, RelFCI
follows the same orientation rules as RCD and also assumes
a prior relational skeleton. However, it differs from RCD in
two ways: [1] RelFCI uses partial ancestral abstract ground
graphs, one for each perspective, as the underlying represen-
tation; [2] RelFCI applies seven additional rules from FCI
to ensure soundness and completeness with latent relational
data.

Algorithm 1 shows the high-level pseudocode for RelFCI,
and Appendix C contains the complete algorithm pseu-
docode. RelFCI, like RCD, computes the set of potential
dependencies in canonical form, limited by the h′ = 2h
threshold. Starting from these dependencies, the algorithm
constructs PAAGGs, one for each perspective, all with ◦
edge marks. The first step is to remove potential dependen-
cies using conditional independence tests with conditioning
sets of increasing size drawn from the collection of adjacen-
cies of the two nodes considered. After deleting all possible
edges, a set of unshielded triples is obtained. The second
phase detects colliders while finding potential additional in-
dependence relationships between the triples’ variables and
potentially eliminating the respective edges. Even though
RelFCI operates on different graphical models compared to
FCI and RCD, it is straightforward to adapt their rules for
RelFCI. The third step thus performs edge orientation by
applying RBO, KNC, CA, and MK3 rules from RCD first,
then rules R4 through R10 from FCI. A detailed descrip-
tion of these rules is provided in Appendix B. In contrast



Algorithm 1 RelFCI algorithm
Input: schema, oracle, threshold
Output: Dependencies

1: PDs ← get potential dependencies from the base
schema with 2*threshold

2: PAAGGs← construct PAAGGs from set of potential
dependencies PDs

3: S ← {}
4: PAAGGs, S, U ← find all independent variables in

the graphs, storing separating sets and unshielded triples

5: PAAGGS, S ← orient v-structures using CD, starting
from unshielded triples in U

6: PAAGGs, S ← orient PAAGGs edges using RCD and
FCI rules

7: Deps ← retrieve underlying dependencies from the
edges of oriented PAAGGs

8: return Deps

to the first step, the latter two differ from FCI because they
apply the RBO rule from RCD and propagate each edge
orientation to other PAAGGs. All steps are performed on all
PAAGGs to accurately identify additional separation sets
for each perspective.

Before demonstrating the soundness and completeness of
RelFCI, we first clarify how the algorithm handles relational
dependencies and edge orientations in PAAGGs. Since with
◦ marks RelFCI produces an equivalence class rather than
a single causal model, certain underlying dependencies re-
main ambiguous. To address this, we distinguish between
required dependencies, which must be oriented in a specific
direction to respect the PAAGG orientation, and possible de-
pendencies, which may have alternative orientations while
remaining consistent with the learned PAAGG. With this
new distinction, it is then possible to define the propagation
of edges orientation across all PAAGGs for every perspec-
tive in a given LRCM, following a similar approach to the
one described in RCD Maier et al. [2013] for regular AGGs.
A detailed explanation of these aspects is provided in Ap-
pendices D and E.

4.5 SOUNDNESS

Maier et al. [2013] prove the soundness of CD, KNC, CA,
MR3, and the new RBO rule using a proof derived from the
soundness definition presented in Meek [1995]. Thus, we
will focus on the soundness of the remaining rules R4-R10
adapted from FCI [Zhang, 2008].

Theorem 1. Let G be the partially oriented PAAGG from
perspective B, with the correct adjacencies, unshielded col-
liders correctly orientated through CD and RBO, and as
many edges as possible oriented through KNC, CA, MR3,
and the purely common cause of RBO. Then, FCI’s rules

R4-R10 and the orientation propagations are sound.

The proof is an extension of those presented by Spirtes et al.
[2000] for rule R4 and Zhang [2008] for rules R5-R10.

4.6 COMPLETENESS

A set of orientation rules is called complete if it generates
a maximally informative graph. In PAAGGs, each circle
corresponds to a variation mark in the equivalence class
O-Equiv(DO) (modified from Zhang [2008]). The rules em-
ployed in FCI can be divided into two groups based on their
function: those used to identify arrowhead invariants (CD,
KNC, CA, MR3, and R4) and those used to identify tail
invariants (R5-R10). According to Ali [2005], the first set
of rules covers all invariant arrowheads. Lemma 2 shows
that PAAGGs have similar arrowhead completeness, which
can be used to prove overall rule completeness.

Lemma 2. Let G be a partially oriented PAAGG with cor-
rect adjacencies. Then, exhaustively applying CD, RBO,
KNC, CA, and MR3, all with orientation propagation of
edges, produces a graph G’ in which for every circle mark,
there exists a MAAGG in the O-Equiv(DO) class with a
corresponding tail mark.

Following Ali [2005]’s proofs for MAG, we apply the same
reasoning for MAAGG and expand it with the RBO rule.
The orientation propagation proof is identical to the one
offered in Maier et al. [2013]. We now provide tail com-
pleteness of the remaining set of rules.

Lemma 3. Let G’ be the partially oriented PAAGG with
correct adjacencies and unshielded colliders, and as many
edges orientated with KNC, CA, and MR3, consistently
applying edge propagation. Then, applying rules R5-R10,
along with orientation propagation, provides a graph G”
such that for every circle mark, there exists a MAAGG in
O-Equiv(DO) in which the associated mark is an arrowhead.

The proof comes from Zhang [2008] tail completeness, es-
tablishing that every PAAGG edge ◦—, ◦—◦, ◦→, the circle
mark corresponds to an arrowhead in an MAAGG belong-
ing to the equivalence class. With lemmas 2 and 3 in place,
completeness follows:

Theorem 2. Given a partially oriented PAAGG G with the
appropriate set of adjacencies, applying rules CD, KNC,
CA, MR3, and RBO extensively, followed by orienting any
possible edges with rules R4-R10, all with orientation prop-
agation, yields a maximally informative graph G.

Proof. Lemmas 2 and 3 prove that in the output graph G
produced by applying all the rules, every remaining circle
mark corresponds to both tail and arrowhead variant marks



Figure 4: RelFCI and RCD Precision and Recall comparison. Results are combined for both 1 and 2 latent variables. Intervals
represent ±1 standard deviation.

Figure 5: RelFCI and RCD Precision and Recall performance with 1 and 2 latent variables.

in the O-Equiv (DO). As such, the circle mark is consid-
ered a variation mark. Thus, by definition, the graph G is
maximally informative.

We are now ready to establish the soundness and complete-
ness of RelFCI:

Theorem 3. Given a schema and a probability distribu-
tion P(V) with V = O ∪ L ∪ S, the output of RelFCI is a
correct maximally informative PAAGG, and thus a maxi-
mally informative PARM M, assuming perfect conditional
independence tests and sufficient hop threshold h′.

5 EXPERIMENTAL RESULTS

5.1 SETUP

Our RelFCI algorithm implementation* is based on the
RFCI algorithm Colombo et al. [2012] rather than FCI.

RFCI performs significantly fewer conditional indepen-
dence tests than other FCI variants. While not proven com-
plete, experiments show it achieves similar accuracy in edge
orientation. We generate synthetic data using a procedure
similar to Maier et al. [2013] but with the addition of in-
troducing latent variables into the schema and model. We
generate 1000 random LRCMs from randomly generated
schemas for each of the following combinations: number
of entities n ∈ [2, 4]; n− 1 relationships with randomly se-

*Code available at https://github.com/edgeslab/
RelFCI.

https://github.com/edgeslab/RelFCI
https://github.com/edgeslab/RelFCI


lected cardinalities; attributes per item drawn from a Poisson
distribution Pois(λ = 1) + 1; and the number of relational
dependencies (6, 8, 10, and 12) limited by hop threshold
of 2. We additionally require the presence of one or two
latent attributes, which are randomly chosen from the set of
attributes for relational variables in the LAGG involved in
at least two dependencies as the cause variable. The process
yields a total of 22,000 synthetic models. We use an oracle to
perform conditional independent tests for RelFCI and RCD
for all possible perspectives. The results are then averaged
over multiple runs for every combination, i.e., averaging
over 1000 different LRCMs sharing the same properties.

5.2 EVALUATION

We evaluated our work by comparing the model derived
from the algorithm’s dependencies to the ground truth. We
define the latent relational causal model obtained as ground
truth by replacing the latent variable with double arrowhead
edges using the same Maximal Ancestral Graph construc-
tion approach as presented in Zhang [2008]. We label a
missing edge as a false negative, an additional edge as a
false positive, and a correct edge as a true positive and com-
pute the precision and recall. Furthermore, to assess the
necessity of new rules for relational causal discovery, we
also measure the frequency with which each rule was in-
voked during the RelFCI runs. This last result can be found
in Appendix H.

5.3 RESULTS

Figure 4 presents a comparative analysis of RelFCI and
RCD regarding precision and recall. An apparent discrep-
ancy can be noticed in the results. This difference arises due
to latent variables, which RCD fails to handle effectively. As
previously discussed, the influence of hidden confounders
violates RCD’s core assumptions, significantly degrading
its accuracy. In contrast, our proposed method, RelFCI, is
designed to be sound and complete in the presence of latent
variables. Since the RFCI implementation can sometimes
introduce spurious edges or omit true ones, we expect its
precision and recall to be slightly below one, as supported
by Colombo et al. [2012]. Furthermore, RelFCI exhibits
a smaller variance than RCD. This indicates that RelFCI
produces more consistent and reliable results across differ-
ent conditions, reinforcing its robustness in handling latent
variables.

Figure 5 further illustrates the performance trends with ei-
ther one or two latent variables as the number of entities
and dependencies increases. A key observation is that while
RCD’s performances slightly improve as the number of enti-
ties and dependencies grows, its precision and recall remain
consistently lower than those of RelFCI. This trend is par-
ticularly noticeable in recall, suggesting that RCD benefits

marginally from increased structural complexity. RelFCI, in-
stead, maintains stable and high precision and recall across
all conditions. These findings highlight the robustness of
RelFCI in handling relational datasets with latent variables,
where RCD struggles to achieve comparable accuracy.

As an additional analysis, we evaluated our new algorithm’s
rule activation distribution over all synthetic runs. Rules
unique to FCI account for approximately one-third of all
orientations. It demonstrates that latent confounders impact
the entire model structure during the learning process. The
plot of the rules distribution is shown in Figure 6.

Figure 6: RelFCI’s rule distribution of RCD and FCI rules.

6 CONCLUSION

In this paper, we provide novel representations for relational
causal models with latent confounders. We present a sound
and complete algorithm, RelFCI, for detecting causality
relationships from relational data with latent confounders,
which provides a more comprehensive understanding of
relational causal models. To the best of our knowledge, this
approach is the first to study relational causal discovery
with latent variables. We believe this work will be critical
in enabling causal effect estimation in complex relational
systems for which the underlying causal model is unknown.
Areas of future work include investigating the effects of
including selection bias and cycles into latent relational
causal models.
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A BACKGROUND

A.1 RELATIONAL DATA

In this subsection, we provide possible examples of relational data. Figure 7 shows an example relational schema with two

entities, USER (E) and POST (P), and the relationship between them, REACTS (P), with a MANY TO MANY cardinality,

meaning users can react to multiple posts and vice versa. The USER type has three attributes: Type, Sentiment, and Activity,

while the POST entity type has the attributes Content and Engagement. The relationship type REACTS instead has the

attribute Frequency.

USER POST
REACTS

MANY MANY

Sentiment

Type

Activity Frequency

Engagement

Content

Figure 7: Example of Relational Schema

An example of an instantiation of the depicted relational schema can be seen in figure 8. For simplicity, attributes are left with

the original placeholder for each entity and relationship instance. As an example, the skeleton contains three instantiations

of the USER entity, Bob, Anna, and Andrea, and four instantiations of the POST entity type, Food recipe, Meme, Poem, and

News. Bob and Anna react to the Food recipe and Meme, while Andrea reacts to the Poem and News. It is important to note

that this skeleton is coherent with the cardinality requirements (i.e., MANY TO MANY) of the relationship defined in the

schema.

Given the relational skeleton provided and the relational dependencies provided in the relational causal model in fig-

ure 1, it is possible to obtain the corresponding ground graph, shown in figure 9. The nodes on the ground graph

mailto:<apiras2@uic.edu>?Subject=Relational Causal Discovery with Latent Confounders
mailto:<mnegro2@uic.edu>?Subject=Relational Causal Discovery with Latent Confounders


Bob Anna

Food Recipe Meme

Reacts

Sentiment

Type

Activity

Sentiment

Type

Activity

Frequency

Engagement

Content

Engagement

Content

Andrea

Poem News

Reacts Reacts

Sentiment

Type

Activity

Frequency Frequency

Engagement

Content

Engagement

Content

Figure 8: Example of Relational Skeleton

represent the attributes of every single entity and relationship instance in the skeleton. In contrast, the edges repre-

sent the dependencies in the relational causal model applied to the attribute instances of the relational skeleton. For

example, the relational dependency [P,R,U ].Sentiment → [P ].Engagement in the model, which indicates that

a post’s engagement depends on the user’s reaction to the product, is represented in the ground graph with the fol-

lowing edges: Bob.Sentiment→ Food_Recipe.Engagement, Bob.Sentiment→Meme.Engagement, Anna.Sentiment→

Food_Recipe.Engagement, Anna.Sentiment→ Food_Recipe.Engagement, Andrea.Sentiment→ Poem.Engagement, An-

drea.Sentiment→ News.Engagement.

Bob.Type

Bob.Activity Bob.Sentiment

Assign.Frequency

Food_recipe.Engagement

Food_recipe.Content

Anna.Type

Anna.Activity Anna.Sentiment

Meme.Engagement

Meme.Content

Andrea.Type

Andrea.Activity Andrea.Sentiment

Assign.Frequency Assign.Frequency

Poem.Engagement

Poem.Content

News.Engagement

News.Content

Figure 9: Example of Ground Graph

Beyond the specific instantiation of the ground graph, to perform relational causal discovery, it is necessary to define an

abstract ground graph that generalizes the structure of dependencies without referring to particular entities or relationship

instances. The abstract ground graph represents the relational dependencies in the relational causal model at a higher level,

capturing attribute interactions without being tied to a specific skeleton. In this representation, nodes correspond to attribute

types rather than instances, while edges represent the abstract relational dependencies in the model [Maier et al., 2014].



[U].Sentiment

[U].Type

[U].Activity

[U, R, P].Engagement

[U, R, P].Content [U, R, P, R, U].Sentiment

[U, R, P, R, U].Type

[U, R, P, R, U].Activity[U, R].Frequency

Figure 10: Example of Abstract Ground Graph for perspective USER

To construct the abstract ground graph from a given relational causal model, it is necessary to project the dependencies onto

the relevant perspective. The extend method devised by Maier et al. [2014] achieves this by mapping underlying relational

dependencies into the set of edges in the abstract ground graphs. Below we provide the formula of the extend method:

extend(Porig, Pext) =
{
P = P 1,no−i+1

orig + P i+1,ne
ext

∣∣∣ i ∈ pivots(reverse(Porig), Pext) ∧ validPath(P )
}

pivots(P1, P2) =
{
i
∣∣∣P 1,i

1 = P 1,i
2

}

Where validPath(P ) checks that the relational path is valid with the respect to the schema and its relationships’ cardinalities.

Each abstract ground graph edge [B, . . . , Ik].Y → [B, . . . , Ij ].X is then constructed from the underlying dependency

[Ij , . . . , Ik].Y → [Ij ].X with the following logic:

{[B, . . . , Ik].Y → [B, . . . , Ij ].X | [Ij , . . . , Ik].Y → [Ij ].X ∈ D ∧ [B, . . . , Ik] ∈ extend([B, . . . , Ij ], [Ij , . . . , Ik])}

For example, the relational dependency [P,R,U ].Sentiment→ [P ].Engagement, which in the ground graph manifests as

instance-specific edges (e.g., Bob.Sentiment→ Food_Recipe.Engagement), is represented in the abstract ground graph for the

perspective USER with the directed edges [U ].Sentiment→ [U,R, P ].Engagement and [U,R, P,R,U ].Sentiment→

[U,R, P ].Engagement.

Similarly, other relational dependencies in the model are reflected as edges between attribute types in the abstract ground

graph, providing a compact and generalized view of how information propagates through the relational structure. Analyzing

the abstract ground graph makes it possible to reason about potential influences and dependencies at the schema level

without requiring explicit enumeration of individual instances.



A.2 MAGS AND PAGS

In this subsection, we provide an example of how more than one MAG can be a member of the same PAG and single

equivalency class. Given a collection of observable variables, let Cond in figure 11a represent the set of conditional

dependencies. It is evident that it is entailed by several DAGs. Figure 11b displays the PAG that was generated for Cond.

Since they are not mentioned in the conditional set, A and D’s edge marks are ◦, which could lead to different marks for

various DAGs in O-Equiv(Cond).

A B C D

L1

A B C D

L1

L2

{ {D} ⊥ {A, B},
{A} ⊥ {C, D} }

(a) DAGs in same O-Equiv(Cond) class

A

B C

D

(b) Resulting PAG for O-Equiv(Cond) class

Figure 11: DAGs in the same observational equivalence class under Cond (a), and the resulting PAG (b) that captures shared
structure and uncertainty in edge directions.

B RELFCI RULES

This section outlines every rule we apply to the new Partial Ancestral Abstract Ground Graph representation to obtain a

maximally informative graph and, thus, an underlying model. We introduce the rules in the framework of PAAGGs, where

any ◦ marks represent unoriented edges and ∗ denotes any edge mark.

B.1 RCD RULES

RCD [Maier et al., 2013] performs relational causal discovery using a similar strategy to the Poem algorithm, extended with

the RBO purely common cause rule. The edges of the abstract ground graph are oriented using the following set of rules:

1. Collider Detection (CD): For each triple ⟨α, β, γ⟩, if β is not in the set that separates α and γ, orient it as α ∗→ β ←∗ γ;

2. Relational Bivariate Orientation (RBO): LetM be a relational causal model and G a partially directed PAAGG forM

for perspective IX , and let there be an unshielded triple in G α◦—◦β◦—◦γ with α = [IX ].X, β = [IX , ..., IY ].Y, γ =

[IX , ..., IY , ..., IX ].X . If card([IY , ..., IX ]) = MANY and α ⊥⊥ γ|Z, then if β ∈ Z, orient the triple as α←◦ β ◦→ γ;

3. Known Non-Colliders (KNC): If α ∗→ β◦—∗γ, with α, γ not adjacent, orient the triple as α ∗→ β → γ

4. Cycle Avoidance (CA): If either α→ β ∗→ γ or α ∗→ β → γ, with α∗—◦γ, orient the latter as α ∗→ γ;

5. Meek Rule 3 (MR3): If both α ∗→ β ←∗ γ and α∗—◦θ◦—∗γ, with α, γ not adjacent and θ∗—◦β, then orient the

latter as θ ∗→ β.



B.2 FCI RULES

FCI [Zhang, 2008] constructs a causal graph starting from a fully connected undirected graph with ◦ marks and removes

edges between conditionally dependent variables. In the second phase, it orients edges by identifying colliders and "Y"

structures. The remaining edges are then oriented according to a set of additional rules:

4. If u = ⟨θ, ..., α, β, γ⟩ is a discriminating path and β∗—γ, if β ∈ SepSet(θ, γ) orient β → γ, otherwise orient

α↔ β ↔ γ;

5. For every (remaining) α◦—◦β, if there is an uncovered path p = ⟨α, γ, ..., θ, β⟩ s.t. all edges are ◦—◦ and α, θ are not

adjacent and β, γ are not adjacent, then orient all edges in the path as —;

6. If α—β◦—∗γ, with α, γ either adjacent or not, orient β—∗γ;

7. If α—◦β◦—∗γ, and α, γ are not adjacent, orient β—∗γ;

8. If α—◦β → γ or α—◦β → γ, and α◦→ γ, orient α→ γ;

9. If α ◦→ γ and p = ⟨α, β, θ, ..., γ⟩ is an uncovered path s.t. β and γ are not adjacent, orient α→ γ;

10. If α ◦→ γ, β → γ ← θ, and p1, p2 are uncovered p.d. paths from α to β and from α to θ, let µ and ω be the adjacent

nodes of α on p1, p2. If µ and ω are distinct, orient α→ γ.

C ALGORITHMS

The following section provides more detailed pseudocode for each step in the main algorithm. The described algorithm

and steps are adapted from the implementation provided in Colombo et al. [2012]. For easy reference, the main RelFCI

pseudocode is provided again below in Algorithm 2.

Algorithm 2 RelFCI algorithm
Input: schema, oracle,
Parameter: threshold
Output: Dependencies

1: // Step 1: Graphs initialization
2: PDs← get potential Dependencies from the base schema (with no dependencies) and two times the threshold (2*h)
3: PAAGGs← construct PAAGGs from potential dependencies set PDs
4: S ← {}
5: // Step 1: Independent Variables identification, storing separating sets and unshielded triples
6: PAAGGs, S, U ← obtainInitialSkeleton(PAAGGs, S)
7: // Step 2: V-structures orientation using CD, starting from unshielded triples in U
8: PAAGGS, S ← orientVStructures(PAAGGs, S, U)
9: // Step 3: edges orientation using rules from RCD and additional ones from FCI

10: PAAGGs, S ← performEdgeOrientation(PAAGGs, S)
11: Deps← retrieve underlying dependencies from oriented PAAGGs edges
12: return Deps



Algorithm 3 obtainInitialSkeleton
Input: Schema, Oracle,
Parameter: threshold, depth
Output: Non-oriented AGGs

1: for agg in AGGs do
2: Let l = 0
3: Let max_depth = agg.number_of_nodes− 2
4: while l ≤ max_depth do
5: for all pair of vertices (Xi, Xj) in agg do
6: Let C = agg.nodes− {Xi, Xj}
7: for all Y ⊆ C do
8: if CITest(Xi, Xj , Y ) then
9: Remove dependencies between (Xi, Xj)

10: Store Y as sepSet for (Xi, Xj)
11: end if
12: end for
13: end for
14: Let l = l + 1
15: end while
16:
17: for all triple of vertices (Xk, Xj , Xm) in agg do
18: if k < m then
19: if agg.has_edge(Xk, Xj) and agg.has_edge(Xj , Xm) and not agg.has_edge(Xk, Xm) then
20: Append (Xk, Xj , Xm) to unshieldedTriples[agg]
21: end if
22: end if
23: end for
24: end for



Algorithm 4 orientVStructures
Input: Schema, Oracle,
Parameter: threshold, depth
Output: Partially oriented AGGs

1: for agg in AGGs do
2: while unshieldedTriples[agg] do
3: Let (Xi, Xj , Xk) = unshieldedTriples[agg].pop()
4: Let Z = sepSet(Xi, Xk)− {Xj}
5: if not CITest(Xi, Xj , Z) and not CITest(Xj , Xk, Z) then
6: Append (Xi, Xj , Xk) to dependentTriples[agg]
7: else
8: for Xr in [Xi, Xk] do
9: if CITest(Xr, Xj , Z) then

10: Let Y = findMinimalSepset(Xr, Xj , Z)
11: Store Y as sepSets for (Xr, Xj)
12: for all Xx in agg.nodes do
13: if isTriangle(Xmin(r,j), ·, Xmax(r,j)) then
14: Add to unshieldedTriples[agg] the triple
15: end if
16: end for
17: for all triple in unshieldedTriples[agg] do
18: Delete the triple if matches one of the following patterns: (Xr, Xj , ·), (Xj , Xr, ·), (·, Xj , Xr) and

(·, Xr, Xj)
19: end for
20: Remove dependencies between (Xr, Xj)
21: end if
22: end for
23: end if
24: end while
25: for all triple in dependentTriples[agg] do
26: Let Xi, Xj , Xk = triple
27: if Xj not in sepSets(Xi, Xk) and agg.has_edge(Xi, Xj) and agg.has_edge(Xj , Xk) then
28: Orient the triple as a collider
29: end if
30: end for
31: end for



Algorithm 5 performEdgeOrientation
Input: Schema, Oracle,
Parameter: threshold, depth
Output: Maximum oriented AGGs

1: for agg in AGGs do
2: while AGG is updated do
3: Orient as many edges as possible by applying RBO rule
4: Orient as many edges as possible by applying FCI_1 - FCI_3 rules
5: for all possible triples do
6: Let Xl, Xj , Xk = triple
7: if isTriangle(Xl, Xj , Xk) and Xj ◦−∗ Xk and Xl ←∗ Xj and Xl → Xk then
8: Find Minimal Discriminating Path for the triple
9: if minimalDiscriminatingPath then

10: for all adjacent couples do
11: Let Xr, Xq = couple
12: Let otherSepSet = sepSets(Xi, Xk)−Xr, Xq

13: Let l = −1
14: while |otherSepSet| ≥ l do
15: Let l = l + 1
16: for all Y ⊆ otherSepSet and |Y | = l do
17: if CITest(Xr, Xq , Y ) then
18: Store Y as sepSet for (Xr, Xq)
19: for all Xx in agg.nodes do
20: if isTriangle(Xmin(r,j), ·, Xmax(r,j)) then
21: Add to unshieldedTriples[agg] the triple
22: end if
23: end for
24: Remove dependencies between (Xr, Xq)
25: Execute Algorithm 2
26: end if
27: end for
28: end while
29: end for
30: if Still adjacent and Xj in sepSets(Xi, Xk) then
31: Orienting Xj → Xk

32: else if Still adjacent then
33: Orienting Xl ↔ Xj ↔ Xk

34: end if
35: end if
36: end if
37: end for
38: Orient as many edges as possible by applying FCI_5 - FCI_10 rules
39: end while
40: end for



D POSSIBLE DEPENDENCIES

The presence of ◦ marks in the edge of PAAGGs, and thus in the underlying PARM , implies that the O-Equiv(DO) class

contains different relational causal models. The algorithm’s output is not the exact relational causal model that generates

the data. RelFCI returns an equivalence class containing the model responsible for the data causal relationships. RelFCI

computes conditional independence tests among the variables, thus possibly producing the same result with different

underlying topologies e.g., with the independence fact A ⊥⊥ C | B, the nodes A, B, and C can be correctly oriented as

follows: A → B → C, A ← B → C, A ← B ← C, A → B ← C [Spirtes et al., 2000]. RelFCI works by learning the

edges’ orientation of each PAAGG, which are defined by underlying relational dependencies.

When the algorithm concludes and collects all the information learned to produce the PARM , the remaining ◦ marks lose

significance in terms of relational dependencies. The definition of relational dependency in canonical form implies a natural

orientation, i.e., [IX ...IY ].Y → [IX ].X . Orienting dependencies the other way around is an infraction of the definition,

i.e., [IX ].X ↛ [IX ...IY ].Y . For this reason, given this formalization of the problem, we differentiate the information the

algorithm learns by clearly stating which relational dependencies are required to define the PARM and which are instead

allowed. We define the required relational dependencies with a→, i.e., [IX ...IY ].Y → [IX ].X and the ones that are allowed

but not necessary with a⇝, i.e., [IX ...IY ].Y ⇝ [IX ].X . We will refer to the latter as Possible Dependencies.

E PAAGG EDGE ORIENTATION

We apply the four PC rules and the new RBO rule, described in RCD, and further apply the rules of FCI, as defined by Zhang

(2008), adapted for the PAAGG representation. A latent relational causal model consists of a set of AGGs, one for each

perspective, derived from the same set of relational dependencies D. Similarly, both MAAGGs and PAAGGs are derived

from the same collection of observed relational dependencies DO. In classical AGGs, activating a rule in a certain abstract

ground graph involves propagating the orientation of the underlying dependency across all AGGs [Maier et al., 2013].

Consider a PARM M defined over the set of dependencies DO and its corresponding PAAGG G for the perspective B. Let

α = [B, ..., IX ].X and γ = [B, ..., IY ].Y be two nodes in G, α− γ be a bidirected edge in G, and d1 = [IX , ..., IY ].Y →

[IX ].X ∈ DO be the underlying dependency that yields the left direction of the edge. The FCI rules can orient a PAG edge

with three edge marks: ◦, —, and→. We apply these orientations to the PAAGG using the following logic:

• The orientation α◦—γ implies that the underlying dependency d1 belongs to the set of possible dependencies;

• The orientation α− γ implies that the underlying dependency d1 is not coherent with the edge orientation and, as such,

is not existent in the underlying PARM;

• The orientation α← γ indicates that the underlying dependency d1 is consistent with the edge orientation and belongs

to the category of exact dependencies.



With this logic, the same propagation property applies to new representations that share the same underlying dependencies

because exact and potential dependencies are propagated equally.

F EXAMPLE EXECUTION OF RELFCI

To illustrate the functioning of the RelFCI algorithm, we provide a step-by-step execution over an example relational causal

model. This walk-through demonstrates the graphical transformations applied to the Partial Ancestral Abstract Ground

Graph (PAAGG) across the different phases of the algorithm. Each figure referenced corresponds to a visual depiction of the

model after the respective step of the algorithm.

Note: For this example, we focus on a single perspective (in this case, AB1). Similar graphs and reasoning are applied to all

other perspectives. Rule propagation ensures that orientations in one PAAGG are reflected across others in line with shared

underlying dependencies.

INITIAL MODEL AND UNDERLYING GRAPH

Figure 12: Relational causal model with entities, relationships, and dependencies, including latent variables.

We begin with a relational causal model that includes observed and latent variables. The figure depicts:

• Entities A and B with a relationship AB1;



• Attributes A1, A2, A3, B1, B2 (observed), and B3 (latent, represented with a double edges octagon);

• Dependencies between relational variables, considering a hop threshold h = 2:

– Observed dependencies ∈ DO: [A].A1 → [A].A2, [A,AB1, B].B2 → [A].A2, [A,AB1, B].B2 → [A].A3,

[B].B1 → [B].B2].

– Unobserved dependencies ∈ DL: [A,AB1, B].B3 → [A].A2, [A,AB1, B].B3 → [A].A3, [AB1, B].B3 →

[AB1].AB11.

PHASE 0 – PAAGG CONSTRUCTION

In this phase, the algorithm constructs the PAAGGs with all possible dependencies:

• A node is created for each relational variable with a path length up to the hop threshold h′ = 2h = 4.

• Edges are added according to the extend method, resulting in a fully connected undirected graph with ◦−◦ marks.

• Intersection variables are included if needed to maintain the closure under intersections. In this example, these variables

are excluded from the plots for better readability.

The graph in 13 represents the PAAGG with all potential dependencies for the perspective AB1.

Figure 13: Fully connected PAAGG for perspective AB1.



PHASE 1 – INITIAL SKELETON IDENTIFICATION VIA CONDITIONAL INDEPENDENCE TESTING

The algorithm now performs conditional independence tests between every pair of variables, using increasingly bigger

separating sets. If the two variables are found to be independent conditioned on the variables in the separating set, the edge

is removed, and the set is stored.

Figure 14: PAAGG after conditional independence testing.

Unshielded triples are also identified at this stage as candidate collider patterns. In this example, the following triples are

found:

• [AB1].AB11, [AB1, A].A2, [AB1, A].A1;

• [AB1].AB11, [AB1, A].A2, [AB1, B].B2;

• [AB1].AB11, [AB1, A].A2, [AB1, A,AB1, B].B2;

• [AB1].AB11, [AB1, A].A3, [AB1, B].B2;

• [AB1].AB11, [AB1, A].A3, [AB1, A,AB1, B].B2;

• [AB1].AB11, [AB1, B,AB1, A].A2, [AB1, B].B2;

• [AB1].AB11, [AB1, B,AB1, A].A2, [AB1, B,AB1, A].A1;

• [AB1].AB11, [AB1, B,AB1, A].A3, [AB1, B].B2.

PHASE 2 – COLLIDER DETECTION AND V-STRUCTURE ORIENTATION

This phase introduces the first directed edge orientations in the graph. The algorithm starts by checking whether the

unshielded triples are found to be dependent (i.e., for triple X,Y, Z, X,Z and Y, Z are not independent given the separating

set of X and Z) or not. For this example, all 7 unshielded triples are identified as dependent. Then, the CD rule is applied to

identify and orient colliders among these triples. The PAAGG after CD is applied is shown on figure 15.



Figure 15: PAAGG after collider orientation via CD.

PHASE 3 – FURTHER ORIENTATION VIA RCD AND FCI RULES

In this step, remaining ambiguous edge marks are refined using the additional RCD (RBO, CA, MR3, and KNC) and FCI

rules, repeating this process until no rule can be applied anymore. For this example:

• Rule KNC is activated once to orient the triple [AB1, A,AB1].AB11 ∗→ [AB1, A].A3 → [AB1, B,AB1, A].A2

and all other triples sharing the same underlying dependencies;

• FCI rule R4 is activated once to orient the triangle [AB1, A].A3 ↔ [AB1].AB11 ↔ [AB1, B,AB1, A].A2 and all

other triples sharing the same underlying dependencies;

• All other rules are not activated.

After all rule applications and orientation propagation, the resulting PAAGG (Figure 16 is maximally informative: each

remaining ◦ mark reflects a true ambiguity in the equivalence class O-Equiv(DO).

Figure 16: Final PAAGG with maximally informative edge orientations.



OUTPUT – EXTRACTION OF DEPENDENCIES

From the oriented PAAGGs, the algorithm extracts the required and possible underlying dependencies. These define the

Partial Ancestral Relational Model, shown in Figure 17.

Figure 17: Learned PARM for the example model.

G PROOFS

This section contains complete proofs for all the theoretical results presented in the main paper.

Lemma 1. Given a relational causal model structureM and perspective B, if an abstract ground graph AGGMB is

ancestral, then all ground graphs GGMσ , with skeleton σ ∈
∑

S , are ancestral.

Proof. From the definition of Zhang [2008], a graph is ancestral if:

1. There is no directed cycle, i.e., B→A is in G and A is an ancestor of B (meaning there’s a directed path from A to B);

2. There is no almost directed cycle, i.e., B↔A is in G and A is an ancestor of B;

3. For any undirected edge A—B, both A and B have no parent or spouses, i.e., X, Y such that either or both A↔X or

B↔Y.

For each of the three conditions, we must demonstrate that if the AGG is ancestral, all GGs must likewise be ancestral to

prove this lemma. Given the definition of the abstract ground graph building process in Definition 5.2 and Theorem 5.2 from

Maier et al. [2014], we know that the AGG is sound and complete for all ground graphs for a given perspective and hop

threshold h. This suggests that the AGG captures every dependent path between two variables in every GG. In the same way,

each path of dependence between two variables in the AGG is mirrored in at least one GG. We now verify the lemma for the

three conditions of ancestrality:



1. Assume that the AGG is ancestral and that one of the ground graphs, G, has a directed cycle between A and B to

provide a contradiction. Consequently, the two dependence paths in G will also be present in the AGG, resulting in a

directed cycle. Thus, the maximal ancestral abstract ground can’t be ancestral;

2. Similar reasoning can be carried when considering almost directed cycles containing double-arrowed edges (in the case

of Maximal Ancestral Abstract Ground Graphs), thus verifying the lemma for this condition as well;

3. Given the assumptions of the underlying structure’s acyclicity and no selection bias (i.e., no variables are in the set

S), an undirected edge cannot exist as it corresponds to the presence of selection variables, of which X and Y are the

cause Zhang [2008]. Thus, this condition does not apply to AGGs.

Lemma 1 guarantees that the theoretical reasoning devised for MAGs and PAGs can also be applied to the relational

counterparts we provide in this work, MAAGGs, and PAAGGs. In other words, we know that the ancestrality of these

relational lifted representations corresponds to the same ancestrality properties in the underlying ground graphs and, thus, in

the underlying latent causal relational causal model we want to learn.

Proposition 3. Given a relational causal modelML(S,D) with hop threshold h, and its respective latent abstract ground

graph LAGG:

I. The constructed MAAGG probabilistically and causally represents LAGG and thus the underlying relational causal

model;

II. Assuming a sound and complete procedure to construct the PAAGG, it correctly represents the Markov equivalence

class of the produced MAAGG and, therefore, of LAGG and the underlying modelML.

Proof. I. We can demonstrate that the MAAGG, constructed from LAGG by employing the same MAG construction

procedure provided in Zhang [2008], probabilistically and causally represents it as a result of theorem 4.18 of Richardson

and Spirtes [2002], where they show that the independence model corresponding to the constructed graph coincides

with the one obtained by marginalizing and conditioning the model on the original graph (LAGG). Furthermore, the

MAAGG also represents the model ML, which follows from Lemma 1.

II. Under the assumption of a sound and complete procedure for generating said representation (i.e., the RelFCI algorithm),

the PAAGG represents the Markov equivalence class containing the MAAGG. This proof follows from Zhang [2008]:

the PAAGG, constructed from a sound and complete algorithm that outputs a set of graphs which includes all the causal

relationships consistent across all MAAGGs, accurately represents the equivalence class. This is because it captures

the uncertainty (circle marks) where the data does not provide enough information to distinguish between different

causal structures. Finally, from I., we can prove that the PAAGG also represents the equivalence class of LAAG and

the underlying model ML.



Proposition 4. Given a latent relational causal modelML(S,D) with hop threshold h and its corresponding PARM M,

the hop threshold h′ of the PAAGGMB for any perspective B can be at most 2h.

Proof. Let us consider a scenario within a relational causal model that allows relational latent variables to be observed and

in which the non-dependence of these variables holds (i.e., no latent variable causes another latent variable, which entails

there cannot exist a chain of dependencies consisting of multiple consecutive latent variables). For the sake of clarity, we

will focus on three entities, A, B, and C, each containing one attribute, respectively A1, B1, and C1, with B1 designated as

latent as in Figure 18. Suppose we were to connect them, using B1 as the connecting bridge between the other two attributes

using the following dependencies: [A,B].B1→ [A].A1 and [C,B].B1→ [C].C1, both of which require a hop threshold

of one to be represented. After removing the assumption of having all variables observed, the scenario reverts to one where

B1 is latent, which means that the dependencies between B1−A1 and B1− C1 are no longer observable. The possible

existing dependencies, containing only relational variables with a path of length two (hop threshold equal to one), make

the model unable to express the dependencies among the attributes of different entities, e.g., [A,B,C].C1→ [A].A1 and

[C,B,A].A1→ [C].C1. To account for the relational dependencies between the two entities, we need a relational path that

is long enough to traverse the entities and describe the relationship between the variables expressed by the model, which

requires twice the original hop threshold of one.

A C
B

A1 B1 C1

Figure 18: Example of Relational Causal Model with a latent variable

Theorem 4. Let G be the partially oriented PAAGG from perspective B with the correct set of adjacencies, unshielded

colliders oriented correctly through CD and RBO, and as many edges as possible oriented through KNC, CA, MR3, and the

purely common cause of RBO. Then, the rules R4-R10 from FCI and the orientation propagations are sound.

Proof. Given lemma 1, the proof derives from Spirtes et al. [1995] and Zhang [2008]. A rule is sound if the arrows and

tails used in the resulting PAAGG are invariant. Therefore, we need to prove that any mixed abstract ground graph G that

violates a rule does not belong to the equivalence class O-Equiv(DO), that is, it is not ancestral or Markov equivalent to the

original MAAGG. The proof for rule R4 is identical to the proof by induction provided in Spirtes et al. [1995], stating that

by applying iteratively rule R4 on a PAAGG G oriented using rules CD, CA, KNC, and MR3, the resulting graph Gi at each

iteration i maintains its ancestral properties for the equivalence class O-Equiv(DO). The proof for the remaining rules is

taken from Zhang [2008]:



• R5: The rule states that the path p = ⟨α, γ, ..., θ, β, α⟩ consists of an uncovered cycles of only circle marks. If we

assume instead that a graph G has an arrowhead on this cycle because of KNC, this cycle must be directed to avoid

unshielded colliders. But by doing so, the graph is not ancestral;

• R6: Any graph G that contains the opposite orientation than the one stated by the rule, i.e., α—β ← ∗γ, is not ancestral;

• R7: Supposed that a graph G has an arrowhead into β as opposed to the rule. Therefore, the triple can be oriented as

α—β ← ∗γ or α→ β ← ∗γ. In the former case, G is not ancestral. In the latter, it contains an unshielded collider not

present in the original MAAGG;

• R8: If a graph G instead of α → γ contains α ↔ γ, then there is an almost directed cycle or an arrowhead into an

undirected edge. In both cases, the graph is not ancestral;

• R9: The same proof for R5 can be applied for this rule;

• R10: The rule states that ⟨µ, α, ω, ⟩ is not a collider in the original MAAGG. Assume that a graph G in the equivalence

class contains α↔ γ instead of the rule specification. Then, for G to be ancestral, one or more edges out of α must be

directed. Therefore, to avoid unshielded colliders not in the original MAAGG, p1 or p2 must be a directed path, making

alpha an ancestor of gamma and thus G not ancestral.

Finally, considering that the rules are proven sound and, as such, all orientations produced are correct, it is straightforward

to prove that the respective orientation propagation procedure is sound, following from Maier et al. [2013].

The following two lemmas for the arrowhead and tail completeness make use of a representation defined as chordal graph,

established in Meek [1995] and extended in Maier et al. [2013] for relational data. This representation is an undirected

graph where every undirected cycle of length four or more has an edge between two nonconsecutive vertices on the cycle. In

chordal graphs, a total order α is consistent with respect to AGG if and only if AGGα (abstract ground graph in which

A→ B if and only if A < B with respect to α) has no unshielded colliders. Furthermore, for all adjacent vertices A and B,

there exists consistent total orderings α and γ such that A← B ∈ AGGα and A→ B ∈ AGGγ .

Lemma 2. Let G be a partially oriented PAAGG with correct adjacencies. Then, exhaustively applying CD, RBO, KNC, CA,

MR3, and R4, all with orientation propagation of edges, produces a PAAGG G’ in which for every circle mark there exists a

MAAGG in the O-Equiv(DO) class with a corresponding tail mark.

Proof. The proof follows from Theorem 4.3 of Ali [2005]. They prove arrowhead completeness for a different graph

representation for the Markov equivalence class of MAGs, Joined Graphs, which do not distinguish between tail marks and

circle marks, provided that the work focused explicitly on arrowhead edge orientations. The same reasoning can be used to

ancestral graphs and, with Lemma 1, to PAAGGs. Let G′ be the PAAGG with as many edges orientated using CD, RBO,

CA, MR3, and R4. For these proofs, we define the edge marker ⊗, which corresponds to either a circle or edge mark. There

are four steps to prove the arrowhead completeness:



1. Removing any non-directed edge in G′ creates a disjoint union of maximal ancestral PAAGGs. Assume for contradiction

that the graph G∗ obtained by removing undirected edges is not ancestral. Given that G∗ does not contain undirected

edges, it cannot contain the following configurations: A⊗ → B—C or A∗ → B—C—D → A. Therefore, it contains

a partially directed k-cycle such as X∗ → Y → ... → Z → X . It can be easily proven that no such cycle can exist

without contradiction for k ≥ 3; therefore, G∗ is both ancestral and maximal (Lemma 4.1 of their work that proves that

the oriented G′ contains only triangles with the following forms:

(i) B ∗→ A←∗ C∗—∗B; (ii) B∗—A —∗C∗—∗B; or (iii) Y ∗→ A—∗C ←∗ B).

2. No replacement of the undirected edges in G′ by directed edges will result in non-ancestral structures such as partially

directed cycles, unshielded colliders, colliders with order, or inducing paths with non-adjacent endpoints that include

an edge oriented by the orientation rules. The absence of these non-ancestral structures is a direct consequence of

Lemma 4.1.

3. By removing all directed edges and undirected ones with no parents or spouses from G′, the resulting AGG U is

a disjoint union of chordal undirected graphs. Assume for contradiction that the orderings of U lead to unshielded

colliders. From 2, we know that a replacement of undirected edges could generate a collider with order or inducing

paths with non-adjacent endpoints. It’s also possible to prove by contradiction that if U is not chordal, then the subgraph

U ′ of the partially oriented PAAGG corresponding to U must contain the same non-chordal properties (i.e., unshielded

colliders), which is not possible as U ′ cannot contain an unshielded collider given the orientation provided by the CD

rule. Therefore, U must be chordal.

4. By definition of chordal graph, for every pair (A,B) there are at least two orderings such that A → B in one and

A← B) in the other. Therefore, G′ is maximally oriented, and as such, the rules CD, CA, MR3, and R4 are arrowhead

complete.

Maier et al. [2013] demonstrates the completeness of the merely common cause rule of RBO, which establishes edge

orientation through arrowhead marks only. Consider again the PAAGG G′. Assume by contradiction that there’s an edge

in G′ with a circle mark (without loss of generality, A ◦→ B), such that there are no MAAGGs in O-Equiv(DO) with a

corresponding tail mark for that edge. This requires that the edge mark correspond to an arrowhead in both the equivalence

class and the generated PAAGG. Based on the completeness proofs provided above, one of the rules would have orientated

that edge mark with an arrowhead. As a result, there must be a MAAGG in O-Equiv(DO) that has the edge A→ B, also

known as a tail mark.

Lemma 3. Let G’ be the partially oriented PAAGG with correct adjacencies and unshielded colliders, and as many edges

oriented with KNC, CA, and MR3, all with orientation propagation. Then, applying rules R5-R10, together with orientation

propagation, produces a PAAGG G” such that for every circle mark, there exists a MAAGG in O-Equiv(DO) in which the

corresponding mark is an arrowhead.



Proof. Using Lemma 1, we may follow Zhang [2008] tail completeness proof. We show that any PAAGG edge with a ◦

mark (e.g., ◦—, ◦—◦, ◦→) corresponds to an arrowhead in a MAAGG in the equivalence class. For the first two types of

edges (◦—, ◦—◦), we make use of some properties of PAGs, proven in Zhang [2008] and adapted to PAAGGs:

P1 Given a triple A, B, C in a PAAGG, if A ∗→ B ◦−∗ C, then there is an edge A ∗→ C. In addition, if A→ B, then the

edge between A and C cannot be A↔ C;

P2 Given two vertices, A and B, in a PAAGG, if A—◦B, then there is no edge into A or B;

P3 Given a triple A, B, C in a PAAGG, if A—◦B ◦−∗ C, then there is an edge between A and C. Furthermore, if

A—◦B◦—◦C, then the edge between A and C is A—◦C; if A—◦B ∗→ C, then either A→ C or A ∗→ C;

P4 Given two vertices, A and B, in a PAAGG, if A—◦B, then there is no cycle with the following structure

A—◦B—◦...—◦A.

With these properties, it can be proven that:

• For every edge A◦—◦B in the subgraph obtained by keeping only ◦—◦ edges from the PAAGG (which we denote

as PC
AAGG), the subgraph can be oriented into two DAGs without unshielded colliders such that A → B in one

and A ← B in the other. This is proven by showing that PC
AAGG is chordal: assume by contradiction that there is a

non-chordal cycle ⟨X,Y,W, ..., Z⟩. This implies that any non-consecutive vertices in the cycle are not adjacent in

either PC
AAGG or the original PAAGG, as otherwise they would be connected by a ◦—◦ edge (deriving from P1 and

P3) and as such connected in the PC
AAGG as well. Therefore, this non-chordal cycle also appears in the PAAGG, which

should have been oriented with rule R5. Therefore the PC
AAGG is chordal.

• Let H be the graph obtained from the following steps applied to the PAAGG:

1. orient all ◦→ and —◦ edges into directed ones, i.e.,→;

2. orient the PC
AAGG into a DAG with no unshielded collider.

Then H belongs to the equivalence class represented by the PAAGG:

P1-4 ensure that no directed or almost directed cycle is generated after the first step. For step 2, P1 and P3 ensure that

in the PC
AAGG no new directed or almost directed cycles will be generated in H , and furthermore, no new edge into any

vertex incident to undirected edges and no inducing paths between any non-adjacent vertices appear. This verifies that

H is ancestral and maximal. It is easy to prove then that H belongs to the equivalence class as P1-3 guarantee that no

new unshielded colliders are created, and as no new bi-directed edges are created also the discriminating path condition

for Markov equivalence between H and the PAAGG is verified.

These two theoretical conclusions guarantee that no circle on a PAAGG’s ◦—and ◦—◦ edges corresponds to an invariant tail.

The proof for the ◦→ edge comes from Theorem 3 in Zhang [2008], which uses the chordal graph representation established

in Meek [1995] and extended in Maier et al. [2013] for relational data. For the PAAGG G′′, a proof by contradiction similar



to the one provided in Lemma 2 can be carried out for every circle mark corresponding to an arrowhead in at least one

MAAGG in the equivalence class O-Equiv(DO).

Theorem 3. Given a schema and a probability distribution P(V) with V = O ∪ L ∪ S, the output of RelFCI is a correct

maximally informative PAAGG, and thus a maximally informative PARM M, assuming perfect conditional independence

tests and sufficient hop threshold h′.

Proof. The following proof sketch is adapted from Maier et al. [2014]. Given a sufficient h′ at least equal to 2h (Proposition

4), the set of potential dependencies PDs includes all true dependencies that generate the respective MAAGG, which

implies the generation of the correct adjacencies, which include the true causes for each relational variable. The unoriented

PAAGGs are then constructed using the procedure from Maier et al. [2014]. Assuming perfect conditional independence

tests, the algorithm maintains only the correct edges for the PAAGGs. S and U also contain the correct separating sets for

every pair of nonadjacent variables and the true unshielded colliders. Next, RelFCI orients all unshielded colliders using

either CD or RBO and then, finally, produces a maximally informative PAAGG G and PARM M as an implication of

Theorem 1 and Theorem 2.

H ADDITIONAL RESULTS

We further evaluated the performance of RelFCI in the absence of latent variables to establish a fair comparison with RCD

under causal sufficiency. The experimental setup mirrors that described in Section 5.1, and the results are presented in Figure

19. As shown, RelFCI achieves precision and recall comparable to, and in some configurations slightly exceeding, those

of RCD. These results demonstrate that RelFCI maintains high accuracy even when latent confounders are not present,

confirming its soundness in recovering the true causal structure in standard relational settings.

Figure 19: RelFCI Precision and Recall performance with no latent variables.
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