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ABSTRACT

Transfer learning is an essential technique when sufficient data comes from the
source domain, while no or scarce data is from the target domain. We develop
estimators that achieve minimax linear risk for linear regression problems under
the distribution shift. Our algorithms cover different kinds of settings with
covariate shift or model shift. We also consider when data are generating from
either linear or general nonlinear models. We show that affine minimax rules are
within an absolute constant of the minimax risk even among nonlinear rules for
various source/target distributions.

1 INTRODUCTION

The success of machine learning crucially relies on the availability of labeled data. The data
labeling process usually requires much human labor and can be very expensive and time-consuming,
especially for large datasets like ImageNet (Deng et al., 2009). On the other hand, models trained on
one dataset, despite performing well on test data from the same distribution they are trained on, are
often sensitive to distribution shifts, i.e., they do not adapt well to related but different distributions.
Even small distributional shift can result in substantial performance degradation (Recht et al., 2018;
Lu et al., 2020).

Transfer learning has been an essential paradigm to tackle the challenges associated with insufficient
labeled data (Pan & Yang, 2009; Weiss et al., 2016; Long et al., 2017). The main idea is to make
use of a source domain with a lot of labeled data (e.g. ImageNet), and to try to learn a model that
performs well on our target domain (e.g. medical images) where few or no labels are available.
Despite the lack of labeled data, we may still use unlabeled data from the target domain, which
are usually much easier to obtain and can provide helpful information about the target domain.
Although this approach has been integral to many applications, many fundamental questions are
left open even in very basic settings.

In this work, we focus on the setting of linear regression under distribution shift and ask the
fundamental question of how to optimally learn a linear model for a target domain, using labeled
data from a source domain and unlabeled data (and possibly some labeled data) from the target
domain. For various settings, including covariate shift (i.e., when p(x) changes) and model shift
(i.e., when p(y|x) changes), we develop estimators that achieve near minimax risk (up to universal
constant factors) among all linear estimation rules. Here linear estimators refer to all estimators
that depend linearly on the label vector; these include almost all popular estimators known in
linear regression, such as ridge regression and its variants. When the input covariances in source
and target domains commute, we prove that our estimators achieve near minimax risk among all
possible estimators.
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A key insight from our results is that, when covariate shift is present, we need to apply data-
dependent regularization that adapts to changes in the input distribution. For linear regression, this
can be given by the input covariances of source and target tasks, which can be estimated using
unlabeled data. Our experiments verify that our estimator has significant improvement over ridge
regression and similar heuristics.

1.1 RELATED WORK

Different types of distribution shift are introduced in (Storkey, 2009; Quionero-Candela et al.,
2009). Specifically, covariate shift occurs when the marginal distribution on P (X) changes from
source to target domain (Shimodaira, 2000; Huang et al., 2007). Wang et al. (2014); Wang &
Schneider (2015) tackle model shift (P (Y |X)) provided the change is smooth as a function of X .
Sun et al. (2011) design a two-stage reweighting method based on both covariate shift and model
shift. Other methods like the change of representation, adaptation through prior, and instance
pruning are proposed in (Jiang & Zhai, 2007). In this work, we focus on the above two kinds of
distribution shift. For modeling target shift (P (Y )) and conditional shift (P (X|Y )), Zhang et al.
(2013) exploits the benefit of multi-layer adaptation by some location-scale transformation on X .

Transfer learning/domain adaptation are sub-fields within machine learning to cope with distri-
bution shift. A variety of prior work roughly falls into the following categories. 1) Importance-
reweighting is mostly used in the covariate shift. (Shimodaira, 2000; Huang et al., 2007; Cortes
et al., 2010); 2) One fruitful line of work focuses on exploring robust/causal features or domain-
invariant representations through invariant risk minimization (Arjovsky et al., 2019), distributional
robust minimization (Sagawa et al., 2019), human annotation (Srivastava et al., 2020), adversarial
training (Long et al., 2017; Ganin et al., 2016), or by minimizing domain discrepancy measured
by some distance metric (Pan et al., 2010; Long et al., 2013; Baktashmotlagh et al., 2013; Gong
et al., 2013; Zhang et al., 2013; Wang & Schneider, 2014) ; 3) Several approaches seek gradual
domain adaptation (Gopalan et al., 2011; Gong et al., 2012; Glorot et al., 2011; Kumar et al., 2020)
through self-training or a gradual change in the training distribution.

Near minimax estimations are introduced in Donoho (1994) for linear regression problems with
Gaussian noise. For a more general setting, Juditsky et al. (2009) estimate the linear functional
using convex programming. Blaker (2000) compares ridge regression with a minimax linear
estimator under weighted squared error. Kalan et al. (2020) considers a setting similar to this work
of minimax estimator under distribution shift, but focuses on computing the lower bound for linear
and one-hidden-layer neural network under distribution shift. A few more interesting results are
derived on the generalization lower bound for distribution shift under various settings (David et al.,
2010; Hanneke & Kpotufe, 2019; Ben-David et al., 2010; Zhao et al., 2019).

2 PRELIMINARY

We formalize the setting considered in this paper for transfer learning under the distribution shift.

Notation and setup. Let pS(x) and pT (x) be the marginal distribution for x in source and target
domain. The associated covariance matrices are ΣS , and ΣT . We assume to have sufficient
unlabeled data to estimate ΣT accurately. We observe nS , nT labeled samples from source and
target domain. Data is scarce in target domain: nS � nT and nT can be 0. Specifically, XS =
[x>1 |x>2 | · · · |x>nS ]> ∈ Rn×d, with xi, i ∈ [nS ] drawn from pS , noise z = [z1, z2, · · · znS ]>, zi ∼
N (0, σ2). yS = [y1, y2, · · · , ynS ]> ∈ RnS , with each yi = f∗(xi) + zi (XT ∈ RnT×d and

2



Under review as a conference paper at ICLR 2021

yT ∈ RnT are similarly defined). Denote by Σ̂S = X>S XS/nS the empirical covariance matrix
(Throughout the paper we assume data is centered: EpS [x] = EpT [x] = 0). The positive part of
a number is denoted by (x)+. We consider both linear (f∗(x) = x>β∗) and general nonlinear
ground truth models. When the optimal linear model changes from source to domain we add a
subscript for distinction, i.e. , β∗S and β∗T . We use bold (x) symbols for vectors, lower case letter
(x) for scalars and capital letter (A) for matrices.

Minimax (linear) risk. In this work, we focus on designing linear estimators β̂ = AyS
1 for

parameter β∗ ∈ B. Our estimator is evaluated by the excess risk on target domain, with the worst
case β∗ in some set B: LB(β̂) = maxβ∗∈B EyS ‖Σ

1/2
T (β̂(yS)− β∗)‖2. Minimax linear risk and

minimax risk among all estimators are respectively defined as:

RL(B) ≡ min
β̂ linear in yS

LB(β̂); RN (B) ≡ min
β̂
LB(β̂).

The subscript “N" or “L" is a mnemonic for “non-linear" or “linear" estimators. RN is the
optimal risk with no restriction placed on the class of estimators. RL only considers the linear
function class for β̂. Minimax linear estimator and minimax estimator are the estimators that
respectively attain RL and RN within universal multiplicative constants. Normally we only
consider B = {β|‖β‖2 ≤ r}. When there is no ambiguity, we simplify β̂(yS) by β̂.

Our meta-algorithm. Our paper considers different settings with distribution shift. Our methods
are unified under the following meta-algorithm:

Step 1: Find an unbiased sufficient statistic β̂SS
2 for the unknown parameter.

Step 2: Find β̂MM, a linear operator applied to β̂SS that minimizes LB(β̂MM).

For each setting, we will show that β̂MM achieves linear minimax risk RL (asymptotically or in
fixed design). Furthermore, under some conditions, the minimax risk RN is uniformly lower
bounded by a universal constant times LB(β̂MM).

Outline. In the sections below, we tackle the problem in different settings. In Section 3 we design
algorithms with only covariate shift: 1) nT = 0 and f∗(x) is linear (Section 3.1); 2) nT = 0
and f∗(x) is a general nonlinear function (Section 3.2); 3) nT > 0 and f∗ is linear (Section 3.3).
Finally, we cope with the model shift for linear models (β∗S 6= β∗T ) in Section 4.

3 MINIMAX ESTIMATOR WITH COVARIATE SHIFT

In this section, we consider the setting with only covariate shift. That is, only ΣS (marginal
distribution pS(x)) changes to ΣT (pT (x)), but f∗ = E[y|x] (conditional distribution p(y|x)) is
shared. We first consider the case when f∗ is a linear map: x → x>β∗ and then consider the
problem with approximation power.

1A ∈ Rd×n may depend in an arbitrary way on XS , nS , or ΣT . The estimator is linear in the observation yS .
2With samples yS , a statistic t = T (yS) is sufficient for the underlying parameter β∗ if the conditional
probability distribution of the data yS , given the statistic t = T (yS), does not depend on the parameter β∗.
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3.1 COVARIATE SHIFT WITH LINEAR MODELS

We observe nS samples from source domain: yS = XSβ
∗ + z, z ∼ N (0, σ2I) and no labeled

samples from the target domain. Our goal is to find the minimax linear estimator β̂MM(yS) = AyS
with some linear mapping A that attains RL(B).

Following our meta-algorithm, let β̂SS = 1
nS

Σ̂−1
S X>S yS

3 be an unbiased sufficient statistic for β∗:

β̂SS =
1

nS
Σ̂−1
S X>S yS =

1

nS
Σ̂−1
S X>S XSβ

∗ +
1

nS
Σ̂−1
S X>S z.

=β∗ +
1

nS
Σ̂−1
S X>S z ∼ N

(
β∗,

σ2

nS
Σ̂−1
S

)
. (1)

The fact that β̂SS(yS) is a sufficient statistic is proven in Claim 3.7 for a more general case, using
the Fisher-Neyman factorization theorem. Here we consider XS as fixed values, and randomness
only comes from noise z. We prove that the minimax linear estimator is of the form β̂MM = Cβ̂SS
and then design algorithms that calculate the optimal C.

Claim 3.1. The minimax linear estimator is of the form β̂MM = Cβ̂SS for some C ∈ Rd×d.

Warm-up: commutative covariance matrices. In order to derive the minimax linear estimator,
we first consider the simple case when ΣT and Σ̂S are simultaneously diagonalizable. We apply
Pinsker’s Theorem (Johnstone, 2011) and get:
Theorem 3.2 (Linear Minimax Risk with Covariate Shift). Suppose the observations follow se-
quence model yS = XSβ

∗+z, z ∼ N (0, σ2In). If ΣT = Udiag(t)U> and Σ̂S ≡ X>S XS/nS =
Udiag(s)U>, then the minimax linear risk

RL(B) ≡ min
β̂=AyS

max
β∗∈B

E ‖Σ1/2
T (β̂ − β∗)‖2 =

∑
i

σ2

nS

ti
si

(
1− λ√

ti

)
+

,

where B = {β|‖β‖ ≤ r}, and λ = λ(r) is determined by σ2

nS

∑d
i=1

1
si

(
√
ti/λ − 1)+ = r2. The

linear minimax estimator is given by:

β̂MM = Σ
−1/2
T U(I − diag(λ/

√
t))+U

>Σ
1/2
T β̂SS, where β̂SS =

1

nS
Σ̂−1
S X>S yS . (2)

Since r is unknown in practice, we could simply view either r or directly λ as the tuning parameter.
We compare the functionality of λ with that of ridge regression: β̂λRR = arg minβ̂ E

1
2n‖XSβ̂ −

yS‖2 + λ
2 ‖β̂‖

2 = (Σ̂S + λI)−1X>S yS/nS . For both algorithms, λ is to balance the bias and
variance: λ = 0 gives an unbiased estimator, and a big λ gives a (near) zero estimator with no
variance. The difference is, our estimator shrinks some signal directions based on the value of
ti. The estimator tends to sacrifice the directions of signal where ti is smaller. Ridge regression,
however, respects the value of si. A natural counterpart is for ridge to also regularize based on
t: let β̂λRR,T = arg min 1

n‖Σ
1/2
T (β − Σ̂−1

S X>S yS)‖2 + λ‖β‖2 = (ΣT + λI)−1ΣT β̂SS. We will
compare their performances in the experimental section.

3Throughout the paper Σ̂−1
S could be replaced by pseudo-inverse and our algorithm also applies when n < d.
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Non-commutative covariance matrices. For non-commutative covariate shift, we follow the
same procedure. Our estimator is achieved by optimizing over C: β̂MM = Cβ̂SS:

RL(B) ≡ min
β̂=AyS

max
β∗∈B

E ‖Σ1/2
T (β̂ − β∗)‖22

= min
β̂=Cβ̂SS

max
‖β∗‖≤r

{
‖Σ1/2

T (C − I)β∗‖22 +
σ2

nS
Tr(Σ

1/2
T CΣ̂−1

S C>Σ
1/2
T )

}
(Claim 3.1)

= min
τ,C

{
r2τ +

σ2

nS
Tr(Σ

1/2
T CΣ̂−1

S C>Σ
1/2
T )

}
, s.t. (C − I)>ΣT (C − I) � τI. (3)

Unlike the commutative case, this problem doesn’t have a closed form solution, but is still solvable:
Proposition 3.3. Problem (3) is a convex program and thus solvable.

We achieve near-optimal minimax risk among all estimators under some conditions:
Theorem 3.4 (Near minimaxity of linear estimators). When ΣS ,ΣT commute, or ΣT is rank 1, the
best linear estimator from (2) or (3) achieves near-optimal minimax risk: LB(β̂MM) = RL(B) ≤
1.25RN (B).

Note that RN ≤ RL by definition. Therefore 1) our estimator β̂MM is near-optimal, and 2) our
lower bound for RN is tight. Lower bounds (without matching upper bounds) for general non-
commutative problem is presented in (Kalan et al., 2020) and we improve their result for the
commutative case and provide a matching algorithm. Their lower bound scales with d

nS
mini

ti
si

for large r, while ours becomes 1
nS

∑
i
ti
si

. Our lower bound is always larger and thus tighter, and
potentially arbitrarily larger when maxi

ti
si

and mini
ti
si

are very different. We defer our proof to
the appendix.
Remark 3.1 (Benefit of minimax linear estimator). Consider estimators from ridge regres-
sion: β̂λRR = arg minβ̂ E

1
2n‖XSβ̂ − yS‖2 + λ

2 ‖β̂‖
2. There is an example that RL(B) ≤

O(d−1/4LB(β̂λRR)) even with the optimal hyperparameter λ. 4

Remark 3.2 (Incorporating the randomness of source and target features). For clean presentation
purposes, in the main text we assume to have access to ΣT . In practice, we will need to estimate
ΣT by finite unlabeled samples from target domain. In Appendix C.1 we show that our estimator
remains near-optimal if we have� d unlabeled target samples under some standard light-tail
assumptions.
Theorem 3.4 is comparing our estimator with the optimal nonlinear estimator using the same data
XS from the source domain. In appendix C we compare our estimator with a stronger notion of
linear estimator with infinite access to pS and show that our estimator is still within multiplicative
factor of it.

3.2 LINEAR MINIMAX ESTIMATOR WITH APPROXIMATION ERROR

Now we consider observations coming from nonlinear models: yS = f∗(XS) + z. Let β∗S =
arg minβ Ex∼pS ,z∼N (0,σ2)[(f

∗(x) + z − β>x)2], and similarly for β∗T . Notice now even with
f∗ unchanged across domains, the input distribution affects the best linear model. Approximation
error is aS(x) = f∗(x)− x>β∗S and vice versa for aT .

4Note this goes without saying that our method can also be order-wise better than ordinary least square, which
is a special case of ridge regression by setting λ = 0.
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Define the reweighting vector w ∈ Rn as wi = pT (xi)/pS(xi). We form unbiased estimator via

β̂LS = arg min
β
{
∑
i

pT (xi)

pS(xi)
(β>xi − yi)2} = (X>S diag(w)XS)−1(X>S diag(w)yS).

Claim 3.5. β̂LS is asymptotically unbiased and normally distributed:
√
nS(β̂LS − β∗T )

d→ N (0,Σ−1
T Ex∼pT [pT (x)/pS(x)(aT (x)2 + σ2)xx>]Σ−1

T ).

Denote by m(x) = aT (x) + z. We want to minimize the worst case risk:

min
β̂=Cβ̂LS

max
β∗T∈B

E ‖Σ1/2
T (β̂ − β∗T )‖2

d→min
C

max
‖β∗T ‖≤r

{
‖Σ1/2

T (C − I)β∗T ‖22 +
1

nS
Tr(CΣ−1

T EpT [
pT (x)

pS(x)
m(x)2xx>]Σ−1

T C>ΣT )

}
= min

C

{
‖(C − I)>ΣT (C − I)‖2r2 +

1

nS
Tr(CΣ−1

T EpT [
pT (x)

pS(x)
m(x)2xx>]Σ−1

T C>ΣT )

}
Therefore our estimator is β̂MM ← Ĉβ̂LS, where Ĉ finds

Ĉ ← arg min
τ,C

{
r2τ +

1

nS

〈
1

nS

∑
i

p2
T (x)

p2
S(x)

(yi − x>i β̂LS)2xix
>
i ,Σ

−1
T C>ΣTCΣ−1

T

〉}
(4)

s.t. (C − I)>ΣT (C − I) � τI.
Claim 3.6. Let B = {β|‖β‖ ≤ r}, and f∗ ∈ F is some compact symmetric function class:
f ∈ F ⇔ −f ∈ F . Then linear minimax estimator is of the form Cβ̂LS for some C. When Ĉ
solves Eqn. (4), LB(β̂MM) asymptotically matches RL(B), the linear minimax risk.

By reducing from yS to β̂LS we eliminate n − d dimensions, and this claim says that X>S yS is
sufficient to predict β∗T . We note that f∗ is more general than a linear function and therefore the
lower bound could only be larger than RN (B) defined in the previous section.

3.3 UTILIZE SOURCE AND TARGET LABELED DATA JOINTLY

In some scenarios we have moderate amount of labeled data from target domain as well. Then
it is important to utilize the source and target labeled data jointly. Let yS = XSβ

∗ + zS , yT =

XTβ
∗ + zT . We consider XS , XT as deterministic variables, Σ̂−1

S X>S yS/nS ∼ N (β∗, σ
2

nS
Σ̂−1
S )

and Σ̂−1
T X>T yT /nT ∼ N (β∗, σ

2

nT
Σ̂−1
T ). Therefore conditioned on the observations yS ,yT , a

sufficient statistic for β∗ is β̂SS := (nSΣ̂S + nT Σ̂T )−1(X>S yS +X>T yT ).

Claim 3.7. β̂SS is an unbiased sufficient statistic of β∗ with samples yS ,yT . β̂SS ∼
N (β∗, σ2(nSΣ̂S + nT Σ̂T )−1).

Algorithm: First consider the estimator β̂SS = (nSΣ̂S + nT Σ̂T )−1(X>S yS +X>T yT ). Next find
the best linear function of β̂SS:
β̂MM = arg min

C,τ
r2τ + σ2Tr((nSΣ̂S + nT Σ̂T )−1C>ΣTC), s.t. (C − I)>ΣT (C − I) � τ.

Proposition 3.8. The minimax estimator β̂MM is of the form Cβ̂SS for some C. When choosing C
with our proposed algorithm and when Σ̂S commutes with Σ̂T and ΣT , we achieve the minimax
risk RL(B) ≤ 1.25RN (B).
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4 NEAR MINIMAX ESTIMATOR WITH MODEL SHIFT

The general setting of transfer learning in linear regression involves both model shift and covariate
shift. Namely, the generative model of the labels might be different: yS = XSβ

∗
S + zS , and

yT = XTβ
∗
T + zT . Denote by δ := β∗S −β∗T as the model shift. We are interested in the minimax

linear estimator when ‖δ‖ ≤ γ and ‖β∗T ‖ ≤ r. Thus our problem becomes to find minimax
estimator for β∗T ∈ B = {β|‖β‖ ≤ r} from yS ,yT .

Algorithm: First consider a sufficient statistic (β̄S , β̄T ) for (β∗T , δ). Here β̄S =

Σ̂−1
S X>S yS/nS ∼ N (β∗T + δ, σ

2

nS
Σ̂−1
S ), and β̄T = Σ̂−1

T X>T yT /nT ∼ N (β∗T ,
σ2

nT
Σ̂−1
T ). Then

consider the best linear estimator on top of it: β̂ = A1β̄S +A2β̄T . Write ∆ = {δ|‖δ‖ ≤ γ} and
LB,∆(β̂) := maxβ∗T∈B,δ∈∆ ‖Σ1/2

T (β̂ − β∗T )‖2.

RL(B,∆) := min
β̂=A1β̄S+A2β̄T

LB,∆(β̂)

≤ min
A1,A2

max
‖β∗T ‖≤r,‖δ‖≤γ

{
2‖Σ1/2

T ((A1 +A2 − I)β∗T ‖2 + 2‖Σ1/2
T A1δ‖2 (5)

+
σ2

nS
Tr(A1Σ̂−1

S A>1 ) +
σ2

nT
Tr(A2Σ̂−1

T A>2 )

}
(AM-GM)

= min
A1,A2

{
2‖Σ1/2

T ((A1 +A2 − I)‖22r2 + 2‖Σ1/2
T A1‖22γ2

+
σ2

nS
Tr(A1Σ̂−1

S A>1 ) +
σ2

nT
Tr(A2Σ̂−1

T A>2 ) =: rB,∆(A1, A2)

}
.

Therefore we optimize over this upper bound and reformulate the problem as a convex program:

(Â1, Â2)← arg min
A1,A2,a,b

{
2ar2 + 2bγ2 +

σ2

nS
Tr(A1Σ̂−1

S A>1 ) +
σ2

nT
Tr(A2Σ̂−1

T A>2 )

}
s.t. (A1 +A2 − I)>ΣT (A1 +A2 − I) � aI,A>1 ΣTA1 � bI. (6)

Our estimator is given by: β̂MM = Â1β̄S + Â2β̄T . Since β̂MM is a relaxation of the linear minimax
estimator, it is important to understand how well β̂MM performs on the original objective:

Claim 4.1. RL(B,∆) ≤ LB,∆(β̂MM) ≤ 2RL(B,∆).

Finally we show with the relaxation we still achieve a near-optimal estimator even among all
nonlinear rules.
Theorem 4.2. When ΣT commutes with Σ̂S , it satisfies:

LB,∆(β̂MM) := max
β∗T∈B,δ∈∆

‖Σ1/2
T (β̂MM − β∗T )‖2 ≤ 27RN (B,∆).

Here RN (B,∆) := minβ̂(yS ,yT ) maxβ∗T∈B,δ∈∆ ‖Σ1/2
T (β̂ − β∗T )‖ is the minimax risk.

Proof sketch of Theorem 4.2. For the ease of understanding, we provide a simple proof sketch
when ΣS = ΣT are diagonal. We first define the hardest hyperrectangular subproblem. Let
B(τ ) = {b : |βi| ≤ τi} be a subset of B and similarly for ∆(ζ). We show that RL(B,∆) =
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maxτ∈B,ζ∈∆RL(B(τ ),∆(ζ)), and clearly RN (B,∆) ≥ maxτ∈B,ζ∈∆RN (B(τ ),∆(ζ)). Mean-
while we show when the sets are hyperrectangles the minimax (linear) risk could be decomposed
to 1-d problems: RL(B(τ ),∆(ζ)) =

∑
iRL(τi, ζi). Each RL(τi, ζi) is the linear minimax risk

to estimate βi from x ∼ N (βi + δi, 1) and y ∼ N (βi, 1) where |βi| ≤ τi and |δi| ≤ ζi. This 1-d
problem for linear risk has a closed form solution, and the minimax risk can be lower bounded
using Le Cam’s two point lemma. We show RL(τi, ζi) ≤ 13.5RN (τi, ζi) and therefore:

1

2
LB,∆(β̂MM)

Claim 4.1
≤ RL(B,∆)

LemmaB.2
= max

τ∈B,ζ∈∆
RL(B(τ ),∆(ζ))

PropB.4.a
= max

τ∈B,ζ∈∆

∑
i

RL(τi, ζi)
LemmaB.6
≤ max

τ∈B,ζ∈∆
13.5

∑
i

RN (τi, ζi)

PropB.4.b
= 13.5 max

τ∈B,ζ∈∆
RN (B(τ ),∆(ζ)) ≤ 13.5RN (B,∆).

(a) covariate eigen-spectrum (b) signal strength (c) model shift

Figure 1: Performance comparisons. (a): The x-axis α defines the spread of eigen-spectrum of ΣS :
si ∝ 1/iα, ti ∝ 1/i. (b) x-axis is the normalized value of signal strength: ‖ΣTβ∗‖/r. (c) X-axis
is the model shift measured by γ/r. Performance with standard error bar is from 40 runs.

5 EXPERIMENTS

Our estimators are provably near optimal for the worst case β∗. However, it remains unknown
whether on average they outperform other baselines. With synthetic data we explore the per-
formances with random β∗. We are also interested to investigate the conditions when we win
more.

Setup. We set nS = 2000, d = 50, σ = 1, r =
√
d. For each setting, we sample β∗T from standard

normal distribution and rescale it to be norm r. We assume to know ΣT . We compare our estimator
with ridge regression (S-ridge) and a variant of ridge regression transformed to target domain
(T-ridge): β̂λRR,T = arg min 1

n‖Σ
1/2
T (β − Σ̂−1

S X>S yS)‖2 + λ‖β‖2 = (ΣT + λI)−1ΣT β̂SS.

Covariate shift. In order to understand the effect of covariate shift on our algorithm, we consider
three types of settings, each with a unique varying factor that influences the performance: 1) covari-
ate eigenvalue shift with shared eigenspace; 2) covariate eigenspace shift with fixed eigenvalues5;

5We leave this result in appendix since performance appears invariant to this factor.

8



Under review as a conference paper at ICLR 2021

3) signal strength change. We also have an additional 200 labeled data from target domain as
validation set only for hyper-parameter tuning.

Model shift. Next we consider the problem with model shift. We sample a random δ with norm γ
varying from 0 to r =

√
d and observe data generated by yS = XS(β∗T + δ) + zS ∈ R2000, zS ∼

N (0, I) and yT = XTβ
∗
T + zT ∈ R500, zT ∼ N (0, I). We compare our estimator with two

baselines: "ridge-source" denotes ridge regression using only source data, and "ridge-target" is
from ridge regression with target data.

Figure 1 demonstrates the better performance of our estimator in all circumstances. From (a) we
see that with more discrepancy between ΣS and ΣT , our estimator tends to perform better. (b)
shows our estimator is better when the signal is relatively stronger. From (c) we can see that with
the increasing model shift measured by γ/r, ridge-source becomes worse and is outperformed by
ridge-target that remains unchanged. Our estimator becomes slightly worse as well due to the less
utility from source data, but remains the best among others. When γ/r ≈ 0.2, our method has the
most improvement in percentage compared to the best result among ridge-source and ridge-target.
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A OMITTED PROOF FOR MINIMAX ESTIMATOR WITH COVARIATE SHIFT

A.1 PINSKER’S THEOREM AND COVARIATE SHIFT WITH LINEAR MODEL

Theorem A.1 (Pinsker’s Theorem). Suppose the obervations follow sequence model yi = θ∗i +
εizi, εi > 0, i ∈ [d], and Θ is an ellipsoid in Rd: Θ = Θ(a,C) = {θ :

∑
i a

2
i θ

2
i ≤ C2}. Then the

minimax linear risk

RL(Θ) := min
θ̂ linear

max
θ∗∈Θ

E ‖θ̂(y)− θ∗‖2

=
∑
i

ε2i (1− ai/µ)+,

where µ = µ(C) is determined by

d∑
i=1

ε2i ai(µ− ai)+ = C2.

The linear minimax estimator is given by

θ̂∗i (y) = c∗i yi = (1− ai/µ)+yi, (7)

and is Bayes for a Gaussian prior πC having independent components θi ∼ N (0, τ2
i ) with

τ∗i = ε2i (µ/ai − 1)+.

Our theorem 3.2 is to connect our parameter β∗ to the θ∗ in pinsker’s theorem. First we show that
reformulating the problem from a linear map of n dimensional observations yS to a linear map on
the d-dimensional statistic β̂SS is sufficient, i.e., Claim 3.1:

Proof of Claim 3.1. This is to show that if β̂(yS) := AyS is a minimax linear estimator, each
row vector of A ∈ Rd×n is in the column span of XS . Write A = A1X

>
S + A2W

> where
W ∈ Rn×(n−d), columns of which forms the orthonormal complement for the column space of
XS . Equivalently we want to show A2 = 0. We have

RL(B) ≡ min
β̂=Ay

max
β∗∈B

E ‖Σ1/2
T (β̂ − β∗)‖2

= min
A1,A2

max
β∗∈B

E ‖Σ1/2
T ((A1X

>
S +A2W

>)yS − β∗)‖2

= min
A1,A2

max
β∗∈B

E ‖Σ1/2
T (A1X

>
S (XSβ

∗ + z) +A2W
>z − β∗)‖2 (Since W>XS = 0)

= min
A1,A2

max
β∗∈B

{
‖Σ1/2

T (A1X
>
S XS − I)β∗‖2 + E ‖Σ1/2

T A1X
>
S z‖2

+E ‖Σ1/2
T A2W

>z‖2 + E
〈

Σ
1/2
T A1X

>
S z,Σ

1/2
T A2W

>z
〉}

(Other cross terms vanish since E[z] = 0)

= min
A1,A2

max
β∗∈B

{
‖Σ1/2

T (A1X
>
S XS − I)β∗‖2 + E ‖Σ1/2

T A1X
>
S z‖2 + E ‖Σ1/2

T A2W
>z‖2,

}
where the last equation is because

E
〈

Σ
1/2
T A1X

>
S z,Σ

1/2
T A2W

>z
〉

= E
[
Tr
[
Σ

1/2
T A1X

>
S zzWA>2 ΣT

]]
12



Under review as a conference paper at ICLR 2021

= Tr
[
Σ

1/2
T A1X

>
S E[zz>]WA>2 ΣT

]
= σ2Tr

[
Σ

1/2
T A1X

>
SWA>2 ΣT

]
= 0.

Clearly, at min-max point, without loss of generality we can take A2 = 0.

Formally the proof for Theorem 3.2 is presented here:

Proof of Theorem 3.2. To use Pinsker’s theorem to prove Theorem 3.2, we simply need to trans-
form the problem match its setting. Let yT = Σ

1/2
T Σ̂−1

S X>S yS/nS = θ∗T + zT , where θ∗T =

U>Σ
1/2
T β∗ and zT ∼ N (0, σ2diag([ti/si]

d
i=1)/nS). The set for θ∗T is Θ = {θ|‖Σ−1/2

T Uθ‖ ≤ r},
i.e., Θ = {θ|

∑
i θ

2
i /ti ≤ r2}.

Now with Pinsker’s theorem, θ̂(yT )i = (1− 1/(µ
√
ti))+(yT )i is the best linear estimator for θ∗T ,

where µ = µ(r) solves

σ2

nS

d∑
i=1

√
ti
si

(µ− 1√
ti

)+ = r2. (8)

Connecting to the original problem, we get that the best estimator for Σ
1/2
T β∗ is U(I −

1
µdiag([1/

√
ti]
d
i=1))yT = U(I − 1

µdiag([1/
√
ti]
d
i=1))U>Σ

1/2
T Σ−1

S X>S yS/nS .

A.2 OMITTED PROOF FOR NONCOMMUTE COVARIANCE MATRICES

Convex program. Our estimator for β∗ can be achieved through convex programming:

Proof of Proposition 3.3. First note the objective function is quadratic in C and linear in τ , there-
fore we only need to prove the constraint S = {(C, τ)|(C − I)>ΣT (C − I) � τI} is a convex set.
Notice for (C1, τ1), (C2, τ2) ∈ S, i.e., (Ci − I)>ΣT (Ci − I) � τiI, i ∈ {1, 2}. We simply need
to prove for Cα := αC1 + (1−α)C2, τα := τ1α+ τ2(1−α), (Cα − I)>ΣT (Cα − I) � ταI for
any α ∈ [0, 1]. First, notice (C1 − C2)>ΣT (C1 − C2) � 0. Next,

(Cα − I)>ΣT (Cα − I)

=α(C1 − I)>ΣT (C1 − I) + (1− α)(C2 − I)>ΣT (C2 − I)

− α(1− α)(C1 − C2)>ΣT (C1 − C2)

�α(C1 − I)>ΣT (C1 − I) + (1− α)(C2 − I)>ΣT (C2 − I)

�ταI.

Benefit of our estimator. Compared to ridge regression, our estimator could possibly achieve
much better (d−1/4) improvements:

Proof of Remark 3.1. We consider diagonal covariance matrices Σ̂S = diag(s),ΣT = diag(t),
σ = 1. First we calculate the expected risk obtained with ridge regression: β̂λRR = (X>S XS/n+

13
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λI)−1X>S yS/nS ∼ N ((Σ̂S + λI)−1ΣSβ
∗, 1/nS(ΣS + λI)−2ΣS).

LB(βλRR) = max
β∗∈B

EyS ‖Σ
1/2
T (β̂λRR(yS)− β∗)‖2

= max
β∗∈B

‖Σ1/2
T ((Σ̂S + λI)−1Σ̂S − I)β∗‖2 + Tr(

1

nS
(Σ̂S + λI)−2Σ̂SΣT )

= max
i
r2

( √
tisi

si + λ
−
√
ti

)2

+
∑
i

1

nS

tisi
(si + λ)2

.

Compared to our risk:

RL(B) =
∑
i

1

nS

ti
si

(1− 1√
tiµ

)+,

where 1
n

∑d
i=1

√
ti
si

(µ− 1√
ti

)+ = r2. Let r2 =
√
d

nS
, si = 1,∀i, ti = 1,∀i ∈ [d0], ti = d−1/2, d0 <

i ≤ d, where d0 =
√
d

d1/4−1
≈ d1/4. Then µ = 1, and RL(B) = d1/4

n . In this case,

min
λ

max
i
r2

( √
tisi

si + λ
−
√
ti

)2

+
∑
i

1

nS

tisi
(si + λ)2

= min
λ

max
i

√
d

n

( √
ti

1 + λ
−
√
ti

)2

+
∑
i

1

nS

ti
(1 + λ)2

≥ min
λ

√
d

n

λ2

(1 + λ)2
+

√
d

n

1

(1 + λ)2

≥
√
d

2n
.

Therefore minλ LB(β̂λRR) ≥ d1/4RL(B)/2.

Near minimax risk. Even among all nonlinear estimators, our estimator is within 1.25 of the
minimax risk:

Proof of Theorem 3.4. First we note that for both linear and nonlinear estimators, it is sufficient to
use β̂SS instead of the original observations yS . See Lemma A.2 and its corollary. Therefore it
suffices to do the following reformulations of the problem.

When ΣS and ΣT commute, we formulate the problem as the following Gaussian sequence model.
Recall Σ̂S = Udiag(s)U>,ΣT = Udiag(t)U>. Let θ∗ = U>Σ

1/2
T β∗, and y = U>Σ

1/2
T β̂SS ∼

N (θ∗, σ
2

nS
diag(t/s)). Our objective of minimizing ‖Σ1/2

T (β̂(yS)− β̂∗)‖ from linear estimator is
equivalent to minimizing ‖U(θ̂(y)− θ̂∗)‖ = ‖θ̂(y)− θ̂∗‖ from linear estimator.

The set for the parameter that satisfies θ∗ = U>Σ
1/2
T β∗, ‖β∗‖ ≤ r is equivalent to ‖Σ−1/2

T Uθ∗‖ ≤
r ⇔ ‖θ∗i /

√
ti‖ ≤ r is an axis-aligned ellipsoid. Then we could directly derive our result from

Corollary 4.26 from Johnstone (2011). Note that this result is a special case of Theorem 4.2 and
we have provided a detailed proof in Section B. Therefore here we save further descriptions.

For the case when ΣT = aa> is rank-1, the objective function becomes:

R∗L(B) = min
β∗ linear

max
β∈B

E(a>(β̂(yS)− β∗))2.

14
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Then the result could be derived from Corollary 1 of Donoho (1994), which reformulate the problem
to the hardest one-dimensional problem which becomes tractable.

In the proof above, we equate the best nonlinear estimator on yS as the best nonlinear estimator on
β̂SS. The reasoning is as follows:

Lemma A.2 (Sufficient statistic is enough to achieve a best estimator). Consider the statistical
problem of estimating β∗ ∈ B from observations y ∈ Y . B `2-compact. If S(y) is a sufficient
statistic of β∗, then the best estimator that achieves minβ̂ maxB `(β̂,β

∗) is of the form β̂ =

f(S(y)) with some function f , for any loss ` : Y → [0,∞).

This Lemma is restated from Proposition 3.13 from Johnstone (2011).

Corollary A.3 (Corollary of Lemma A.2). Under the same setting of Lemma A.2, RN (B) is
achieved with the form β̂ = f(S(y)).

A.3 OMITTED PROOF WITH APPROXIMATION ERROR

Unbiased estimator for β̂∗T .

Proof of Claim 3.5.

β̂LS − β∗T =(X>S diag(w)XS)−1(X>S diag(w)y)− β∗T
=(X>S diag(w)XS)−1(X>S diag(w)(XSβ

∗
T + aT + z))− β∗T

=(X>S diag(w)XS)−1(X>S diag(w)(aT + z))

Notice Ex∼pS [xaT (x)pT (x)
pS(x) ] = Ex∼pT [xaT (x)] = 0. This is due to the KKT condition for

the minimizer of l(β) := Ex∼pT ‖f∗(x) − β>x‖2 at β∗T : ∇βf(β∗) = 0 → Ex∼pT [x(f∗ −
x>β∗T )] = 0, i.e., Ex∼pT [xaT (x)] = 0. Next we have: Exi∼pS [X>S diag(w)XS ] =

Exi∼pS
∑n
i=1

pT (xi)
pS(xi)

xix
>
i = Exj∼pT

∑n
j=1[xjx

>
j ] = nSΣT . Therefore

β̂LS − β∗T → N (0,
1

nS
Σ−1
T Ex∼pT [pT (x)/pS(x)(aT (x)2 + σ2)xx>]Σ−1

T ).

Proof of Claim 3.6. Recall XS = [x>1 |x>2 | · · · |x>n ]> ∈ Rn×d, with xi,∀i ∈ [n] drawn from pS ,
and aT = [aT (x1), aT (x2), · · · aT (xn)]> ∈ Rn, y = [y(x1), y(x2), · · · , y(xn)]> ∈ Rn, noise
z = y − f∗(X). w = [pT (xi)/pS(xi)]

>.

To prove the, we only need to show the minimax linear estimator Ay is achieved of the form
A1X

>diag(w), i.e., the row span of A is in the row span of X>diag(w).

RL(B) ≡min
A

max
β∗T∈B,aT∈F

Exi∼ps,z[‖Σ1/2
T (Ay − β∗T )‖2]

= min
A

max
β∗T∈B,aT∈F

E ‖Σ1/2
T ((AX − I)β∗T +AaT +Az)‖2

15
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= min
A

max
β∗T∈B,aT∈F

{
‖Σ1/2

T ((E[AX]− I)β∗T + E[AaT ])‖22

+E ‖Σ1/2
T (AX − E[AX])β∗T ‖2 + E ‖Σ1/2

T (AaT − E[AaT ])‖2 + E ‖Σ1/2
T Az‖2

}
WriteA = A1X

>diag(w)+A2W
>, whereX ∈ Rn×d andW ∈ Rn×(n−d) forms the orthogonal

complement for the column span of diag(w)X . Therefore X>diag(w)W = 0, and W>W =
In−d. Also, notice Exi∼pS [X>diag(w)aT ] = nEx∼pT [xaT (x)] = 0. Therefore plugging it in
RL(B), we have:

RL(B) = min
A

max
β∗T∈B,f∗∈F

{
‖Σ1/2

T ((A1 EpS [X>diag(w)X]− I)β∗T +A2 E[W>aT ])‖22

+ E ‖Σ1/2
T A1(X>diag(w)X − E[X>diag(w)X])β∗T ‖2

+ E ‖Σ1/2
T A2(W>aT − E[W>aT ])‖2

+σ2 E ‖Σ1/2
T A1X

>diag(w)‖2 + σ2 E ‖Σ1/2
T A2‖2

}
= min
A1,A2

max
β∗T∈B,f∗∈F

{
‖Σ1/2

T ((A1nSΣT − I)β∗T +A2 E[W>aT ])‖22

+ E ‖Σ1/2
T A1(X>diag(w)X − ΣT )β∗T ‖2 + E ‖Σ1/2

T A2(W>aT − E[W>aT ])‖2

+σ2 E ‖Σ1/2
T A1X

>diag(w)‖2 + σ2 E ‖Σ1/2
T A2‖2

}
We could view E[W>aT ] and W>aT − E[W>aT ] separately. First notice at min-max point,
if E[W>aT ] = 0, the minimizer A2 should be 0 since it only appears in the third and last non-
negative terms. If E[W>aT ] 6= 0, the cross term of the bias should be non-negative, or otherwise
since both f∗ and−f∗ are in the set, aT ,β∗T could be replaced by−aT ,−β∗T and the loss increases.
Clearly in this case A2 should also be 0 at min-max point.

A.4 OMITTED PROOF FOR UTILIZING SOURCE AND TARGET DATA JOINTLY

Sufficient statistic.

Proof of Claim 3.7. Denote by β̄S := Σ̂−1
S X>S yS/nS ∼ N (β∗, σ

2

nS
Σ̂−1
S ) and β̄T :=

Σ̂−1
T X>T yT /nT ∼ N (β∗, σ

2

nT
Σ̂−1
T ). We use the Fisher–Neyman factorization theorem to derive

the sufficient statistics. The likelihood of observing β̄S , β̄T from parameter β∗ is:

p(β̄S , β̄T ;β∗) =ce−
nS
σ2 (β̄S−β∗)Σ̂S(β̄S−β∗)−

nT
σ2 (β̄−β∗)Σ̄T (β̄T−β∗)

=cg(β∗, T (β∗))h(β̄S , β̄T ),

where g(β∗, T (β∗)) = e−(β∗−β̂SS)>(
nS
σ2 Σ̂S+

nT
σ2 Σ̂T )−1(β∗−β̂SS), and c is some constant. Therefore

it’s easy to see that T (β∗) = β̂SS is the sufficient statistic for β∗.

Proof of Claim 3.8. With similar procedure as before, and notice zS and zT are independent,
we could first conclude that the optimal estimator is of the form β̂ = AΣ̂−1

S X>S yS/nS +

BΣ̂−1
T X>T yT /nT ∼ N ((A+B)β∗, σ

2

nS
AΣ̂−1

S A> + σ2

nT
BΣ̂−1

T B>).

RL(B) = min
A,B

max
β∗∈B

Ez ‖Σ1/2
T (β̂ − β∗)‖2
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= min
A,B

max
β∗∈B

{
‖Σ1/2(A+B − I)β∗‖2

+σ2Tr((
1

nS
AΣ̂−1

S A> +
1

nT
BΣ̂−1

T B>)ΣT )

}
= min
A,B

{
‖Σ1/2(A+B − I)‖2opr2 + σ2Tr((

1

nS
AΣ̂−1

S A> +
1

nT
BΣ̂−1

T B>)ΣT )

}
Take gradient w.r.t A and B respectively we have:

∇A(‖Σ1/2(A+B − I)‖2opr2) +
σ2

nS
ΣTAΣ̂−1

S = 0

=∇B(‖Σ1/2(A+B − I)‖2opr2) +
σ2

nT
ΣTBΣ̂−1

T = 0

Notice the first terms are equivalent. Therefore 1
nS
AΣ̂−1

S = 1
nT
BΣ̂−1

T thus the optimal β̂ is of the
form C(X>S yS +X>T yT ) for some matrix C, thus finishing the proof.

B OMITTED PROOF WITH MODEL SHIFT

Definition B.1 (Orthosymmetry). A set Θ is said to be solid and orthosymmetric if θ ∈ Θ and
|ζi| ≤ |θi| for all i implies that ζ ∈ Θ. If a solid, orthosymmetric Θ contains a point τ , then it
contains the entire hyperrectangle that τ defines: Θ(τ ) ≡ {θ||θi| ≤ τi,∀i} ⊂ Θ.

Proof of Claim 4.1. First notice for any estimator β̂, it all satisfies

LB,∆(β̂) ≤ rB,∆(β̂) ≤ 2LB,∆(β̂). (9)

The first inequality is straightforward with the same reasoning of AM-GM as the derivation of
(5). As for the second inequality, we take a closer look at (5). Notice that when maxβ∗T∈B,δ∈∆

is achieved, the cross term has to be non-negative, or otherwise one could flip the sign of β∗T
to make the value larger. Therefore at maximum ‖Σ1/2

T ((A1 + A2 − I)β∗T ‖2 + ‖Σ1/2
T A1δ‖2 ≤

‖Σ1/2
T ((A1 + A2 − I)β∗T + Σ

1/2
T A1δ‖2, and notice the remaining parts are all non-negative.

Therefore rB,∆(β̂) ≤ 2LB,∆(β̂).

Now let β̂∗ = arg minβ̂=A1ȳS+A2ȳS
LB,∆(β̂). We have:

RL(B,∆) =LB,∆(β̂∗)
(a)

≤ LB,∆(β̂MM)

(9)
≤rB,∆(β̂MM)

(b)

≤ rB,∆(β̂∗)
(9)
≤ 2LB,∆(β̂∗) = 2RL(B,∆).

The inequality (a) is by definition of β̂∗ while (b) is from the definition of β̂MM.

B.1 LOWER BOUND WITH MODEL SHIFT

In order to derive the lower bound, we abstract the problem to the following more general one:
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Problem 1. For arbitrary diagonal matrix D ∈ Rd×d, two `2-compact, solid, orthosymmetric,
and quadratically convex sets Θ,∆ ⊂ Rd, let

PΘ,∆,D =

{
N
([

Dθ + δ
θ

]
,

[
I 0
0 I

])∣∣∣∣θ ∈ Θ, δ ∈ ∆

}
Let RL(Θ,∆, D) and RN (Θ,∆, D) be the minimax linear risk and minimax risk respectively for
estimating θ within the distribution class PΘ,∆,D:

RL(Θ,∆, D) = min
θ̂:Rd→Θ linear

max
P∈PΘ,∆,D

rP (θ̂),

RN (Θ,∆, D) = min
θ̂:Rd→Θ

max
P∈PΘ,∆,D

rP (θ̂).

Here rP (θ̂) := Ex∼P ‖θ̂(x) − θ(P )‖22. We want to derive a uniform lower bound for RN with
RL, i.e., RN ≥ µ∗RL, where µ∗ is universal and doesn’t depend on the choices of D, Θ or ∆.

Before proving the lower bound, we establish its connection to our considered problem:

Remark B.1. Suppose ΣS = Udiag(s)U> and ΣT = Udiag(t)U> share the same eigenspace.
Recall our samples a ∼ N (Σ

1/2
S (β∗T + δ), σ2I), b ∼ N (Σ

1/2
T β∗T , σ

2I). Our goal to uniformly
lower bound RN (r, γ) by RL(r, γ) is essentially Problem 1, where

RL(r, γ) := min
β̂ linear

max
‖β∗T ‖≤r,‖δ‖≤γ

E ‖Σ1/2
T (β̂(a, b)− β∗)‖2,

RN (r, γ) := min
β̂

max
‖β∗T ‖≤r,‖δ‖≤γ

E ‖Σ1/2
T (β̂(a, b)− β∗)‖2.

Proof of Remark B.1. Our target considers samples drawn from distributions x ∼ N (Σ
1/2
S (β∗T +

δ), σ2I),y ∼ N (Σ
1/2
T β∗T , σ

2I).[
a
b

]
∼ N

([
Udiag(s1/2)U>(β∗T + δ)

Udiag(t1/2)U>β∗T

]
,

[
σ2I 0
0 σ2I

])
,θ ∈ Θ, δ ∈ ∆

⇐⇒
[
U>a/σ
U>b/σ

]
∼ N

([
diag(s1/2)U>(β∗T + δ)

diag(t1/2)U>β∗T

]
,

[
I 0
0 I

])
, ‖β∗T ‖ ≤ r, ‖δ‖ ∈ γ

Let ā = U>a/σ, b̄ = U>b/σ,Θ = {θ|‖diag(t−1/2)θ‖ ≤ r}, ∆ = {‖diag(s−1/2)δ‖ ≤ γ}.
θ̄ = U>Σ

1/2
T β∗T , δ = U>Σ

1/2
S δ, and D = diag(s1/2t−1/2). We get:[

U>a/σ
U>b/σ

]
∼ N

([
diag(s1/2)U>(β∗T + δ)

diag(t1/2)U>β∗T

]
,

[
I 0
0 I

])
, ‖βT ‖ ≤ r, ‖δ‖ ∈ γ

⇐⇒
[
ā
b̄

]
∼ Pθ,δ,D := N

([
Dθ̄ + δ̄
θ̄

]
,

[
I 0
0 I

])
, θ̄ ∈ Θ, δ̄ ∈ ∆.

Let PΘ,∆,D :=
{
Pθ̄,δ̄,D

∣∣ θ̄ ∈ Θ, δ̄ ∈ ∆
}

. Since U is an invertible matrices, observing
U>a/σ, U>b/σ instead of a, b has no affect on the performance of the best estimator. Also
Θ,∆ are axis-aligned ellipsoid and thus satisfy orthosymmetry. Therefore our problem is essen-
tially reduced to Problem 1.
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Lemma B.2. Let Θ(τ ) = {θ|θi ≤ τi,∀i,θ ∈ Θ} and similarly for ∆(ζ) = {δ|δi ≤ ζi, δ ∈ ∆},
D is some diagonal matrix.

RL(Θ,∆, D) = sup
τ∈Θ,ζ∈∆

RL(Θ(τ ),∆(ζ), D), and

RN (Θ,∆, D) ≥ sup
τ∈Θ,ζ∈∆

RN (Θ(τ ),∆(ζ), D).

Write samples drawn from some Pθ,δ,D ∈ PΘ,∆,D as (x,y) : x ∼ N (Dθ + δ, I),y ∼ N (θ, I).

Lemma B.3. The minimax linear estimator θ̂ : (x,y) → Ax + By has the form θ̂a,b(x,y) =∑
i aixi +

∑
i biyi for some a, b ∈ Rd. Namely,

RL(Θ,∆, D) = inf
θ̂a,b

max
P∈PΘ,∆,D

rP (θ̂a,b).

Proof. According to the proof of Proposition B.4.a, by discarding off-diagonal terms, the maximum
risk of any linear estimator θ̂A,B over any hyperrectangles Θ(τ ),∆(ζ) is reduced.

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂A,B) ≥ max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂diag(A),diag(B)).

Further we have:

min
A,B

max
θ∈Θ,δ∈∆

rPθ,δ,D (θ̂A,B) ≥min
A,B

max
τ∈Θ,ζ∈∆

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂diag(A),diag(B))

= min
a,b

max
θ∈Θ,ζ∈∆

rPθ,δ,D (θ̂a,b)

≥min
C

max
θ∈Θ,δ∈∆

rPθ,δ,D (θ̂A,B).

Therefore all four terms have to be equal, thus finishing the proof.

Notice Θ(τ ) and ∆(ζ) are hyperrectangles in Rd. Therefore we could decompose the problem to
some 2-d problems:
Proposition B.4. Under the same setting as Problem 1,

a). RL(Θ(τ ),∆(ζ), D) =
∑
i

RL(τi, ζi, Dii).

If θ̂A,B(x,y) = Ax+By is minimax linear estimator over PΘ(τ ),∆(ζ),D, then necessarily A,B
must be diagonal.

b). RN (Θ(τ ),∆(ζ), D) =
∑
i

RN (τi, ζi, Dii).

Proof of Proposition B.4.a . First review our notation:

rPθ,δ,D (θ̂A,B) =E(x,y)∼Pθ,δ,D ‖θ̂A,B(x,y)− θ‖2

=Ex∼N (Dθ+δ,I),y∼N (θ,I) ‖Ax+By − θ‖2

=‖A(Dθ + δ) +Bθ − θ‖2 + Tr(AA>) + Tr(BB>)

=‖(AD +B − I)θ +Aδ‖2 + Tr(AA>) + Tr(BB>).
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Our objective is

RL(Θ(τ ),∆(ζ), D) := min
A,B

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂A,B)

We will show that restricting A,B to be diagonal will not include the RHS value.

For any τ̄ ∈ Θ(τ ), ζ̄ ∈ ∆(ζ), let set V (τ̄ , ζ̄) = {(θ, δ)|(θi, δi) ∈ {(τ̄i, ζ̄i), (−τ̄i,−ζ̄i)}} be the
subset of vertices of Θ(τ̄ )×∆(ζ̄). Let π(τ̄ , ζ̄) be uniform distribution on this finite set. Due to
the symmetry of this distribution, we have

Eπ(τ̄ ,ζ̄) θi = 0, i ∈ [d],

Eπ(τ̄ ,ζ̄) δi = 0, i ∈ [d],

Eπ(τ̄ ,ζ̄) θiθj = 1i=j τ̄
2
i , i ∈ [d],

Eπ(τ̄ ,ζ̄) δiδj = 1i=j ζ̄
2
i , i ∈ [d],

Eπ(τ̄ ,ζ̄) θiδj = 1i=j τ̄iζ̄i, i ∈ [d].

We utilize the distribution to find the explicit value of the maximum (in fact the maximum will
only be obtained inside the vertices set V (τ̄ , ζ̄) ):

max
(θ,δ)∈V (τ̄ ,ζ̄)

rPθ,δ,D (θ̂A,B) ≥ Eπ(τ̄ ,ζ̄) rPθ,δ,D (θ̂A,B)

=Eπ(τ̄ ,ζ̄) ‖(AD +B − I)θ +Aδ‖2 + Tr(AA>) + Tr(BB>)

=Tr((AD +B − I)E[θθ>](AD +B − I)>) + Tr(AE[δδ>]A>)+

2Tr((AD +B − I)E[θδ>]A>) + Tr(AA>) + Tr(BB>)

=Tr((AD +B − I)>(AD +B − I)diag(τ̄ 2)) + Tr(A>Adiag(ζ̄2))

+ Tr((AD +B − I)>Adiag(τ̄ ζ̄)) + Tr(AA>) + Tr(BB>)

=
∑
i

‖(AD +B − I):,iτ̄i +A:,iζ̄i‖2 + Tr(AA>) + Tr(BB>)

≥
∑
i

((AiiDii +Bii − 1)τ̄i +Aiiζ̄i)
2 +A2

ii +B2
ii

=‖(diag(A)D + diag(B)− I)θ + diag(A)δ‖2 + Tr(diag(A)2) + Tr(diag(B)2),
(∀(θ, δ) ∈ V (τ̄ , ζ̄))

= max
V (τ̄ ,ζ̄)

‖(diag(A)D + diag(B)− I)θ + diag(A)δ‖2 + Tr(diag(A)2) + Tr(diag(B)2)

Therefore we have:

RL(Θ(τ ),∆(ζ), D) := min
A,B

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂A,B)

= min
A,B

max
τ̄∈Θ(τ ),ζ̄∈∆(ζ)

max
θ∈V (τ̄ ,ζ̄)

rPθ,δ,D (θ̂A,B)

≥min
A,B

max
τ̄∈Θ(τ ),ζ̄∈∆(ζ)

max
(θ,δ)∈V (τ̄ ,ζ̄)

rPθ,δ,D (θ̂diag(A),diag(B))

= min
a∈Rd,b∈Rd

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂a,b).
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Next, since the optimal solution on the minimizer is always obtained by diagonal A,B, it becomes
straightforward that each axis could be viewed in separation, thus finishing the proof for part a.

The nonlinear part is a straightforward extension of Proposition 4.16 from Johnstone (2011).

Theorem B.5 (Restated Le Cam Two Point Theorem Wainwright (2019)). Let P be a family of
distribution, and θ : P → Θ is some associated parameter. Let ρ : Θ×Θ→ R+ be some metric
defined on Θ and Φ : R+ → R+ is a monotone non-decreasing function with Φ(0) = 0. For any
α ∈ (0, 1),

inf
θ̂

sup
P∈P

[Φ(ρ(θ̂, θ(P )))] ≥ max
P1,P2∈P

1

2
Φ(

1

2
ρ(θ(P1), θ(P2)))(1− α),

s.t. ‖Pn1 − Pn2 ‖TV ≤ α.

Lemma B.6. Consider a class of distribution Pτ,ζ,s = {Pθ,δ,s|Pθ,δ,s := N ([sθ+δ, θ]>, I2), |θ| ≤
τ, |δ| ≤ ζ}. Define

RL(τ, ζ, s) = min
θ̂ linear

max
|θ|≤τ,|δ|≤ζ

Ex∼Pθ,δ,s(θ̂(x)− θ)2,

and RN (τ, ζ, s) = min
θ̂

max
|θ|≤τ,|δ|≤ζ

Ex∼Pθ,δ,s(θ̂(x)− θ)2

We have
RL(τ, ζ, s) ≤ 27/2RN (τ, ζ, s),∀ζ, s > 0, τ > 0.

Proof of Lemma B.6. We first calculate an upper bound of RL and connect it to a lower bound of
RN .

RL(τ, ζ, s) = min
a,b

max
|θ|≤τ,|δ|≤ζ

[(as+ b− 1)θ + aδ]2 + a2 + b2

= min
a,b

(|as+ b− 1|τ + |a|ζ)2 + a2 + b2

≤min
a,b

2(as+ b− 1)2τ2 + 2a2ζ2 + a2 + b2.

By some detailed calculations, we get the RHS is equal to:

2τ2(2ζ2 + 1)

2τ2(s2 + 2ζ2 + 1) + 2ζ2 + 1

≤min{1, 2τ2,
1 + 4ζ2

s2 + 1
}.

For simplify this form, we could see that

Next, we use Le cam two point theorem to lower boundRN (τ, ζ, s) where the metric ρ is Euclidean
distance and Φ is squared function. Therefore

RN (τ, ζ, s) ≥ max
|θi|≤τ,|δi|≤ζ,i∈{1,2}

1

2
(
1

2
(θ1 − θ2))2(1− α)

s.t. ‖N ([sθ1 + δ1, θ1]>, I2),N ([sθ2 + δ2, θ2]>, I2)‖TV ≤ α.
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Since the total variation distance is related to Kullback-Leibler divergence by Pinsker’s inequality:

‖·, ·‖TV ≤
√

1
2DKL(·‖·), it’s sufficient to replace the constraint as:

DKL

(
N ([sθ1 + δ1, θ1]>, I2)

∥∥N ([sθ2 + δ2, θ2]>, I2)
)
≤ 2α2.

max
|θi|≤τ,|δi|≤ζ,i∈{1,2}

1

8
(θ1 − θ2)2(1− α)

s.t. (sθ1 + δ1 − (sθ2 + δ2))2 + (θ1 − θ2)2 ≤ 2α2

⇔ max
|c|≤2τ,|d|≤2ζ

c2

8
(1− α)

s.t. (sc+ d)2 + c2 ≤ 2α2.

Recall RL ≤ min{1, 2τ2, 1+4ζ
s2+1}.

We first note that c2 ≤ 4τ2 and setting α = 0 we have RN ≥ τ2/2 ≥ 1/4RL. For In the following
we look at other cases when the bound for c2 is smaller.

When 2ζ ≥ sc, will set d = −sc and c2 = 2α2. Let α = 2/3 for large τ we get : c2(1− α)/8 =
2/27 ≥ 2/27RL.

When 2ζ ≤ sc we set d = −2ζ and require (sc − 2ζ)2 + c2 ≤ 2α2. We have (sc − 2ζ)2 +
c2 = s2c2 + 4ζ2 − 4ζsc + c2 ≤ s2c2 + 4ζ2 − 8ζ2 + c2 = (s2 + 1)c2 − 4ζ2. Therefore as
we set c2 = 2α2+4ζ2

s2+1 , the original inequality is satisfied. Again by setting α = 2/3 we have

c2 ≥ 8/9 1+4ζ2

s2+1 ≥ 8/9RL. Therefore in this case RN ≥ 2
27RL.

C DISCUSSIONS ON RANDOM DESIGN UNDER COVARIATE SHIFT.

In the main text, we present the results where we consider XS as fixed and ΣT to be known. In this
section, we view both source and target input data as random, and generalize the results of Section
3 while training is on finite observations and testing is on the (worst case) population loss, under
some light-tail properties of the input data samples.

C.1 RANDOM DESIGN ON TARGET COVARIANCE MATRIX

In Section 3, we consider the case when ΣT is known exactly. This could be viewed as the fixed
design setting where training and testing are on the same set of data. In this section, our analysis
will include the estimation error on observing finite unlabeled samples of target domain. Let
XT = [x1, · · ·xnU ]> ∈ RnU×d be nU (Here U stands for unlabeled data and is used to distinguish
from nT labeled target samples) data samples where xi ∼ pT , and we will use the unlabeled target
samples to conduct estimation. We let Σ̂T = X>T XT /nU .

Let L̂B to denote the worst case excess risk measured on the observed target samples: L̂B(β̂) =

maxβ∗∈B EyS 1
nU
‖XT (β̂(yS)− β∗)‖2. To find the best linear estimator that minimizes L̂B, our
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proposed algorithm becomes:

Ĉ ← min
τ,C

{
r2τ +

σ2

nS
Tr(Σ̂

1/2
T CΣ̂−1

S C>Σ̂
1/2
T )

}
, s.t. (C − I)>Σ̂T (C − I) � τI. (10)

And set β̂ = ĈΣ̂−1
S X>S yS/nS . We want to show that in spite of the existence of estimation error

due to the replacement of ΣT with Σ̂T , our generated β̂ performs well on the worst-case population
risk LB(β̂) := maxβ∗ EyS Ex∼pT ‖x>(β̂(yS)− β∗)‖2 and achieves minimax linear risk (up to
constant multiplicative error).

In this section we assume that the data samples is light tail:
Definition C.1 (ρ2-subgaussian distribution). We call a distribution p to be ρ2-subgaussian when
there exists ρ > 0 such that the random vector x̄ ∼ p̄ is ρ2-subgaussian. p̄ is the whitening of p
such that x̄ ∼ p̄ is equivalent to x = Σ1/2x̄ ∼ p, where Σ is the covariance matrix of p. 6

Notice that here the subgaussian parameter is defined on the whitening of the data, and ρ doesn’t
depend on how large ‖Σ‖op is.
Theorem C.2. Fix a failure probability δ ∈ (0, 1). Suppose target distribution pT is ρ2-
subgaussian, and the sample size in target domain satisfies nU � ρ4(d + log 1

δ ). Let
β̂ : yS → ĈΣ̂−1

S X>S yS where Ĉ is defined from Eqn. 10. Then with probability at least
1− δ over the unlabeled samples from target domain, and for each fixed XS from source domain,
our learned estimator β̂(yS) satisfies:

LB(β̂) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

n
))RL(B). (11)

Specifically, when ΣT commutes with Σ̂S or is rank 1, we have:

LB(β̂) ≤ (1.25 +O(

√
ρ4(d+ log(1/δ))

n
))RN (B). (12)

Similarly all other results in the paper could be extended to random design with finite samples XT .

Proof of Theorem C.2. The proof relies on the two technical claims C.3, C.4.

Let β̂R be the optimal linear estimator on LB, i.e., LB(β̂R) = minβ linear in yS LB(β) = RL(B).

LB(β̂) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

n
))L̂B(β̂) (Claim C.4)

≤(1 +O(

√
ρ4(d+ log(1/δ))

n
))L̂B(β̂R) (from definition of β̂)

≤(1 +O(

√
ρ4(d+ log(1/δ))

n
))2LB(β̂R) (Claim C.4)

≤(1 +O(

√
ρ4(d+ log(1/δ))

n
))LB(β̂) = (1 +O(

√
ρ4(d+ log(1/δ))

n
))RL(B).

(from ρ4(d+log(1/δ))
n � 1, and definition of β̂R)

6A random vector x is called ρ2-subgaussian if for any fixed unit vector v of the same dimension, the random
variable v>x is ρ2-subgaussian, i.e., E[es·v

>(x−E[x])] ≤ es
2ρ2/2 (∀s ∈ R).
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From Theorem 3.4 we know RL(B) ≤ 1.25RN (B) when ΣT is rank-1 matrix or commute with
Σ̂S which further finishes the whole proof.

Claim C.3 (Restated Claim A.6 from Du et al. (2020)). Fix a failure probability δ ∈ (0, 1), and
assume n� ρ4(d+ log(1/δ)) 7. Then with probability at least 1− δ

10 over the inputs x1, . . . ,xn,
if xi ∼ p and p is a ρ2-subgaussian distribution, we have

(1−O(

√
ρ4(d+ log(1/δ))

n
))Σ � 1

n
X>X � (1 +O(

√
ρ4(d+ log(1/δ))

n
))Σ, (13)

where Σ = Ex∼p[xx>].

With the help of Claim C.3 we directly get:
Claim C.4. Fix a failure probability δ ∈ (0, 1), and assume nU � ρ4(d + log(1/δ)), XT =
[x1, · · · ,xnU ]> ∈ RnU×d satisfies xi ∼ pT where pT is ρ2-subgaussian. We have for any
estimator β:

(1−O(

√
ρ4(d+ log(1/δ))

nU
))LB(β) ≤ L̂B(β) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

nU
))LB(β),

with high probability 1− δ/10 over the random samples XT .

Proof of Claim C.4. Recall

L̂B(β̂) = max
β∗∈B

EyS
1

nU
‖XT (β̂(yS)− β∗)‖2,

LB(β̂) = max
β∗∈B

EyS ‖Σ
1/2
T (β̂(yS)− β∗)‖2.

Therefore for any estimator β̂, it satisfies

LB(β̂)− L̂B(β̂)

=(β̂(yS)− β∗)>(ΣS − Σ̂S)(β̂(yS)− β∗)

.O(

√
ρ4(d+ log(1/δ))

nU
)(β̂(yS)− β∗)>ΣS(β̂(yS)− β∗)

=O(

√
ρ4(d+ log(1/δ))

nU
)LB(β̂),

which finishes the proof.

7When this is not satisfied the result is still satisfied by replacing O(

√
ρ4(d+log(1/δ))

n
) with

O(max{
√

ρ4(d+log(1/δ))
n

, ρ
2(d+log(1/δ))

n
}). For cleaner presentation, we assume n is large enough and

simplify the results.
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C.2 RANDOM DESIGN ON SOURCE DOMAIN.

In the main text or the subsection above, the worst case excess risk is upper bounded by 1.25RN ,
which is achieved by best estimator that is using the same set of training data (XS ,yS). Here we
would like to take into consideration the randomness of XS and compare the worst case excess risk
using our estimator with a stronger notion of linear estimator.

For this purpose, we consider estimators that are linear functionals of yR := Σ
1/2
S β∗ + z ∈

Rd, z ∼ N (0, σ2/nSId) (this σ2/nS is the correct scaling since X>S XS/nS is comparable to ΣS).
We consider the minimax linear estimator with yR and with access to ΣS , and we compare our
estimator against this oracle linear estimator. This estimator is not computable in practice since ΣS
must be estimated, but we will show that our estimator is within an absolute multiplicative constant
in minimax risk of the oracle linear estimator.

To recap the notations and setup, let

L̂B(β̂) := max
β∗

EyS
1

nU
‖XT (β̂(yS)− β∗)‖2,

LB(β̂) := max
β∗

EyS Ex∼pT ‖x>(β̂(yS)− β∗)‖2,

LB,R(β̂) := max
β∗

EyR Ex∼pT ‖x>(β̂(yR)− β∗)‖2.

Our target is to find the best linear estimator using L̂B(β̂) (trained with XT ) and prove its per-
formance on the population (worst-case) excess risk LB(β̂) is no much worse compared to the
minimax linear risk trained on yR and ΣS .
Theorem C.5. Fix a failure probability δ ∈ (0, 1). Suppose both target and source distributions
pS and pT are ρ2-subgaussian, and the sample sizes in source domain and target domain satisfies
nS , nU � ρ4(d + log 1

δ ). Let Ĉ be the solution for Eqn.(10), and set β̂(yS) ← ĈΣ̂−1
S X>S yS .

Then with probability at least 1 − δ over all the unlabeled samples from target domain and all
the labeled samples XS from source domain, our estimator β̂(yR) yields the worst case expected
excess risk that satisfies:

LB(β̂) ≤

1 +O(

√
ρ4(d+ log(1/δ))

nU
) +O(

√
ρ4(d+ log(1/δ))

nT
)

 min
β linear in yR

LR,B(β).

Proof of Theorem C.5. For each matrix C ∈ Rd×d, we first conduct bias-variance decomposition
and rewrite each worst-case risk with linear estimator in terms of a matrix C. When β̂(yS) =

CΣ̂−1
S X>S yS , we have:

L̂B(β̂) =‖Σ̂1/2
T (C − I)‖2opr2 +

σ2

n
Tr(Σ̂TCΣ̂−1

S C>) =: l̂(C),

LB(β̂) =‖Σ1/2
T (C − I)‖2opr2 +

σ2

n
Tr(ΣTCΣ̂−1

S C>) =: l(C),

Similarly, when β̂R = CΣ
−1/2
S yR, we have:

LR,B(β̂) =‖Σ1/2
T (C − I)‖2opr2 +

σ2

n
Tr(ΣTCΣ−1

S C>) =: lR(C).
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Claim C.6. Fix a failure probability δ ∈ (0, 1), and assume nU , nS � ρ4(d+ log(1/δ)), XS ∈
RnS×d, XT ∈ RnU×d are respectively from pS pT which are both ρ2-subgaussian. We have for
any matrix C ∈ Rd×d:

(1−O(

√
ρ4(d+ log(1/δ))

nU
))l̂(C) ≤ l(C) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

nU
))l̂(C),

with high probability 1− δ/10 over the random samples XT .

(1−O(

√
ρ4(d+ log(1/δ))

nS
))l(C) ≤ lR(C) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

nS
))l(C),

with high probability 1− δ/10 over the random samples XS .

Proof of Claim C.6. We omit the proof of the first inequality since it’s exactly the same as proof of
Claim C.4.

For the second line, we have:

lR(C)− l(C) =
σ2

nS
Tr(ΣTC(Σ−1

S − Σ̂−1
S )C>)

≤O(

√
ρ4(d+ log(1/δ))

nS
)
σ2

nS
Tr(ΣTCΣ̂−1

S C>)

≤O(

√
ρ4(d+ log(1/δ))

nS
)l(C).

Therefore we prove the RHS of the second inequality. The LHS follows with the same proof
techniques.

Now let Ĉ be the minimizer for l̂(C), and CR be the minimizer for lR(C).

l(Ĉ) ≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))l̂(Ĉ) (w.p. 1− δ/10; due to Claim C.6)

≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))l̂(CR) (Due to the definition of Ĉ)

≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))2l(CR) (w.p. 1− δ/5; due to Claim C.6)

=(1 +O(

√
ρ4(d+ log(1/δ))

nU
))l(CR) (since nU is large enough)

≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))(1 +O(

√
ρ4(d+ log(1/δ))

nT
))lR(CR)

(w.p. 1− 3δ/10; due to Claim C.6)
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=

1 +O(

√
ρ4(d+ log(1/δ))

nU
) +O(

√
ρ4(d+ log(1/δ))

nT
)

min
C

lR(C).

This finishes the proof.

D MORE EMPIRICAL RESULTS

We include some more empirical studies. In the main text our results have small noise. Here
we show some more results with larger noise, and also the case with varied eigenspace. For the
following results, we use σ = 10 and r = 0.2

√
d. Other meta data remains the same as presented

in the main text. Figure 2 (a)(b) show similar phenomenon as the small noise setting presented in

(a) covariate eigen-spectrum (b) signal strength (c) covariate eigenspace

Figure 2: (a): The x-axis α defines the spread of eigen-spectrum of ΣS : si ∝ 1/iα, ti ∝ 1/i. (b)
x-axis is the normalized value of signal strength: ‖ΣTβ∗‖/r. (c) X-axis is the covariate shift due
to eigenspace shift measured by ‖US − UT ‖F .

the main text. From Figure 2 (c) we see no particular relationship between the performance of each
algorithm with eigenspace shift.

D.1 EXPERIMENTS WITH APPROXIMATION ERROR

Finally, we conduct empirical studies with nonlinear models.

Figure 3: The x-axis is noise level σ and y-
axis is the excess risk (with approximation
error).

Setup. We choose nS = 2000, d = 50. Let
XS ∈ R2000×50 be generated randomly under
Gaussian distribution N (0,ΣS). We also gener-
ate a small validation dataset from target domain:
XCV ∈ R500×50, sampled from N (0,ΣT ), yCV =
f∗(XCV) + zCV, with zCV ∼ N (0, σ2I). We choose
λi(ΣS) ∝ i, λi(ΣT ) ∝ 1/i, and the eigenspace
for both ΣS and ΣT are random orthonormal ma-
trices. (‖ΣS‖2F = ‖ΣT ‖2F = d.) The ground
truth model is a one-hidden-layer ReLU network:
f∗(x) = 1/da>(Wx)+, where W and a are ran-
domly generated from standard Gaussian distribution.
We observe noisy labels: yS = f∗(x) + z, where
zi ∼ N (0, σ2).

27



Under review as a conference paper at ICLR 2021

Estimating weights pT (x)/pS(x). Since the generated data samples are Gaussian, the absolute

weights for pT (x)/pS(x) =
√
|ΣS |
|ΣT | exp( 1

2x
>(Σ−1

S − Σ−1
T )x). However, this absolute value has

an exponential factor and can amplify the noise level. Meanwhile, when one multiplies both
XS ,yS by 10, the ground truth β doesn’t change but the absolute value for pT (x)/pS(x) will
change drastically. This discrepancy highlights the importance of relative magnitudes (among
samples) instead of the absolute value Kanamori et al. (2009).

To obtain a relative score, we first estimate the absolute value of pT (x)/pS(x) by l(x) :=

x>(Σ̂−1
S − Σ̂−1

T )x. We then uniformly assign the weight for each sample by 10 discrete values
1, 2, 3 · · · 10 based on their scoring l(x) and then rescale the reweighting vector properly.

We implement our method (Eqn. 4) using the estimated weights as above. Refer to Figure 3
for the results. The baselines we choose are ordinary least square ("OLS" in Figure (3)), ridge
regression (Legend is "Ridge") and classic weighted least square Kanamori et al. (2009) (Legend
is "Reweighting"; β̂LS in our main text). For both ridge regression and our methods, we tune
hyperparameters through cross-validation. All results are presented from 40 runs where the
randomness comes from f∗ and the eigenspaces of ΣS ,ΣT .
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