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Abstract

The Process Reward Model (PRM) plays a cru-
cial role in mathematical reasoning tasks, re-
quiring high-quality supervised process data.
However, we observe that reasoning steps gen-
erated by Large Language Models (LLMs) of-
ten fail to exhibit strictly incremental informa-
tion, leading to redundancy that can hinder ef-
fective reasoning. To address this issue, we
propose CFPRM, a simple yet effective coarse-
to-fine strategy. Instead of focusing on the de-
tection of redundant steps, our approach first
establishes a coarse-grained window to merge
adjacent reasoning steps into unified, holistic
steps. The window size is then progressively
reduced to extract fine-grained reasoning steps,
enabling data collection at multiple granulari-
ties for training. By leveraging this hierarchical
refinement process, CFPRM mitigates redun-
dancy while preserving essential fine-grained
knowledge. Extensive experiments on two rea-
soning datasets across three loss criteria vali-
date the CFPRM'’s effectiveness and versatil-
ity. Our code is available https://anonymous.
4open.science/r/CFPRM-0QFF2.

1 Introduction

Large language models (LLMs) have demonstrated
promising capabilities across a wide range of do-
mains (Kaddour et al., 2023; Achiam et al., 2023;
Dubey et al., 2024; Yang et al., 2024), including
complex mathematical reasoning tasks (Lightman
et al., 2023; Huang et al., 2023). An accurate pro-
cess reward model (PRM) is vital for reasoning
tasks, as it provides intermediate supervision sig-
nals for each individual step (Uesato et al., 2022).

Training PRM requires the collection of step-
wise annotated corpora (Lightman et al., 2023;
Uesato et al.,, 2022). For instance, Lightman
et al. (Lightman et al., 2023) propose manually
annotating the intermediate MATH data, where
each step is assigned a ternary label. However,
such human-intensive labeling is costly, hindering
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Figure 1: Redundant steps merging.

broader practical applications. An alternative ap-
proach involves constructing automatic labeling
methods, either by defining the probability of each
intermediate step as the potential to deduce the fi-
nal correct answer (Wang et al., 2024), or by using
a tree-based structure to iteratively refine the log-
its of each intermediate trajectory (Zhang et al.,
2024). Despite the preliminary success of these
methods, they primarily focus on accurately as-
signing labels to each step, while overlooking the
potential redundancy of steps that may offer no
incremental information gain (Li and Li, 2024).
Given that mathematical reasoning is a progressive
process, where each current step depends on pre-
vious ones (Li and Li, 2024), later steps should
ideally provide more informative contributions to-
ward approximating the final answer. To illustrate
this, we present a data collection example from the
MATH dataset (Hendrycks et al., 2021) via Shep-
Herd (Wang et al., 2024) in Figure 1. However,
we observe that steps si, sz, and s3 are logically
correct, but the repetitive reasoning procedures fail
to yield any new information, which contradicts
the learning objective.

To tackle the limitation, we propose CFPRM,
a coarse-to-fine strategy for process data collec-
tion and training, which is simple yet effective.
We do not explicitly detect redundant steps; as the
name suggests, we collect process training data in
a coarse-to-fine manner and proceed with the learn-
ing process in the same way. Specifically, we define
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a step window size C' to represent the initial step
granularity, i.e., every C steps are collected and
merged into a holistic step, with the corresponding
label of the merged step determined by the label of
the last individual step. Subsequently, C' is grad-
ually reduced until it reaches 1, and training data
are collected in the same way following the above
procedure. This strategy gathers training data of
diverse granularity, directly integrating consecu-
tive steps to form coarse steps without designing
methods to detect redundant steps. Meanwhile, the
initial individual steps are preserved to offer neces-
sary fine-grained signals. We validate the proposed
strategy on two cutting-edge LLMs across three
learning criteria, yielding consistently enhanced
performance, demonstrating the effectiveness and
versatility of CFPRM.

2 Methodology

2.1 Preliminaries

We denote an LLM policy as 7, and rg as the PRM
fine-tuned upon 7, parameterized by 6. For rea-
soning tasks, 7 generates responses step by step
given an input query z in an autoregressive man-
ner: sy ~ mo(- | z,s14-1),t < T, T is the total
reasoning steps. The PRM policy ry then outputs
a reward given the partial solutions and the input
query as: 75, = rg(S1., ). We regard ys, as the
label for step t. In addition, the existing PRM train-
ing objectives can be summarized into three types,
including mean square error (MSE) (Zhang et al.,
2024), binary cross-entropy (BCE) (Wang et al.,
2024), and Q-value rankings (Q-ranking) (Li and
Li, 2024), as shown in Table 1. It is worth not-
ing that CFPRM can be applied to arbitrary loss
criteria and achieves consistent improvements, as
demonstrated in Section 3.

Table 1: The typical loss objectives for PRM training.
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W indicates negative steps, @ is the ranking value, and ¢ is the margin
hyperparameter.

2.2 Coarse-to-fine Process Data Collection

CFPRM can be applied to reasoning data col-
lected by any kind of structure, such as Chain of

Thought (Wang et al., 2024) or Monte Carlo Tree
Search (Zhang et al., 2024) methods. We extend
the solution process in Figure 1 as an example and
present the coarse-to-fine process data collection
in Figure 2. The process is intuitive, involving first
merging the consecutive steps and then relabeling
each merged step.
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Figure 2: Coarse-to-fine process data collection.

Steps merging. Consider the problem in Figure 1
containing a trajectory of 7 reasoning steps, where
steps s1, S2, S3, S5, and sg are correct steps, and sy4
and s7 are wrong steps. It is worth noting that step
s4 fails to make incremental reasoning from s3,
but the LLM policy manages to adjust the wrong
step (Setlur et al., 2024). The final step fails to
reach the correct answer.

As a coarse-to-fine method, CFPRM gradually
consolidates multiple reasoning steps based on
a predefined sliding window size, denoted as C.
Here, C represents the size of the merging window,
with Chax as the maximum window size, while
the minimum size is usually set to 1. Ideally, C
can initially be set to the total number of steps in
the entire reasoning trajectory, and the merged tra-
jectory is labeled with the label of the last step,
acting as ORM. In practice, the continuous partial
steps are merged instead of the entire trajectory to
avoid excessive concentration of knowledge. In
Figure 2, C'is initially set to 4, yielding the merged
partial trajectory si, Sa, S3, S4, treated as a single
step s1:.4. Then, the window slides to the next start-
ing point (s5) to collect a new partial trajectory.
Subsequently, C' is sequentially decreased to 3 and
2, yielding additional partial trajectories of differ-
ent sizes. After finishing collecting the consecutive
steps using the sliding window, we combine the
merged coarse training samples with the original
fine-grained data.

Merged steps labeling. In addition, each collected
partial trajectory may contain positive or negative
steps, which makes it difficult to determine its la-
bel. Drawing inspiration from ShepHerd (Wang
et al., 2024), which considers a trajectory’s label to



Table 2: Main results measured by BoN accuracy. C' is set to 2.

Version | Models | GSM-Plus | MATH500
| | @8 @16 @32 @64 Avg | @8 @16 @32 @64  Avg.
| ORM | 670 660 688 668 672 |714 692 702 681 697
SHerd 678 672 684 670 676 |744 755 758 760 754
Instruct | SHerdicrery | 682 674 690 700 68741, | 756 762 766 770 764310
nstruc
RMCTS* 694 692 668 680 684 |71.0 712 719 726 717
RMCTS* ;cppry | 682 704 702 700 697413 | 752 756 749 746 751434
PQM 67.6 688 664 670 675 |746 754 758 753 753
PQM, cppry | 68.0 68.0 694 710 69.dy16 | 754 762 767 771 76441,
| ORM 630 618 628 628 626 |780 777 716 716 717
SHerd 692 692 692 700 694 |821 818 819 820 820
Mary | SHerdicrrrv | 692 708 712 730 712y | 824 823 828 828 826100
RMCTS* 686 692 686 700 691 |8L6 817 820 818 818
RMCTS* ;cppru | 69.2 700 704 720 70445 | 822 827 828 828 82.6505
PQM 702 698 722 730 713 | 840 841 842 842 841
PQM, crprm | 694 714 722 740 71845 | 845 849 852 852 85.050

depend on its potential to deduce the answer, we
label each merged step by the label of the last step
in the window. For example, the label of s;.4 is the
same as the label of step s4, indicating a negative
sample, and we add (s1.4,+) into the set Do—g4.
Similarly, the trajectory si.9 is treated as a positive
sample, sharing the same label as step s2. Follow-
ing this, each merged step is relabeled and used
as supervisory training samples, with the trajec-
tory added to the set D—s. In this way, we obtain
a renewed training corpus containing samples of
diverse granularity.

Training and inference. We proceed with train-
ing after obtaining the training samples of different
granularity. We choose to recombine the training
trajectories according to their granularity. Specif-
ically, we traverse the corpus sequentially from
Chax to 1. Through this process, the process super-
vision knowledge is gradually distilled in a coarse-
to-fine manner. The training process is identical for
different loss criteria. During inference, we use the
trained PRM to predict scores for each single step.
We summarize the overall process in Appendix 1.

3 Experiment

3.1 Experimental Setup

Datasets and models. We adopt two widely used
mathematical reasoning test sets, GSM-Plus (Li
et al.,, 2024) and MATHS500 (Hendrycks et al.,
2021), for evaluation. GSM-Plus is built upon
GSMS8K (Cobbe et al., 2021) with various math-
ematical perturbations. The original GSM8K
is a benchmark of grade-school level problems.
The MATH dataset consists of high school math
competition problems, which are more challeng-
ing. For each candidate, the PRM evaluates the
score of each step. Instead of collecting raw
process data from scratch, we utilize the off-the-
shelf PRM8O0OOK (Lightman et al., 2023) dataset
to train the PRM. We employ two cutting-edge
LLMs, Qwen2.5-7B-Instruct and Qwen2.5-7B-
MATH (Yang et al., 2024), as the backbone models.
Following previous studies (Wang et al., 2024; Li
and Li, 2024), we evaluate the PRM using the best-
of-n (BoN) sampling strategy, with n set to 8, 16,
32, and 64, respectively. We also use the same
backbone model to generate 64 candidates for each
given question, ensuring consistency in the back-
bone model and the BoN sampling policy.

Baselines and details. As a method to refine the
data collection mechanism, CFPRM can be seam-
lessly applied to any existing methods. Specifically,
we select the most recent methods covering the



three loss criteria in Table 1 for comparison, includ-
ing ShepHerd (Wang et al., 2024) using the BCE
objective, ReSTMCTS* (Zhang et al., 2024) using
the MSE objective, and PQM (Li and Li, 2024)
built upon the Q-ranking objective. We also in-
clude ORM for comparison. The best performance
is marked in bold. We set the max length to 2048,
the learning rate to 2e-6, and the batch size to 32.
All experiments are conducted on an H800-80G
GPU, with each experiment repeated five times to
report the mean results. Accuracy is reported as
the evaluation metric.
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Figure 3: The BoN accuracy change under different
values of C.

3.2 Main Results

For CFPRM, we set C' to 2 to merge the adjacent
two steps, showing the performance in Table 2.
SHerd and RMCTS* are abbreviations for Shep-
Herd (Wang et al., 2024) and ReSTMCTS* (Zhang
et al., 2024), respectively. The last column of each
dataset indicates the average performance across
four sampling conditions.

Our experimental results indicate that CFPRM
consistently brings performance improvements
across all configurations, irrespective of the back-
bone model or loss objectives, underscoring its
generalizability. For example, when employing
MSE as the loss function, CFPRM improves upon
the baseline, ReSTMCTS* (Zhang et al., 2024),

by 1.3% and 3.4% on GSM-Plus and MATH500,
respectively. Among the three learning objectives,
the Q-ranking criterion exhibits superior perfor-
mance, likely due to its foundation in the Markov
Decision Process (MDP), which emphasizes evalu-
ating transitions between adjacent steps. However,
the presence of redundant steps can impede this
learning process. By integrating CFPRM with the
Q-ranking-based method (Li and Li, 2024), we
observe further performance enhancements. Over-
all, these findings robustly affirm the efficacy and
adaptability of CFPRM. Considering the simplicity
of CFPRM, CFPRM can be applied as a plug-and-
play strategy to various scenarios.

3.3 Further Studies

We further explore the impact of varying C, rang-
ing from 2 to 4. It is worth noting that only the
newly synthesized data is added. For simplicity,
we only take the Qwen2.5-7B-MATH as the back-
bone model, leveraging BCE, MSE, and Q-ranking
as the loss objectives, studying the performance
changes on GSM-Plus and MATHS500.

We can observe from Figure 3 that CFPRM gen-
erally brings performance gains across different
learning objectives. However, the impact of dif-
ferent C' varies, indicating that the optimal merge
window size is not fixed for different learning cri-
teria. In addition, we also find that the Q-ranking-
based method is more sensitive to C'. When C' is
set to 4, the performance of the Q-ranking-based
method on GSM-Plus does not exhibit a difference
compared to the raw baseline (Figure 3(e)). More-
over, the performance on MATHS500 lags behind
the raw baseline (Figure 3(f)). We ascribe this to
the fact that the Q-ranking-based objective is sen-
sitive to the interdependence between steps, and
a large merging window hinders the learning of
necessary fine-grained dependencies. Generally,
setting C' to 2 or 3 can better boost the overall
ranking performance.

4 Conclusion

In this paper, we briefly review the issue of redun-
dant steps in process data collection for PRM train-
ing, which may hinder downstream performance.
To tackle this problem, we propose CFPRM, a
coarse-to-fine strategy that employs a sliding win-
dow to collect process data at diverse granularities.
We validate CFPRM across multiple experimental
settings, confirming its effectiveness and versatility.



5 Limitations

A more reasonable method should involve detect-
ing and removing redundant steps, which we have
not discussed. Another limitation is that the opti-
mal C' should be designed adaptively with respect
to different loss criteria. Future work should fo-
cus on designing methods to accurately detect re-
dundant steps and developing adaptive methods to
choose a feasible value of C'.
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A Supplement Material

Algorithm 1: Coarse-to-Fine Step Merging
and Relabeling

Require: Trajectory of reasoning steps
S = {s1, s2,...,Sn}, where each step s; has
alabel ; € {+,—}.
Ensure: Mixed training corpus D with samples
of diverse granularity.
1: Initialize Cpax as the maximum window size.
2: Initialize D + () {Empty set to store merged
samples. }
3: for C' = Chhax to 1 do
4:  for each window of size C'in S do

5: Merge steps in the window into a single
step s;.;, where j =i 4+ C — 1.
6: Assign the label of s;.; as the label of the

last step s;.
7: Add (Si;j, lj) to Dg.

8:  end for
9:  Combine D¢ with D.
10: end for

11: return D {Mixed training corpus with
diverse granularity. }




