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Abstract

The Process Reward Model (PRM) plays a cru-001
cial role in mathematical reasoning tasks, re-002
quiring high-quality supervised process data.003
However, we observe that reasoning steps gen-004
erated by Large Language Models (LLMs) of-005
ten fail to exhibit strictly incremental informa-006
tion, leading to redundancy that can hinder ef-007
fective reasoning. To address this issue, we008
propose CFPRM, a simple yet effective coarse-009
to-fine strategy. Instead of focusing on the de-010
tection of redundant steps, our approach first011
establishes a coarse-grained window to merge012
adjacent reasoning steps into unified, holistic013
steps. The window size is then progressively014
reduced to extract fine-grained reasoning steps,015
enabling data collection at multiple granulari-016
ties for training. By leveraging this hierarchical017
refinement process, CFPRM mitigates redun-018
dancy while preserving essential fine-grained019
knowledge. Extensive experiments on two rea-020
soning datasets across three loss criteria vali-021
date the CFPRM’s effectiveness and versatil-022
ity. Our code is available https://anonymous.023
4open.science/r/CFPRM-0FF2.024

1 Introduction025

Large language models (LLMs) have demonstrated026

promising capabilities across a wide range of do-027

mains (Kaddour et al., 2023; Achiam et al., 2023;028

Dubey et al., 2024; Yang et al., 2024), including029

complex mathematical reasoning tasks (Lightman030

et al., 2023; Huang et al., 2023). An accurate pro-031

cess reward model (PRM) is vital for reasoning032

tasks, as it provides intermediate supervision sig-033

nals for each individual step (Uesato et al., 2022).034

Training PRM requires the collection of step-035

wise annotated corpora (Lightman et al., 2023;036

Uesato et al., 2022). For instance, Lightman037

et al. (Lightman et al., 2023) propose manually038

annotating the intermediate MATH data, where039

each step is assigned a ternary label. However,040

such human-intensive labeling is costly, hindering041

What is the smallest positive perfect cube that can be
written as the sum of three consecutive integers?

Let the three consecutive integers be n-1, n, and
n+1,we can first calculate their sum.  // Label = 1

The sum of the three integers is: (n-1) + n + (n+1) =
3n. // Label = 1

Let me think about it. The sum of the integers: (n-1) +
n + (n+1) = 3n. // Label = 1

The smallest positive perfect cube that can be written
as the sum of three consecutive integers is: 81. //
Label = 0
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can first calculate their sum. The sum of these integers is:
(n-1) + n + (n+1) = 3n. Let me think about it. The sum of
the integers: (n-1) + n + (n+1) = 3n. // Label = 1

(a) Redundant steps.
(b) Redundant steps merging and relabeling.

Figure 1: Redundant steps merging.

broader practical applications. An alternative ap- 042

proach involves constructing automatic labeling 043

methods, either by defining the probability of each 044

intermediate step as the potential to deduce the fi- 045

nal correct answer (Wang et al., 2024), or by using 046

a tree-based structure to iteratively refine the log- 047

its of each intermediate trajectory (Zhang et al., 048

2024). Despite the preliminary success of these 049

methods, they primarily focus on accurately as- 050

signing labels to each step, while overlooking the 051

potential redundancy of steps that may offer no 052

incremental information gain (Li and Li, 2024). 053

Given that mathematical reasoning is a progressive 054

process, where each current step depends on pre- 055

vious ones (Li and Li, 2024), later steps should 056

ideally provide more informative contributions to- 057

ward approximating the final answer. To illustrate 058

this, we present a data collection example from the 059

MATH dataset (Hendrycks et al., 2021) via Shep- 060

Herd (Wang et al., 2024) in Figure 1. However, 061

we observe that steps s1, s2, and s3 are logically 062

correct, but the repetitive reasoning procedures fail 063

to yield any new information, which contradicts 064

the learning objective. 065

To tackle the limitation, we propose CFPRM, 066

a coarse-to-fine strategy for process data collec- 067

tion and training, which is simple yet effective. 068

We do not explicitly detect redundant steps; as the 069

name suggests, we collect process training data in 070

a coarse-to-fine manner and proceed with the learn- 071

ing process in the same way. Specifically, we define 072
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a step window size C to represent the initial step073

granularity, i.e., every C steps are collected and074

merged into a holistic step, with the corresponding075

label of the merged step determined by the label of076

the last individual step. Subsequently, C is grad-077

ually reduced until it reaches 1, and training data078

are collected in the same way following the above079

procedure. This strategy gathers training data of080

diverse granularity, directly integrating consecu-081

tive steps to form coarse steps without designing082

methods to detect redundant steps. Meanwhile, the083

initial individual steps are preserved to offer neces-084

sary fine-grained signals. We validate the proposed085

strategy on two cutting-edge LLMs across three086

learning criteria, yielding consistently enhanced087

performance, demonstrating the effectiveness and088

versatility of CFPRM.089

2 Methodology090

2.1 Preliminaries091

We denote an LLM policy as π, and rθ as the PRM092

fine-tuned upon π, parameterized by θ. For rea-093

soning tasks, π generates responses step by step094

given an input query x in an autoregressive man-095

ner: st ∼ πθ(· | x, s1:t−1), t ≤ T , T is the total096

reasoning steps. The PRM policy rθ then outputs097

a reward given the partial solutions and the input098

query as: rst = rθ(s1:t, x). We regard yst as the099

label for step t. In addition, the existing PRM train-100

ing objectives can be summarized into three types,101

including mean square error (MSE) (Zhang et al.,102

2024), binary cross-entropy (BCE) (Wang et al.,103

2024), and Q-value rankings (Q-ranking) (Li and104

Li, 2024), as shown in Table 1. It is worth not-105

ing that CFPRM can be applied to arbitrary loss106

criteria and achieves consistent improvements, as107

demonstrated in Section 3.108

Table 1: The typical loss objectives for PRM training.

Losses Formulation

BCE
∑T

t=1 yst log rst + (1− yst) log (1− rst)

MSE
∑T

t=1 (rθ(s1:t, x)− yst)
2

Q-Ranking − 1
|T |

∑|T |
t=0 log

exp(rct)∑t
q=0 exp rcq+

∑
w∈W exp(Qw+ζ)

W indicates negative steps, Q is the ranking value, and ζ is the margin
hyperparameter.

2.2 Coarse-to-fine Process Data Collection109

CFPRM can be applied to reasoning data col-110

lected by any kind of structure, such as Chain of111

Thought (Wang et al., 2024) or Monte Carlo Tree 112

Search (Zhang et al., 2024) methods. We extend 113

the solution process in Figure 1 as an example and 114

present the coarse-to-fine process data collection 115

in Figure 2. The process is intuitive, involving first 116

merging the consecutive steps and then relabeling 117

each merged step. 118

Coarse

Fine

+ -Label + + - + +

Figure 2: Coarse-to-fine process data collection.

Steps merging. Consider the problem in Figure 1 119

containing a trajectory of 7 reasoning steps, where 120

steps s1, s2, s3, s5, and s6 are correct steps, and s4 121

and s7 are wrong steps. It is worth noting that step 122

s4 fails to make incremental reasoning from s3, 123

but the LLM policy manages to adjust the wrong 124

step (Setlur et al., 2024). The final step fails to 125

reach the correct answer. 126

As a coarse-to-fine method, CFPRM gradually 127

consolidates multiple reasoning steps based on 128

a predefined sliding window size, denoted as C. 129

Here, C represents the size of the merging window, 130

with Cmax as the maximum window size, while 131

the minimum size is usually set to 1. Ideally, C 132

can initially be set to the total number of steps in 133

the entire reasoning trajectory, and the merged tra- 134

jectory is labeled with the label of the last step, 135

acting as ORM. In practice, the continuous partial 136

steps are merged instead of the entire trajectory to 137

avoid excessive concentration of knowledge. In 138

Figure 2, C is initially set to 4, yielding the merged 139

partial trajectory s1, s2, s3, s4, treated as a single 140

step s1:4. Then, the window slides to the next start- 141

ing point (s5) to collect a new partial trajectory. 142

Subsequently, C is sequentially decreased to 3 and 143

2, yielding additional partial trajectories of differ- 144

ent sizes. After finishing collecting the consecutive 145

steps using the sliding window, we combine the 146

merged coarse training samples with the original 147

fine-grained data. 148

Merged steps labeling. In addition, each collected 149

partial trajectory may contain positive or negative 150

steps, which makes it difficult to determine its la- 151

bel. Drawing inspiration from ShepHerd (Wang 152

et al., 2024), which considers a trajectory’s label to 153
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Table 2: Main results measured by BoN accuracy. C is set to 2.

Version Models
GSM-Plus MATH500

@8 @16 @32 @64 Avg. @8 @16 @32 @64 Avg.

Instruct

ORM 67.0 66.0 68.8 66.8 67.2 71.4 69.2 70.2 68.1 69.7

SHerd 67.8 67.2 68.4 67.0 67.6 74.4 75.5 75.8 76.0 75.4
SHerd+CFPRM 68.2 67.4 69.0 70.0 68.7↑1.1 75.6 76.2 76.6 77.0 76.4↑1.0

RMCTS* 69.4 69.2 66.8 68.0 68.4 71.0 71.2 71.9 72.6 71.7
RMCTS*+CFPRM 68.2 70.4 70.2 70.0 69.7↑1.3 75.2 75.6 74.9 74.6 75.1↑3.4

PQM 67.6 68.8 66.4 67.0 67.5 74.6 75.4 75.8 75.3 75.3
PQM+CFPRM 68.0 68.0 69.4 71.0 69.1↑1.6 75.4 76.2 76.7 77.1 76.4↑1.1

MATH

ORM 63.0 61.8 62.8 62.8 62.6 78.0 77.7 77.6 77.6 77.7

SHerd 69.2 69.2 69.2 70.0 69.4 82.1 81.8 81.9 82.0 82.0
SHerd+CFPRM 69.2 70.8 71.2 73.0 71.2↑1.8 82.4 82.3 82.8 82.8 82.6↑0.6

RMCTS* 68.6 69.2 68.6 70.0 69.1 81.6 81.7 82.0 81.8 81.8
RMCTS*+CFPRM 69.2 70.0 70.4 72.0 70.4↑1.3 82.2 82.7 82.8 82.8 82.6↑0.8

PQM 70.2 69.8 72.2 73.0 71.3 84.0 84.1 84.2 84.2 84.1
PQM+CFPRM 69.4 71.4 72.2 74.0 71.8↑0.5 84.5 84.9 85.2 85.2 85.0↑0.9

depend on its potential to deduce the answer, we154

label each merged step by the label of the last step155

in the window. For example, the label of s1:4 is the156

same as the label of step s4, indicating a negative157

sample, and we add (s1:4,+) into the set DC=4.158

Similarly, the trajectory s1:2 is treated as a positive159

sample, sharing the same label as step s2. Follow-160

ing this, each merged step is relabeled and used161

as supervisory training samples, with the trajec-162

tory added to the set DC=2. In this way, we obtain163

a renewed training corpus containing samples of164

diverse granularity.165

Training and inference. We proceed with train-166

ing after obtaining the training samples of different167

granularity. We choose to recombine the training168

trajectories according to their granularity. Specif-169

ically, we traverse the corpus sequentially from170

Cmax to 1. Through this process, the process super-171

vision knowledge is gradually distilled in a coarse-172

to-fine manner. The training process is identical for173

different loss criteria. During inference, we use the174

trained PRM to predict scores for each single step.175

We summarize the overall process in Appendix 1.176

3 Experiment177

178

3.1 Experimental Setup 179

Datasets and models. We adopt two widely used 180

mathematical reasoning test sets, GSM-Plus (Li 181

et al., 2024) and MATH500 (Hendrycks et al., 182

2021), for evaluation. GSM-Plus is built upon 183

GSM8K (Cobbe et al., 2021) with various math- 184

ematical perturbations. The original GSM8K 185

is a benchmark of grade-school level problems. 186

The MATH dataset consists of high school math 187

competition problems, which are more challeng- 188

ing. For each candidate, the PRM evaluates the 189

score of each step. Instead of collecting raw 190

process data from scratch, we utilize the off-the- 191

shelf PRM800K (Lightman et al., 2023) dataset 192

to train the PRM. We employ two cutting-edge 193

LLMs, Qwen2.5-7B-Instruct and Qwen2.5-7B- 194

MATH (Yang et al., 2024), as the backbone models. 195

Following previous studies (Wang et al., 2024; Li 196

and Li, 2024), we evaluate the PRM using the best- 197

of-n (BoN) sampling strategy, with n set to 8, 16, 198

32, and 64, respectively. We also use the same 199

backbone model to generate 64 candidates for each 200

given question, ensuring consistency in the back- 201

bone model and the BoN sampling policy. 202

Baselines and details. As a method to refine the 203

data collection mechanism, CFPRM can be seam- 204

lessly applied to any existing methods. Specifically, 205

we select the most recent methods covering the 206
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three loss criteria in Table 1 for comparison, includ-207

ing ShepHerd (Wang et al., 2024) using the BCE208

objective, ReSTMCTS* (Zhang et al., 2024) using209

the MSE objective, and PQM (Li and Li, 2024)210

built upon the Q-ranking objective. We also in-211

clude ORM for comparison. The best performance212

is marked in bold. We set the max length to 2048,213

the learning rate to 2e-6, and the batch size to 32.214

All experiments are conducted on an H800-80G215

GPU, with each experiment repeated five times to216

report the mean results. Accuracy is reported as217

the evaluation metric.218
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(b) BCE on MATH500.
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(c) MSE on GSM-Plus.
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(d) MSE on MATH500.
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(e) Q-Ranking on GSM-Plus.
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(f) Q-Ranking on MATH500.

Figure 3: The BoN accuracy change under different
values of C.

3.2 Main Results219

For CFPRM, we set C to 2 to merge the adjacent220

two steps, showing the performance in Table 2.221

SHerd and RMCTS* are abbreviations for Shep-222

Herd (Wang et al., 2024) and ReSTMCTS* (Zhang223

et al., 2024), respectively. The last column of each224

dataset indicates the average performance across225

four sampling conditions.226

Our experimental results indicate that CFPRM227

consistently brings performance improvements228

across all configurations, irrespective of the back-229

bone model or loss objectives, underscoring its230

generalizability. For example, when employing231

MSE as the loss function, CFPRM improves upon232

the baseline, ReSTMCTS* (Zhang et al., 2024),233

by 1.3% and 3.4% on GSM-Plus and MATH500, 234

respectively. Among the three learning objectives, 235

the Q-ranking criterion exhibits superior perfor- 236

mance, likely due to its foundation in the Markov 237

Decision Process (MDP), which emphasizes evalu- 238

ating transitions between adjacent steps. However, 239

the presence of redundant steps can impede this 240

learning process. By integrating CFPRM with the 241

Q-ranking-based method (Li and Li, 2024), we 242

observe further performance enhancements. Over- 243

all, these findings robustly affirm the efficacy and 244

adaptability of CFPRM. Considering the simplicity 245

of CFPRM, CFPRM can be applied as a plug-and- 246

play strategy to various scenarios. 247

3.3 Further Studies 248

We further explore the impact of varying C, rang- 249

ing from 2 to 4. It is worth noting that only the 250

newly synthesized data is added. For simplicity, 251

we only take the Qwen2.5-7B-MATH as the back- 252

bone model, leveraging BCE, MSE, and Q-ranking 253

as the loss objectives, studying the performance 254

changes on GSM-Plus and MATH500. 255

We can observe from Figure 3 that CFPRM gen- 256

erally brings performance gains across different 257

learning objectives. However, the impact of dif- 258

ferent C varies, indicating that the optimal merge 259

window size is not fixed for different learning cri- 260

teria. In addition, we also find that the Q-ranking- 261

based method is more sensitive to C. When C is 262

set to 4, the performance of the Q-ranking-based 263

method on GSM-Plus does not exhibit a difference 264

compared to the raw baseline (Figure 3(e)). More- 265

over, the performance on MATH500 lags behind 266

the raw baseline (Figure 3(f)). We ascribe this to 267

the fact that the Q-ranking-based objective is sen- 268

sitive to the interdependence between steps, and 269

a large merging window hinders the learning of 270

necessary fine-grained dependencies. Generally, 271

setting C to 2 or 3 can better boost the overall 272

ranking performance. 273

4 Conclusion 274

In this paper, we briefly review the issue of redun- 275

dant steps in process data collection for PRM train- 276

ing, which may hinder downstream performance. 277

To tackle this problem, we propose CFPRM, a 278

coarse-to-fine strategy that employs a sliding win- 279

dow to collect process data at diverse granularities. 280

We validate CFPRM across multiple experimental 281

settings, confirming its effectiveness and versatility. 282
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5 Limitations283

A more reasonable method should involve detect-284

ing and removing redundant steps, which we have285

not discussed. Another limitation is that the opti-286

mal C should be designed adaptively with respect287

to different loss criteria. Future work should fo-288

cus on designing methods to accurately detect re-289

dundant steps and developing adaptive methods to290

choose a feasible value of C.291
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A Supplement Material 361

Algorithm 1: Coarse-to-Fine Step Merging
and Relabeling
Require: Trajectory of reasoning steps

S = {s1, s2, . . . , sN}, where each step si has
a label li ∈ {+,−}.

Ensure: Mixed training corpus D with samples
of diverse granularity.

1: Initialize Cmax as the maximum window size.
2: Initialize D ← ∅ {Empty set to store merged

samples.}
3: for C = Cmax to 1 do
4: for each window of size C in S do
5: Merge steps in the window into a single

step si:j , where j = i+ C − 1.
6: Assign the label of si:j as the label of the

last step sj .
7: Add (si:j , lj) to DC .
8: end for
9: Combine DC with D.

10: end for
11: return D {Mixed training corpus with

diverse granularity.}
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