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ABSTRACT

Estimating prediction uncertainty and confidence of deep learning models is cru-
cial for mission-critical machine learning applications, such as biomedical imag-
ing for diagnostics or therapy, and self-driving cars. However, making robust un-
certainty estimation is complicated given the variety of learning objectives, data
modalities, types of data corruption. Previous studies often addressed such a chal-
lenge by restricting datasets to standard ones like CIFAR or ImageNet. While
convenient, it is doubtful whether the same conclusion holds for real-life datasets,
in which more complicated image generation tasks are involved. This paper
presents a different perspective to evaluate how confidence and uncertainty es-
timators behave under distribution shifts, focusing on the biomedical imaging do-
main. Specifically, we test a series of pair-wise cell imaging datasets using a new
metric to compare existing models. In addition, we introduce FastEnsemble, a fast
ensemble method which only requires less than 8% of the full-ensemble training
time to generate a new ensemble member. Our experiments show that the pro-
posed fast ensemble method is able to substantially improve the speed vs quality
trade-off.

1 INTRODUCTION

As we deploy machine learning models to real-life production systems, an obstacle to many prac-
titioners is to what extent we can trust the prediction results generated from millions or billions of
parameters. To solve this problem, we need another layer of abstraction that takes in the model
and data information and outputs the confidence interval (for regression task) or the expected er-
ror rate (for classification task). Ideally, such mechanism needs to: 1) handle both expected input
(called in-distribution data) or unexpected input (called out-of-distribution data), 2) compared with
the original model training time, operate efficiently enough, so that little overhead is posted, and 3)
independent of modeling details, can work even for black-box models.

The algorithm that calibrates the model confidence to match the prediction accuracy is formally
called confidence calibration. For instance, the original machine learning model may report 99.8%-
confidence about its prediction, yet the actual accuracy is only 90% – far below the confidence. This
disparity requires us to calibrate the confidence estimation from 99.8% to 90%. A related concept is
called uncertainty estimation; it is meant to generate the confidence interval for model predictions,
so we expect the true value falls into this interval with high probability. Predictive uncertainty also
alarms the human-in-the-loop (HITL) machine learning paradigm, signaling that human intervention
is needed once it raises above a threshold.

This work is motivated by the importance of uncertainty estimation in biomedical applications. In
the past few years, many machine learning models have been deployed in biomedical imaging, such
as the cell type identification (Christiansen et al., 2018), label-free organelle labeling (Ounkomol
et al., 2018), histology virtual staining (Rivenson et al., 2019), and noninvasive cell phenotyp-
ing (Imboden et al., 2021). Among these applications, many involve image-to-image translation
models. Unfortunately, uncertainty estimation in image translation has been under-explored – there
exists no promising benchmarks nor systematical studies on how existing uncertainty estimation
methods perform on image generation tasks. One of the main obstacles for this problem is the lack
of benchmark and evaluation method – it is difficult to quantitatively evaluate uncertainty estimation
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methods for image generation. To evaluate an uncertainty estimation method for classification, one
can easily choose a leave-one-out set, usually a new class that is not appeared in training, and calcu-
late the disagreement between uncertainty estimation and prediction error rate. However, this cannot
be easily done in image-to-image translation. As the output space is high dimensional, uncertainty
estimation cannot be easily calculated in a per-sample manner, and there could be nonuniform un-
certainty for different patchs of the image. For example, it may be the case that in the same image,
some cells have been seen in training but others are not, leading to nonuniform uncertainty within
an image.

This paper develops the first systematic benchmark and evaluation method for uncertainty evaluation
in image-to-image translation. To build this evaluation benchmark, we collect a series of phase con-
trast (transmitted light microscopy) and immunofluorescent images of mesenchyaml stromal cells
Imboden et al. (2021) and prostatic cancer cells (LNCaP). With these microscopy data, we measure
the quality of uncertainty estimation through out-of-distribution detection and distribution shift as-
sessment. Equipped with this new benchmark, we evaluate six representative uncertainty estimation
methods, including naive ensemble, snapshot ensemble, batch ensemble, SGLD, variational infer-
ence, and Monte-Carlo dropout. Our experimental results suggest that the naive ensemble consis-
tently outperforms other more complicated algorithms on our biomedical image-to-image translation
benchmark.

While the native ensemble approach provides an accurate estimate on the prediction uncertainty, a
major weakness of such an approach is its computational overhead for building independent models.
So it is critical to ask can we find a near zero-cost method for uncertainty estimation? To this end,
we present our solution called FastEnsemble. This solution is inspired by the recent findings on the
connectivity of local minimum of deep neural networks (Garipov et al., 2018). In particular, our goal
is not to find the low-loss path connecting two distinct local minima but to find some independent
low-loss paths starting from an initial solution. We search the path efficiently so that each path only
takes 3% to 5% of the time to train one model from scratch. In total, gathering an ensemble of six
models requires ∼20% extra computation. Our contributions can be summarized as follows:

• We develop a new benchmark to evaluate uncertainty estimation algorithms on biomedical image
generation applications. Based on that, we try to find the best solution out of six popular uncer-
tainty estimators. Our paper is the first to study uncertainty quantification on image generation
tasks systematically.

• We propose a new method that generates many independent ensemble models with a small over-
head. Experimental results demonstrate that our approach can significantly speed up the running
time without sacrificing the uncertainty estimation quality.

2 RELATED WORK

We have seen the active development of new efficient methods for confidence calibration and uncer-
tainty quantification. Similar work can be roughly divided into two groups. The first group falls into
the category of Bayesian learning. In this paper, we include the following approximate Bayesian
methods:

Monte-Carlo dropout (MC-Dropout): Gal & Ghahramani (2016) showed that the dropout layers
applied before every weight layer is mathematically equivalent to the deep Gaussian process. The
most significant benefit of this solution is simplicity, meaning that the existing neural networks
with dropout layer before (de)convolution layer or fully connected layer are naturally becoming a
Bayesian neural network.

Stochastic gradient Langevin dynamics (SGLD): Welling & Teh (2011); Li et al. (2016) proposed
a way to transform stochastic gradient optimizer to imitate the Langevin dynamics. Similar to MC-
Dropout, this method does not change the architecture of neural networks as long as the stochastic
gradient can be computed efficiently. Like SGD optimizer, a damping step size εt is required to
guarantee that the injected Gaussian noise eventually dominates the stochastic gradient noise so
that the parameter trajectory converges to the true posterior. In practice, we follow the previous
implementations to turn off the noise injection at the burn-in phase, then turn on the noise injection
in the sampling phase.

Stochastic variational inference (SVI) (Wainwright & Jordan, 2008; Blei et al., 2017): This
method approximate the posterior by maximizing the ELBO. Unlike MC-Dropout and SGLD, to
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apply SVI we need to double the number of parameters to learn both mean and standard deviation
(assuming factorized Gaussian is used).

The other group we will include in the experiments is the ensemble methods. Specifically, the ones
featuring low training overhead, detailed as follows

Snapshot ensemble (Huang et al., 2017a): It generates different model parameters with cyclic co-
sine learning rate, a checkpoint is stored whenever the learning rate drops to the minimum. Al-
though there are other ensemble methods by the cyclic learning rate, such as the piece-wise linear
rate in (Garipov et al., 2018), we only experiment with snapshot ensemble here for brevity.

Batch ensemble (Wen et al., 2020): The more recent advancement is batch ensemble. This method
generates less correlated models by learning a series of rank-1 vectors vi ∈ Rd and ui ∈ Rd, which
are later element-wise multiplied by the weights wi ← w � (viu

>
i ).

Finally, we would like to address the differences between our work and Ovadia et al. (2019). In our
work, we intend to dive deeper into the biomedical imaging domain (both image2image and image
classification), where uncertainty estimation is critical and out-of-distribution data is abundant. In
contrast, Ovadia et al. (2019) studies classification problems exclusively, including image classifi-
cation, text classification and Ads-click binary classification problems. Most of the datasets studied
here are originated from real applications. To our knowledge, this is the first systematical study
concerning image2image. Our study is unique because in-distribution data and out-of-distribution
data coexist in the same image, so the uncertainty values are directly comparable.

3 A NEW UNCERTAINTY ESTIMATION BENCHMARK FOR IMAGE
GENERATION TASK

The predictive uncertainty originates from a lack of training data (namely epistemic uncertainty) or
the inherent randomness in the data generation model (aleatory uncertainty) (Kendall & Gal, 2017;
Hüllermeier & Waegeman, 2021; Abdar et al., 2021). In machine learning applications, uncertainty
arises from unpredictable changes in the environment. For example, researchers may hand-pick
the biomedical images in the training set uniformly, so low-quality images are cleaned up. At the
same time, the model is deployed at hospitals owning different brands of microscopes in suboptimal
working conditions, or there may be impurities of various shapes/components that are impossible to
enumerate beforehand.

In this section, we introduce a new benchmark for evaluating uncertainty estimation methods on
the image-to-image translation task. As image-to-image translation is crucial to many biomedical
applications, our datasets primarily consist of microscopy cell images. Following (Ovadia et al.,
2019), we investigate how different models behave under two Out of Distribution (OOD) settings:
the first context is the local perturbation, meaning that the whole image is in-distribution except for
some small patches. This scenario frequently happens in biomedical experiments, where impurities
contaminate the cell culture. The other context is called global perturbation. The whole image
distribution is drifted away from the original data generation distribution in the training set. It
happens when the cells are cultured under different conditions (e.g., drug treatment, growth media
changes, or image acquisition at different time points).

3.1 OUT OF DISTRIBUTION DETECTION

The first benchmark is a collection of pairwise image to image translation tasks closely related to
biomedical imaging. This work mainly used the same dataset that was tested and published in our
previous study (Imboden etal). In addition, in the current study we acquired new LNCaP images for
mimicking non-trivial image contaminations. To benchmark the out-of-distortion detection of our
model, we tested three conditions: MSC clean (control), MSC-impurities (non-cellular objects), and
MSC-LNCaP (cellular objects).

MSC-Clean (quality control): The dataset used for training purposes contains pairs of phase con-
trast and the respective fluorescence (IF) images of mesenchymal stromal cells (MSC). The cells
were immunofluorescently stained for CD105, a surface marker, widely used to define MSC sub-
populations. All images were acquired with an inverted microscope (Etaluma LS720, Lumaview
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720/600-Series software) with a 20x phase contrast objective (Olympus, LCACHN 20XIPC). This
is called a cleaned dataset as a quality control was performed where blurry or corrupt images were
excluded.

MSC-Impurities: This dataset includes images of the same cell type (MSCs) and surface marker
(CD105) as the cleaned dataset. To evaluate the impact of image impurities on the training accu-
racy, the MSC-Impurities dataset contains images of which 25% show artifacts. We included three
different types of image artifacts: microscope slide impurities (e.g. scratches, bubbles, slide dust),
fluorescent speckles and non-specific binding of the antibody.

MSC-LNCaP: This dataset is artificially created by mixing the images of MSC cells (majority) with
LNCaP cells (read patch boxes in Figure 3). MSC cells and LNCaP cells are visually different, but
for non-expert humans it is non-intuitive to tell them apart. So we expect this dataset to be much
harder than MSC-Impurities.

Among those datasets, MSC-Clean is the one to train the U-Net (Ronneberger et al., 2015) model
to be experimented later. At this moment, the model hasn’t encountered the OOD patches in the
subsequent two datasets. After that, we apply the model on MSC-Impurities and MSC-LNCaP to
collect the uncertainty of each pixel. Finally, we examine whether the model assigns high uncer-
tainties inside the bounding boxes and low uncertainties outside the bounding boxes. To this end,
we encapsulate this problem by the ranking problem. Specifically, we leverage two commonly used
metrics in information retrieval, Precision@k and Recall@k, to compare different methods. Here
we treat pixels inside bounding boxes as positive instances S1 (and vice versa); we then rank the
pixels by the uncertainty values in descending order. The top-k highest uncertainty pixels S2 are
selected. Then we have

TP@k = |S1 ∩ S2|, Precision@k =
TP@k

k
, Recall@k =

TP@k

|S1|
, (1)

here TP means number of true positives. We illustrate this idea in Figure 1.

Input with label Prediction Ex. of False Positive Ex. of False Negative

MSC-LNCaP

MSC-Impurities

Figure 1: Image samples from the MSC-LNCaP and MSC-Impurities datasets and the correspond-
ing uncertainty estimation generated by the ensemble method. The first row highlights bounding
boxes (drawn to highlight the ground truth inaccessible to models) in an image from MSC-LNCaP.
It is difficult even for humans to notice the out-of-distribution LNCaP cells surrounded by MSC
cells without expertise. The second row is generated from MSC-Impurities data. This is an easier
task because impurities usually are easily distinguishable from the cells.

Moreover, by changing k, we can plot the ROC curve to compare different methods visually. The ex-
perimental results are displayed in Figure 2. In this comparison, we include six popular uncertainty
estimation methods, including the naive ensemble, snapshot ensemble, batch ensemble, SGLD, SVI,
and MC-Dropout. Details of these methods can be found in related work.

From this figure, we can observe that the naive ensemble method outperforms all other methods,
sometimes with a significant margin (MSC-LNCaP). We remark that this finding supports a sim-
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Figure 2: Comparison of some widely used ensemble methods and Bayesian inference algo-
rithms. Notice the naive ensemble method performs similarly to batch ensemble or SGLD in MSC-
Impurities data and significantly better in MSC-LNCaP data. In practice, we want to control the
false positive rate to a small value, so we mainly look at the AUC when false positive ≤ 0.2.

ilar conclusion in Ovadia et al. (2019), where the authors found that the simple ensemble method
outperforms other Bayesian methods in image recognition datasets. Our experiment further indi-
cates that existing fast ensemble methods (BatchEnsemble, Snapshot Ensemble) cannot close the
gap concerning OOD robustness.

3.2 DISTRIBUTION SHIFT ASSESSMENT

In this experiment, we show that ensemble method is more robust even under large perturbations.
Previous benchmark datasets are mostly in-distribution except for small patches labeled by bounding
boxes, a more challenging case where the testing samples are different from the whole training set
remains to be investigated. To evaluate different algorithms in this condition, we introduce a new
dataset called LNCaP-Density.

LNCaP-Density: In contrast to MSC-Clean and MSC-Impurities, the images used for this dataset
are of an LNCaP cell type. LNCaP cells are androgen-sensitive human prostate adenocarcinoma
cells. In this dataset, time-lapse phase contrast images of 12 different fields of view (FOVs) were
acquired over a period of 72 hours. Cell density increases significantly over the time period due
to cell division and growth. We did some manual sorting work to distribute all images into four
subsets: namely VSparse (”very sparse”), Sparse, Dense, and VDense. Figure 3 gives some samples
in each groups.

We train two models: model A is trained using the most sparsely populated cells (VSparse), and
model B is trained with the most densely populated cells (VDense). After completing training,
we run the predictions on all groups (VSparse, Sparse, Dense, VDense). The Pearson correlation
between prediction and ground truth is calculated as the metric. We plot the histogram in Figure 4.

Similar to the previous local perturbation benchmark, from Figure 4, we can see naive ensemble
is still the best performing method in nearly every case. But the gap between batch ensemble /
snapshot ensemble is small. Moreover, we generally find the ensemble-based methods more stable
than Bayesian methods by comparing the error bar length. This finding aligns well again with Ovadia
et al. (2019).

4 ACCELERATING ENSEMBLE METHOD

In the previous section, we tested three Bayesian methods and three ensemble methods on two
OOD benchmarks. Our investigation reveals that the most robust uncertainty estimator is the naive
ensemble aggregation, despite the Bayesian methods being more theoretically principled.
include a problem statement We hypothesize that the power of the Bayesian method is restricted
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Figure 3: Samples from the LNCaP-Density dataset and illustration of the distribution shift experi-
ment. Model A is trained with the ”very sparse” subset of LNCaP-Density, and Model B is trained
with the ”very dense” subset. Both models are then tested with all subsets of varying densities.
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Figure 4: Comparing our method with other ensemble or Bayesian methods under a distribution
shift setting. Left: Training on the “very sparse” subset and evaluation on each subset (Model A of
Fig. 3). Right: Training on the “very dense” subset (Model B) and evaluation on each subset. The
error bar is computed over all images. We can see the correlation drops more quickly for the ”very
sparse” training set (Left); this is because the “very sparse” subset contains mostly dark backgrounds
and so less meaningful information can be extracted.

by choice of prior distributions and approximate inference. On the other hand, the training cost of
the naive ensemble method makes the deployment prohibitive to large-scale databases. Training
an ensemble of K models will increase the computational cost by K times. As we have seen
in the previous experiments, current fast ensemble methods are not meant for robust uncertainty
estimation.

In the following sections, we introduce a simple yet effective ensemble method called FastEnsemble.
Our approach is inspired by the recent findings mode connectivity of local minimum Garipov et al.
(2018): we first find a seed model w0, then explore along the “loss valley” by adding a bias term
‖w − w0‖1 to the classification or regression loss. On convergence, we expect the new model w′
to be as good as w0, but show enough independence. Our idea contrasts to snapshot ensemble or
batch ensemble, where the former is controlled by a cyclically climbing up and decaying learning
rate. The latter takes no direct measure to achieve this.

4.1 FASTENSEMBLE ALGORITHM

Denote the loss function of data pair (xi, yi) as `; f(·;w) is the neural network parameterized by w.
Our algorithm has two stages: in the initial stage, we train a “seed model” to convergence following
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the usual routine, the model is denoted as w0. Then in the next stage, we augment the loss function
` by a series of `1 distances defined over model setM.

`+(w) = `
(
f
Ä
xi;w

ä
, yi

)
− λ

|M|
·
∑

wanchor∈M
‖w − wanchor‖1 . (2)

Previous finding (Garipov et al., 2018) suggests that the low loss area (Figure 5) is connected. Once
we train the seed model to a low loss, we can generate many good and independent models by
simultaneously minimizing the training loss and maximizing the distance between the new model
and all existing ones inM. The algorithm in pseudo-code is shown in Algorithm 1.

1: Initialize: N : number of ensemble mod-
els parameterized by wi; `(ŷ, y): the loss
function; λ: the hyperparameter to be tuned.
k1 � k2, k3: number of iterations for train-
ing seeding model, training sub-models and
fintuning sub-models.

2: . Train the seeding model /
3: for all i ∈ {0 . . . k1 − 1} do
4: Run one step of optimizer and learning

rate scheduler.
5: Initial model listM = {w0}.
6: . Train the rest N − 1 models /
7: for all n ∈ {1 . . . N − 1} do
8: for all i ∈ {0 . . . k2 − 1} do
9: . Quick training /

10: Minimize `+(w) in Eq. (2).
11: for all i ∈ {0 . . . k3 − 1} do
12: Minimize `(ŷ, y). . Finetuning
13: Append to model listM =M+ wn.

Algorithm 1: Algorithm of FastEnsemble

Figure 5: Loss landscape around a local mini-
mum. There are multiple directions (in red ar-
rows) we can choose to escape the local mini-
mum while staying in the low loss “valley”.

Notice in this algorithm, we choose the number of iterations k1 � k2, k3 so that compared to
the one-time seed model training, the rest N − 1 ensemble members only takes k2+k3

k1
≈ 3∼8%

overhead. That makes our new training overhead considerably cheaper than in snapshot ensemble.
Our algorithm introduces a hyperparameter λ, which controls the trade-off between model accuracy
and inter-model independence. In other words, a larger λ causes a lower model correlation (due to
longer distances betweenM), but the individual model performs worse than before.

Dataset Naive MC-Dropout SGLD SVI BatchEnsemble Snapshot FastEnsemble

Measured by AUC (controlling FPR≤ 0.2)
MSC-Impurities 0.112 0.074 0.099 0.050 0.098 0.002 0.108
MSC-LNCaP 0.082 0.035 0.021 0.023 0.059 0.001 0.090

LNCaP-Desity(Model A), measured by mean Pearson correlation
Very dense 0.869 0.803 0.756 0.762 0.865 0.853 0.865
Dense 0.925 0.869 0.803 0.807 0.919 0.909 0.923
Sparse 0.952 0.909 0.853 0.849 0.947 0.939 0.950
Very sparse 0.974 0.933 0.894 0.887 0.968 0.960 0.971

LNCaP-Density(Model B), measured by mean Pearson correlation
Very dense 0.869 0.803 0.756 0.762 0.865 0.852 0.865
Dense 0.925 0.869 0.803 0.807 0.919 0.908 0.922
Sparse 0.952 0.909 0.853 0.850 0.947 0.939 0.950
Very sparse 0.973 0.933 0.894 0.887 0.968 0.960 0.971

Table 1: Revisiting experiments in Section 3 with our proposed FastEnsemble. For clarity, the first
place is marked in bold font, the second place is in red, the third place is in blue.

We repeat all the experiments in Section 3 again with our proposed method, then make some com-
parisons in AUROC or Pearson correlation measures. The results are displayed in Table 1. The naive
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ensemble method is still better than the others except MSC-LNCaP dataset; this indicates that cur-
rent fast ensemble models are still sacrificing accuracy for the speed. Among all efficient methods,
our FastEnsemblesurpasses all others in the MSC-LNCaP dataset and ranked second on all other
datasets.

5 CLASSIFICATION BENCHMARK AND CALIBRATION ROBUSTNESS

In this section, we intend to show that the proposed FastEnsemble method can also work on regular
classification tasks. In particular, we first run on CIFAR10 and CIFAR100 as two standard datasets,
then we move to out-of-distribution robustness on CIFAR10-C (Hendrycks & Dietterich, 2019) and
CIFAR100-C. Finally, we focus on biomedical imaging datasets, Camelyon17 (Bandi et al., 2018)
and RxRx1 (Taylor et al., 2019), as two larger-scale real applications.

We measure three things: accuracy, log-likelihood, and confidence calibration. Confidence is de-
fined as the probability in the model output (values after sigmoid or softmax function). As the size
of the deep learning model grows, the model can easily fit the training set to a low NLL loss by
generating probabilities closer to one-hot distribution, which implicitly hurts the confidence esti-
mation (Guo et al., 2017). We quantify the miscalibration level by the expected calibration error
(ECE) (Naeini et al., 2015):

ECE =

∫ 1

0

w(p) ·
∣∣Acc(p)− p

∣∣ dp. (3)

In this equation p is the confidence output from Softmax; w(p) is percent of data having confidence
p ; Acc(p) is the accuracy as a function of confidence. In practice, the integration (3) is computed by
confidence binning ECE =

∑M
m=1

|Bm|
n

∣∣Acc(Bm)− Conf(Bm)
∣∣, in whichBm = ((m−1)/M,m/M]

is the m-th bin between [0, 1].

For the network architecture and training configurations, we mostly follow the previous literature.
Specifically:

• CIFAR: This configuration applies to all CIFAR based datasets. We train with AdamW optimizer
for 200 epochs, batch size is 128. We adopt the linear learning rate scheduler, the initial learning
rate is 1.0× 10−3.

• Camelyon17: This is a collection of tissue slides under microscopy, in which training and testing
distributions differ due to patient population or in slide staining and image acquisition. We follow
the configuration in WILDS benchmark (Koh et al., 2021). The model architecture is a ImageNet-
1k pretrained DenseNet121 (Huang et al., 2017b), finetuned with momentum SGD and batch size
= 32.

• RxRx1: Similar to Camelyon17, there is a distribution shift due to the batch effect. We choose
ImageNet-1k pretrained ResNet50 (He et al., 2016) to initialize the model, finetuned with Adam
and batch size = 72.

More experiment details can be found in Appendix. First, we explore the accuracy and ECE under
distribution shift. The results can be found in Figure 6.

The figure shows that the naive ensemble method is still the best choice considering the best accuracy
and calibration in all cases. But our approach is on par with the naive ensemble; both are significantly
better than batch ensemble and snapshot ensemble. Next, we repeat the same routine to all six
datasets to compare accuracy, log-likelihood, as well as ECE. We repeated the experiments three
times by changing random seeds. Finally, we report the mean measures and standard deviations.
From Table 2, we can conclude that our method is the closest to naive ensemble in terms of accuracy,
and often has the lowest calibration error on the datasets we tested.

6 CONCLUSION

In this paper, we consider the problem of robust uncertainty estimation and calibration under various
distribution shifts. Our focus is on the applications in biomedical imaging, where the batch effect
(e.g., cell-cell phenotype variation, batch-to-batch inconsistency, imaging condition differences) is
a dominating reason behind the training-testing mismatch. Since this application is vital in health-
care and fundamental research, it is essential to create an efficient method to estimate how reliable
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Figure 6: CIFAR10-C: accuracy and ECE (the lower the better) degrade as image skewness inten-
sifies. The box plot is made by aggregating the measurements over 15 kinds of corruptions made
by Hendrycks & Dietterich (2019).

Single Naive Batch Snapshot Ours

ACC / NLL / ECE ACC / NLL / ECE ACC / NLL / ECE ACC / NLL / ECE ACC / NLL / ECE

CIFAR10+VGG16:
92.89 0.492 0.058 94.64 0.306 0.041 92.79 0.566 0.061 93.62 0.375 0.049 93.24 0.308 0.047
0.10 0.031 0.002 0.06 0.018 0.001 0.08 0.019 0.001 0.21 0.029 0.001 0.19 0.015 0.002

CIFAR100+VGG16:
68.65 2.496 0.236 75.15 1.516 0.173 68.44 2.954 0.252 70.52 1.775 0.198 71.14 1.326 0.149
0.10 0.137 0.004 0.07 0.105 0.003 0.16 0.074 0.003 0.39 0.126 0.015 0.29 0.103 0.012

Camelyon17+DenseNet121:
84.99 0.397 0.083 85.96 0.347 0.066 84.39 0.399 0.081 Failure 87.71 0.305 0.048
1.06 0.038 0.012 0.04 0.004 0.003 — 0.33 0.016 0.009

RxRx1+ResNet50:
25.82 7.908 0.469 34.80 5.638 0.370 30.31 7.409 0.450 19.36 5.556 0.265 31.08 6.490 0.407
0.27 0.025 0.002 0.07 0.195 0.012 0.51 0.272 0.012 0.06 0.167 0.019 0.39 0.091 0.003

Test-only datasets using models trained from CIFAR10 and CIFAR100
CIFAR10-C+VGG16:
86.84 0.980 0.110 89.21 0.671 0.084 85.91 1.180 0.121 87.00 0.810 0.102 87.38 0.623 0.089
0.56 0.105 0.006 0.27 0.052 0.003 0.13 0.018 0.001 0.21 0.061 0.003 0.31 0.312 0.002

CIFAR100-C+VGG16:
55.81 4.117 0.335 63.45 2.670 0.256 55.15 5.054 0.359 58.36 3.035 0.282 58.96 2.249 0.220
0.28 0.286 0.006 0.36 0.246 0.009 0.14 0.100 0.003 0.35 0.224 0.019 0.31 0.139 0.007

Table 2: Experiment results on distribution shifted or clean datasets. Mean values are in normal font.
Standard deviations are computed over three independent runs, and we display them in gray color.
The metrics are NLL/ACC/ECE. Notice that CIFAR10-C and CIFAR100-C are test-only datasets;
we evaluate them using the same model checkpoint acquired from CIFAR10 and CIFAR100. In
Camelyon17+DenseNet121 combination, we found the snapshot ensemble method failed to con-
verge in all three trials. The reason is that when the learning rate spikes at the beginning of the
second cycle, the optimizer makes an unnecessarily big step to drive the model out of the low loss
area.

the machine learning predictions are. Our general conclusion aligns well with previous findings
revealing that naive ensemble performs better in most cases for both image-to-image translation
and classification tasks. A specific contribution of this work is the presented large-scale, systematic
studies in the experimental biology imaging domain. Beyond the calibration error that has been
extensively studied in the classification task, this work presents a comprehensive benchmarking re-
sults of the uncertainty estimation in image generation tasks. More importantly, we proposed a fast
ensemble method that provides uncertainty assessments comparable to those of naive ensemble, but
with substantially reduced training overhead.
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ETHICS STATEMENT

The microscopy images analyzed in this work were obtained using commercially available cells. The
experimental procedure was conducted following the ethic guidelines in the experimental biology
field. Since no human or animal subjects were involved in this study, no special protocols or ethic
approval were required.

REPRODUCIBILITY STATEMENT

The experimental settings to help reproduce the results are discussed in the beginning of each sub-
section. More details, such as network architecture, hyper-parameters, training conditions, etc. are
listed in Appendices. Source code and datasets will be publicly available soon.
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A DATASET INFORMATION

MSC-Clean : This dataset contains 595 training images and 77 testing images (not used in this
paper). Images are stored in three channel png format with 1024x1024 pixels.

MSC-Impurities : This dataset contains 491 images (all of them are used for testing). Images are
stored in three channel png format with 1024x1024 pixels. Each image file contains 1∼3 bounding
boxes.
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MSC-LNCaP : This dataset contains 77 images (all for testing). Images are stored in three channel
png format with 1024x1024 pixels. Although this data is considerably smaller than MSC-Impurities,
it contains more bounding boxes, typically 4∼8. We include some samples for each data in Figure 7
and Figure 8.

Figure 7: Source and target images of MSC-Clean paired dataset.

Figure 8: Left: sample from MSC-Imurities dataset, we can observe the impurity area near the
center of image. Right: sample from MSC-LNCaP dataset. Although not very visible, there is a
small patch in the bottom left (where the LNCaP cells are near-round, but normal MSC cells are
slim).

Finally, we have the LNCaP-density dataset, it consists of four subsets: Very sparse (41 images),
Sparse (181 images), Dense (275 images), Very dense (180 images). The samples are shown in
Figure 3.

B NETWORK ARCHITECTURES AND HYPER-PARAMETERS

Our paper doesn’t feature network architecture innovations. All network architectures are publicly
available from websites.
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Image to image translation tasks. We use U-Net (Ronneberger et al., 2015) publicly available at
https://github.com/phillipi/pix2pix. Here we choose unet-256 configuration, with
channel multiplier ngf = 64 and batch normalization. Dropout is disabled except for MC-Dropout
method.

CIFAR10/CIFAR100/CIFAR10-C/CIFAR100-C. We choose the standard VGG-16 architec-
ture publicly available at https://github.com/kuangliu/pytorch-cifar. For
CIFAR100/CIFAR100-C, we increase the last fc-layer to dout = 100. We train the network for
200 epochs, using AdamW optimizer and learning rate 1.0 × 10−3. Momentum is set to β1 = 0.5,
β2 = 0.999.

Camelyon17/RxRx1 : We download the data with scripts from https://github.com/
p-lambda/wilds. We strictly follows the official training scripts and hyperaprameters, which
can be found here: https://github.com/p-lambda/wilds/blob/main/examples/
configs/datasets.py.

Next, we release the training protocols of ensemble methods and Bayesian methods.

Naive ensemble We train six models independently with different random seeds. The prediction
results are generated by a simple average. The total computational budget is 6B. Where B is the
budget to train one model from scratch.

Our method We first train a standard checkpoint with budget B, then use k2+k3

k1
B × 5 to get the

rest 5 models. In total, it costs k1+5(k2+k3))
k1

B. Most typical choices are k1 = 200, k2 = k3 = 6.

BatchEnsemble We replicate the batch ensemble code from official repository at
https://github.com/google/edward2/blob/main/edward2/tensorflow/
layers/convolutional.py#L560, and extend it to support ConvTranspose2d layer. We
match the training budget of our method by increasing the training time proportionally.

MC-Dropout We use the dropout rate equaling to p = 0.5. The computational budget is B.

SGLD We first train the model until convergence (burn-in phase), at this stage, we don’t inject
Gaussian noise. At inference time, we train the model for one epoch after each sampling, the learning
rate is 1000x smaller than the training stage. No preconditioning technique is applied. We remark
that although training budget is only B, the inference budget is much higher than other methods.

SVI We copied the implementation of MFVI from pyro (https://pyro.ai/
examples/svi_part_i.html) and a 3rd-party implementation https://github.
com/kumar-shridhar/PyTorch-BayesianCNN. The prior follows iid N (0, 0.02). For
fair comparison, we increase the training time to match our method.
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