
A provable control of sensitivity of neural networks
through a direct parameterization of the overall

bi-Lipschitzness

Yuri Kinoshita, Taro Toyoizumi
Department of Mathematical Informatics,

Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan.

Laboratory for Neural Computation and Adaptation,
RIKEN Center for Brain Science, Wako, Japan.
yuri-kinoshita111@g.ecc.u-tokyo.ac.jp

Abstract

While neural networks can enjoy an outstanding flexibility and exhibit unprece-
dented performance, the mechanism behind their behavior is still not well-
understood. To tackle this fundamental challenge, researchers have tried to restrict
and manipulate some of their properties in order to gain new insights and bet-
ter control on them. Especially, throughout the past few years, the concept of
bi-Lipschitzness has been proved as a beneficial inductive bias in many areas. How-
ever, due to its complexity, the design and control of bi-Lipschitz architectures
are falling behind, and a model that is precisely designed for bi-Lipschitzness
realizing a direct and simple control of the constants along with solid theoretical
analysis is lacking. In this work, we investigate and propose a novel framework for
bi-Lipschitzness that can achieve such a clear and tight control based on convex
neural networks and the Legendre-Fenchel duality. Its desirable properties are
illustrated with concrete experiments to illustrate its broad range of applications.

1 Introduction

1.1 Background

Nowadays, neural networks have become an indispensable tool in the field of machine learning and
artificial intelligence. While they can enjoy an outstanding flexibility and exhibit unprecedented
performance, the mechanism behind their behavior is still not well-understood. To tackle this
fundamental challenge, researchers have tried to restrict and manipulate some of their properties in
order to gain new insights and better control on them. Especially, throughout the past few years, the
concept of sensitivity has been proved as a beneficial inductive bias in many areas.

Sensitivity can be translated into the concept of bi-Lipschitzness, which combines two different
properties, namely, Lipschitzness and inverse Lipschitzness. The former describes the maximal, and
the latter the minimal sensitivity of a function. Bi-Lipschitzness is attracting interests in various fields
not only as it proposes a promising solution to avoid unexpected and irregular results caused by a too
sensitive or too insensitive behavior of the trained function, but also as it achieves an approximate
isometry that preserves geometries of the input dimension (Li et al., 2020). It plays an essential role
in generative models such as normalizing flows to guarantee invertibility (Behrmann et al., 2019),
in uncertainty estimation to prevent the recurrent problem of feature collapse (Liu et al., 2020a;
Van Amersfoort et al., 2020) and in inverse problems (Kruse et al., 2021) to assure the stability of
both the forward and inverse function (Behrmann et al., 2021).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Unfortunately, the appropriate design and effective control of bi-Lipschitz neural networks are far
from simple, which hinders their application to prospective areas. First of all, the estimation of
bi-Lipschitz constants is an NP-hard problem (Scaman and Virmaux, 2018). Second, the design
of bi-Lipschitz models is even harder as we cannot straightforwardly extend existing Lipschitz
architectures that exploit some unique properties of the concept to inverse Lipschitzness and keep
their advantages, and vice-versa. Finally, the control of bi-Lipschitz constants requires particular
attention as it is a question of manipulating two distinct concepts in a preferably independent and
simple manner.

Currently existing bi-Lipschitz models still present some issues in terms of design or control. On
the one hand, some lack theoretical guarantees because they impose soft constraints by adding
regularization terms to the loss function (Van Amersfoort et al., 2020), or because their expressive
power is not well-understood and may be more limited than expected. On the other hand, others
restrict bi-Lipschitzness on a layer-wise basis (Behrmann et al., 2019; Liu et al., 2020a). Particularly,
this means these approaches can only build in the essence a simple bi-Lipschitz function employed
as a layer of a more complex neural network. In practice, this kind of parameterization impacts the
generalization ability of the model or leads to loose control (Fazlyab et al., 2019). They can also
contain so many parameters affecting sensitivity to the same extent that controlling all of them is
unrealistic and fixing some may affect the expressive power. See Section 2 for further details.

Therefore, taking into account both the potential and complexity of this inductive bias, we first and
foremost need a model that is precisely designed for bi-Lipschitzness realizing a direct and simple
control of the constants of the overall function more complex than a single layer neural network
equipped with solid theoretical analysis. In this work, we investigate an architecture that can achieve
such a clear and tight control and apply it to several problem settings to illustrate its effectiveness.

1.2 Contributions

Our contributions can be summarized as follows. First, we construct a model bi-Lipschitz by design
based on convex neural networks and the Legendre-Fenchel duality, as well as a partially bi-Lipschitz
variant. This architecture provides a simple, direct and tight control of the Lipschitz and inverse
Lipschitz constants through only two parameters, the ideal minimum, equipped with theoretical guar-
antees. These characteristic features are illustrated and supported by several experiments including
comparison with prior models. Finally, we show the utility of our model in concrete machine learning
applications, namely, uncertainty estimation and monotone problem settings and show that it can
improve previous methods.

Organization In Section 2, we will first explain in more detail existing architectures around bi-
Lipschitzness. In Section 3, we will develop our model followed by theoretical analyses. The next
Section 4 will be devoted to experiments and applications of our proposed method.

Notation Throughout this paper, the Euclidean norm is denoted as ∥ · ∥ for vectors unless stated
otherwise. Similarly, for matrices, ∥ · ∥ corresponds to the matrix norm induced by the Euclidean
norm. For a real-valued function F : Rm → R, ∇F is defined as (∂f(x)/∂x1, . . . , ∂f(x)/∂xn)⊤,
and ∇⊤F as its transpose. When the function is a vector F : Rm → Rn, then its Jacobian is defined
as ∇⊤F = (∂fi/∂xj)i,j . The subderivative is denoted as ∂sub.

2 Preliminaries

In this section, we explain mathematical backgrounds and existing bi-Lipschitz models to clarify the
motivation of this work.

2.1 Definition

Let us first start by the definition of bi-Lipschitzness.

Definition 2.1 (bi-Lipschitzness). Let 0 < L1 ≤ L2. f : Rl → Rt is (L1, L2)-bi-Lipschitz if
L1∥x− y∥ ≤ ∥f(x)− f(y)∥ ≤ L2∥x− y∥ holds for all x, y ∈ Rl. The right (left) inequality is the
(inverse) Lipschitzness with constant L2 (L1). L1 and L2 are called together bi-Lispchitz constants.

2

Figure 1: Results of fitting y = 50x with a Lipschitz model (SN (left) or our model (right)), where
the Lipschitz constant is constrained by an upper bound L. L = 50 (red line) is where an L-Lipschitz
model with perfect tightness and expressive power should achieve a 0 loss for the first time. SN
achieves this only from around L = 100 while ours at L = 50. See Appendix G.4 for further details.

Several interpretations can be attributed to this definition. Bi-Lipschitzness appears when we want to
guarantee a high sensitivity and a high smoothness for better generalization such as in uncertainty
estimation. This can be also regarded as a quasi-isometry with a distortion of L2/L1, which means
that the structure of the input is relatively inherited in the output as well. Moreover, since a bi-
Lipschitz function is by definition invertible, the inverse Lipschitz can be interpreted as the Lipschitz
constant of the inverse function. Therefore, controlling the bi-Lipschitz constants is beneficial for the
stability of both the forward and inverse.

2.2 Desired Features for a Controllable Inductive Bias

In order to gain new insights of a problem and a predictable behavior of the bi-Lipschitz model, it is
primordial that bi-Lipschitzness works as an inductive bias with high controllability and theoretical
foundation. For this goal, the following points are of particular interest: (a) bi-Lipschitzness
guaranteed by design, (b) theoretical bounds on the bi-Lipschitz constants, (c) tight bounds, (d)
independent control of the Lipschitz and inverse Lipschitz constants, (e) a minimal number of hyper-
parameters to tune, (f) theoretical guarantee on the expressive power and (g) direct parameterization
of the optimized variables (in the sense of Definition 2.3 of Wang and Manchester (2023)).

2.3 Related Works and Bi-Lipschitz Models

There are currently three methods that are mainly employed to achieve and control bi-Lipschitz neural
networks. See Appendix A for a brief overview on Lipschitz and inverse Lipschitz architectures.

Regularization The first one is based on a regularization method (Gulrajani et al., 2017; Van Amers-
foort et al., 2020). It adds to the loss a term that incites bi-Lipschitzness. While the method is simple,
the resulting function may not be bi-Lipschitz at the end of the training, we have no theoretical
bounds on the bi-Lipschitz constants and cannot achieve a real control of them.

i-ResNet The invertible residual network (i-ResNet) of Behrmann et al. (2019) is based on the
composition of several (1− Lgi , 1 + Lgi)-bi-Lipschitz layers of the type fi(x) = x+ gi(x), where
gi is Lipschitz with constant Lgi < 1. The Lipschitz gi can be constructed by layer-wise methods
such as spectral normalization of weights (SN) (Miyato et al., 2018). However, this kind of layer-wise
control of (bi-)Lipschitzness is known to be loose in general (Fazlyab et al., 2019). See Figure 1
for an illustration. The i-ResNet has limited expressive power as it cannot represent the function
y = −x (Zhang et al., 2020), and the construction of gi risks to introduce more restriction on the
expressive power in practice (Anil et al., 2019). A similar model, the Lipschitz monotone network
(LMN) of Nolte et al. (2023) combines the GroupSort activation function with SN to create gi. These
approaches requires to adjust the Lipschitzness of each weight during the training process, which
may be sub-optimal (i.e., no direct parameterization).

BiLipNet The concurrent work of Wang et al. (2024) also provides a bi-Lipschitz neural network
(BiLipNet), which was mainly used for creating a Polyak-Łojasiewicz function useful in surrogate
loss learning. It extends the Lipschitz architecture of Wang and Manchester (2023). The BiLipNet
is constructed as the composition of monotone Lipschitz layers and orthogonal layers. The former
layer is realized based on a direct parameterization of the IQC theory of Megretski and Rantzer

3

(1997). While they can achieve a certified control of the bi-Lipschitz constant, theoretical guarantee
on its expressive power is lacking. Moreover, BiLipNet composes many layers which may harm the
tightness of the bounds.

Therefore, current models fail to satisfy the desired features of Subsection 2.2. Notably, all these
points cannot be satisfied as long as we rely on the simple layer-wise control which offers too
conservative bounds and a number of tunable hyper-parameters proportional to that of the layers
in general. In this work, we will establish a bi-Lipschitz architecture that satisfies almost all these
expected attributes mentioned above. In terms of mathematical foundations, it takes inspiration from
the inverse Lipschitz architecture of Kinoshita et al. (2023).

3 Bi-Lipschitz Neural Network

We introduce our novel bi-Lipschitz model, followed by some theoretical analyses and discussion.

3.1 Additional Definitions

We clarify notions of smoothness, convexity and the Lengendre-Fenchel transformation (LFT) which
will be a core process in our construction.
Definition 3.1. Let γ > 0. F : Rm → R is γ-smooth if F is differentiable and ∇F is γ-Lipschitz.
Definition 3.2. Let µ > 0. F : Rm → R is µ-strongly convex if F (x)− µ

2 ∥x∥
2 is convex.

Definition 3.3. Let F : I → R a convex function over I ⊂ Rm. Its Legendre-Fenchel transformation
F ∗ is defined as F ∗(x) := supy∈I {⟨y, x⟩ − F (y)}.

3.2 Construction of Bi-Lipschitz Functions

We extend the approach of Kinoshita et al. (2023) and propose a method that creates bi-Lipschitz
functions, where it is sufficient to control two parameters to manipulate the overall bi-Lipschitzness
without needing to dissect the neural network and control each layer, a feature that existing methods
for (bi-)Lipschitzness cannot deliver. The first step is to notice that the gradient of a real-valued
µ-strongly convex function becomes µ-inverse Lipschitz, and that of a γ-smooth function γ-Lipschitz
by definition. Therefore, we aim to compose a function which is both strongly convex and smooth.
Interestingly, the LFT of a 1/β-strongly convex function is β-smooth. This leads to our main theorem.
Theorem 3.4. Let F be a closed 1/β-strongly convex function and α ≥ 0. Then the following function
is α-strongly convex and α+ β-smooth: supy∈I {⟨y, x⟩ − F (y)}+ α

2 ∥x∥
2. Thus, its derivative is

(α, α+ β)-bi-Lipschitz which equals f∗(x) := argmaxy {⟨y, x⟩ − F (y)}+ αx.

See Appendix B.2 for the proof. The term α/2∥x∥2 has the effect of turning a convex function into
an α-strongly convex function by definition of strong convexity. This f∗(x) constructed as described
in the above theorem is precisely the bi-Lipschitz model we propose in this paper.

3.3 Implementation of the Forward Pass

Based on Theorem 3.4, we can create a bi-Lipschitz function parameterized by neural networks, and
thus applicable to machine learning problems. Here, we clarify the implementation of a strongly
convex function and the LFT. The overall explicit formulation of our bi-Lispchitz neural network
(BLNN) is already shown in Algorithm 1 for convenience.

Strongly Convex Neural Networks A µ-strongly convex neural network can be constructed
by adding a regularization term to the output of the Input Convex Neural Network (ICNN) from
Amos et al. (2017). The resulting structure can be written as Fθ(y) = zk +

µ
2 ∥y∥

2, where zi+1 =

gi(W
(z)
i zi+W

(y)
i y+bi) (i = 0, . . . , k−1). {W (z)

i }i are non-negative, W (z)
0 = 0, and all functions

gi are convex and non-decreasing. This architecture is a universal approximator of µ-strongly convex
functions defined on a compact domain endowed with the sup norm (Chen et al., 2019). Note that any
other choice for the convex architecture is possible. This is only an example, also employed in Huang
et al. (2021) and Kinoshita et al. (2023). Indeed, we could opt for a convolutional version by using
the convolutional ICNN proposed by Amos et al. (2017).

4

Algorithm 1: Forward pass of (α, β)-BLNN
Input: input data x, an ICNN Gθ with parameters θ and constants α, β ≥ 0
Output : image of x by an (α, α+ β)-bi-Lipschitz function
Step 0: Construct 1

β -strongly convex function Fθ(y) = Gθ(y) +
1
2β ∥y∥

2

Legendre-Fenchel transformation Step: Find y∗θ(x) = argmaxy {⟨y, x⟩ − Fθ(y)}
Gradient Step: Compute f∗θ (x) = ∇x

(
F ∗
θ (x) +

α
2 ∥x∥

2
)
= y∗θ(x) + αx

return f∗θ (x)

Algorithms for LFT By Theorem 3.4, we only need to compute the optimal point of the LFT, i.e.,
y∗θ(x) := argminy {Fθ(y)− ⟨y, x⟩}, which is a strongly convex optimization. This computation is
thus rather fast, and we can use various algorithms with well-known convergence guarantees such
as the steepest gradient descent (Shamir and Zhang, 2013; Bansal and Gupta, 2017). Such convex
solvers will generate for a fixed x a sequence of points {yt(x)}t=0,...,T , and its last point will be
an estimate of y∗θ(x). However, this kind of discrete finite time approximation could compromise
the bi-Lipschitzness of the whole algorithm. The bi-Lipschitz behavior of yt(x) can be explicitly
described for the steepest gradient descent as follows. For other algorithms, see Appendix C.2.1.
Theorem 3.5. Let the symbols defined as in Algorithm 1. Consider the steepest gradient descent
of supy {⟨y, x⟩ − Fθ(y)} generating points {yt(x)}t at the t-th iterations and y∗θ(x) is the global
maximum. If Fθ is µ-strongly convex and γ-smooth then the point limt→∞ yt(x) is (1/γ, 1/µ)-bi-
Lipschitz without any bias. Moreover, with ηt = 1/(µ(t+1)) as a step size and y0(xi) = y0 as initial
point, then for all xi, xj , ∥yt+1(xi)− yt+1(xj)∥ ≤ h(t)∥xi − xj∥ where limt→∞ h(t) = 1/µ.

See Appendix C.2.2 for the concrete formulation of h(t) and the proof. The above theorem guarantees
that the optimization scheme will ultimately provide a yt(x) that is bi-Lipschitz with the right
constants. This was not trivial as a bias may have persisted due to the non-zero step size. More
importantly, this statement offers a non-asymptotic bound for Lipschitzness. This is greatly useful
when we theoretically need to precisely assure a certain degree of Lipschitzness such as in robustness
certification against adversarial attacks (Szegedy et al., 2013). The step size ηt = 1/(µ(t+ 1)) can
be precisely calculated as µ = 1/β for an (α, β)-BLNN. Experimental results suggest a similar
behavior for inverse-Lipschitzness. Note the strong convexity of F is always satisfied in our setting
and smoothness can be fulfilled if we use an ICNN with softplus activation functions log(1 + ex).
Since this simple gradient descent has been thoroughly analysed and assured to properly behave in
practice as well, we will employ it as the algorithm of LFT in the remainder of this paper.

3.4 Expressive Power

As we mentioned earlier, layer-wise approaches realize a bi-Lipschitz neural network by restricting
the sensitivity of each layer. Nevertheless, this kind of construction may be sub-optimal as it does
not take into account the interaction between layers, limiting more than expected the expressive
power, which was often not considered in the original papers. Layer-wise bi-Lipschitz approaches
cannot inherit the proofs and properties of the original network, which makes the understanding of
their behavior more difficult. As for our model, the (α, β)-BLNN, we can guarantee the following
universality theorem.
Theorem 3.6. For any proper closed α-strongly convex and α+ β-smooth function on a compact
domain, there is a BLNN without taking the gradient at the end, i.e., supy{⟨y, x⟩ − (Gθ(y) +

∥y∥2/(2β))}+ α∥x∥2/2 where Gθ is an ICNN with ReLU or softplus-type activation function, that
approximates it within ϵ in terms of the sup norm.

Thus, after taking the gradient, we can create a sequence of functions that converges point-wise to
any function which is α+ β-Lipschitz, α-strongly monotone (Definition B.12) and the derivative of
a real-valued function. See Appendix B.3 for the proofs and further discussion.

3.5 Backward Pass of BLNN

The most straightforward way to compute the gradient of a BLNN is to track the whole computation
of the forward pass including the optimization of the LFT and back-propagate through it. However,

5

this engenders a crucial bottleneck since back-propagating over the for-loop of the optimization
involves many computations of the Hessian and the memorization of the whole computational graph.
Nevertheless, if the activation function of the ICNN is chosen as softplus, the convergence of the LFT
is quite fast making this strategy scalable to moderately large data.

Interestingly, when Fθ := F (·; θ) isC2, the backward pass can be computed only with the information
of the core ICNN, which means we do not need to track the whole forward pass involving many
recurrent computations:
Theorem 3.7. Suppose a loss function L : z 7→ L(z), and the output of the BLNN is f∗(x; θ) :=
∇F ∗

θ (x) + αx as defined in Algorithm 1. If F is C2 and F ∗ is differentiable, then the gradient
∇⊤
θ L(f

∗(x; θ)) can be expressed as −∇⊤
z L(z)

{
∇2
yF (y

∗(x; θ); θ)
}−1

∂⊤θ ∇yF (y
∗(x; θ); θ).

See Appendix B.4 for the proof and formulation with more complex architectures. In practice,
coding is simple since we can directly employ the backward algorithm provided in libraries such
as Pytorch (Corollary B.19). The advantage of this second method is threefold. First, it can reduce
the computational and memory cost of the backward process as it does not depend on the iteration
number and involves fewer matrix manipulations. Second, this leaves the freedom to choose the
optimizer to calculate the LFT, while the brute force method requires the gradient to be tracked during
the optimization process, which is a feature that many current solvers do not provide. Third, this
method approximates the gradient by taking the derivative along the true curve at a point y(t)θ (x)
close to y∗θ(x), which is a fair approximation. In contrast, the brute force method approximates the
gradient based on the recurrent computation of y(t)θ (x) but we do not know whether this is really a
good estimate.

3.6 Comparison with Deep Equilibrium Models

Interestingly, our BLNN can be regarded as a bi-Lipschitz version of a broader family of models
called deep equilibrium models (DEQs) from Bai et al. (2019). A DEQ is an implicit model whose
output z is defined as the fixed point of a neural network hθ, i.e., z = hθ(z, x), where x is the
input. Similarly, the output of our algorithm can be re-formulated as finding the solution z of
z = x−∇Fθ(z) + z which corresponds to a DEQ with hθ(z, x) = x−∇Fθ(z) + z. The general
properties of a DEQ concerning the computational complexity (both time and space) are thus also
inherited in our model. One major difference is that the iteration to find this fixed point z is in our
case unique and guaranteed to converge, which addresses one of the main concerns of general DEQs.
We believe this interpretation is promising for future work to increase the generality of our model as
it enables to converge to the larger flow of work around DEQs and apply the various improvements
for DEQs researched so far. However, we will not pursue this direction further since our primary goal
is to develop a bi-Lipschitz model with direct and simple control.

3.7 Increased Scalability and Expressive Power: Partially BLNN

Despite all the theoretical guarantees mentioned above and the correspondence of the proposed
method to DEQs, its main drawbacks persist in computational efficiency and expressive power.
However, these weaknesses can be alleviated by imposing the bi-Lipschitz requirement on a limited
number of variables. This can be realized by using the partially input convex neural network (PICNN)
instead of the ICNN in our architecture (Amos et al., 2017). A PICNN is convex with respect
to a pre-defined limited set of variables. Based on this architecture, we can proceed similarly to
Algorithm 1 and obtain a partially bi-Lipschitz neural network (PBLNN). See Appendix F.2 for
further details. As a result, all heavy operations such as the LFT and the gradient are applied on
this smaller set of variables, which makes the architecture much more scalable to higher dimensions.
Moreover, a PICNN with k layers can represent any ICNN with k layers and any purely feedforward
network with k layers, as shown in Proposition 2 of Amos et al. (2017). This also enhances the
expressive power of our model with larger liberty on the precise construction of the architecture.

3.8 Computational Complexity

Regarding the time and space complexity of our model, it is largely equivalent to that of a DEQ (Bai
et al., 2019) except that the core function is the derivative of a neural network, which adds some
computational burden. In Figure 2, we present a comparison of the computational complexity in

6

Figure 2: Comparison of the time (left) and space (right) complexity for a single iteration between a
traditional feedforward network and various BLNN variants.

floating point number operations (FLOPs) and memory for a single iteration between a traditional
feedforward network and various BLNN variants: BLNN (with brute force backpropagation), BLNN
with Theorem 3.7, PBLNN with only one variable constrained to be bi-Lipschitz. Comparing
our model with Theorem 3.7 to a traditional feed-forward neural network, we can conclude that
their difference is only a factor of order 10. Theorem 3.7 greatly contributes to reducing both
computational and space requirements (improvement of order of 10 and 102, respectively). This
explains the scalability of our model to large datasets. Finally, the PBLNN clearly decreases the
complexity of the model by limiting the number of variables we impose bi-Lipschitzness. See
Appendix H.1 for details on the experimental setup.

3.9 Discussion

Our bi-Lipschitz model BLNN (and PBLNN) possesses interesting properties. First, it provides by
design a theoretical bound of the bi-Lipschitz constants. Some methods cannot necessarily afford
this. Furthermore, it enables a direct parameterization of the overall bi-Lipschitzness through the
addition of two regularization terms with respective coefficients α and β at different outputs. This
translation of bi-Lipschitzness into strong convexity plays an indispensable role as we do not disturb
the formulation of the core function, do not track the transformation of the input down to the output
and only have two hyper-parameters to monitor, the strict minimum. As a result, we can create
bi-Lipschitz functions with known expressive power and more complex than a single layer which
others had to compose many times to create a deep bi-Lipschitz neural network. We also avoid the
risk of losing tightness in the bounds of the bi-Lipschitz constants caused by this kind of layer-wise
parameterization. Therefore, our model satisfies the desired points of Subsection 2.2.

While the PBLNN solves several issues of the BLNN, optimization inside the forward pass is still
an expensive procedure. Nevertheless, there are plenty of approaches to accelerate the LFT and
backpropagation through approximations as well. Since the objective function of the LFT is always
strongly concave, its convergence speed does not depend on the dimension, and the only bottleneck is
the computation of the gradient information of the objective function (i.e., the ICNN). Approximations
by zeroth-order methods can improve the procedure, for example. Moreover, amortizing the LFT
as Amos (2023) did may also be a promising simplification of the forward pass. On the other hand,
backpropagation through the whole forward pass can also be simplified based on Theorem 3.7. For
instance, the Hessian matrix can be replaced by its diagonal or upper triangular elements, making
the inversion operation easier. Other improvements, including those for the backward pass, can be
adapted from research on DEQs (Bai et al., 2019).

Another limitation, which is overcome by the PBLNN, is that the BLNN cannot represent a function
that is not the gradient of a convex function. However, such a type of function is the core of
machine learning problems related to optimal transport (Santambrogio, 2015) and some physical
systems (Huang et al., 2021). In the following chapter, we will show that our model can be applied
to various problems and its performance is not overshadowed by these limitations. In short, it is a
necessary price to pay to gain a bi-Lipschitz model with features such as known expressive power
and high controllability so that it can outperform other methods with looser constraint but lower
controllability and fewer guarantees. Indeed, if we define the unit of a bi-Lipschitz model as the basic
architecture that requires the minimal number of hyperparameters, i.e., one for Lipschitzness and one
for inverse-Lipschitzness, most existing models are limited to constructing simple (bi-)Lipschitz units
with low expressive power (e.g., only linear) and they have to compose those units to achieve higher
expressive power, which leads to looser bounds. In that sense, our model still has a higher expressive

7

Table 1: Tightness of Lipschitz bound when fitting f(x) = x (x < 0), x+ 1 (x ≥ 0) . Mean over
five trials. See Table 5 for further results.

Models L = 5 L = 10 L = 50

SN 80.1% 68.9 % 32.5%
Orthogonal 75.1% 48.9% 14.6%
AOL 65.9% 46.5% 15.4%
SLL 77.6% 50.0% 15.7%
Sandwich 84.3% 60.2% 16.4%
LMN 100.0% 98.5% 26.0%
BiLipNet 98.0% 58.9% 6.8%
Ours 100.0% 99.4% 99.9%

Figure 3: Results of fitting f(x) = x (x < 0), x+ 1 (x ≥ 0) with SLL (left), Sandwich (middle)
and our method (right) with a specified Lipschitzness of 50. See Figure 16 for further details.

power and tighter bounds than other (bi-)Lipschitz units as ours can with only one unit produce
complex functions and its parameterization is not layer wise. Now, if we can afford to sacrifice the
tightness of the bounds to further increase expressive power, we can proceed like other methods by
stacking multiple BLNNs or combining them with other architectures to suit the characteristics of the
problem at hand (see Appendix F).

Further substantial extensions of our method can be found in Appendix F, such as generalization to
different input and output dimensions, to non-homogeneous functions and to other norms.

4 Experiments

Experimental setups can be found in Appendix H and codes in https://github.com/yuri-k111/
Bi-Lipschitz-Neural-Network. Further detailed results are summarized in Appendix G.

4.1 Bi-Lipschitz Control

In this subsection, the goal is to empirically verify that (i) our model achieves a tight control of
bi-Lipschitz constants, and (ii) it provides new beneficial behaviors different from other methods. We
focus on simple problems as they effectively convey key ideas.

Tightness of the Bounds Here, we verify the quality of the bi-Lipschitz bounds when the model
undergoes training. Especially, we focus on the Lipschitz bound since it is the most affected by the
approximation of LFT, and there exist many works to compare with it. Inspired by the experiment
of Wang and Manchester (2023), we aim to learn the function f(x) = x (x < 0), x + 1 (x ≥ 0)
that has a discontinuity at x = 0. We take as comparison the LMN (Nolte et al., 2023), the
BiLipNet (Wang et al., 2024) and the i-ResNet network represented by its substructures: spectral
normalization (SN) (Miyato et al., 2018), AOL (Prach and Lampert, 2022), Orthogonal (Trockman and
Kolter, 2021), SLL (Araujo et al., 2023), Sandwich (Wang and Manchester, 2023). The Lipschitzness
of each model is constrained by a constant L. A model with a tight Lipschitz bound should achieve
that upper bound around x = 0 in order to reproduce the behavior of f . The percentage between the
empirical Lipschitz constant and the imposed upper bound L can be found in Table 1. Interestingly,
our method is the only one that achieves an almost perfect score for all settings, while for others the
tightness is decreasing. This can be understood as the result of the direct control of bi-Lipschitzness
without relying on the information of the individual layers and the construction which uses only
direct parameterizations. See Figure 3 for a visualization and Appendix G.2 for more results.

8

https://github.com/yuri-k111/Bi-Lipschitz-Neural-Network
https://github.com/yuri-k111/Bi-Lipschitz-Neural-Network

Figure 4: Results of fitting the linear function y = x with (from left) AOL, Sandwich, BiLipNet and
our method with a specified Lipschitzness of 1000. See Figures 17 and 18 for further results.

(a) Deep ensemble (b) DUQ no reg. (c) DUQ (d) (0, 4)-BLNN (e) (1, 4)-BLNN (f) (2, 4)-BLNN

Figure 5: Uncertainty estimation with the two moons data set with several models. Blue indicates high
uncertainty, and yellow low uncertainty. (d)-(f) are with DUQ+BLNN, where (α, β) are clarified.

Flexibility of the Model If we can underestimate the Lipschitz constant of the target function as the
previous experiment, we may also overestimate it. In this case, we observe that previous methods are
influenced by the imposed Lipschitz bound presenting high fluctuations in the learned representation
or slower learning speed. This is illustrated when learning the identity function y = x with a Lipschitz
constraint of L = 1000 in Figure 4. Our model can learn without any problem and the learning
speed is hardly affected by L. This may be due to the way we control the Lipschitz constant of the
model. In layer-wise models, the Lipschitz constant is adjusted by scaling the input, while in ours
we add a regularization term at the end, resulting in different loss landscapes with seemingly better
regularization performance for the latter strategy. See Appendix G.3 for more results.

4.2 Uncertainty Estimation

We now illustrate that our model can be efficiently used in areas where bi-Lipschitzness already
plays an essential role as an inductive bias. In the estimation of uncertainty based on a single neural
network, out-of-distributions and in-distributions points may overlap in the feature space making them
indistinguishable. Imposing inverse Lipschitzness on the underlying neural network of the architecture
is thus important as it can avoid this phenomenon called feature collapse. Lipschitzness is also
beneficial to improve the generalization performance. In one of the state-of-the-art approaches called
deterministic uncertainty quantification (DUQ) from (Van Amersfoort et al., 2020), bi-Lipschitzness
is constrained through a regularization method. Therefore, we can replace the gradient penalty with
a hard restriction by changing the neural network to a BLNN, resulting in a method we call here
DUQ+BLNN. See Appendix E for a precise formulation of this method and theme.

Two moons The first experiment we lead is with the two moons dataset. Here, we compare
DUQ+BLNN with the deep ensembles method (Lakshminarayanan et al., 2017), DUQ and a DUQ
with no bi-Lipschitz regularization (DUQ with no reg.). Results are plotted in Figure 5. The ideal
scenario is for the boundary of the yellow area to be as close as possible to the training data. As we
can observe, by adding a bi-Lipschitz constraint, the area of certainty is decreased around the training
data. DUQ+BLNN with (α, β) = (2, 4) achieves a tighter area than DUQ. We chose the value of α
and β based on a grid search. We took the hyper-parameters with the highest accuracy and α since a
higher α is expected to create a tighter yellow area as shown in Figure 5. Note this strategy only relies
on the training data, and such strategy is possible thanks to our direct and simple parameterization of
the bi-Lipschitz constants. This clearly shows the advantage of the unique features of our model. See
Appendix G.6.1 for further results and discussion on this experiment.

Fashion-MNIST Next, we use real world data of FashionMNIST (Xiao et al., 2017), MNIST (Le-
Cun and Cortes, 2010) and NotMNIST (Bulatov, 2011). The task is to learn to classify FashionMNIST,
but at the end of training we verify whether the uncertainty of the model significantly increases when
other types of data such as MNIST or NotMNIST is given to the model. This task to distinguish
FashionMNIST from MNIST datasets is known to be a complicated task (Van Amersfoort et al.,
2020). We compute the AUROC for the detection performance. The result is shown in Table 2. Our

9

Table 2: Out-of-distribution detection task of FashionMNIST vs MNIST and FashionMNIST vs
NotMNIST with DUQ and DUQ+(0, 3)-BLNN. Means over five trials.

Models Accuracy BCE AUROC MNIST AUROC NotMNIST

DUQ 0.889 0.064 0.862 0.900
DUQ+BLNN 0.899 0.060 0.896 0.964

Table 3: Comparison of our model with state-of-the-art monotone models in benchmark datasets.
Means over three trials. Results of LMN and SMNN are from the original papers. BF = BlogFeedBack,
LD = LoanDefaulter, HD = HeartDisease, Acc. = accuracy. See Table 9 for complete results.

Models COMPAS (Acc.) BF (RMSE) LD (Acc.) HD (Acc.) AutoMPG (MSE)

LMN 69.3 % 0.160 65.4 % 89.6 % 7.58
SMNN 69.3 % 0.150 65.0 % 88.0 % 7.44
Ours 69.4 % 0.157 65.5 % 90.2 % 7.13

model achieves not only higher performance for FashionMNIST but also better detection of MNIST
and NotMNIST dataset. See Appendix G.6.2 for further results and discussion on this experiment.1

4.3 Partially Monotone Settings

Sometimes, it happens that we have preliminary knowledge on some type of monotone behaviors
of the dataset (Nolte et al., 2023). For example, COMPAS (Angwin et al., 2016), BlogFeedBack
LoanDefaulter (Nolte et al., 2023), HeartDisease (Janosi et al., 1988) and AutoMPG (Quinlan, 1993)
are benchmark datasets that possess a monotone inductive bias on some variables. See Nolte et al.
(2023) for further details on the dataset. As a result, it is more efficient to tune the architecture
of the trained model so that it successfully reflects this inductive bias, and various models have
been proposed to address this challenge. This is another field where we can apply our architecture
that can create monotone (or inverse Lipschitz) functions. We can also control the Lipschitzness to
improve the generalization performance. We compare our PBLNN with two state-of-the-art methods:
LMN (Nolte et al., 2023) and SMNN (Kim and Lee, 2024) in Table 3, and with other models in
Table 9 as well. As we can observe, our model is competitive with the others.

Generalization and Scalability Test Furthermore, we used the dataset provided by Nolte et al.
(2023), CIFAR101, which is a slight augmentation of the original CIFAR100 dataset and designed
to exhibit a monotone behavior with respect to one variable. We adopted their training scheme,
utilizing the entire dataset for training and intentionally overfitting the data in order to assess both the
scalability and expressive power of the model. Successfully, we achieved a 0 loss and 100% accuracy
for this experiment, and the convergence was faster than that of Nolte et al. (2023). This illustrates
the high scalability and expressive power of the PBLNN.

5 Conclusion

We built a model called BLNN based on convex neural networks and the LFT so that bi-Lipschitz
functions more complex than a single layer can be constructed and its bi-Lipschitz constants manipu-
lated through the coefficient of two regularization terms added at different outputs. That way, BLNN
not only achieves such a tight, direct and simple control but also provides rigorous straightforward
analysis on the expressive power and on approximations involved in practice. We illustrated with
experiments its distinctive advantageous features compared to prior models. While the primary focus
of this paper was to establish a framework suited for solid analyses and for the practical control
of bi-Lipschitzness, it is, of course, essential to complement this effort with more varied machine
learning applications in future work. We still believe this work on its own contributes to the further
exploitation of bi-Lipschitzness in prospective fields and to the deeper understanding of neural
networks by delivering a model with unique features for the control of this central inductive bias.

1We also tried to combine DUQ with BiLipNet but could not find competitive parameter settings.

10

Acknowledgments and Disclosure of Funding

Y.K. was partially supported by Grant-in-Aid for JSPS Fellows Grant Number JP24KJ0862 and JST
BOOST Japan Grant Number JPMJBS2418. T.T. was supported by RIKEN Center for Brain Science,
JST CREST program JPMJCR23N2 and RIKEN TRIP initiative (RIKEN Quantum). We also thank
anonymous reviewers for their valuable feedback.

References
A.-M. Acu, I. Rasa, and A. E. Şteopoaie. Strongly convex squared norms. Dolomites Research Notes

on Approximation, 16(2), 2023.

B. Amos. On amortizing convex conjugates for optimal transport. International Conference on
Learning Representations, 2023.

B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In D. Precup and Y. W. Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 146–155. PMLR, 06–11 Aug 2017.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: There’s software used across the
country to predict future criminals. And it’s biased against blacks. Propublica, 2016.

C. Anil, J. Lucas, and R. Grosse. Sorting out Lipschitz function approximation. In K. Chaudhuri and
R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 291–301. PMLR, 09–15 Jun
2019.

A. Araujo, A. Havens, B. Delattre, A. Allauzen, and B. Hu. A unified algebraic perspective on
Lipschitz neural networks. International Conference on Learning Representations, 2023.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In D. Precup
and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 214–223. PMLR, 06–11 Aug
2017.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

N. Bansal and A. Gupta. Potential-function proofs for first-order methods. arXiv preprint
arXiv:1712.04581, 2017.

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

J. Behrmann, W. Grathwohl, R. T. Q. Chen, D. Duvenaud, and J.-H. Jacobsen. Invertible residual
networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
573–582. PMLR, 09–15 Jun 2019.

J. Behrmann, P. Vicol, K.-C. Wang, R. Grosse, and J.-H. Jacobsen. Understanding and mitigating
exploding inverses in invertible neural networks. In A. Banerjee and K. Fukumizu, editors,
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pages 1792–1800. PMLR, 13–15 Apr 2021.

Y. Bulatov. notMNIST dataset. 2011. URL https://yaroslavvb.blogspot.com/2011/09/
notmnist-dataset.html.

Y. Chen, Y. Shi, and B. Zhang. Optimal control via neural networks: A convex approach. In
International Conference on Learning Representations, 2019.

11

https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Improving
robustness to adversarial examples. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 854–863. PMLR, 06–11 Aug 2017.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

F. Farnia, J. M. Zhang, and D. Tse. Generalizable adversarial training via spectral normalization.
International Conference on Learning Representations, 2019.

M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas. Efficient and accurate estimation
of Lipschitz constants for deep neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. In M. F. Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Y. W. Teh and M. Titterington, editors, Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks by enforcing
Lipschitz continuity. Machine Learning, 110:393–416, 2021.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of
Wasserstein GANs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine learning lecture 6a overview
of mini-batch gradient descent. Cited on, 14(8):2, 2012.

C.-W. Huang, R. T. Chen, C. Tsirigotis, and A. Courville. Convex potential flows: Universal
probability distributions with optimal transport and convex optimization. International Conference
on Learning Representations, 2021.

L. Huang, L. Liu, F. Zhu, D. Wan, Z. Yuan, B. Li, and L. Shao. Controllable orthogonalization in
training DNNs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6429–6438, 2020.

J. H. Huggins, T. Campbell, M. Kasprzak, and T. Broderick. Practical bounds on the error of Bayesian
posterior approximations: A nonasymptotic approach. arXiv preprint arXiv:1809.09505, 2018.

J.-H. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge. Excessive invariance causes adversarial
vulnerability. International Conference on Learning Representations, 2019.

A. Janosi, W. Steinbrunn, M. Pfisterer, and R. Detrano. Heart Disease. UCI Machine Learning
Repository, 1988. DOI: https://doi.org/10.24432/C52P4X.

M. Jin and J. Lavaei. Stability-certified reinforcement learning: A control-theoretic perspective. IEEE
Access, 8:229086–229100, 2020.

H. Kim and J.-S. Lee. Scalable monotonic neural networks. In International Conference on Learning
Representations, 2024.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 2015.

12

Y. Kinoshita, K. Oono, K. Fukumizu, Y. Yoshida, and S.-i. Maeda. Controlling posterior collapse by
an inverse Lipschitz constraint on the decoder network. In Proceedings of the 40th International
Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR, 2023.

J. Kruse, L. Ardizzone, C. Rother, and U. Köthe. Benchmarking invertible architectures on inverse
problems. arXiv preprint arXiv:2101.10763, 2021.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.
com/exdb/mnist/.

Q. Li, S. Haque, C. Anil, J. Lucas, R. B. Grosse, and J.-H. Jacobsen. Preventing gradient attenuation
in Lipschitz constrained convolutional networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

S. Z. Li, Z. Zang, and L. Wu. Markov-Lipschitz deep learning. arXiv preprint arXiv:2006.08256,
2020.

J. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax Weiss, and B. Lakshminarayanan. Simple and principled
uncertainty estimation with deterministic deep learning via distance awareness. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 7498–7512. Curran Associates, Inc., 2020a.

X. Liu, X. Han, N. Zhang, and Q. Liu. Certified monotonic neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 15427–15438. Curran Associates, Inc., 2020b.

A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE Transactions
on Automatic Control, 42(6):819–830, 1997. doi: 10.1109/9.587335.

L. Meunier, B. J. Delattre, A. Araujo, and A. Allauzen. A dynamical system perspective for Lipschitz
neural networks. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 15484–15500. PMLR, 17–23 Jul 2022.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. arXiv preprint arXiv:1802.05957, 2018.

R. M. Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
2012.

Y. E. Nesterov. A method of solving a convex programming problem with convergence rate o(1/k2).
In Doklady Akademii Nauk, volume 269, pages 543–547. Russian Academy of Sciences, 1983.

N. Nolte, O. Kitouni, and M. Williams. Expressive monotonic neural networks. In International
Conference on Learning Representations, 2023.

B. Prach and C. H. Lampert. Almost-orthogonal layers for efficient general-purpose Lipschitz
networks. In Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXI, page 350–365, Berlin, Heidelberg, 2022. Springer-Verlag.
ISBN 978-3-031-19802-1. doi: 10.1007/978-3-031-19803-8_21.

R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5859H.

M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.10.045.

13

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. 2012.

R. Rockafellar. On the maximal monotonicity of subdifferential mappings. Pacific Journal of
Mathematics, 33(1):209–216, 1970.

R. T. Rockafellar. Convex analysis, volume 11. Princeton university press, 1997.

D. Runje and S. M. Shankaranarayana. Constrained monotonic neural networks. In A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 29338–29353. PMLR, 23–29 Jul 2023.

F. Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58–63):94, 2015.

K. Scaman and A. Virmaux. Lipschitz regularity of deep neural networks: Analysis and efficient
estimation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability:
New relaxations and efficient boosting algorithms. Machine learning, 80:141–163, 2010.

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In S. Dasgupta and D. McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 71–79, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

S. Singla and S. Feizi. Skew orthogonal convolutions. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 9756–9766. PMLR, 18–24 Jul 2021.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

A. Trockman and J. Z. Kolter. Orthogonalizing convolutional layers with the cayley transform.
International Conference on Learning Representations, 2021.

J. Van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal. Uncertainty estimation using a single deep deter-
ministic neural network. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 9690–9700. PMLR, 13–18 Jul 2020.

A. van den Oord, O. Vinyals, and k. kavukcuoglu. Neural discrete representation learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu. Orthogonal convolutional neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

R. Wang and I. Manchester. Direct parameterization of Lipschitz-bounded deep networks. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 36093–36110. PMLR, 23–29 Jul 2023.

R. Wang, K. D. Dvijotham, and I. Manchester. Monotone, bi-lipschitz, and polyak-Łojasiewicz
networks. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and
F. Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pages 50379–50399. PMLR, 21–27
Jul 2024.

14

Y. Wang, D. Blei, and J. P. Cunningham. Posterior collapse and latent variable non-identifiability.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 5443–5455. Curran Associates, Inc.,
2021.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

X. Xu, L. Li, and B. Li. Lot: Layer-wise orthogonal training on improving l2 certified robustness. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 18904–18915. Curran Associates, Inc., 2022.

T. Yu, J. Li, Y. Cai, and P. Li. Constructing orthogonal convolutions in an explicit manner. In
International Conference on Learning Representations, 2022.

B. Zhang, D. Jiang, D. He, and L. Wang. Rethinking Lipschitz neural networks and certified
robustness: A boolean function perspective. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
19398–19413. Curran Associates, Inc., 2022.

H. Zhang, X. Gao, J. Unterman, and T. Arodz. Approximation capabilities of neural ODEs and invert-
ible residual networks. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 11086–11095. PMLR, 13–18 Jul 2020.

X. Zhou. On the Fenchel duality between strong convexity and Lipschitz continuous gradient. arXiv
preprint arXiv:1803.06573, 2018.

S. Zlobec. On the liu–floudas convexification of smooth programs. Journal of Global Optimization,
32(3):401–407, 2005.

15

A Lipschitz and Inverse Lipschitz models

In this appendix, we review existing architectures that aim to control the Lipschitzness and inverse
Lipschitzness separately as existing bi-Lipschitz models borrow a lot of ideas from prior works on
Lipschitzness and inverse Lipschitzness. Moreover, this appendix may constitute a reference for
future bi-Lipschitz architectures.

Let us start by the Lipschitz property which has been extensively researched over the past few years.

A.1 Lipschitzness

A.1.1 Definition

Definition A.1 (Lipschitzness). Let L > 0. f : Rl → Rt is L-Lipschitz (continuous) if ∥f(x) −
f(y)∥ ≤ L∥x− y∥ holds for all x, y ∈ Rl. L is called the Lipschitz constant and denoted as Lip(f).

As we can observe, this definition represents the concept of maximal sensitivity with respect to
the input as changes in the input upper-bounds changes in the output. This is also referred to as
smoothness since when the function is differentiable the Lipschitz constant upper bounds the L2-norm
of its Jacobian.

A convenient property which is often used in Lipschitz constrained neural networks is its closure
under composition and addition. Thanks to these properties, the problem of Lipschitz regulation can
be decomposed into smaller ones for neural networks constructed by the composition and addition of
many simple layers.

A.1.2 Models

Due to its omnipresence in the field of machine learning, especially in the certification of robustness
against adversarial attacks, Lipschitz constrained neural networks have been the focus of many
prior works. Interestingly, their realization greatly varies, delivering different solutions for the same
ultimate goal.

A.1.3 Gradient Clipping

One of the earliest works trying to control Lipschitzness in the context of machine learning proposes
to clip the weights of the function to lie within a range of [−c, c] after back-propagation (Arjovsky
et al., 2017). Consequently, the set of possible parameters would be limited to a compact set, meaning
that the overall function is guaranteed to be Lipschitz with a constant dependent on c. However, we
cannot precisely know this value, and Miyato et al. (2018) pointed out this kind of brutal restriction
favors low-rank weights, leading to a serious decrease of the expressive power of the neural networks.

Regularization Another simple approach but quite effective is to add a regularization term to the
loss function so that the behavior of the overall function is encouraged to become Lipschitz in a
certain way. On the one hand, we can introduce a regularization term which penalizes the whole
gradient of the network as Gulrajani et al. (2017) did in the context of Wasserstein GAN (Arjovsky
et al., 2017) with the following term:

Ex[(∥∇F (x)∥2 − 1)2]. (1)
On the other hand, we can just focus on the weights. For example, Cisse et al. (2017) proposed a
Lipschitz architecture called the Parseval network which uses the following regularization term:

∥W⊤W − I∥2.
As a result, all the weight matrices are incited to become orthogonal, which means 1-Lipschitz.

The main downside of these regularization methods is that they can only impose soft constraints
and cannot provide any theoretical guarantees on the Lipschitzness of the neural network. This is
crucial in some cases such as adversarial attacks where sensitivity has to be exactly controlled. While
the implementation is not so complicated as we only need to add a term to the loss function, the
computational cost heavily depends on the formulation of the regularization term. Moreover, penalty
on the whole gradient like that of equation (1) may not be truly efficient since the expectation can
only be computed for a limited number of points, which means that it is unclear whether or not the
regularization effect will propagate throughout the whole function.

16

Spectral Normalization The Lipschitz constant of a linear layer is equivalent to its largest singular
value since

∥Wx−Wy∥ ≤ ∥W (x− y)∥ ≤ ∥W∥∥x− y∥.
As a result, the problem amounts to normalizing the spectral norm of the weights. This is one of the
most famous approaches in this sector. The estimation of the largest singular value is thus crucial for
this technique, and power iteration is often used in practice.

Once we evaluated the spectral norm of each layer, we can for example normalize it (Miyato et al.,
2018):

W = V/∥V ∥,
or rescale only weights whose norm is above a certain threshold λ (Gouk et al., 2021):

W =
1

max(1, ∥V ∥2/λ)
V.

This can be applied to most types of layers used so far in practice including convolutional layers
which are only in essence linear operators (Farnia et al., 2019).

During training, since the weights are constantly changing, it is not realistic to exactly compute the
spectral norm at each iteration. Nevertheless, it has been observed that weights evolve more slowly
than the convergence of the power-iteration. As a consequence, we can only execute a few steps of
the power-iteration at each step and at the end of training arrive at linear layers normalized as desired.
This drastically reduces the computational cost.

Spectral normalization enables us to simplify the problem of Lipschitz control of the overall function
into that of the singular value of the linear units, as the overall Lipschitz constant becomes the
product of the spectral norm of each layer. However, it has been repeatedly shown that this approach
considerably overestimates the true Lipschitz constant of the whole function (Fazlyab et al., 2019).
For example, consider the composition of the following two matrices:

A =

(
100 0
0 1/100

)
, B =

(
1/100 0
0 100

)
.

The spectral norm is determined by the direction of the maximal expansion of the layer but this
direction may not be aligned throughout all the layers, especially when there is a nonlinear activation
function between each of them. As a result, it engenders a gap between the overall maximal sensitivity
and the product of that of each layer, and an intentional control becomes really difficult.

Similarly, since we are manipulating layers without taking into account the complex interaction
between each other, the magnitude of the gradient may vanish (Anil et al., 2019). Indeed, when the
weights are restricted to be 1-Lipschitz, the norm of the gradient can only decrease through the layers
during the backward pass, leading to potential vanishing gradients (Anil et al., 2019). Notably, it
was proved that this kind of 1-Lipschitz neural networks with spectral normalization and with ReLU
activation functions cannot represent the absolute value |x| (Anil et al., 2019) which is 1-Lipschitz.

In short, layer-wise spectral normalization risks overestimating the general Lipschitz constant, which
is problematic if we want to control it, may result in the problem of vanishing gradient and introduce
issues into the expressive power of the neural network.

Orthogonalization The problem of vanishing gradient can be solved by restricting the matrices to
be orthogonal since the eigenvalues of an orthogonal matrix always equal 1. The fact that all matrices
are isotropic help to stabilize the training (Prach and Lampert, 2022). This leads to a large body of
work that investigates orthogonal linear layers.

There exist several direct realizations of orthogonality. For instance, Xu et al. (2022); Huang et al.
(2020) uses the form of

W = (V V ⊤)−1/2V.

Singla and Feizi (2021) provides a parameterization with a skew matrix V as follows:

W = exp
(
V − V ⊤) .

The latter method needs to approximate the exponential operator with a finite sum. Anil et al. (2019)
also construct an orthogonal weight from matrix power series:

Ak+1 = Ak

(
I +

1

2
Qk + . . .+ (−1)p

(
−1/2
p

)
Qpk

)
,

17

where Qk = I − A⊤
k Ak. Orthogonal convolutional layers are also studied (Li et al., 2019; Wang

et al., 2020), and other realizations were considered based on Cayley transform including convolu-
tions (Trockman and Kolter, 2021; Yu et al., 2022).

The Almost-orthogonal layer (AOL) (Prach and Lampert, 2022) reduces the computational cost of
creating orthogonal layers by approximating them by the following formulation:

W = V diag

∑
j

|V ⊤V |ij

−1/2

.

Empirically, these weights were nearly orthogonal at the end of the training.

In order to create L-Lipschitz functions, we can simply multiply the output or input by L. Never-
theless, while orthogonal layers are able to stabilize the training, this regularization destroys the
information about the spectrum by setting all the singular values to one. Moreover, the problem of
looseness of the Lipschitz bound persists since nonlinear activations are considered apart, and we do
not know how they interact with the linear layers.

Nonlinear Lipschitz Layer So far, we have reviewed methods that deal with linear layers. Recently,
some that incorporate nonlinear functions have started to appear.

Meunier et al. (2022) suggest to use residual type layers of the form

f(x) = x− 2/∥W∥2W⊤σ(Wx+ b),

where W⊤σ(Wx+ b) is the derivative of s(Wx+ b) and s is a 1-smooth convex function so that
s′ = σ. This type of layer is guaranteed to be 1-Lipschitz. This has been generalized by Araujo et al.
(2023) who built a nonlinear layer of the form

f(x) = Hx+Gσ(Wx+ b).

If there exists a diagonal matrix Λ with non-negative scalars that satisfies(
γI −H⊤H + 2αβW⊤ΛW −H⊤G− (α+ β)W⊤Λ
−G⊤H − (α+ β)ΛW 2Λ−G⊤G

)
⪰ 0,

where σ is slope restricted to [α, β], then f(x) is
√
γ-Lipschitz. Especially, when γ = 1, H = 1

and G = −2WT−1, where T is a diagonal with non-negative entries so that T ⪰ W⊤W , the
corresponding layer is called SDP-based Lipschitz Layer (SLL). A choice of T is

Tii =

n∑
j=1

|W⊤W |ijqj/qi,

where qi > 0. See Theorem 3 of their work for further detail.

Fazlyab et al. (2019) proposes LipSDP which estimates the Lipschitz constant of a multi-layer neural
network through a semi-definite programming (SDP). It is based on a SDP derived from an integral
quadratic constraint. Suppose we reformulate the simple multi-layer neural network as

BX = σ(AX + b), f(x) = CX + bL,

where σ is [α, β] slope-restricted, X = (x⊤0 , x
⊤
1 , · · · , x⊤L)⊤,

A =

W0 0 · · · 0 0
0 W1 · · · 0 0
...

...
. . .

...
...

0 0 · · · WL−1 0

 ,

B =

0 In1 0 · · · 0
0 0 In2

· · · 0
...

...
...

. . .
...

0 0 0 · · · InL

 ,

18

and
C = (0, . . . , 0,WL), b = (b⊤0 , . . . , b

⊤
L−1)

⊤.

Now, if there is a diagonal matrix Λ with non-negative entries such that

(
A
B

)⊤ (
−2αβΛ (α+ β)Λ
(α+ β)Λ −2Λ

)(
A
B

)
+

−γIn0 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · W⊤

LWL

 ⪯ 0

is satisfied, then f is
√
γ-Lipschitz.

Wang and Manchester (2023) provides a direct parameterization for this SDP. Its 1-layer version is
called the Sandwich layer and formulated as follows:

f(x) =
√
2A⊤Ψσ(

√
2Ψ−1Bx+ b),

where A and B are produced from the Cayley transformation of an arbitrary matrix with correct
dimensions, and Ψ is a diagonal matrix with positive entries.

While these methods provide new interesting possibilities to parameterize Lipschitz functions, they
are mainly layer-wise, still leading to overestimation of the overall Lipschitz constant, or use the
typical structure of the Lipschitzness, meaning that we cannot extend them to bi-Lispchitzness for
our purpose. Notably, the SDP-based approach that comes from Fazlyab et al. (2019) cannot handle
more general structures such as skip connections.

A.2 Inverse Lipschitzness

A.2.1 Definition

Definition A.2 (inverse Lipschitzness). Let L′ > 0. f : Rl → Rt is L′-inverse Lipschitz if

∥f(x)− f(y)∥ ≥ L′∥x− y∥

holds for all x, y ∈ Rl. L′ is called the inverse Lipschitz constant and denoted as invLip(f).

The above property implies that an inverse Lipschitz function is always injective, which means that it
has an inverse which is 1/L′-Lipschitz.

The inverse Lipschitzness is a mathematical description of the minimal sensitivity of the function. By
increasing the inverse Lipschitz constant, we can dilute the function and make it more sensitive to
small changes of the input. Unfortunately, the inverse Lipschitzness is not closed under addition as
we can understand with the simple example of 0 = x− x.

A.2.2 Models

To the best of our knowledge, the only model that was built specially for the control of inverse
Lipschitzness is that of Kinoshita et al. (2023). The same model was used earlier by Huang et al.
(2021) but for the construction of normalizing flows compatible with Brenier’s theorem in optimal
transport.

Kinoshita et al. (2023) observed that the derivative of an α-strongly convex function is α-inverse
Lipschitz. As a result, they propose a model of the type

∇
(
F (x) +

α

2
∥x∥2

)
= ∇F (x) + αx, (2)

where F is any convex function parameterized by a neural network. This approach has the interesting
property that we do not need to know what happens between the layers as we only add a term to the
output, which is possible thanks to the convexity of F . That is, a layer-wise control is not required,
resulting in a simple and tight control of the inverse Lipschitz constant thanks to the fact that before
taking the derivative F can also freely reproduce any convex function that is not necessarily strongly
convex. In our work, we start from this model and extend it to bi-Lipschitzness.

19

A.3 Bi-Lipschitzness

A.3.1 Definition

Finally, a function which is both Lipschitz and inverse-Lipschitz is called bi-Lipschitz. Note that by
definition the inverse Lipschitz constant cannot exceed the Lipschitz constant.

Definition A.3 (bi-Lipschitzness). Let 0 < L1 ≤ L2. f : Rl → Rt is (L1, L2)-bi-Lipschitz if

L1∥x− y∥ ≤ ∥f(x)− f(y)∥ ≤ L2∥x− y∥

holds for all x, y ∈ Rl. L1 and L2 are called together bi-Lispchitz constants.

A.3.2 Applications

Several interpretations can be attributed to this definition. Here, we provide some examples with
clearer explanations of the importance of bi-Lipschitzness which were omitted in the main pa-
per. In these applications, both Lipschitzness and inverse Lipschitzness are useful, or sometimes
indispensable, and Lipschitzness alone becomes insufficient.

1. Injectivity and Out-of-Distribution Detection: Bi-Lipschitz functions are injective thanks
to inverse Lipschitzness. This helps distinguish out-of-distribution and in-distribution data
in the feature space, making uncertainty estimation possible (Van Amersfoort et al., 2020).
Without inverse Lipschitzness, the problem of feature collapse can occur and compromise
the detection of outliers. The inverse Lipschitz constant can control the sensitivity to
out-of-distribution points. Please see Appendix E for further details on this topic.

2. Quasi-Isometry and Dimensionality Reduction: Bi-Lipschitz functions can be regarded as
a quasi-isometry, meaning that the structure of the input is inherited in the output as well.
This property is used for adequate dimensionality reduction or embeddings (Li et al., 2020).

3. Invertibility and Solving Inverse Problems: Bi-Lipschitz functions are invertible, and the
inverse Lipschitz constant serves as the Lipschitz constant of the inverse function. In
that sense, imposing inverse Lipschitzness helps guarantee good properties of the inverse
function, just as Lipschitzness assures them for the forward function (Behrmann et al., 2021).
This aspect is used to create normalizing flows (Behrmann et al., 2019) and solve inverse
problems (Kruse et al., 2021).

4. Balancing Sensitivity and Robustness: Bi-Lipschitz functions can avoid overly insensitive
behavior with respect to their input by controlling the inverse Lipschitz constant. An overly
invariant function is also vulnerable to adversarial attacks, as pointed out by Jacobsen et al.
(2019). To the best of our knowledge, the application of bi-Lipschitzness in this direction is
underexplored, but this concept may provide an effective solution.

A.3.3 Comparison with Prior Models

In this section, we compare our model BLNN with other models in more details.

Convex Potential Flow If we set α = 0, we obtain a BLNN whose output is ∇F ∗
θ , the derivative

of the LFT of a 1/β-strongly convex ICNN Fθ in terms of Algorithm 1. Since the BLNN is still
injective, it has an inverse which is only ∇Fθ. As a consequence, in applications where we need to
compute the inverse, this model can provide an interesting solution since we can create invertible
functions with known inverse. This model was precisely used by Huang et al. (2021) in the context
of normalizing flows. It is equivalent to that of Kinoshita et al. (2023), but the motivation is different.
Ours can thus be regarded as an extension of their model as well.

Residual Network Interestingly, our model ultimately takes the form of αx+ g(x), which can be
compared with a residual network. The main differences are that the skip connection is scaled by
α and that the formulation of g is restricted to derivatives of convex functions. These two features
were crucial components for a direct parameterization of the bi-Lipschitz constants. Behrmann et al.
(2019) composed many layers of the form of a residual network to guarantee high expressive power
to their invertible residual network. This superposition of layers is only sub-optimal as it leads to a
looseness in the bounds of the bi-Lipschitz constants of the overall function and it is not enough to

20

represent some functions such as y = −x. In a sense, our work shows that by restricting ourselves to
the derivative of convex functions, this kind of heuristics is not necessary at all and that this condition
leads to tighter control.

B Proofs of Statements and Further Discussion

In this appendix, we provide further details and proofs of statements in the main paper.

B.1 Additional Definitions

We first remind some definitions.

Definition B.1. Let γ > 0. F : Rm → R is γ-smooth if F is differentiable and

∥∇F (x)−∇F (y)∥ ≤ γ∥x− y∥

holds for all x, y ∈ Rl. That is, ∇F is γ-Lipschitz.

In the remainder of this chapter, we will concisely refer to a smooth function when we do not need to
specify the smoothness constant. Furthermore, in this work, we will often deal with smooth convex
functions. For this type of function, there exist four equivalent characterizations. See Appendix D for
the proof.

Theorem B.2. Let γ > 0 and F : Rm → R a differentiable convex function on a convex domain.
Then the following are equivalent:

1. F is γ-smooth in the meaning of Definition B.1:

∥∇F (x)−∇F (y)∥ ≤ γ∥x− y∥

.

2. The following holds for any x, y ∈ domF :

(∇F (x)−∇F (y))⊤(x− y) ≤ γ∥x− y∥2.

3. The following holds for any x, y ∈ domF :

F (y) ≤ F (x) +∇F (x)⊤(y − x) +
γ

2
∥y − x∥2.

4. (co-coercivity) The following holds for any x, y ∈ domF :

(∇F (x)−∇F (y))⊤(x− y) ≥ 1

γ
∥∇F (x)−∇F (y)∥2.

Convexity and strong convexity is defined as follows:

Definition B.3. F : Rm → R is convex if

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)

holds for all t ∈ [0, 1] and x, y ∈ domF .

Definition B.4. Let µ > 0. F : Rm → R is µ-strongly convex if F (x)− µ
2 ∥x∥

2 is convex.

We also introduce the Lengendre-Fenchel transformation which will be a core process in our con-
struction.

Definition B.5. Let F : I → R a convex function over I ⊂ Rm. Its Legendre-Fenchel transformation
F ∗ is defined as follows:

F ∗(x) := sup
y∈I

{⟨y, x⟩ − F (y)} . (3)

21

B.2 Construction of Bi-Lipschitz Functions: Proof of Theorem 3.4

The first step is to notice that the gradient of a real-valued L-strongly convex function F becomes
L-inverse Lipschitz as pointed out by Kinoshita et al. (2023).

Proposition B.6. Let F be an α-strongly convex differentiable function. Then ∇F is α-inverse
Lipschitz.

Proof. Since F is α-strongly convex,

F (y) ≥ F (x) +∇F (x)⊤(y − x) +
α

2
∥y − x∥2.

Similarly,

F (x) ≥ F (y) +∇F (y)⊤(x− y) +
α

2
∥x− y∥2.

By summing both inequalities side by side, we obtain

α∥x− y∥2 ≤ (∇F (x)−∇F (y))⊤ (x− y) ≤ ∥∇F (x)−∇F (y)∥∥y − x∥,

where we used Cauchy-Schwarz inequality for the right inequality. As a result,

∥∇F (x)−∇F (y)∥ ≥ α∥x− y∥.

Therefore, an α-strongly convex neural network can be first built, and then its gradient calculated in
order to construct a neural network which is guaranteed to be α-inverse Lipschitz. Now, since the
derivative of a smooth function is Lipschitz by definition, we can similarly proceed to construct a
function which is both Lipschitz and inverse Lipschitz. That is, we aim to compose a function which
is both strongly convex and smooth.

Interestingly, smoothness and strong convexity are closely related through the Legendre-Fenchel
transformation.

Proposition B.7. If F is a closed 1/β-strongly convex function. Then its Legendre-Fenchel transfor-
mation is β-smooth.

See Zhou (2018) for a proof. Importantly, the smoothness of the Legendre-Fenchel transform does
not depend on that of F as long as it is strongly convex. This means that this statement holds also for
strongly convex neural networks with ReLU activation functions, and consequently non-differentiable.

Proposition B.8. The resulting function F ∗ of a Legendre-Fenchel transformation is also convex as
long as its domain is convex.

Proof. For all t ∈ [0, 1] and x1, x2 ∈ domF ∗,

F ∗(tx1 + (1− t)x2) = sup
y∈I

{⟨y, tx1 + (1− t)x2⟩ − F (y)}

=sup
y∈I

{t (⟨y, x1⟩ − F (y)) + (1− t) (⟨y, x2⟩ − F (y))}

≤t sup
y∈I

{⟨y, x1⟩ − F (y)}+ (1− t) sup
y∈I

{⟨y, x2⟩ − F (y)}

=tF ∗(x1) + (1− t)F ∗(x2).

This leads to the following statement.

Theorem B.9. Let F be a closed 1/β-strongly convex function and α ≥ 0. Then the following
function is α-strongly convex and α+ β-smooth:

F̄ ∗(x) = sup
y∈I

{⟨y, x⟩ − F (y)}+ α

2
∥x∥2.

22

Figure 6: Construction flow of bi-Lipschitz neural network through Legendre-Fenchel transformation
and Brenier map.

Proof. Since F is a closed 1/β-strongly convex function, we know that F ∗ is convex and β-smooth.
Now clearly F ∗ + α

2 ∥x∥
2 is α-strongly convex by definition of strong convexity. Moreover, since∥∥∥∇(

F ∗(x) +
α

2
∥x∥2

)
−∇

(
F ∗(y) +

α

2
∥y∥2

)∥∥∥ = ∥∇F ∗(x) + αx− (∇F ∗(y) + αy)∥

≤ ∥∇F ∗(x)−∇F ∗(y)∥+ ∥αx− αy∥
≤ (β + α)∥x− y∥,

F ∗ + α
2 ∥x∥

2 is α+ β-smooth.

Corollary B.10. Suppose F̄ ∗ is constructed as Theorem B.9, then ∇F̄ ∗ is (α, α+ β)-bi-Lipschitz,
and f∗ := ∇F̄ ∗(x) = argmaxy {⟨y, x⟩ − F (y)}+ αx.

See Zhou (2018) for a proof of ∇F ∗(x) = argmaxy {⟨y, x⟩ − F (y)}. See Figure 6 for a summary
of the construction flow.
Remark B.11. This construction can only handle functions with the same input and output dimensions.
However, this is a common problem in bi-Lipschitz architectures such as that of Behrmann et al.
(2019). It can be addressed by using a composition of bi-Lipschitz functions which will be explained
in Appendix F.

B.3 Expressive Power of BLNN

In this subsection, we discuss the expressive power of BLNN. It is crucial for this type of construction
to clarify this. As we mentioned earlier, layer-wise constraints realize a bi-Lipschitz neural network
by restricting the sensitivity of each layer. Nevertheless, this kind of construction is only sub-optimal
as it limits the expressive power of the function more than expected. For instance, neural networks
with spectral normalization and ReLU activation functions cannot represent y = |x| (Anil et al., 2019),
and an invertible residual network cannot express the linear function y = −x (Zhang et al., 2020),
which were not mentioned in the original paper (Behrmann et al., 2019). Layer-wise bi-Lipschitz
approaches cannot directly inherit the proofs and properties of the original network, which makes the
understanding of their behavior more difficult.

As for our model, the (α, β)-BLNN, we can prove that

1. Before taking the gradient, our model can approximate any α-strongly convex and α+ β-
smooth functions on a compact domain endowed with the sup norm (Theorem 3.6).

2. After taking the gradient, we can create a sequence of functions that converges point-wise to
any function which is α+ β-Lipschitz, α-strongly monotone (see Definition B.12) and the
derivative of a real-valued function.

The proof is almost straightforward thanks to the fact that our model only makes modification at the
output of the core neural network, and we can build on the proofs of previous works (Chen et al.,
2019; Huggins et al., 2018).
Definition B.12. A monotone function f : Rl → Rt is defined as ⟨f(x) − f(y), x − y⟩ ≥ 0.
Furthermore, f is α-strongly monotone if ⟨f(x)− f(y), x− y⟩ ≥ α∥x− y∥2.

23

B.3.1 First Part: Proof of Theorem 3.6

Theorem B.13. For any proper closed α-strongly convex and α+ β-smooth function on a compact
domain, there is a BLNN without taking the gradient at the end, i.e., supy{⟨y, x⟩ − (Gθ(y) +

∥y∥2/(2β))}+ α∥x∥2/2 where Gθ is an ICNN with ReLU or softplus-type activation function, that
approximates it within ϵ in terms of the sup norm.

Proof. From Proposition 3 of Huggins et al. (2018), we already know that for any convex function on
a compact domain, there is an ICNN with ReLU or softplus-type activation function that approximates
it within ϵ in terms of the sup norm.2 The key point in this proof is to show that the Legendre-Fenchel
transformation does not deteriorate the approximation quality and that introducing strongly convexity
and smoothness constraints does not cause any unexpected limitations on the expressive power.

Let f be a proper closed α-strongly convex and α + β-smooth function. Since f(x) is α-strongly
convex and α+β-smooth, f(x)− α

2 ∥x∥
2 becomes a convex β-smooth function. Indeed, by definition

of strong convexity, f(x)− α
2 ∥x∥

2 is convex. Moreover,

⟨∇f(x)− αx− (∇f(y)− αy), x− y⟩ ≤ β∥x− y∥2.
As a result, by definition of smoothness (Theorem B.2), f(x) − α

2 ∥x∥
2 is β-smooth. Now, since

f̃(x) := f(x)− α
2 ∥x∥

2 is a proper closed convex function, f̃∗∗ = f̃ (Theorem 12.2 of Rockafellar
(1997)). That is, the Legendre-Fenchel transforms is an involution. Taking f̃∗, we obtain a 1/β-
strongly convex function. Similarly, f̃∗(y)− 1

2β ∥y∥
2 is convex. Therefore, there exists an ICNN f̂

so that

sup
y

∣∣∣∣f̂(y)− (
f̃∗(y)− 1

2β
∥y∥2

)∣∣∣∣ < ϵ,

or

sup
y

∣∣∣∣f̂(y) + 1

2β
∥y∥2 − f̃∗(y)

∣∣∣∣ < ϵ. (4)

This precision is preserved after Legendre-Fenchel transformation. Indeed, if we define f̂∗β as the
Legendre-Fenchel transformation of f̂(y) + 1

2β ∥y∥
2, then

sup
x

|f̂∗β(x)− f̃∗∗(x)| < ϵ (5)

which is equivalent to
sup
x

|f̂∗β(x)− f̃(x)| < ϵ.

This can be derived as follows:

f̂∗β(x) = sup
y

{
⟨y, x⟩ −

(
f̂(y) +

1

2β
∥y∥2

)}
=sup

y

{
⟨y, x⟩ − f̃∗(x) + f̃∗(x)−

(
f̂(y) +

1

2β
∥y∥2

)}
≤ sup

y

{
⟨y, x⟩ − f̃∗(x)

}
+ sup

y

{
f̃∗(x)−

(
f̂(y) +

1

2β
∥y∥2

)}
≤f̃∗∗(x) + ϵ,

where we used the definition of f∗∗(x) and equation (4) for the last inequality. Since we can change
the role of f̂ and f̃∗ and the above inequality holds for all x, we obtain inequality (5). Finally, by
adding α∥x∥2/2 to f̂∗β(x), we obtain a function that approximates f within ϵ

sup
x

|f̂∗β(x) + α∥x∥2/2− f(x)| =sup
x

|f̂∗β(x)− (f(x)− α∥x∥2/2)|

=sup
x

|f̂∗β(x)− f̃(x)|

≤ϵ.
2Here, a softplus-type activation function is a function s that satisfies the following conditions: s ≥ ReLU,

s is convex and |s(x)− ReLU(x)| → 0 as |x| → ∞ (Chen et al., 2019).

24

In order words, f̂ is the ICNN that creates a BLNN (before derivation) that approximates f within
ϵ.

As we can conclude, our model with parameters α and β (before taking the gradient) can approximate
any α-strongly convex and α + β-smooth functions on a compact domain endowed with the sup
norm. Importantly, the approximation quality of the BLNN equals that of the model we use to create
the core convex function.

B.3.2 Second Part

The second point of this section is proved by the following theorem.
Theorem B.14 (Huggins et al. (2018), Theorem 2 adapted). Suppose G : Rd → R a proper convex
function and almost everywhere differentiable. If there is a sequence Fn : Rd → R of BLNN before
taking the derivative so that Fn → G. Then, for almost every x ∈ Rd, ∇Fn(x) → ∇G(x).

If a monotone function can be represented as the derivative of the real-valued function, then it is the
gradient of a convex function. Hence, we can use the above theorem.
Remark B.15. The existence of such sequence Fn is assured by Theorem B.13 since we can let Fn
approximate G with a uniform error of 1/n on the compact domain [−n, n]d.

Therefore, an (α, β)-BLNN can represent any α+β-Lipschitz α-strongly monotone (i.e., (α, α+β)-
bi-Lipschitz) function that is the derivative of another function almost everywhere.

B.3.3 A Brief Discussion on the Expressive Power of BLNN

In this section, we briefly discuss the difference between the whole set of bi-Lipschitz functions
and the expressive power of the BLNN and the possibility of designing an architecture that can
approximate any bi-Lipschitz functions based on our model.

There are three relevant classes of functions: (1) bi-Lipschitz functions, (2) monotone bi-Lipschitz
functions, and (3) cyclically monotone bi-Lipschitz functions. Our model can represent any function
of class (3) since cyclically monotone bi-Lipschitz functions are equivalent to the class of derivatives
of (strongly) convex functions (Rockafellar, 1970). In dimensions larger than 1, these three classes
are different: f(x, y) = (−y, x) is in (1) but not in (2), and f(x, y) = (x+ 2y, y) is in (2) but not in
(3). Current bi-Lipschitz models are supposedly in class (1) or (2), like that of Behrmann et al. (2019)
and Nolte et al. (2023). Here, we will only focus on bi-Lipschitz functions with the same input and
output dimensions, as most of the bi-Lipschitz models fall into this category. Let us now discuss how
class (3) can be used to produce functions of class (1) (and (2)).

First, if we suppose the function can be represented by the gradient of another real-valued function,
class (1) and (3) are equivalent. Interestingly, under this condition, we can provide an even stronger
statement based on Theorem 2.1 of Zlobec (2005). It says that If f : Rn → R is continuously
differentiable and its derivative is Lipschitz on a convex set K with some Lipschitz constant L, then
there are a convex function C(x) on K and a ≥ L so that f(x) = C(x)− ax⊤x/2. In other words,
under the condition that a function can be written as the gradient of another real-valued function,
class (3) is equivalent to all Lipschitz functions up to a quadratic concave term. Therefore, our model
can still express a quite large family of functions.

Next, the condition of being the gradient of a function can be interpreted as being rotation-free,
i.e., ∇ × F = 0. It is known that any vector field can be decomposed into a rotation-free and
divergence-free component (Hodge decomposition theorem) under some regularity conditions. In R3,
this means that a function f in class (1) can be decomposed as follows:

f = ∇×A+∇B

where A is a vector field, and B a scalar function. From the other direction, we can take∇B as
a function of class (3), and A as an arbitrary function with bounded gradient. That way, we can
reproduce a large variety of functions so that f is bi-Lipschitz without necessarily being representable
as the gradient of another function. The choice of A is still ambiguous so that f is effectively

25

bi-Lipschitz with explicit bi-Lipschitz parameter control, but we believe this approach is promising
for the generalization of our method.

In conclusion, while our model may have theoretically restrictive expressive power, it still leaves a
large liberty to express more general bi-Lipschitz functions both in theory and practice.

B.4 Backward Pass of BLNN

In this subsection, we provide the explicit formulation of the gradient of the BLNN with respect
to the parameters. The first half considers the simple BLNN and the second a more complete case
analysis with a complex architecture where BLNN is only one component of it.

B.4.1 Proof of Theorem 3.7

First of all, the gradient of the loss with respect to the parameters can be more concretely formulated
as follows:
Lemma B.16. Suppose a loss function L : z 7→ L(z), and the output of the BLNN is f∗(x; θ) :=
∇xF

∗
θ (x) + αx as defined in Algorithm 1. Then the gradient can be expressed as follows:

∇⊤
θ L(f

∗(x; θ)) = ∇⊤
z L(z)

{
∇⊤
x∇θF

∗(x; θ)
}⊤

, (6)

where z = f∗(x; θ).

This is only an application of the chain rule. Now, interestingly, ∇θF
∗(x; θ) can be written as a

function of the core ICNN F as the following statements shows.
Theorem B.17. Suppose F and F ∗ are both differentiable, then the following holds:

∇θF
∗(x; θ) = −∂θF (y∗(x; θ); θ), (7)

where ∂θ is the partial derivative with respect to θ.

Proof. Since, y∗(x; θ) = argmaxy∈I {⟨y, x⟩ − F (y; θ)}, y∗ satisfies the following stationary point
condition:

∇y {⟨y∗(x; θ), x⟩ − F (y∗(x; θ); θ)} = x−∇yF (y
∗(x; θ); θ) = 0. (8)

Now, taking the derivative of F ∗(x; θ) = ⟨y∗(x; θ), x⟩ − F (y∗(x; θ); θ) with respect to θ leads to:
∇θF

∗(x; θ) = ∇θ {⟨y∗(x; θ), x⟩ − F (y∗(x; θ); θ)}
= (∇⊤

θ y
∗(x; θ))⊤x− ∂θF (y

∗(x; θ); θ)− (∇⊤
θ y

∗(x; θ))⊤∇yF (y
∗(x; θ); θ)

= (∇⊤
θ y

∗(x; θ))⊤x− ∂θF (y
∗(x; θ); θ)− (∇⊤

θ y
∗(x; θ))⊤x

= −∂θF (y∗(x; θ); θ),
where we used equation (8) for the last equality.

This results in the following representation of the gradient (Theorem 3.7).
Theorem B.18. Suppose a loss function L : z 7→ L(z), and the output of the BLNN is f∗(x; θ) :=
∇F ∗

θ (x) + αx as defined in Algorithm 1. If F and F ∗ are both differentiable, then the gradient can
be expressed as follows:

∇⊤
θ L(f

∗(x; θ)) = −∇⊤
z L(z)

{
∇2
yF (y

∗(x; θ); θ)
}−1

∂⊤θ ∇yF (y
∗(x; θ); θ). (9)

Proof. From Lemma B.16 and Theorem B.17, we know that

∇⊤
θ L(f

∗(x; θ)) =∇⊤
z L(z)

{
∇⊤
x∇θF

∗(x; θ)
}⊤

=−∇⊤
z L(z)∂

⊤
θ ∇xF (y

∗(x; θ); θ).

Continuing the procedure, we obtain:

∇⊤
θ L(f

∗(x; θ)) =−∇⊤
z L(z)∂

⊤
θ ∇xF (y

∗(x; θ); θ)

=−∇⊤
z L(z)∇xy

∗(x; θ)∂⊤θ ∇yF (y
∗(x; θ); θ)

=−∇⊤
z L(z)

{
∇2
yF (y

∗(x; θ); θ)
}−1

∂⊤θ ∇yF (y
∗(x; θ); θ),

where in the last equality, we used the fact that y∗θ = ∇xF
∗
θ and ∇yFθ are inverse with respect to

each other (Zhou, 2018).

26

Figure 7: A generalization of an architecture including our model.

Therefore, we can compute the gradient without back-propagating through the whole optimization
process of the Legendre-Fenchel transformation but only with the information of the ICNN Fθ. In
practice, the following observation facilitates even more coding since we can directly employ the
backward algorithm provided in libraries such as Pytorch.

Corollary B.19. Under the assumptions of Thoerem B.18, the gradient of the loss L is equivalent to
the following real-valued function:

−∇⊤
z L(f

∗(x; θ.requires_grad_(F)))
{
∇2
xF (y

∗
θ(x); θ.requires_grad_(F))

}−1 ∇yF (y
∗
θ(x); θ),

where θ.requires_grad_(F) indicates that this θ is considered as a constant and not a parameter to be
differentiated with respect to.

B.4.2 A more complete case analysis

In practice, a model may possess a more complex architecture where parameters to be optimized
do not only come from the ICNN but also from other components. Consider the schema of Figure
7. Mathematically, this can be formulated as follows. Suppose θ, ϕ and ψ are parameters, f(x; θ)
is a BLNN, h(d;ϕ) is a parameterized function like a neural network, and L(z, w;ψ) is a real-
valued function returning the loss. In this problem setting, the overall loss can be expressed as
L(f(h(d;ϕ); θ), h(d;ϕ);ψ). This means, for a model that incorporates a BLNN, we can classify
parameters into three groups:

1. those that define the ICNN used in BLNN,

2. those that define the transformation whose output is transferred to the input of the BLNN,

3. and those that are unrelated to the BLNN.

For instance, this formulation includes VAEs with a BLNN for the underlying neural network of the
decoder. The derivative of the first group of parameters was already discussed above, and that of the
last one is straightforward. As for the second family, we can proceed in a similar way as Theorem
B.18.

Theorem B.20. Suppose a model with loss included L(f∗(h(d;ϕ); θ);ψ). The output of the BLNN
is f∗(x; θ) := ∇F ∗

θ (x) + αx as defined in Algorithm 1. If F and F ∗ are both differentiable, then the
gradient of ϕ can be expressed as follows:

∇ϕL(f
∗(h(d;ϕ); θ), h(d;ϕ);ψ) =∇⊤

z L(z, x;ψ)
[{

∇2
yF (y

∗(x; θ); θ)
}−1

+ αI
]
∇⊤
ϕ h(d;ϕ)

+∇⊤
x L(z, x;ψ)∇⊤

ϕ h(d;ϕ),

where z = f∗(h(d;ϕ); θ) and x = h(d;ϕ).

Proof. We can proceed similarly as the previous theorems. By chain rule,

∇ϕL(f
∗(h(d;ϕ); θ), h(d;ϕ);ψ) = ∇⊤

z L(z, w;ψ)∇⊤
ϕ f

∗(h(d;ϕ); θ) +∇⊤
wL(z, w;ψ)∇⊤

ϕ h(d;ϕ),

27

where z = f∗(h(d;ϕ)) and w = h(d;ϕ). The second term does not require further computation. We
will focus on the first term.

∇⊤
ϕ f

∗(h(d;ϕ); θ) :=∇⊤
ϕ {∇xF

∗
θ (h(d;ϕ)) + αh(d;ϕ)}

=∇⊤
ϕ y

∗(h(d;ϕ); θ) +∇⊤
ϕ αh(d;ϕ)

=∇⊤
x y

∗(x; θ)∇⊤
ϕ h(d;ϕ) +∇⊤

ϕ αh(d;ϕ)

=
[{

∇2
yF (y

∗(x; θ); θ)
}−1

+ αI
]
∇⊤
ϕ h(d;ϕ).

This provides the desired result.

To summarize, gradients used for the update of each type of parameters can be written as follows:

Corollary B.21. Let L := L(f∗(h(d;ϕ); θ), h(d;ϕ);ψ). Then under assumptions of Theorem B.20,

∇⊤
θ L = −∇⊤

z L(z, x;ψ)
{
∇2
yF (y

∗(x; θ); θ)
}−1

∂⊤θ ∇yF (y
∗(x; θ); θ),

∇⊤
ϕL = ∇⊤

z L(z, x;ψ)
[{

∇2
yF (y

∗(x; θ); θ)
}−1

+ αI
]
∇⊤
ϕ h(d;ϕ) +∇⊤

x L(z, x;ψ)∇⊤
ϕ h(d;ϕ),

∇⊤
ψL = ∇⊤

ψL(z, x;ψ),

where x = h(d;ϕ) and z = f(h(d;ϕ); θ).

C Algorithms for Legendre-Fenchel Transformation

In this appendix, we discuss the implementation of the LFT as an optimization problem and properties
derived from the choice the optimization algorithm. As a reminder, we suppose that a convex
solver generates for a fixed x a sequence of points {yt(x)}t=0,...,T based on the objective function
⟨y, x⟩ − F (y), converging to the true optimizer y∗(x) := argmaxy {⟨y, x⟩ − F (y)}.

C.1 Influence of Approximate Optimization on Bi-Lipschitz Constants: Experiments

We first run experiments with the following common convex solvers: steepest gradient descent
(GD), Nesterov’s accelerated gradient (AGD) (Nesterov, 1983), Adagrad (Duchi et al., 2011), RM-
Sprop (Hinton et al., 2012), Adam (Kingma and Ba, 2015) and the Newton method. We calculated
the bi-Lipschitz constants of the generated curve yt(x) for each optimization scheme at each iteration
t. F was chosen as a two-dimensional ICNN with two hidden layers. The activation was set as the
softplus function log(1 + exp(x)). The derivative of the softplus function is the sigmoid function,
which means the overall convex neural network becomes smooth. At the output of the ICNN, we
added a regularization term ∥x∥2/(2× 10) so that the overall function becomes 10-strongly convex
as well. As a result, the Legendre-Fenchel transformation is also smooth and strongly convex with
respective constants c′ and c that we estimated beforehand. In other words, the Lipschitz and inverse
Lipschitz constants of the function yt(x) with respect to x should converge to c′ and c, respectively.
As for the step size, we chose one so that the corresponding convex solver converged. For a µ-strongly
convex objective function, it is known that GD converges with a decreasing step size of 1

µ(t+1) . Thus,
we chose this for GD but also for Adam and RMSprop since it helped the algorithm to converge. For
Adagrad, we set it as 1

µ , for the Newton method as 1 and for AGD as 1/c, the smoothness constant of
the objective function. Results are shown in Figures 8 and 9. See Appendix H for further details on
the experimental setup.

28

(a) GD

(b) AGD

(c) Newton

Figure 8: Evolution of bi-Lipschitzness (Lipschitz: left, inverse Lipschitz: right) through the iteration
of several optimization algorithms: GD (top row), AGD (middle row) and Newton (bottom row).

29

(a) Adagrad

(b) Adam

(c) RMSprop

Figure 9: Evolution of bi-Lipschitzness (Lipschitz: left, inverse Lipschitz: right) through the iteration
of several optimization algorithms: Adagrad (top row), Adam (middle row) and RMSprop (bottom
row).

As we can observe, the simple gradient descent, AGD, Adagrad and the Newton method perform
well in the perspective of conservation of bi-Lipschitzness while RMSprop and Adam are not able
to provide such feature, especially for the inverse Lipschitz constant. This incites us to use GD for
simplicity or Adagrad as convex solver of the Legendre-Fenchel transformation.

C.2 Influence of Approximate Optimization on Bi-Lipschitz Constants: Theoretical Analysis

Now that we have an idea of the behavior of well-known convex solvers, we proceed to the theoretical
analysis of the approximation quality of optimization schemes concerning the bi-Lipschitz constants
predefined in our model. The aim is to clarify when bi-Lipschitzness is preserved and to evaluate the
effective bi-Lipschitz constants through the iterations.

30

C.2.1 Proof for General Algorithms

Here, we focus on deriving a general non-asymptotic bounds, i.e., the evaluation and evolution of the
bi-Lipschitzness of yt(x) for a finite period of timer for general optimization algorithms. This is a
crude bound.
Theorem C.1. Let the symbols defined as in Algorithm 1. Consider an optimization scheme of
supy {⟨y, x⟩ − Fθ(y)} generating points {yt(x)}t that achieves an error of ∥yt(x)−y∗(x)∥ ≤ ϵ(t, x)
after t iterations, where y∗(x) is the global maximum. Then, for all xi, xj such that ∥xi − xj∥ ≥ δ
for δ > 0,

α− (ϵ(t, xi) + ϵ(t, xj))/δ ≤
∥f (t)θ (xi)− f

(t)
θ (xj)∥

∥xi − xj∥
≤ α+ β + (ϵ(t, xi) + ϵ(t, xj))/δ,

where f (t)θ (x) := yt(x) + αx is the finite time approximation of f∗θ (x).

Proof. Concerning the upper bound,

∥f (t)θ (xi)− f
(t)
θ (xj)∥ =∥yt(xi) + αxi − (yt(xj) + αxj)∥

≤α∥xi − xj∥+ ∥yt(xi)− yt(xj)∥
≤α∥xi − xj∥+ ∥yt(xi)− y∗(xi)∥+ ∥y∗(xi)− y∗(xj)∥
+ ∥y∗(xj)− yt(xj)∥

≤α∥xi − xj∥+ ϵ(t, xi) + ∥y∗(xi)− y∗(xj)∥+ ϵ(t, xj)

≤α∥xi − xj∥+ ϵ(t, xi) + ∥∇F ∗
θ (xi)−∇F ∗

θ (xj)∥+ ϵ(t, xj)

≤α∥xi − xj∥+ ϵ(t, xi) + β∥xi − xj∥+ ϵ(t, xj)

=α∥xi − xj∥+ β∥xi − xj∥+ ϵ(t, xi) + ϵ(t, xj),

where F ∗
θ is the Legendre-Fenchel transformation of Fθ.

As for the lower bound, we begin by evaluating ⟨yt(xi)− yt(xj), xi − xj⟩.
⟨yt(xi)− yt(xj), xi − xj⟩ =⟨yt(xi)− y∗(xi), xi − xj⟩+ ⟨y∗(xi)− y∗(xj), xi − xj⟩

+ ⟨y∗(xj)− yt(xj), xi − xj⟩
≥ − ∥yt(xi)− y∗(xi)∥∥xi − xj∥
+ ⟨∇F ∗

θ (xi)−∇F ∗
θ (xj), xi − xj⟩

− ∥y∗(xj)− yt(xj)∥∥xi − xj∥
≥ − ϵ(t, xi)∥xi − xj∥+ ⟨∇F ∗

θ (xi)−∇F ∗
θ (xj), xi − xj⟩

− ϵ(t, xj)∥xi − xj∥
≥ − ϵ(t, xi)∥xi − xj∥ − ϵ(t, xj)∥xi − xj∥,

where for the last inequality we used that for any convex function ⟨∇F ∗
θ (xi)−∇F ∗

θ (xj), xi−xj⟩ ≥ 0.

Now since f (t)θ (x) := yt(x) + αx

⟨f (t)θ (xi)− f
(t)
θ (xj), xi − xj⟩ =⟨yt(xi) + αxi − (yt(xj) + αxj), xi − xj⟩

=⟨yt(xi)− yt(xj), xi − xj⟩+ α∥xi − xj∥2

≥α∥xi − xj∥2 − ϵ(t, xi)∥xi − xj∥ − ϵ(t, xj)∥xi − xj∥.

By Cauchy-Schwarz inequality, ⟨f (t)θ (xi)− f
(t)
θ (xj), xi − xj⟩ ≤ ∥f (t)θ (xi)− f

(t)
θ (xj)∥∥xi − xj∥.

Thus, we finally obtain

∥f (t)θ (xi)− f
(t)
θ (xj)∥ ≥ α∥xi − xj∥ − ϵ(t, xi)− ϵ(t, xj).

In order to derive the inequalities of the statement, it suffices to divide all sides by ∥xi − xj∥ and use
∥xi − xj∥ ≥ δ on the two obtained bounds.

Since ϵ(t, x) → 0 as t→ ∞ for any optimization scheme that converges, we can recover an arbitrarily
close approximation of α and α + β, the inverse Lipschitz and Lipschitz constants, with enough
number of iterations. This is a general bound that can be applied to any algorithm with known
behavior. Below, we provide two concrete evaluations applied to the gradient descent.

31

Corollary C.2. Suppose Fθ is µ-strongly convex and x − ∥∂subFθ(yt)∥ ≤ G(x). If we employ
gradient descent with ηt = 1/(µ(t + 1)) as a step size and a fixed initial point y0 = 0, ϵ(t, x) =
2G(x)/(µ

√
t). Therefore,

α− 2(G(xi) +G(xj))/(δµ
√
t) ≤

∥f (t)θ (xi)− f
(t)
θ (xj)∥

∥xi − xj∥
≤ α+ β + 2(G(xi) +G(xj))/(δµ

√
t).

Proof. This follows from Lemma 1 of Rakhlin et al. (2012).

A similar bound can be provided when x − ∥∂subFθ(yt)∥ ≤ G(x) is satisfied almost surely. See
Lemma 2 of Rakhlin et al. (2012).
Corollary C.3. Suppose Fθ is µ-strongly convex and γ-smooth. If we employ gradient descent with

ηt = 1/γ as a step size and a fixed initial point y0, we can choose ϵ(t, x) =
(
1− µ2

γ2

)t/2
∥y0(x)−

y∗(x)∥2.

Proof. Since F is γ-smooth, h(y) = ⟨y, x⟩ − F (y) is γ-smooth and µ-strongly concave. As a result,

∥yt+1 − y∗∥2 =∥yt + η∇h(yt)− y∗∥2

=∥yt − y∗∥2 − 2η⟨∇h(yt), yt − y∗⟩+ η2∥∇h(y)∥2

=∥yt − y∗∥2 − 2η⟨∇h(yt)−∇h(y∗), yt − y∗⟩+ η2∥∇h(yt)−∇h(y∗)∥2

≤∥yt − y∗∥2 − 2η
1

γ
∥∇h(yt)−∇h(y∗)∥2 + η2∥∇h(yt)−∇h(y∗)∥2

=∥yt − y∗∥2 − 1

γ2
∥∇h(yt)−∇h(y∗)∥2

≤∥yt − y∗∥2 − µ2

γ2
∥yt − y∗∥2

=

(
1− µ2

γ2

)
∥yt − y∗∥2

=

(
1− µ2

γ2

)t+1

∥y0 − y∗∥2,

where we used that ∇h(y∗) = 0 for the third equality, the co-coercivity of smooth convex functions
for the first inequality, and inverse Lipschitzness for the second inequality.

This is a crude estimation of the bi-Lipschitz constants. As long as we assume that all values can only
take discrete ones with intervals bigger than δ, then this theorem provides a meaningful evaluation.
For example, during training this does not pose a problem since the number of training data is usually
finite. Technically speaking, we will not have any problem in practice either as the computer also
deals with discrete values.

The limitation of the above theorem appears once we authorize infinite precision as we could take two
values arbitrarily close to each other, i.e., δ → 0, leading the lower and upper bound to explode. This
makes the model prone to adversarial attacks. One way to remedy this is to evaluate the Legendre-
Fenchel transformation for some discrete values and interpolate with some bi-Lipschitz functions
(e.g., linear) so that the whole function satisfies the expected bounds.

Ideally, we would like to derive a bound of the type

h1(∥xi − xj∥, t) ≤
∥f (t)θ (xi)− f

(t)
θ (xj)∥

∥xi − xj∥
≤ h2(∥xi − xj∥, t), (10)

where h1 and h2 converge as ∥xi − xj∥ → 0 and converge to 0 as t→ ∞. We could not achieve this
in Theorem C.1, which is predictable as we did not take into account the similarity of the optimization
paths of xi and xj and derived the bounds by isolating each point. The next step is thus to take into
account this closeness. Nevertheless, this kind of analysis is more involved and we do not know if it
is applicable to all optimization schemes. This could explain the existence of some algorithms where
the bi-Lipschitzness do not evolve as desired as we have pointed out in Figure 9.

32

C.2.2 Proof of Theorem 3.5

The following theorem shows the first half of the statement of Theorem 3.5. That is, we show that in
the limit there is no bias for GD in terms of bi-Lipschitz constants.

Theorem C.4. Let the symbols defined as in Algorithm 1. Consider an optimization scheme of
supy {⟨y, x⟩ − F (y)} generating points {yt(x)}t at the t-th iterations. If F is µ-strongly convex,
γ-smooth and twice differentiable and we employ gradient descent with a step size ηt so that the
discrete optimization converges to the global maximum y∗(x), then for all x

1

γ
⪯ ∇⊤

x y∞(x) ⪯ 1

µ
.

Proof. The recurrence relation of GD is as follows:

yt+1(x) = yt(x) + ηt {x−∇yF (yt(x))} .

Since F is twice differentiable, we can take the Jacobian of both sides:

∇⊤
x yt+1(x) = ∇⊤

x yt(x) + ηt
{
I −∇2

yF (yt(x))∇⊤
x yt(x)

}
.

By replacing yt+1(x) and yt(x) by y∞(x) as the sequence is converging by hypothesis, we obtain

∇⊤
x y∞(x) =∇⊤

x y∞(x) + ηt
{
I −∇2

yF (y∞(x))∇⊤
x y∞(x)

}
=
{
I − ηt∇2

yF (y∞(x)
}
∇⊤
x y∞(x) + ηtI

Therefore, since∇2
yF (y) is invertible as µ ⪯ ∇2

yF (y),

∇⊤
x y∞(x) =

{
∇2
yF (y∞(x))

}−1
.

By using µ ⪯ ∇2
yF (y) ⪯ γ, we arrive at the desired result.

Remark C.5. Note that y∞(x) and y∗(x) are different in the sense that the former is defined by the
limit (t → ∞) of the recurrence relation of the optimizer, while the latter is defined as the global
maximum of supy {⟨y, x⟩ − F (y)} which also satisfies ∇yF (y

∗(x)) = x. In short, they differ in the
formulation and explicit dependence on x.

Since F is µ-strongly convex and γ-smooth, its Legendre-Fenchel transform is 1/γ-strongly convex
and 1/µ-smooth, leading to a (1/γ, 1/µ)-bi-Lipschitz function by taking the derivative of the latter.
This behavior is inherited by the optimization scheme in the limit of t→ ∞ as the above theorem
shows. The point is that there is no bias, which may have occurred if the influence of the step size
persisted in the final result. A similar result can be obtained for AGD. For the others, the analysis is
more complicated as the gradient is accumulated throughout the iterations. Since our main interest is
non-asymptotic behavior, we will not further develop this.

We will now prove the second half of the theorem and show that equation (10) can be actually
established for some parameter settings at least for Lipschitzness.

Theorem C.6. Let the symbols defined as in Algorithm 1. Consider an optimization scheme of
supy {⟨y, x⟩ − F (y)} generating points {yt(x)}t at the t-th iterations and y∗(x) is the global
maximum. If F is µ-strongly convex and γ-smooth and we employ gradient descent with ηt =
1/µ(t+ 1) as a step size and y0(xi) = y0 as initial point, then for all xi, xj

∥yt+1(xi)− yt+1(xj)∥ ≤
√

1− 2ηtµ+ η2t γ
2∥yt(xi)− yt(xj)∥+ ηt∥xi − xj∥.

As a result,
∥yt+1(xi)− yt+1(xj)∥ ≤ h(t)∥xi − xj∥,

where

lim
t→∞

h(t) =
1

µ
.

33

Proof. Let us first prove the recurrence relation of the statement. Throughout the proof, we use the
following notations:

∆yt := yt(xi)− yt(xj),

∆x := xi − xj ,

∆Dt := ∇F (yt(xi))−∇F (yt(xj)).
Since

∥∆yt+1∥ = ∥∆yt − ηt∆Dt + ηt∆x∥ ≤ ∥∆yt − ηt∆Dt∥+ ηt∥∆x∥, (11)
it suffices to evaluate ∥∆yt − ηt∆Dt∥. Now,

∥∆yt − ηt∆Dt∥2 =∥∆yt∥2 − 2ηt⟨∆yt,∆Dt⟩+ η2t ∥∆Dt∥2

≤∥∆yt∥2 − 2ηtµ∥∆yt∥2 + η2t ∥∆Dt∥2

≤∥∆yt∥2 − 2ηtµ∥∆yt∥2 + η2t γ
2∥∆yt∥2

=
(
1− 2ηtµ+ η2γ2

)
∥∆yt∥2,

where for the first inequality we used that F is µ-strongly convex, i.e., ⟨∇F (y)−∇F (y′), y− y′⟩ ≥
µ∥y − y′∥2 and for the second inequality we used that F is γ-smooth.

As µ ≤ γ always holds,

1− 2ηtµ+ η2γ2 = 1− 2ηtµ+ η2µ2 + η2(γ2 − µ2) = (1− ηtµ)
2 + η2(γ2 − µ2) ≥ 0.

As a result
∥∆yt − ηt∆Dt∥ ≤

√
1− 2ηtµ+ η2γ2∥∆yt∥.

By substituting this to equation (11), we obtain

∥∆yt+1∥ ≤
√
1− 2ηtµ+ η2t γ

2∥∆yt∥+ ηt∥∆x∥,

which was the desired inequality.

Next, we assume ∥∆x∥ > 0 and divide both sides by ∥∆x∥. Denoting αt := µ∥∆yt+1∥/∥∆x∥, we
arrive at

αt+1 ≤
√
1− 2ηtµ+ η2t γ

2αt + ηtµ.

We want to show that limt→∞ αt = 1.

By the above-mentioned argument when t ≥ 1, we can further develop this as follows:

αt+1 ≤
√
1− 2ηtµ+ η2t γ

2αt + ηtµ

=
√
(1− ηtµ)2 + η2t (γ

2 − µ2)αt + ηtµ

≤

√{
(1− ηtµ) +

1

2

η2t (γ
2 − µ2)

1− ηtµ

}2

αt + ηtµ

=

{
(1− ηtµ) +

1

2

η2t (γ
2 − µ2)

1− ηtµ

}
αt + ηtµ.

Since ηtµ = 1/(t+ 1), we get

αt+1 =

{
t

t+ 1
+
γ2/µ2 − 1

2

1

t(t+ 1)

}
αt +

1

t+ 1
.

By multiplying both sides by t+ 1, defining At := tαt and κ := γ2/µ2 − 1(≥ 0), we can conclude
that

At+1 ≤
(
1 +

κ

2

1

t2

)
At + 1. (12)

Let us prove that from equation 12, we have

At ≤ t+
κ

2

t−1∑
k=1

1

k

∏
k<i≤t−1

exp

(
κ

2

1

i2

)
(13)

34

for all t = 1, 2, We will proceed by mathematical induction.

When t = 1, A1 = α1. Since ∥∆y1∥ = ∥∆y0−η0∆D0+η0∆x∥ and the initial point was a constant
independent of xi, ∥∆y1∥ = η0∥∆x∥ = 1

µ∥∆x∥. Thus, A1 = α1 = 1. This means, equation (13) is
satisfied.

Now suppose equation (13) holds for t = m. Then by equation 12,

Am+1 ≤
(
1 +

κ

2

1

m2

)
Am + 1

≤
(
1 +

κ

2

1

m2

)m+
κ

2

m−1∑
k=1

1

k

∏
k<i≤m−1

exp

(
κ

2

1

i2

)+ 1

≤m+
κ

2

1

m
+

(
1 +

κ

2

1

m2

)κ

2

m−1∑
k=1

1

k

∏
k<i≤m−1

exp

(
κ

2

1

i2

)+ 1

≤m+ 1 +
κ

2

1

m
+ exp

(
κ

2

1

m2

)κ

2

m−1∑
k=1

1

k

∏
k<i≤m−1

exp

(
κ

2

1

i2

)
≤m+ 1 +

κ

2

1

m
+

κ

2

m−1∑
k=1

1

k

∏
k<i≤m

exp

(
κ

2

1

i2

)
≤m+ 1 +

κ

2

m∑
k=1

1

k

∏
k<i≤m

exp

(
κ

2

1

i2

) .

Therefore, by mathematical induction equation (13) holds for all t = 1, 2,

Finally, since
j∑
i=1

1

i2
≤

∞∑
i=1

1

i2
=
π2

6
∀j = 1, 2, . . .

and
j∑
i=1

1

i
≤ O(log j),

we can conclude that

αt =
At
t

≤
t+ κ

2

∑t−1
k=1

1
k

∏
k<i≤t−1 exp

(
κ
2

1
i2

)
t

=
t+ κ

2

∑t−1
k=1

1
k exp

∑
k<i≤t−1

(
κ
2

1
i2

)
t

≤
t+ κ

2

∑t−1
k=1

1
k exp

κ
2
π2

6

t

≤ t+O(log t)

t
→1 (t→ ∞).

This theorem proves that the generated curve yt(x) at a fixed time t is Lipschitz with a constant that
converges to the true value with a convergence speed of O(log t/t). This theorem is interesting as it
not only guarantees that yt(x) is bi-Lipschitz through the whole iteration and converges to the desired
values but also is equipped with a non-asymptotic bound offering a concrete convergence speed and a

35

value at each iteration. The advantage of this proof is that setting the step size as ηt = 1/(µ(t+ 1))
is realistic, since in our setting we know the strong convexity constant which corresponds to 1/β. In
practice, the convergence of the bi-Lipschitz constants seems to be faster, which means that there
may exist tighter bounds but we let this investigation for future work since our goal was to just assure
a convergence with good properties.

As for the lower bound, we could not prove a similar property for GD. Nevertheless, we can guarantee
that it will not diverge to −∞ when ∥xi − xj∥ → 0 as

⟨yt(xi)− yt(xj), xi − xj⟩ ≤ −∥yt(xi)− yt(xj)∥∥xi − xj∥
and ∥yt(xi)− yt(xj)∥ was just proved to be upper-bounded by a constant. We let further theoretical
investigation for future work. Since GD shows and assures rather good performance, we will mainly
use this algorithm in this paper.

C.2.3 Analogue of Theorem 3.5 with optimal step size

An analogue of Theorem 3.5 can be shown with a different step size, i.e., η = 1/γ, where γ is
the smoothness constant of the objective function. This step size is optimal as it assures the fastest
convergence. However, in practice, it is actually useless as estimating the smoothness constant γ for
the step size is computationally demanding and during training this constant is constantly changing.
Only after training, it suffices to estimate γ once, and all forward passes can be executed with this
step size and convergence speed. The theorem is as follows:
Theorem C.7. Let the symbols defined as in Algorithm 1. Consider an optimization scheme of
supy {⟨y, x⟩ − F (y)} generating points {yt(x)}t at the t-th iterations and y∗(x) is the global
maximum. If F is µ-strongly convex and γ-smooth and we employ gradient descent with ηt = 1/γ as
a step size and y0(xi) = y0 as initial point, then for all xi, xj

∥yt+1(xi)− yt+1(xj)∥ ≤
(
1− µ

γ

)
∥yt(xi)− yt(xj)∥+ ηt∥xi − xj∥.

As a result,
∥yt+1(xi)− yt+1(xj)∥ ≤ h(t)∥xi − xj∥,

where
lim
t→∞

h(t) =
1

µ
.

Proof. Let us first prove the following inequality:

⟨∇F (y)−∇F (y′), y − y′⟩ ≥ µγ

µ+ γ
∥y − y′∥2 + 1

µ+ γ
∥∇F (y)−∇F (y′)∥2. (14)

If µ = γ, then by strong convexity of F ,

⟨∇F (y)−∇F (y′), y − y′⟩ ≥ µ∥y − y′∥2 =
µγ

µ+ γ
∥y − y′∥2 + µ2

µ+ γ
∥y − y′∥2.

However, since µ = γ, we have µ∥y − y′∥ = ∥∇F (y)−∇F (y′)∥. Thus, the above inequality leads
to

⟨∇F (y)−∇F (y′), y − y′⟩ ≥ µ∥y − y′∥2 =
µγ

µ+ γ
∥y − y′∥2 + 1

µ+ γ
∥∇F (y)−∇F (y′)∥2.

When γ > µ, since F is µ-strongly convex and γ-smooth, F (y)− µ
2 ∥y∥

2 is convex and γ−µ smooth.
This is straightforward from Definition 2 of Theorem B.2. Now, by applying Definition 4 of Theorem
B.2 to F (y)− µ

2 ∥y∥
2, we obtain

⟨∇F (y)− µy − (∇F (y′)− µy′) , y − y′⟩ ≥ 1

γ − µ
∥∇F (y)− µy − (∇F (y′)− µy′) ∥2.

By developing both sides, we arrive at

⟨∇F (y)−∇F (y′), y − y′⟩ − µ∥y − y′∥2

≥ 1

γ − µ

{
∥∇F (y)−∇F (y′)∥2 − 2µ⟨∇F (y)−∇F (y′), y − y′⟩+ µ2∥y − y′∥2

}
.

36

Rearranging the terms, we have

γ + µ

γ − µ
⟨∇F (y)−∇F (y′), y − y′⟩ ≥ µγ

γ − µ
∥y − y′∥2 + 1

γ − µ
∥∇F (y)−∇F (y′)∥2,

which leads to

⟨∇F (y)−∇F (y′), y − y′⟩ ≥ µγ

µ+ γ
∥y − y′∥2 + 1

µ+ γ
∥∇F (y)−∇F (y′)∥2.

Let us now prove the recurrence relation of the statement. Throughout the proof, we use the following
notations:

∆yt := yt(xi)− yt(xj),

∆x := xi − xj ,

∆Dt := ∇F (yt(xi))−∇F (yt(xj)).

Since
∥∆yt+1∥ = ∥∆yt − ηt∆Dt + ηt∆x∥ ≤ ∥∆yt − ηt∆Dt∥+ ηt∥∆x∥, (15)

it suffices to evaluate ∥∆yt − ηt∆Dt∥. Now,

∥∆yt − ηt∆Dt∥2 =∥∆yt∥2 − 2ηt⟨∆yt,∆Dt⟩+ η2t ∥∆Dt∥2

≤∥∆yt∥2 − 2ηt

(
µγ

µ+ γ
∥∆yt∥2 +

1

µ+ γ
∥∆Dt∥2

)
+ η2t ∥∆Dt∥2

=

(
1− 2ηtµγ

µ+ γ

)
∥∆yt∥2 + ηt

(
ηt −

2

µ+ γ

)
∥∆Dt∥2.

where we used inequality (14) for the inequality.

Since we set ηt = 1/γ,

∥∆yt − ηt∆Dt∥2 ≤
(
1− 2µ

µ+ γ

)
∥∆yt∥2 +

1

γ

(
1

γ
− 2

µ+ γ

)
∥∆Dt∥2

≤
(
1− 2µ

µ+ γ

)
∥∆yt∥2 +

1

γ

(
1

γ
− 2

µ+ γ

)
µ2∥∆yt∥2

=

(
1− µ

γ

)2

∥∆yt∥2,

where for the second inequality we used that 1
γ − 2

µ+γ ≤ 0 (µ ≤ γ) and ∥∇F (y) − ∇F (y′)∥ ≥
µ∥y − y′∥ (inverse Lipschitzness). Substituting this to equation (15), we conclude that

∥∆yt+1∥ ≤
(
1− µ

γ

)
∥∆yt∥+ ηt∥∆x∥

as µ/γ ≤ 1.

Since ∥∆y1∥ = ∥∆y0 − η0∆D0 + η0∆x∥ and the initial point was a constant independent of xi,
∥∆y1∥ = η0∥∆x∥ = 1

γ ∥∆x∥, and

∥∆yt∥ ≤ 1

γ

t−1∑
i=0

(
1− µ

γ

)i
∥∆x∥.

Finally,

lim
t→∞

∥∆yt∥ ≤ 1

γ

∞∑
i=0

(
1− µ

γ

)i
∥∆x∥ =

1/γ

1− (1− (µ/γ))
=

1

µ
∥∆x∥.

37

Figure 10: Evolution of the number of iterations needed for the gradient descent of the Legendre-
Fenchel transformation to satisfy the stopping condition during training, with two regimes for the
choice of initial points: a fixed or adaptive initial points during training on the FashionMNIST dataset
from Appendix G.6.2.

C.3 On the Choice of the Initial Point

In practice, as the iteration proceeds and θ evolves, the objective function changes. That is, the
value of argmaxy {⟨y, x⟩ − Fθ(y)} for the same training data x differs between each training epoch.
However, it is often observed that the evolution of the weights is relatively slow. This means that the
objective function does not change too much compared to the previous time. As a result, in order
to accelerate the computation, we can use the final estimation of argmaxy {⟨y, x⟩ − Fθ(y)} of the
previous epoch as the initial point of the next epoch. This may be a really simple trick, and there
could exist more involved methods, but Figure 10 illustrates that this approach is already effective.
See Appendix H for further details on the experimental setup. We also leave this research of better
approaches for future work.

D Equivalent Definitions of Smoothness under Convexity

In this Appendix, we prove Theorem B.2 by showing a more general theorem extended to dual norms.

D.1 Theorem and Proof

Dual norms are defined as follows:
Definition D.1. The dual norm of a norm ∥ · ∥ is defined as

∥y∥∗ = sup {⟨x, y⟩ | ∥x∥ = 1} .

Let us now prove the following theorem. When the norm in question is L2, its dual is also the same
and we arrive at the initial statement.
Theorem D.2. Let γ > 0, ∥ · ∥ and ∥ · ∥∗ a pair of dual norms, and F : Rl → Rt a differentiable
convex function on a convex domain. Then the following are equivalent:

D1. The following holds for any x, y ∈ domF :

∥∇F (x)−∇F (y)∥∗ ≤ γ∥x− y∥
.

D2. The following holds for any x, y ∈ domF :

⟨∇F (x)−∇F (y), x− y⟩ ≤ γ∥x− y∥2.

D3. The following holds for any x, y ∈ domF :

F (y) ≤ F (x) +∇F (x)⊤(y − x) +
γ

2
∥y − x∥2.

D4. (co-coercivity) The following holds for any x, y ∈ domF :

(∇F (x)−∇F (y))⊤(x− y) ≥ 1

γ
∥∇F (x)−∇F (y)∥2∗.

38

Proof.
D1.⇒ D2.

When x = y, the inequality trivially holds. When x ̸= y, this is straightforward by the Cauchy-
Schwarz inequality, since

⟨∇F (x)−∇F (y), x− y⟩ =∥x− y∥⟨∇F (x)−∇F (y), x− y

∥x− y∥
⟩

≤∥x− y∥ sup {⟨z,∇F (x)−∇F (y)⟩ | ∥z∥ = 1}
=∥x− y∥∥∇F (x)−∇F (y)∥∗
≤γ∥x− y∥2,

where we used D1. in the last inequality.
D2.⇒ D3.

Consider the function G(t) := F (x+ t(y − x)), which is well-defined as the domain of F is convex.
Since F is differentiable and F (y) = G(1),

F (y) =G(0) +

∫ 1

0

d

dt
G(t)dt

=G(0) +

∫ 1

0

⟨∇F (x+ t(y − x)), y − x⟩dt

=F (x) + ⟨∇F (x), y − x⟩+
∫ 1

0

⟨∇F (x+ t(y − x))−∇F (x), y − x⟩dt

≤F (x) + ⟨∇F (x), y − x⟩+
∫ 1

0

tγ∥x− y∥2dt

=F (x) + ⟨∇F (x), y − x⟩+ γ

2
∥x− y∥2,

where we used D2. for the inequality.
D3.⇒ D4.

Consider the following function:

Fx(z) := F (z)− ⟨∇F (x), z⟩,

which is a γ-smooth function. Moreover, since F is convex, x is the minimizer of Fx. Consequently,
the following PL inequality generalized to dual norms holds:

Fx(x) = inf
w
Fx(w)

≤ inf
w

{
Fx(z) + ⟨∇Fx(z), w − z⟩+ γ

2
∥w − z∥2

}
= inf

∥v∥=1
inf
t

{
Fx(z) + ⟨∇Fx(z), tv⟩+

γ

2
∥tv∥2

}
= inf

∥v∥=1
inf
t

{
Fx(z) + t⟨∇Fx(z), v⟩+

γ

2
t2
}

= inf
∥v∥=1

{
Fx(z)−

1

2γ
(⟨∇Fx(z), v⟩)2

}
=Fx(z)−

1

2γ
∥∇Fx(z)∥2∗,

where we used D3. for the inequality. Since this holds for all z, by substituting z = y, we obtain

1

2γ
∥∇F (y)−∇F (x)∥2∗ =

1

2γ
∥∇Fx(y)∥2∗ ≤ Fx(y)− Fx(x) = F (y)− F (x)− ⟨∇F (x), y − x⟩.

Since we can interchange x and y, we also have

1

2γ
∥∇F (y)−∇F (x)∥2∗ ≤ F (x)− F (y)− ⟨∇F (y), x− y⟩.

39

Summing side by side these two inequalities, we arrive at

1

γ
∥∇F (y)−∇F (x)∥2∗ ≤ ⟨∇F (x)−∇F (y), x− y⟩.

D4.⇒ D1.

When x = y, the inequality trivially holds. When x ̸= y, by Cauchy-Schwarz inequality,

1

γ
∥∇F (y)−∇F (x)∥2∗ ≤ ⟨∇F (x)−∇F (y), x− y⟩ ≤ ∥∇F (x)−∇F (y)∥∗∥x− y∥.

E Uncertainty Estimation

E.1 Background

Deep neural networks are nowadays used in many applications such as self-driving cars and large
language models. However, in the real world, they are constantly subjected to a large amount of
ambiguous scenarios, and assuring fail-safes is a top priority. One approach to realize this is to
design the agent so that it quantifies the reliability of its own outputs and behavior, while achieving
high performance. However, it is well-known that usual deep neural networks over-confidently
extrapolate to unknown data or poorly perform in uncertainty tasks. As a result, the quantification of
uncertainty has become the subject of many research, leading to Bayesian neural networks (Neal,
2012), Monte Carlo dropouts (Gal and Ghahramani, 2016) and deep ensembles (Lakshminarayanan
et al., 2017). Unfortunately, these methods quickly become computationally expensive as they require
to process multiple forward passes or to retain distribution samples over a large number of parameters.
Furthermore, such ensemble methods cannot in the essence avoid that all constitutive members make
the same mistake or place high confidence on the same out-of-distribution data.

Therefore, a line of work that concentrates on the uncertainty estimation using a single neural network
has recently started to draw attention (Liu et al., 2020a; Van Amersfoort et al., 2020). In these works,
they are interested in quantifying the uncertainty through a single forward pass and analyzing its
behavior. On their own, they can not only provide new methods with low computational cost but also
address the challenges of ensemble methods as successful individual agents can again be integrated
in those models.

Thanks to these works, some properties necessary for an accurate uncertainty quantification have been
discovered. Notably, bi-Lipschitzness is an indispensable inductive bias. Intuitively, bi-Lipschitzness
guarantees the neural network to be distance aware, i.e., distance is moderately preserved between the
input and the feature space, resulting in correct detection of out-of-distribution points. Without this
property, it is known that the problem of feature collapse occurs, which refers to the phenomenon that
out-of-distribution and in-distribution points overlap in the feature space, making out-of-distribution
detection impossible in principle (Van Amersfoort et al., 2020).

E.2 DUQ

We will focus on a recent model proposed by Van Amersfoort et al. (2020) as it is a model that has
been shown to perform as well as deep ensemble methods that are the state-of-the-art in this area. It
also performs well on the FashionMNIST dataset.

Their model is called Deep Uncertainty Quantification (DUQ) and is mainly used for classification
tasks. The idea is to create a class c represented by a centroid ec and to calculate the distance Kc

between a data point and all centroids. The data will be classified as the label of the closest centroid to
that point. They draw inspiration from the radial basis function kernel. The mathematical formulation
of Kc is as follows:

Kc(fθ(x), ec) = exp

{
−

1
n∥Wcfθ(x)− ec∥22

2σ2

}
,

where fθ is a general neural network also called feature extractor, Wc is a weight matrix, and σ is a
hyper parameter called length scale.

40

The loss function is the sum of the binary cross entropy over all classes. During the training, the
centroids are updated by the following rule:

Nc,t =γNc,t−1 + (1− γ)nc,t,

mc,t =γmc,t−1 + (1− γ)σiWcfθ(xc,t,i),

ec,t =mc,t/Nc,t,

where nc,t is the number of data points assigned to class c, xc,t,i is the i-th element of the minibatch
corresponding to class c, and γ is a hyper parameter (van den Oord et al., 2017).

Bi-Lipschitzness was incorporated through a gradient penalty term as follows:

λ

{
∥∇x

∑
c

Kc∥2 − 1

}
.

The discussion about this regularization can be found in Section 2. By deleting this regularization
term, and replacing the neural network fθ by our bi-Lipschitz neural network, we obtain a model
called here DUQ+BLNN.

F Extensions

F.1 Extension 1: Different Input and Output Dimensions

With only one BLNN, we can only provide an output that has the same dimension as the input. This
is a common problem in bi-Lipschitz models. In this extension, we provide an architecture that
extends to a more realistic case with different input and output dimensions. While we will lose many
theoretical guarantees we have provided so far, some will be retained. Furthermore, throughout this
paper, we will show that this method works well in practice.

The idea follows Wang et al. (2021) and Kinoshita et al. (2023). Let f∗1 (·; θ1) and f∗2 (·; θ2) be two
BLNN with input (and output) dimension d1 and d2, respectively. By composing them as

f∗2 (Df
∗
1 (·; θ1); θ2), (16)

where D is a d2 × d1 matrix with all diagonal components to 1, we obtain a function with input
dimension d1 and output dimension d2. Note that if d1 ≤ d2 then the whole bi-Lipschitz property is
preserved.

On the other hand, if d1 ≥ d2 then the Lipschitzness remains at least. Nevertheless, this parameteri-
zation (16) can represent any bi-Lipschitz function l : Rd1 → Rd2 with d1 ≥ d2. It suffices to set f∗2
as the identity map and consider the extension l̃ : Rd1 → Rd1 whose image coincides with that of l
in the Rd2-dimensional subspace. This remains bi-Lipschitz like l. Therefore, this representation is
reasonable to some extent.

The gradient computation can also be explicitly formulated as follows:
Theorem F.1. Suppose a model with loss included

L := L(f∗2 (Df
∗
1 (h(d;ϕ); θ1); θ2), h(d;ϕ);ψ),

where f∗1 := ∇F ∗
1 (x1; θ1) + α1x1 and f∗2 := ∇F ∗

2 (x2; θ2) + α2x2 are two C2 BLNN defined in
Algorithm 1 with input dimensions d1 and d2, respectively. D is a d2 × d1 diagonal matrix with all
diagonal elements set to 1. If F and F ∗ are both differentiable, then the gradients with respect to
each parameter can be expressed as follows:

∇⊤
θ1L =−∇⊤

z LΞ2D
{
∇2
yF1(y

∗
1(x; θ1); θ1)

}−1
∂⊤θ1∇yF1(y

∗
1(x; θ1); θ1),

∇⊤
θ2L =−∇⊤

z L(z, x;ψ)
{
∇2
yF2(y

∗
2(w; θ2); θ2)

}−1
∂⊤θ2∇yF2(y

∗
2(w; θ2); θ2),

∇ϕL =∇⊤
z L(z, x;ψ)Ξ2DΞ1∇ϕh(d;ϕ) +∇⊤

x L(z, x;ψ)∇⊤
ϕ h(d;ϕ),

∇⊤
ψL =∇⊤

ψL(z, x;ψ),

where Ξ1 :=
{
∇2
yF1(y

∗
1(x; θ1); θ1)

}−1
+ α1I , Ξ2 :=

{
∇2
yF2(y

∗
2(w; θ2); θ2)

}−1
+ α2I , z :=

f∗2 (Df
∗
1 (h(d;ϕ); θ1); θ2), w := Df∗1 (h(d;ϕ); θ1) and x := h(d;ϕ).

41

F.2 Extension 2: Non-Homogeneous Functions

As pointed out by Jin and Lavaei (2020), in some cases, we may have knowledge of specific
physical constraints or requirements to design a non-homogeneous control of the sensitivity like in
physics-informed neural networks (Raissi et al., 2019). However, the current model imposes the same
bi-Lipschitz constraint for each dimension. In the linear case, this corresponds to bounding all the
eigenvalues of the matrix with the same constants from above and below respectively. For example,
consider the following function:

f(x1, x2) = (2x1, 100x2).

If we can only choose 1 parameter for Lipschitzness, then it would be 100. However, this ignores the
non-homogeneity of each dimension and their sparseness. In the above example, the Lipschitzness
with respect to x1 is only 2. Therefore, we would like to be able to control the bi-Lipschitzness of the
function with respect to each dimension of the input.

This can be executed by introducing a diagonal matrix A and B instead of α and β in our model. That
is, instead of adding α∥x∥2/2 and ∥y∥2/(2β) (see Algorithm 1), we add x⊤A2x/2 and y⊤B−2y/2,
respectively, which makes possible a more flexible control of the sensitivity of the overall function.
The drawback is that we obtain more parameters to tune, but this can be avoided by designing these
matrices as parameters to learn throughout the training too.

In the same idea, it may also be interesting to impose the convexity requirement on a limited number
of variables. The Legendre-Fenchel transformation is then executed on those variables solely. As a
result, we obtain partially bi-Lipschitz functions. This idea of incomplete convexity can be realized
by the partially input convex neural network (PICNN) proposed by Amos et al. (2017). A PICNN
f(x, y; θ), convex only with respect to y with L layers, can be formulated as follows:

ui+1 =g̃i

(
W̃iui + b̃i

)
,

zi+1 =gi

(
W

(z)
i

(
zi ⊙ [W

(zu)
i ui + b

(z)
i]+

)
+W

(y)
i

(
y ⊙

(
W

(yu)
i ui + b

(y)
i

))
+W

(u)
i ui + bi

)
(i = 0, . . . , L− 1),

f(x, y; θ) =zL, u0 = x,

where ⊙ denotes the Hadamar product, only W (z)
i are non-negative, gi are convex non-decreasing

and W (z)
0 = 0.

F.3 Extension 3: General Norms

In this paper, we mainly discussed notions of Lispchitzness, inverse Lispchitzness, strong convexity
and smoothness in terms of the L2-norm. However, in some cases, it may be more interesting to
work in other norms such as the L∞ norms (Zhang et al., 2022). In this extension, we briefly discuss
how other norms can be introduced in our theoretical framework and its advantages. The previous
extension can be regarded as such an example where the L2 norm was changed to a weighted L2

norm. Here, we treat the more general case. In this section, ∥ · ∥ will denote a general norm.

The dual norm can be defined as follows.
Definition F.2. Let ∥ · ∥ be a norm. Its dual ∥ · ∥∗ is defined as follows:

∥y∥∗ := sup {⟨x, y⟩ | ∥x∥ = 1}

For example, the dual of the Lp-norm for any p ≥ 1 is the Lq-norm such that 1/p + 1/q = 1.
Definitions of strong convexity and smoothness are accordingly modified as follows:
Definition F.3. Let µ > 0. F : Rm → R is µ-strongly convex with respect to a norm ∥ · ∥ if for all
t ∈ [0, 1]

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− µ

2
t(1− t)∥x− y∥2.

Definition F.4. Let γ > 0. F : Rm → R is γ-smooth with respect to a norm ∥ ·∥ if F is differentiable
and

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ γ

2
∥x− y∥2.

42

Then, the following theorem holds:
Theorem F.5 (Shalev-Shwartz and Singer (2010), Lemma 18). If F is a closed and µ-strongly convex
function with respect to a norm ∥ · ∥, then its Legendre-Fenchel transformation F ∗ is 1/µ-smooth
with respect to the dual norm ∥ · ∥∗.

Following Theorem D.2, the Legendre-Fenchel transformation of a closed and α-strongly convex
function with respect to a norm ∥ · ∥ satisfies:

∥∇F ∗(x)−∇F ∗(y)∥ ≤ β∥x− y∥∗. (17)

This means that by taking the derivative, we obtain a monotone Lipschitz function with respect to the
dual norm. If ∥ · ∥ = ∥ · ∥1, then ∥ · ∥∗ = ∥ · ∥∞ and we arrive at a Lipschitzness in terms of the L∞
norm which is preferred in some situations (Zhang et al., 2022). We can thus create convex smooth
functions with a relatively wide choice on the norm.

In many applications, since all norms are equivalent in a finite dimensional vector space, it may not
be interesting to be able to deal with different norms. 3 In other words, controlling the sensitivity of a
function f in terms of a norm ∥ · ∥ can be executed simply through the calculation of the L2-norm as

C1∥x− y∥ ≤ ∥x− y∥2 ≤ C2∥x− y∥.

where C1 and C2 are constant independent of x. However, it turns out that usually C1 and C2 are
dependent on the dimension. For example, between the Lp and Lq norms where p ≥ q, the following
holds:

∥x∥p ≤ ∥x∥q ≤ n1/q−1/p∥x∥p.
As a result, in high dimensional spaces, the equivalence of norms may become impractical as we will
need to deal with extremely large or small values when translating the requirements into L2 norm,
making the training unstable. The main advantage of our approach is that we can avoid this as we can
directly characterize the function in any desired norm without any dependency on the dimension.

On the other hand, the control of the lower bound (inverse Lipschitzness) becomes more difficult.
Indeed, when p = 1 or p > 2, the Lp norm is not strongly convex with respect to its own norm (Acu
et al., 2023). As a result, we cannot similarly proceed like our approach for the L2 norm and introduce
the generalized inverse Lipschitzness.

Note that adding the squared norm α∥x∥22/2 to a function F ∗ satisfying equation (17), will lead for
the lower bound to

α∥x− y∥22 ≤ ⟨∇(F ∗(x) + α∥x∥2/2)−∇(F ∗(y) + α∥y∥2/2), x− y⟩

but for the upper bound to

⟨∇(F ∗(x) + α∥x∥2/2)−∇(F ∗(y) + α∥y∥2/2), x− y⟩ ≤β∥x− y∥2 + α∥x− y∥22
≤(C2α+ β)∥x− y∥2,

where the constant C2 of the left hand side is highly dependent on the dimension. In high dimension,
this may attenuate the importance of β, making control of the Lipschitzness difficult and unclear in
practice.

The above discussion is rather theoretical. We let concrete applications, as well as deeper investiga-
tions for future work. However, this may be a promising avenue since we can use other norms and
the dependency on the dimension is completely dropped.

F.4 Extension 4: Improved Expressive Power through Superposition and Combination

Superposition As mentioned in the main paper, while the expressive power of our bi-Lipschitz unit
is constrained to α+β-Lipschitz, α-strongly monotone functions which are themselves the derivative
of a real-valued function, this can be alleviated by superposing several BLNNs. For example, we have
tested to fit the sign function, and the composition of 5 BLNNs could achieve an accuracy around 0.

3Any two norms ∥ · ∥(1) and ∥ · ∥(2) on a finite dimensional space X over C are equivalent. That is, there
exist constants C1 and C2 so that for all x ∈ X , C1∥x∥(1) ≤ ∥x∥(2) ≤ C2∥x∥(1).

43

Table 4: Out-of-distribution detection task of CIFAR10 vs SVHN with DUQ and BLNNconv.
Models Accuracy Loss AUROC SVHN

DUQ 0.929 0.04 0.83
BLNNconv then DUQ 0.930 0.04 0.89

Combination Another solution to improve the expressive power of our BLNN is to combine it
with other architectures. While there may be various approaches, our model could be used as a
pre-processing module for difficult tasks since the BLNN is by definition bi-Lipschitz which means
that the geometric properties of the input data is relatively preserved in the output as well. Therefore,
for some problems, we could implement a model where we first process the data through a BLNN and
then transfer it to other networks. For example, we conducted an experiment using the convolutional
version of BLNN (BLNNconv) on the problem of uncertainty estimation (as in Subsection 4.2)
with the CIFAR-10 vs. SVHN dataset to illustrate the scalability of our method (Van Amersfoort
et al., 2020). For this problem, we implemented the model so that we first process the data through
BLNNconv and then transfer it to the DUQ. The result compared to DUQ can be found in Table 4. Our
model is not only scalable to large-scale networks but also improves out-of-detection performance
(the AUROC of SVHN). Using BLNNconv instead of the fully connected BLNN also improved the
computation time (e.g., 2.5 times faster for the 5 first iterations).

F.5 A Simpler Architecture

In this work, the Legendre-Fenchel transformation was used in order to provide a direct and single
parameterization of the Lipschitzness in contrast to prior methods that controlled it on a layer-wise
basis. At the expense of losing this benefit, it is also possible to characterize Lipschitzness at each
layer. This may be more practical and faster to apply in some contexts. In this case, we will have to
control the spectral norm of all the weights. Since we calculate the derivative, the relation between
the overall Lipschitz constant and that of each layer is complex though. We provide it in the following
proposition as reference.

Proposition F.6. Define the ICNN Gθ as follows

zi+1 = gi(W
(z)
i zi +W

(y)
i y + bi) (i = 0, . . . , k − 1),

Gθ(y) = zk,

where gi is a 1-Lipschitz function, with bounded and Lipschitz derivative. Then the Lipschitz constant
of ∇Gθ can be obtained by solving the following set of inequalities, where αk is the Lipschitz
constant:

α1 =Lip(∇g1)∥W (y)
1 ∥22

β1 =∥W (y)
1 ∥2

αi+1 ≤∥∇gi∥∞∥∥W (z)
i ∥2αi

+
{
Lip(∇gi)∥W (z)

i ∥22βi + 2Lip(∇gi)∥W (y)
i ∥2∥W (z)

i ∥2
}
βi

+ Lip(∇gi)∥W (y)
i ∥22

βi+1 ≤∥W (z)
i ∥2βi + ∥W (y)

i ∥2 (i = 1, . . . , k − 1).

Proof. Let us denote, zi(y) the i-th layer of the ICNN with input y. By construction,

∥∇yzi+1(y1)−∇yzi+1(y2)∥

=
∥∥∥∇gi (W (z)

i zi(y1) +W
(y)
i y1 + bi

)(
W

(z)
i ∇yzi(y1) +W

(y)
i

)
−∇gi

(
W

(z)
i zi(y2) +W

(y)
i y2 + bi

)(
W

(z)
i ∇yzi(y2) +W

(y)
i

)∥∥∥ .
44

By defining hi(y) := ∇gi
(
W

(z)
i zi(y) +W

(y)
i y + bi

)
, we can further develop as follows:

∥∇yzi+1(y1)−∇yzi+1(y2)∥ ≤
∥∥∥hi(y1)W (z)

i ∇yzi(y1)− hi(y2)W
(z)
i ∇yzi(y2)

∥∥∥
+

∥∥∥hi(y1)W (y)
i − hi(y2)W

(y)
i

∥∥∥ .
The second term of the right hand side becomes:

∥hi(y1) W (y)
i − hi(y2)W

(y)
i

∥∥∥
≤Lip(∇gi)

∥∥∥W (z)
i zi(y1) +W

(y)
i y1 + bi −

(
W

(z)
i zi(y2) +W

(y)
i y2 + bi

)∥∥∥ ∥W (y)
i ∥

≤Lip(∇gi)∥W (y)
i ∥

(
∥W (z)

i ∥∥zi(y1)− zi(y2)∥+ ∥W (y)
i ∥∥y1 − y2∥

)
.

As for the first term,

∥hi(y1)W (z)
i ∇yzi(y1)− hi(y2)W

(z)
i ∇yzi(y2)

∥∥∥
=
∥∥∥hi(y1)W (z)

i ∇yzi(y1)− hi(y2)W
(z)
i ∇yzi(y1)

+hi(y2)W
(z)
i ∇yzi(y1)− hi(y2)W

(z)
i ∇yzi(y2)

∥∥∥
∥hi(y1)− hi(y2)∥∥W (z)

i ∥∥∇yzi∥+ ∥∇gi∥∞∥W (z)
i ∥∥∇yzi(y1)−∇yzi(y2)∥

≤Lip(∇gi)
(
∥W (z)

i ∥∥zi(y1)− zi(y2)∥+ ∥W (y)
i ∥∥y1 − y2∥

)
∥W (z)

i ∥∥∇yzi∥

+ ∥∇gi∥∞∥W (z)
i ∥∥∇yzi(y1)−∇yzi(y2)∥,

where in the last inequality we used the definition of hi(y).

On the other hand, we have

∥∇yzi∥ ≤ ∥W (z)
i−1∥∥∇yzi∥+ ∥W (y)

i−1∥.

By replacing ∥∇yzi∥ by βi, we obtain

βi ≤ ∥W (z)
i−1∥βi−1 + ∥W (y)

i−1∥.

Since zi(y) is differentiable,

∥zi(y1)− zi(y2)∥ ≤ βi.

Finally, by setting αi := ∥∇yzi+1(y1)−∇yzi+1(y2)∥/∥y1 − y2∥ and substituting the results into
the first inequality, we obtain the desired result.

Remark F.7. Note that in the above theorem gi has to be not only convex non-decreasing but also
1-Lipschitz with bounded and Lipschitz derivative. The layer-wise formulation requires thus further
conditions on gi that were unnecessary in the BLNN (Algorithm 1). This means that our original
model has more freedom and flexibility than the above simple approach.

G Additional Experiments

See Appendix H for further details on the setup of each experiment.

G.1 Simple Estimation of Bi-Lipschitz Constants at Initialization

First of all, we verify that BLNN behaves as expected with different values of α and β. We set all gi
as ReLU or softplus functions. The Legendre-Fenchel transformation step is executed with GD (since
it is simple and has good theoretical guarantees) until 1000 iterations are reached or the stopping
condition, i.e., ∥∇y (⟨y, x⟩ − F (y)) ∥ < 10−3, is satisfied. The BLNN has input dimension 2, and α
is set to 4 as varying it does not severely impact the fundamental quality of the theoretical bounds.

45

Figure 11: Estimated Lipschitz and inverse Lipschitz constants of BLNN with gradient descent with
softplus activation functions. The left figure is with 3 hidden layers and the right with 10. The x axis
corresponds to j with β = 0.05 + 99.95 · j/100.

Figure 12: Estimated Lipschitz and inverse Lipschitz constants of BLNN with gradient descent with
ReLU activation functions. The left figure is with 3 hidden layers and the right with 10. The x axis
corresponds to j with β = 0.05 + 99.95 · j/100

On the other hand, β was changed following the sequence {0.05 + 99.95 · j/100}100j=0. See Figures
11 and 12 for results.

As we can observe, our model combined with gradient descent can generate functions with bi-
Lipschitz constants that are inside the predefined bounds as expected for both softplus and ReLU
activation functions. That is why, it seems reasonable to use the simple gradient descent in order to
execute the Legendre-Fenchel transformation.

Theoretically, since the initialization of weights are executed at random, the Lipschitz and inverse
Lipschitz constants can be any value between α and α + β. Curiously though, the estimated
Lipschitzness is close to the upper bound for almost every model. Note that we are generating
the network and then directly estimating the bi-Lipschitz constants, which means this phenomenon
is possibly closely related to the initialization of weights. To better understand this phenomenon,
consider the linear network x 7→ Wx where W ∈ Rn×n. In our architecture, this can be regarded
as a simplification of ∇Fθ, where Fθ is the core ICNN. If we add x/β to this network and compute
the inverse operation, corresponding to ∇F ∗

θ , we obtain y 7→ (W + I/β)−1y. By letting σmin the
smallest singular value of W , the Lipschitz constant becomes (σmin + 1/β)−1. As a result, if the
initialization provides a W with small σmin close to 0, we inevitably obtain a function with Lipschitz
constant close to the upper bound β, independently of the distribution of the other eigenvalues.
This seems to happen in Figures 11 and 12. In other words, the construction employing the default
initialization is biased, or more concretely, the derivative of an ICNN Fθ with initialized weights
is with high probability ϵ-inverse Lipschitz with ϵ << 1. This is supported by Figure 13 which
calculated the bi-Lipschitz constants of a (4, 60)-BLNN initialized over 100 different trials. While
the inverse Lipschitz constant is moderately distributed, the Lipschitz constant is concentrated on the
theoretical maximum, i.e., 64.

We also modified the initialization procedure of the non-negative weights W (z)
i to confirm our

hypothesis. The default approach was to draw each element from a uniform distribution proposed
by Glorot and Bengio (2010) and clamp all negative elements to 0. Figure 14 replaces this to a
uniform distribution on an interval of [0, 1], and Figure 15 to [1.0, 1.1].

46

Figure 13: Histograms of Lipschitz and inverse Lipschitz constants of 100 (4, 60)-BLNNs with non-
negative weights W (z)

i initialized following the uniform distribution of Glorot and Bengio (2010).
Negative elements were clamped to 0.

Figure 14: Histograms of Lipschitz and inverse Lipschitz constants of 100 (4, 60)-BLNNs with
non-negative weights W (z)

i initialized following a uniform distribution over [0, 1.0].

Figure 15: Histograms of Lipschitz and inverse Lipschitz constants of 100 (4, 60)-BLNNs with
non-negative weights W (z)

i initialized following a uniform distribution over [1.0, 1.1].

As we can conclude, the choice of the initialization impacts the distribution of the starting bi-Lipschitz
constants for a (α, β)-BLNN while theoretically any values are possible. In the default setting, we
have a strong bias for the Lipschitz constant. Nevertheless, the fact that the bi-Lipschitz constants are
close to the bounds can be regarded as the representation of a function with rich features. For example,
if a matrix has the greatest eigenvalue and the smallest eigenvalue close to the limits, it implies that
the other eigenvalues can assume any values in-between, allowing for considerable flexibility. This is
a direct consequence of our meticulous construction of bi-Lipschitz neural networks respecting the
desired constraints using convex neural networks and Legendre-Fenchel transformation.

The adequate initialization of the weights of an ICNN in order to obtain BLNNs with a richer
distribution of bi-Lipschitz constants is a whole new problem and outside the scope of our work.
We will not investigate further but it seems to be an interesting research topic since an appropriate
initialization may facilitate training. In this paper, we used the original setup.

47

Table 5: Tightness of Lipschitz bound with different methods. Each model was built with an upper-
bound constraint on the Lipschitzness L, and the true Lipschitzness of the model after training was
evaluated. The percentage between this value and L is reported in the table, with a mean and standard
deviation over five different seeds.

Models
(Nbr. of param.) L = 2 L = 5 L = 10 L = 50

SN (4.3K) 96.8%±1.3 80.1%±5.0 68.9 %±5.4 32.5%±5.8
AOL (4.3K) 96.2%±0.7 65.9%±4.7 46.5%±4.4 15.4%±2.8
Orthogonal (4.3K) 98.7%±0.4 75.1%±12.0 48.9%±11.7 14.6%±3.7
SLL (4.2K) 97.5 %±0.4 77.6%±6.5 50.0%±8.5 15.7%±6.5
Sandwich (4.5K) 97.5%±0.7 84.3%±2.0 60.2%±4.1 16.4%±3.6
LMN (4.4K) 100.0%±0.0 100.0%±0.0 98.5%±0.3 26.0%±3.6
BiLipNet (5.0K) 100.0%± 0.0 98.0%±0.8 58.9%±3.6 6.8%±0.6
Ours (4.3K) 100.2%±0.3 100.0%±0.0 99.4%±1.2 99.9%±0.1

G.2 Tightness of the Bounds: Underestimation Case

This subsection provides additional results of experiment 4.1 of the main paper. As a reminder, this
experiment verifies the tightness of the proposed architecture by fitting the following function that
has a discontinuity at the point x = 0:

f(x) =

{
x (x ≤ 0)
x+ 1 (x > 0)

Therefore, when constraining the Lipschitzness of the model by a positive finite L, a model with
tight Lipschitz bounds should achieve that upper bound around x = 0 in order to reproduce the
behavior of f . We compare our model with other Lipschitz constrained architectures that were
introduced in Appendix A. We take as comparison the spectral normalization (SN) (Miyato et al.,
2018), AOL (Prach and Lampert, 2022), Orthogonal (Trockman and Kolter, 2021), SLL (Araujo
et al., 2023) and Sandwich (Wang and Manchester, 2023). They can all regulate the Lipschitzness by
an upper bound, but it is executed on a layer-wise basis.

Models are built so that L is set to 2, 5, 10 and 50. For the compared prior works, this is realized
by making all layers 1-Lipschitz, and scaling the input by L, which is the strategy often employed
in practice. After learning was completed, the empirical Lipschitz constant was computed. The
percentage between the empirical Lipschitz constant and the true upper bound L can be found in
Table 5. In order to be able to legitimately compare results, the number of parameters for each model
were all of the same order. The difference in tightness is even clearer when setting the upper bound
to 50 and plotting the result as shown in Figure 16. Only our method can capture the presence of a
discontinuous jump around 0. We can conclude that our method clearly achieves the tightest bound
for Lipschitzness as well as the most coherent fit of the function.

G.3 Flexibility of the Model: Overestimation Case

This subsection provides additional results of experiment 4.1 of the main paper. As a reminder, this
experiment verifies the flexibility of our model. While we already provided a theoretical guarantee of
the expressive power of our model, it is important to show that it can learn without problem functions
with smaller Lipschitz and larger inverse Lipschitz constants than those we set as parameters. At the
same time, this addresses one concern of the previous experiment since the tightness of our model may
be interpreted as a result of the strong influence the regularization terms we add, effectively generating
only α + β-Lipschitz functions. Therefore, we lead this experiment, where we overestimated the
Lipschitz constant of the target function. The Lipschitz constant was set to 50 but the function we
want to learn is a linear function with slope 1. Experimental setting was the same as the previous
subsection. Results are shown in Figures 17 and 18.

Our model can without any problem fit the curve y = 50x and y = x even in the overestimation
scenario. Interestingly, this is not the case for prior work. On the one hand, SN and AOL cannot learn
the linear function with slope 50. On the other hand, others cannot learn the simple identity function
even after convergence. While the overall trend is along y = x, we can observe small fluctuations.

48

(a) SLL

(b) Sandwich

(c) Ours

Figure 16: Results of fitting the curve with SLL (first row), Sandwich (second row) and our method
(third row) with a specified Lispchitzness of 50. The right column is a zoom of the right figure.

This may be due to the large scaling factor L we multiply at the input, leading to overfitting or
interpolation which usually depends on the smoothness. That is, with high Lipschitzness, the function
is likely to dynamically fluctuate around unseen points during training.

In order to examine the influence of this scaling factor on the training we run the experiment again
with even larger L, namely, 100 and 1000. The evolution of the loss and the fitted function for
L = 1000 can be found in Figures 19 and 20, respectively. As we can observe, only our method
is hardly affected by the size of L and achieves a good generalization performance. While we
do not have a rigorous mathematical explanation for this phenomenon, we believe our approach
provides a better regularization than the previous methods. In other words, these layer-wise methods
seem to provide a loss landscape that has many spurious minima where the function is driven. This
phenomenon is aggravated with higher L. The difference in the smooth decrease of the loss function
also supports this. The presence of these fluctuations due to the large scaling factor is thought to be
related with the way we incorporated L into the model. For previous work, we had no choice but

49

(a) SN

(b) AOL

(c) Orthogonal

Figure 17: Results of fitting a linear function (y = 50x for left column and y = x for right column)
with SN (first row), AOL (second row) and Orthogonal (third row) with a specified Lipschitzness of
50.

to scale the function by multiplying with L. However, our method is adding a regularization term
without touching the core function. This is an interesting avenue for future research.

In short, our model can perfectly learn both the function with slope 50 and 1 even though we greatly
overestimated the Lipschitz constant.

G.4 Summary of the Two Previous Experiments

This experiment summarizes the two previous experiments. We propose to run a regression task of the
function y = 50x with SN (representing the layer-wise methods) and our model, where the Lipschitz
bound L is changed from 25 to 125. If the model provides tight bounds and perfect expressive
power, then the loss should equal 0 for L ≥ 50 as theoretically y = 50x can be reconstructed, and
should increase once L becomes smaller than 50 as the maximal slope we can reproduce is limited

50

(a) SLL

(b) Sandwich

(c) Ours

Figure 18: Results of fitting a linear function (y = 50x for left column and y = x for right column)
with SLL (first), Sandwich (second row) and our method (third row) with a specified Lipschitzness of
50.

to L. Moreover, we expect that the optimization should proceed faster when L is near 50 as the
initialization of the function should also be close to y = 50x. Results are shown in Figure 21.

As we can observe, SN, a layer-wise model known to provide conservative bounds, only achieves a 0
loss from around L = 100, while ours exactly exhibits an increase of the loss from L = 50. This
clearly shows that a layer-wise model has an expressive power that is largely lower than expected
in the initial works. Notably, the convergence speed drastically decreases around L = 50 for our
approach. This suggests choosing bi-Lipschitz constants as tight as possible tailored to the specific
problem to ensure faster convergence.

Interestingly, this difference of behavior around the true Lipschitz constant of our model could
provide a new method to estimate the bi-Lipschitz constants. Indeed, by starting with a high Lipschitz
constant α+ β and decreasing it, we can find the largest point where the loss starts to increase. This
value can become a good estimation of the Lipschitzness of the true function. We can similarly
proceed for inverse Lipschitzness. We leave further investigation for future work.

51

(a) AOL (b) Sandwich

(c) Ours

Figure 19: The evolution of the loss with different upper bound constraints on the Lipschitz constant
with AOL (top left), Sandwich (top right) and our method (bottom).

G.5 Better Control for Annealing

Since our model provide tight bounds and good regularization performance as shown in the precedent
experiments, the annealing of its parameters could be effective in some suitable settings. Let us
consider the case where we want to learn the exponential function. It is not Lipschitz in general
since its slope is monotonically diverging to ∞ as x → ∞ and not inverse Lipschitz either since
ex → 0 as x → −∞. We will start by a low Lipschitz parameter of the model and increase it by
evaluating its effective Lipschitzness during training. The annealing will proceed in an elastic way. If
the estimation is close to the upper bound then we will relax the bound since it means that our bound
is too strong. That way, if we have a tight bound, the annealing process should progress faster and the
overall function should rapidly converge to exp(x). The inverse Lipschitz constant is set to 0 and
kept fixed. We compared our model with the Sandwich model. See Figure 22. We can verify that the
annealing process is faster than the layer-wise model. Ours constantly wants to increase the Lipschitz
constant while the Sandwich layer abandons at some point and cannot keep up the increase of the
Lipschitzness.

G.6 Uncertainty Estimation

G.6.1 Two Moons

This subsection provides additional results of experiment 4.2 of the main paper. As a reminder, we
compare the uncertainty when learning the two moons dataset with not only DUQ and DUQ+BLNN
but also the Deep Ensembles method and a DUQ with no bi-Lipschitz regularization. Results are
plotted in Figure 23. Uncertainty is calculated as the distance to the closest centroid (see Appendix E
for the mathematical formulation). Blue indicates high uncertainty, and yellow low uncertainty.

As mentioned in the main paper, DUQ+BLNN achieves a tighter bound which is possible because we
are able to tune the bi-Lipschitz constant unlike DUQ. The experimental setup for DUQ was chosen
like the original paper (Van Amersfoort et al., 2020).

52

(a) AOL (b) Sandwich

(c) Ours

Figure 20: Results of fitting the linear function y = x with AOL (top left), Sandwich (top right) and
our method (bottom) with a specified Lipschitzness of 1000.

Table 6: Uncertainty quantification of two moons dataset with DUQ+BLNN with different α and β.
Mean and standard deviation over five different seeds.
α\β 0.1 1.0 2.0 3.0 4.0 5.0

0.0 0.716±.111 0.874±.006 0.904±.045 0.990±.002 0.972±.043 0.957±.048
1.0 0.879±.004 0.991±.002 0.994±.004 0.992±.004 0.895±.195 0.993±.007
2.0 0.878±.006 0.990±.003 0.993±.004 0.936±.087 0.995±.003 0.518±.047
5.0 0.503±.006 0.500±.000 0.541±.080 0.503±.004 0.501±.002 0.503±.004

Table 6 provides details on the accuracy of the learned model with different α and β, used for the
grid search. As for the accuracy, the value of α does not matter as long as β is chosen large enough.
Indeed, a BLNN with (α, β) = (0.0, 3.0) theoretically includes that with (α, β) = (1.0, 2.0). That is
why they exhibit similar performance. Nevertheless, a too loose setting of these parameters, especially
for β, still seems to affect the training, and a as tight as possible choice is beneficial as we can see for
(α, β) = (2.0, 5.0). In a sense, decreasing β which is mainly in charge of the Lipschitz constant helps
better generalization as pointed out in prior work as well (Bartlett et al., 2017). In the same direction,
a too large value of α leads to a nonsensical result as we can understand when α = 5. In this case, the
model is randomly guessing which means that it is unsure everywhere. This is also translated in the
uncertainty estimation as shown in Figure 24. The area where the model is unsure increases as α is
increased, meaning that it becomes more sensitive to unknown data (see Figure 25). Comparatively,
setting α = 0 does not affect so much since the injectivity constraint is already beneficial in this type
of task. Finally, a too low value of β means that the inverse Lipschitz and Lipschitz constants are close
to each other and the function behaves more like a linear function. Consequently, learning becomes
difficult as we can conclude from the table with β = 0.1. Similar trends could be also observed in
more complex tasks such as FashionMNIST vs MNIST and FashionMNIST vs NotMNIST.

53

(a) SN

(b) Ours

Figure 21: Results of fitting the linear function y = 50x with different L for SN and our model. The
left figure is the loss in function of L, and the right figure is the first iteration that the loss was below
0.5 for each L (if there is no point, it means that a loss below 0.5 was never reached for this value of
L). The red line emphasizes the point of L = 50.

Table 7: Out-of-distribution detection task with down-sampled data. FashionMNIST vs MNIST and
FashionMNIST vs NotMNIST dataset with DUQ and DUQ+BLNN. For the BLNN, α = 0.2 and
β = 0.4. Mean and standard deviation over five trials.

Model Accuracy BCE (loss function) AUROC
MNIST

AUROC
NotMNIST

DUQ 0.8564±.0066 0.078±.004 0.870±.040 0.852±.010
DUQ+BLNN 0.8595±.0032 0.078±.004 0.876±.008 0.960±.009

G.6.2 FashionMNIST

This subsection provides additional results of experiment 4.2 of the main paper. In this experiment,
we use real world data of FashionMNIST (Xiao et al., 2017), MNIST (LeCun and Cortes, 2010) and
NotMNIST (Bulatov, 2011). The task is to learn to classify FashionMNIST but at the same time to
detect out-of-distribution points from MNIST and NotMNIST. This task to distinguish FashionMNIST
from MNIST datasets is known to be a complicated task (Van Amersfoort et al., 2020). We compute
the AUROC for the detection performance. Results for a downsampled dataset and full size dataset
are shown in Table 7 and 8, respectively. A visualization of the ROC curve can be found in Figures 26
and 27.

54

(a) Sandwich

(b) Ours

Figure 22: Results of fitting y = exp(x) with Sandwich (top row) and our method (bottom row).
The right figures are the evolution of the upper bound and the estimated Lipschitz constant over the
iteration, and the left column the learned function. The x-axis of the right pictures represents the
iteration number.

Table 8: Out-of-distribution detection task with full size data. FashionMNIST vs MNIST and
FashionMNIST vs NotMNIST dataset with DUQ and DUQ+BLNN. For the BLNN, α = 0 and
β = 3.0. Mean and standard deviation over five trials.

Model Accuracy BCE (loss function) AUROC
MNIST

AUROC
NotMNIST

DUQ 0.8893±.0037 0.064±.005 0.862±.035 0.900±.024
DUQ+BLNN 0.8985±.0040 0.060±.000 0.896±.008 0.964±.005

(a) FashionMNIST vs MNIST (b) FashionMNIST vs NotMNIST

Figure 26: ROC between dwonsampled FashionMNIST vs MNIST (left) and FashionMNIST vs
NotMNIST (right).

55

(a) Deep ensemble (b) DUQ no reg.

(c) DUQ (d) DUQ+BLNN

Figure 23: Uncertainty estimation with the two moons data set. Left figure is with a simple neural
network without any constraints, and the right is with our model constraining bi-Lipschitzness.

Figure 24: Uncertainty quantification of two moons dataset with DUQ+BLNN with a high α. α = 5.0
and β = 3.0. We do not show the points so that the highly certain area is visible.

(a) FashionMNIST vs MNIST (b) FashionMNIST vs NotMNIST

Figure 27: ROC between full size FashionMNIST vs MNIST (left) and FashionMNIST vs NotMNIST
(right).

56

(a) DUQ+(0, 4)-BLNN (b) DUQ+(1, 4)-BLNN

(c) DUQ+(2, 4)-BLNN

Figure 25: Uncertainty quantification of two moons dataset with DUQ+BLNN with different α.

Table 9: Comparison of our model with state-of-the-art monotone models. Means and standard
deviations over three trials. Results of prior models are from the original papers. C = COMPAS, BF
= BlogFeedBack, LD = LoanDefaulter, HD = HeartDisease, AM = AutoMPG, Acc. = accuracy.

Models C (Acc.) BF (RMSE) LD (Acc.) HD (Acc.) AM (MSE)

Certified 68.8 ± 0.2 0.158 ± 0.001 65.2 ± 0.1 - -
Constrained 69.2 ± 0.2 0.154 ± 0.001 65.3 ± 0.0 89.0 ± 0.0 8.37 ± 0.1
LMN 69.3 ± 0.1 0.160 ± 0.001 65.4 ± 0.0 89.6 ± 1.9 7.58 ± 1.2
SMNN 69.3 ± 0.9 0.150 ± 0.001 65.0 ± 0.1 88.0 ± 4.0 7.44 ± 1.2
Ours 69.4 ± 0.6 0.157 ±0.001 65.5 ± 0.1 90.2 ± 1.6 7.13 ± 1.2

G.7 Partially Monotone Settings

Table 9 provides the experimental results with full data. We also compare with the certified monotone
neural network of Liu et al. (2020b) (Certified) and the constrained monotone neural network
of Runje and Shankaranarayana (2023) (Constrained). See Tables 2 and 3 of Kim and Lee (2024) for
a comprehensive comparison with other general models.

H Experimental Setups

In this appendix, we provide further experimental details, including values of hyper-parameter,
specific composition of used architectures and optimization schemes, which were omitted in the
main text as a concern of clarity. All experiments were executed with Pytorch. We mainly used the
GPU NVIDIA A100 with a memory of 80GB for the computation. Additional information for each
experiments can be found in each subsection below and in the supplementary material.

57

Table 10: General details on the architectures of Figures 8 and 9.
Model Hidden Dimension Number of Layers

Ours 10 2

H.1 Computational Complexity Comparison

In this experiment, corresponding to Figure 2, we presented a comparison of the computational
complexity for a single iteration between a traditional feedforward network and various BLNN
variants.: BLNN (with brute force backpropagation), BLNN with Theorem 3.7, PBLNN with only
one variable constrained to be bi-Lipschitz. Respective parameter sizes are 1.11M, 1.42M, 1.42M
and 1.38M. The input size was randomly generated data of size 3× 32× 32, simulating a CIFAR
dataset, and the batch size was varied in the set 1, 5, 25, 75, 100. For this experiment, BLNN was
implemented according to the template of the DEQ library 4. FLOPs was computed following another
github library 5. The feedforward neural network had ReLU activation function and 4 layers with
hidden dimension 210, and the BLNN variants had softplus activation function and 3 layers with
hidden dimension 150. α and β were both set to 1.

H.2 Algorithms for LFT

H.2.1 Influence of Approximate Optimization on Bi-Lipschitz Constants: Experiments

In this experiment, we were interested in the evolution of the bi-Lipschitz constants under different
optimization schemes.

Corresponding Figures and Tables Figures 8 and 9.

Data We generated 5000 2-dimensional points uniformly sampled at random in the interval [−1, 9]×
[−1, 9].

Architecture Our BLNN was created with β = 10. The value of α does not matter since we
focused on the output of the optimization process which occurs before adding the regularization
term α/2∥x∥2. We used the softplus function as the activation function. The effective Lipschitz and
inverse Lipschitz constants were estimated by a simple sampling with sample size 5000 chosen from
the data.

Optimization Schemes We used several optimization schemes, namely, steepest gradient descent
(GD), Nesterov’s accelerated gradient (AGD) (Nesterov, 1983), Adagrad (Duchi et al., 2011), RM-
Sprop (Hinton et al., 2012), Adam (Kingma and Ba, 2015) and the Newton method For Adagrad,
RMSprop and Adam, all parameters were set as default except the learning rate.

H.2.2 On the Choice of the Initial Point

In this experiment, we were interested in the influence of the initial point on the convergence speed of
the Legendre-Fenchel transformation. We used as a starting point either the final point of the previous
epoch for each training data or the point (1, . . . , 1)⊤ independently of the history. This experiment
was run with the architecture explained in Subsection H.4.2.

Corresponding Figures and Tables Figure 10.

H.3 Bi-Lipschitz Control

The codes were implemented in Python 3.11.4 with PyTorch 2.0.1+cu117.

4https://github.com/locuslab/deq
5https://github.com/MrYxJ/calculate-flops.pytorch

58

https://github.com/locuslab/deq
https://github.com/MrYxJ/calculate-flops.pytorch

H.3.1 Simple Estimation of Bi-Lipschitz Constants at Initialization

In this experiment, we were interested in verifying in more detail whether an (α, β)-BLNN respects
the pre-defined bounds of bi-Lipschitzness, namely, α and α+ β. We used GD for the computation
of the Legendre-Fenchel transformation since it showed good performance and practical usefulness
in the previous sections.

Corresponding Figures and Tables Figures 11, 12, 13, 14 and 15.

Data We randomly created 200 2-dimensional points, and estimated the effective bi-Lipschitz
constants with them.

Architecture For a fixed activation function (ReLU or softplus) and number of hidden layers (3 or
10), we created 100 architectures with different α and β. α was set to 4 for all 100 models, and β as
0.05 + 99.95/100i where i ∈ {0, . . . , 99}. The value of the hidden dimension was set to 10.

H.3.2 Tightness of the Bounds: Underestimation Case

In this experiment, we were interested in the tightness of the Lipschitz bound provided by each
framework. The experiment was inspired from Figure 3 of Wang and Manchester (2023). Codes
were also imported and modified from their github 6 combined with others78

Corresponding Figures and Tables Tables 1 and 5 and Figures 3 and 16.

Data We created 300 training points (x, f(x)), where x was sampled at random in the interval
[−2, 2]. The test dataset consisted of 2000 points, with x in the interval [−1, 1].

Optimization Based on Wang and Manchester (2023), we used the Adam optimizer with a learning
rate of 0.01, and other parameters were set as default. The objective function was the mean squared
error.

Architecture In addition to our model, we used seven layer-wise Lipschitz architectures, namely,
spectral normalization (Miyato et al., 2018), AOL (Prach and Lampert, 2022), Orthogonal (Trockman
and Kolter, 2021), SLL (Araujo et al., 2023), Sandwich (Wang and Manchester, 2023), LMN (Nolte
et al., 2023) and BiLipNet (Wang et al., 2024). See Appendix A for the mathematical formulation
of each Lipschitz approach. Each layer was designed to be 1-Lipschitz, and we employed ReLU as
activation function for all of them, including ours, except that for LMN. Since the Lipschitz constant
of the overall network is 1, we included a scaling factor before the first layer which multiplies the
input by L. As a result, we obtain L-Lipschitz neural networks. In the experiments, L was set to 2, 5,
10 and 50. For our model, L corresponds to α+ β. We set α = 1 and changed β accordingly. See
Table 11 for further details on the architecture. The effective Lipschitz constant was estimated by a
simple sampling with sample size 1000 within the range [−1, 1]. As for BiLipNet, we only used their
monotone Lipschitz layer and no orthogonal layer in order to avoid losing tightness by composing
many simple layers.

H.3.3 Flexibility of the Model: Overestimation Case

In this experiment, we were interested in the influence of the overestimation of the Lipschitz constant
when building the model. The dataset, architecture and optimization scheme were mostly the same as
H.3.2. We just changed the function to be fitted to a linear one with slope 1 and 50. The architectures
were designed to have a Lipschitz bound L of 50, 100 or 1000.

Corresponding Figures and Tables Figures 4, 17, 18, 19, 20.

6https://github.com/acfr/LBDN
7https://github.com/ruigangwang7/StableNODE
8https://github.com/niklasnolte/monotonic_tests

59

https://github.com/acfr/LBDN
https://github.com/ruigangwang7/StableNODE
https://github.com/niklasnolte/monotonic_tests

Table 11: General details on the architectures of Table 5 and Figure 16.
Model Hidden Dimension Number of Layers Size of Model

SN 45 4 4.3K
AOL 45 4 4.3K
Orthogonal 45 4 4.3K
SLL 45 2 4.2K
Sandwich 65 2 4.5K
LMN 64 3 4.4K
BiLipNet 40 2 5.0K
Ours 64 2 4.3K

H.3.4 Summary of the Two Previous Experiments

In this experiment, we were interested in the relation between the imposed Lipschitz upper bound
and the loss function when learning the function y = 50x. The dataset, architecture and optimization
scheme were mostly the same as the previous section. We just changed the activation function of the
BLNN from ReLU to softplus. We also reported the first time when the loss reached a value below
0.50.

Corresponding Figures and Tables Figures 1 and 21.

H.3.5 Better Control for Annealing

In this experiment, we were interested in the behavior of our model under an annealing scheme. The
dataset, architecture and optimization scheme were mostly the same as H.3.2. We just changed the
function to be fitted to y = ex. Moreover, we set α = 0 for our model. The training was executed for
200 epochs.

Corresponding Figures and Tables Figure 22

Annealing We employed a simple annealing scheme. We started with a Lipschitz constant of γ = 2.
For the Sandwich model, it is the scaling factor at the input, and for ours, it is α+β = β since α = 0.
We estimated the Lipschitz constant at each iteration, and if the effective Lipschitzness was close to
the imposed one, i.e., γ, with an accuracy of 0.05, we relaxed the condition by multiplying γ by 1.5.
This update was executed every five epochs, if the condition was satisfied, in order to provide to the
model the time to learn a new appropriate representation.

H.4 Uncertainty Estimation

In this chapter, the experiments were inspired from Figure 3 of Van Amersfoort et al. (2020). Codes
were also imported and modified from their github. 9 The codes were implemented in Python 3.10.13
with PyTorch 2.0.1+cu117.

H.4.1 Two Moons

In this experiment, we were interested in the uncertainty estimation when learning the two moons
dataset. We compared the performance of our model with other existing models.

Corresponding Figures and Tables Figures 5, 23, 24, 25 and Table 6.

Data The two moon dataset was generated using the sklearn toolkit with a noise of 0.1. We used
1500 points for training and 200 for tests. Batch size was 64.

Optimization We used SGD with a learning rate of 0.01, momentum of 0.9 and weight decay of
10−4. We used the binary cross entropy as a loss function.

9https://github.com/y0ast/deterministic-uncertainty-quantification

60

https://github.com/y0ast/deterministic-uncertainty-quantification

Table 12: General details on the architectures of Figure 23.“reg." stands for regularization.
Hidden

Dimension
Num. of
Layers Output Dim. Centroid

Size
Num. of

Parameters

DUQ 40 3 40 10 4.2K
DUQ no reg. 40 3 40 10 4.2K
DUQ+BLNN 20 2/2 40 10 3.4K
Deep Ensembles 20 4 2 - 0.9K × 5

Table 13: General details on the architectures of Table 7 and Figure 26. For DUQ+BLNN, since the
input and output dimensions were not equal we used the architecture explained in Extension 1 of
Appendix F. While these two parts share almost the same structure, we clarify the differences by the
following notation "info. of first BLNN/info. of second BLNN".

Hidden
Dimension

Num. of
Layers Output Dim. Centroid Size Num. of

Parameters

DUQ 49 3 256 100 280.9K
DUQ+BLNN 40 3/1 256 100 293.7K

Architecture We used four models, namely, a deep ensemble method (Lakshminarayanan et al.,
2017), the original DUQ, DUQ with no regularization and DUQ with our method (DUQ+BLNN).
The latter means that we used the DUQ framework but we deleted the gradient penalty of the loss
function and directly replaced the vanilla neural network with our BLNN. We used the softplus
function for all architectures. See Table 12 for further details on the architecture. As for our model,
the best values of α and β were found through a grid search: α = 2 and β = 4. Results with other α
and β are shown in Table 6.

H.4.2 Fashion-MNIST (downsampled)

In this experiment, we were interested in applying BLNN to the task of out-of-distribution detection
of FashionMNIST vs MNIST and FASHIONMNIST vs NotMNIST datasets, and comparing its
performance with existing models. This is a downsampled version of the next experiment.

Corresponding Figures and Tables Tables 2, 7 and Figure 26.

Data The FashionMNIST dataset was generated using the torchvision toolkit, with 60000 training
data and 2000 test data. Batch size was set to 128. The dataset was downsamlped by a pooling data
from 28× 28 to 14× 14.

Optimization We used SGD with a learning rate of 0.05, momentum of 0.9 and weight decay of
10−4. We used the binary cross entropy as a loss function.

Architecture We compared two models DUQ and DUQ with our method (DUQ+BLNN). The
latter means that we used the DUQ framework but we deleted the gradient penalty of the loss function
and directly replaced the vanilla neural network with our BLNN. We used the softplus function for
DUQ+ours and ReLU for the other architectures. See Table 13 for further details on the architecture.
As for our model, the best values of α and β were found through a grid search: α = 0.2 and β = 0.4.
For both models, data was down-sampled by a max-pooling layer from 28× 28 to 14× 14.

H.4.3 Fashion-MNIST (full size)

In this experiment, we were interested in applying BLNN to the task of out-of-distribution detection
of FashionMNIST vs MNIST and FASHIONMNIST vs NotMNIST datasets, and comparing its
performance with existing models. This is the full size version of the previous experiment.

Corresponding Figures and Tables Table 8 and Figure 27.

61

Table 14: General details on the architectures of Table 8 and Figure 27.

Model Hidden
Dimensions

Num. of
Layers Output Dim. Centroid Size Num. of

Parameters

DUQ 196/49 3 256 100 432.3K
DUQ+BLNN 150 3 50 100 449.2K

Data The FashionMNIST dataset was generated using the torchvision toolkit, with 60000 training
data and 2000 test data. Batch size was set to 128. We used the original size of the dataset, namely
28× 28.

Optimization We used SGD with a learning rate of 0.05, momentum of 0.9 and weight decay of
10−4. We used the binary cross entropy as a loss function.

Architecture We compared two models DUQ and DUQ with our method (DUQ+BLNN). The
latter means that we used the DUQ framework but we deleted the gradient penalty of the loss function
and directly replaced the vanilla neural network with our BLNN. We used the softplus function for
DUQ+ours and ReLU for the other architectures. See Table 14 for further details on the architecture.
As for our model, the best values of α and β were found through a grid search: α = 0.0 and β = 3.0.
Particularly, we only used one BLNN in this experiment compared to the previous one, and projected
it to a smaller sub-space of size 50 by a diagonal rectangular matrix with all components set to 1.

H.5 Partially Monotone Settings

In this experiment, we were interested in applying PBLNN to several tasks where data exhibited mono-
tone behaviors with respect to some variables. The codes were imported and modified from (Nolte
et al., 2023).10 They were implemented in Python 3.10.14 with PyTorch 2.0.1+cu117.

Corresponding Figures and Tables Table 3.

Data COMPAS (Angwin et al., 2016) is a classification task with 13 features, where 4 of them
have monotone inductive bias. It is important to highlight that this dataset is known to be racially
biased (Angwin et al., 2016). BlogFeedBack (Nolte et al., 2023) is a prediction task with 276 features,
where 8 of them have monotone bias. LoanDefaulter (Nolte et al., 2023) a classification task with 28
features, where 5 of them have monotone inductive bias. HeartDisease (Janosi et al., 1988) is also a
classification task with 13 features, including 2 with monotone inductive bias. AutoMPG (Quinlan,
1993) contains 7 features where 2 of them shows monotone inductive bias. CIFAR101 is an augmented
dataset used by Nolte et al. (2023).

Optimization We used the same training scheme as Nolte et al. (2023).

Architecture We compared our model, the PBLNN, with that of Nolte et al. (2023) and that of Kim
and Lee (2024). As for the former, we constructed the PBLNN based on the inductive bias. For
HeartDisease and AutoMPG, we took as the final output the average of the output of one PBLNN
with bi-Lipschitzness imposed on the monotone variables. For COMPAS and LoanDefaulter, we
created independent 1-dimensional PBLNNs whose bi-Lipschitzness is imposed on each variable that
are monotone and then took the average. For CIFAR101, we used 101 PBLNNs with respect to the
last variable. See Table 15 and the codes for further details.

10https://github.com/niklasnolte/monotonic_tests

62

https://github.com/niklasnolte/monotonic_tests

Table 15: General details on the architectures of PBLNN used for Table 3.

Dataset Hidden
Dimensions

Num. of
Layers Lipschitzness Inverse

Lipschitzness

COMPAS 45×4 4 0.3 0
BlogFeedBack 3× 8 2 1 0
LoanDefaulter 10× 5 2 0.5 1
HeartDisease 10 1 10 2
AutoMPG 20 3 1 0
CIFAR101 10×101 3 1 1

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Abstract and Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See end of Section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

63

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See appendices and main paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

64

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See experiments in appendix.

65

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

66

https://neurips.cc/public/EthicsGuidelines

Justification: This research is foundational and not tied to particular applications, let alone
deployments. This work is primarily a proof of concept for a novel paradigm to control the
sensitivity of neural networks, which could serve to increase robustness against adversarial
attacks and uncertainty quantification performance. However, there are no direct societal
consequences which we feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See supplemental material.
Guidelines:

• The answer NA means that the paper does not use existing assets.

67

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

68

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

69

	Introduction
	Background
	Contributions

	Preliminaries
	Definition
	Desired Features for a Controllable Inductive Bias
	Related Works and Bi-Lipschitz Models

	Bi-Lipschitz Neural Network
	Additional Definitions
	Construction of Bi-Lipschitz Functions
	Implementation of the Forward Pass
	Expressive Power
	Backward Pass of BLNN
	Comparison with Deep Equilibrium Models
	Increased Scalability and Expressive Power: Partially BLNN
	Computational Complexity
	Discussion

	Experiments
	Bi-Lipschitz Control
	Uncertainty Estimation
	Partially Monotone Settings

	Conclusion
	Lipschitz and Inverse Lipschitz models
	Lipschitzness
	Definition
	Models
	Gradient Clipping

	Inverse Lipschitzness
	Definition
	Models

	Bi-Lipschitzness
	Definition
	Applications
	Comparison with Prior Models

	Proofs of Statements and Further Discussion
	Additional Definitions
	Construction of Bi-Lipschitz Functions: Proof of Theorem 3.4
	Expressive Power of BLNN
	First Part: Proof of Theorem 3.6
	Second Part
	A Brief Discussion on the Expressive Power of BLNN

	Backward Pass of BLNN
	Proof of Theorem 3.7
	A more complete case analysis

	Algorithms for Legendre-Fenchel Transformation
	Influence of Approximate Optimization on Bi-Lipschitz Constants: Experiments
	Influence of Approximate Optimization on Bi-Lipschitz Constants: Theoretical Analysis
	Proof for General Algorithms
	Proof of Theorem 3.5
	Analogue of Theorem 3.5 with optimal step size

	On the Choice of the Initial Point

	Equivalent Definitions of Smoothness under Convexity
	Theorem and Proof

	Uncertainty Estimation
	Background
	DUQ

	Extensions
	Extension 1: Different Input and Output Dimensions
	Extension 2: Non-Homogeneous Functions
	Extension 3: General Norms
	Extension 4: Improved Expressive Power through Superposition and Combination
	A Simpler Architecture

	Additional Experiments
	Simple Estimation of Bi-Lipschitz Constants at Initialization
	Tightness of the Bounds: Underestimation Case
	Flexibility of the Model: Overestimation Case
	Summary of the Two Previous Experiments
	Better Control for Annealing
	Uncertainty Estimation
	Two Moons
	FashionMNIST

	Partially Monotone Settings

	Experimental Setups
	Computational Complexity Comparison
	Algorithms for LFT
	Influence of Approximate Optimization on Bi-Lipschitz Constants: Experiments
	On the Choice of the Initial Point

	Bi-Lipschitz Control
	Simple Estimation of Bi-Lipschitz Constants at Initialization
	Tightness of the Bounds: Underestimation Case
	Flexibility of the Model: Overestimation Case
	Summary of the Two Previous Experiments
	Better Control for Annealing

	Uncertainty Estimation
	Two Moons
	Fashion-MNIST (downsampled)
	Fashion-MNIST (full size)

	Partially Monotone Settings

