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Abstract

This paper presents a Physical-Guided Convolutional Neu-
ral Network (PGCNN) framework that incorporates dy-
namic, trainable, and automated LLM-generated, widely
recognized rules integrated into the model as custom layers
to address challenges like limited data and low confidence
scores. The PGCNN is evaluated on multiple datasets,
demonstrating superior performance compared to a base-
line CNN model. Key improvements include a significant
reduction in false positives and enhanced confidence scores
for true detection. The results highlight the potential of
PGCNNs to improve CNN performance for broader appli-
cation areas.

1. Introduction
Deep learning models frequently struggle with object
recognition because they rely on weight adjustments from
training data,unlike humans who use shape, color, spatial
cues, and context. For example, a human may use con-
textual awareness to recognize an object in water as a ship
or debris, whereas a neural network may misclassify it in
unrelated categories with high confidence. This demon-
strates a gap in contextual comprehension. To address
this, our approach incorporates context-aware weights gen-
erated by LLMs, allowing for adaptation across contexts.
We believe that this can be expanded by utilizing more
LLM-derived rules based on physical features to improve
recognition. Recent research has investigated this direction
through Physics-Guided Neural Networks (PGNNs), which
shift beyond solely data-driven models by embedding phys-
ical rules, domain restrictions, and common-sense reason-
ing into neural architectures [13–15]. These approaches im-
prove interpretability and performance, particularly in sci-

entific and practical settings. Incorporating physical restric-
tions into loss functions can improve training outcomes [6].
These ideas apply not only to images, but also to text and
audio inputs [1, 3, 4], where linguistic structure and seman-
tics inform decisions.

In this paper, we present the Physical-Guided Convo-
lutional Neural Network (PGCNN), a novel architecture
that augments classic convolutional networks with dynamic,
trainable layers based on physical reasoning and supple-
mented with domain knowledge supplied by the Large Lan-
guage Model (LLM). PGCNN, which is based on the Faster
R-CNN architecture and a ResNet-50 backbone, is tested
on multi-environment datasets that include vehicle classes
from both land and water scenarios. The framework is de-
signed as a modular wrapper that can be smoothly merged
with various detection models like YOLO. PGCNN in-
cludes custom layers that perform three core functions:
bounding box refinement, which eliminates redundant or
nested detections within the same class; scene-aware filter-
ing, which uses dominant scene features (e.g., landmass or
watermass) to influence classification decisions; and size-
based reasoning, which validates predictions using relative
object sizes, with inter-class relationships generated dynam-
ically by OpenAI’s LLM. These improvements reduce false
positives or innaccurate and boost confidence in correct sec-
ondary labels—for example, reducing implausible predic-
tions like ”table” in a road scene and boosting more likely
ones like ”car” or ”bus.” Although PGCNN’s mean Aver-
age Precision (mAP) is similar to the baseline, it consider-
ably increases inference quality, trustworthiness, and inter-
pretability. Its modular form makes it easy to apply to new
domains, allowing for the merging of symbolic reasoning
and deep learning.
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2. Related Work

In recent years, significant advancements have been made in
Physics-Guided Neural Networks (PGNNs). [6] developed
a PGDNN combining neural networks with finite element
models, achieving over 80% accuracy in structural dam-
age detection. [16] introduced a PGNN for Fourier ptycho-
graphic microscopy, outperforming ePIE in high-defocus
and high-exposure conditions. [2] reviewed over 250 stud-
ies on physics-informed computer vision (PICV), identi-
fying PICV as highly effective. [8] showed PINNs and
physics-guided nnU-Net excel in blood flow estimation us-
ing Doppler and CFD simulations. Hybrid CNN-PGNN
models for aero-engine sensor diagnostics were explored by
[7], while [5] used PG-BNN with Bayesian computation to
predict concrete column strength. Inspired by these studies,
we propose a novel PGCNN framework to further explore
these applications.

3. Methodology

We present the Physical-Guided Convolutional Neural Net-
work (PGCNN), an enhanced CNN architecture that in-
tegrates physical reasoning and domain-specific rules into
custom layers. These layers are designed to improve inter-
pretability and reduce false positives. Figure 1 provides an
overview of the PGCNN framework, combining a Faster R-
CNN ResNet-50 backbone with LLM-informed rule-based
modules.

Figure 1. Overview of the PGCNN Framework

3.1. Shape-Based Detection Layer

This layer segments detected objects into geometric primi-
tives (rectangles, triangles, etc.) and compares shape counts
S = {s1, s2, . . . , sn} against LLM-derived expected values
K = {k1, k2, . . . , kn}. Confidence score C is adjusted us-
ing:

C = 1− 1

1 + exp

(
−α

∑n
i=1

(
si−ki

ki

)2
) (1)

where α controls sensitivity to shape deviations.

3.2. Loss Function Integration

The custom layers feed context-aware feedback into the loss
function to penalize incorrect detections and improve con-
vergence. This enhances robustness and reliability during
training.

3.3. Redundancy Elimination Layer

This layer filters redundant bounding boxes B ∈ Rn×4 by
comparing spatial overlap:

Overlap(Bi, Bj) =
A(Bi ∩Bj)

A(Bi)
(2)

Bounding boxes are removed if one is fully enclosed or
overlap exceeds a redundancy factor (RF).

3.4. Context-Aware Weight Adjustment Layer
(CAWAL)

CAWAL adjusts logits during training based on contextual
cues from scene predictions. If a scene contains a dominant
feature (e.g., landmass), logit scores for related classes (e.g.,
cars) are increased by a factor α. The adjustment is condi-
tionally applied when contextual tokens exceed a threshold
∆t of scene labels. This layer enables the model to align
predictions with environmental expectations.

3.5. Hybrid Weight Adjustment Layer (HWAD)

HWAD refines object logits using relative size constraints
derived from an LLM-generated JSON rulebase. For each
object pair, the model compares bounding box dimensions
and updates class-wise logits when violations of known size
relations occur. Posterior weights P (T |E) are computed
using Bayes’ theorem:

P (T |E) =
P (E|T ) · P (T )

P (E)
(3)

These values update rule confidence, blending LLM priors
with empirical evidence using an update factor α.

Together, these physical rule layers enhance inter-
pretability and reduce uncertainty, offering a robust mech-
anism for incorporating domain expertise into CNN-based
object detection.

3.6. LLM Based Rule Generation

We generated the rules using OpenAI model ?? with
weights in respect to the rule terms in between the classes.
Figure 2 illustrates a snippet of the weights determined by
the LLM for two classes. Initially, we investigated zero-shot
prompting, in which the aim was to construct a JSON struc-
ture expressing a knowledge graph with vehicle types with-
out providing explicit examples. We then supplied an ex-
ample to instruct the model, which ensures consistent data
creation and proper formatting.
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Figure 2. Example Snippet of Weights Generated by LLM For
’Motorcycle’ and ’Bicycle’ Class.

Few-Shot Prompt: Vehicle Size Graph Generation
Generate a JSON structure for vehicle classes (’Car’, ’Bus’, ’Truck’,
’Bicycle’, ’Motorcycle’, ’Boat’) using ‘isSmallerThan‘ and ‘isBig-
gerThan‘ edges with weights reflecting relative sizes.
Example for Bicycle:
{
"@id": "/c/en/Bicycle",
"@type": "node",
"subClassOf": "Vehicle",
"edges": [
{
"isSmallerThan": [
{ "@id": "/c/en/Bus", "weight": 1 },
{ "@id": "/c/en/Truck", "weight": 1 },
{ "@id": "/c/en/Car", "weight": 0.97 },
{ "@id": "/c/en/Motorcycle", "weight": 0.70 }

]
}

]
}

Figure 3. Compact few-shot prompt for generating vehicle size
graphs using edge-weighted comparisons.

4. Experimental Results and Discussion
4.1. Datasets

We conducted experiments using three datasets. The Cars
From Drone Dataset (CDD) [12] includes 463 aerial im-
ages with five land vehicle classes. The Drone Vehicle
Dataset (DVD) [11] consists of 17,927 images with five
vehicle categories. Additionally, we curated a new Multi-
Environmental Vehicle Dataset (MEVD), combining the
CDD classes with 177 annotated boat images sourced and
converted into MS-COCO format [9].

4.2. Setup and Design

We use Faster R-CNN with ResNet-50 (pre-trained on
ImageNet) and integrate three custom rule-based layers:
redundancy elimination, scene-aware context adjustment
(CAWAL), and hybrid weight adjustment (HWAD). A U-
Net model [10] was used for scene segmentation.

4.3. Results

Table 1 summarizes mAP and IoU results. On the CDD
dataset, PGCNN outperforms the baseline in mAP (0.450
vs. 0.420) and shows consistent IoU improvement at all

thresholds. While DVD mAP is lower for PGCNN (0.221
vs. 0.325), it achieves better IoUs, suggesting enhanced
localization but needing further optimization. On MEVD,
both models yield similar mAP and IoU, except for a slight
boost at IoU 0.9.

Table 1. Performance of Baseline vs. PGCNN

Metric CDD DVD MEVD
Base PGCNN Base PGCNN Base PGCNN

mAP 0.420 0.450 0.325 0.221 0.218 0.218
IoU@0.5 0.839 0.851 0.804 0.813 0.758 0.758
IoU@0.75 0.881 0.903 0.856 0.858 0.869 0.869
IoU@0.9 0.920 0.926 0.926 0.927 0.926 0.929

Figure 4 shows training loss on DVD. PGCNN consis-
tently converges faster, starting at 0.34 and ending at 0.14,
outperforming the baseline (0.49 to 0.21).

Figure 4. Training Loss Curve (DVD Dataset)

4.4. False Positive Mitigation

Bounding Box Reduction: As shown in Table 2, PGCNN
significantly reduces redundant detections, achieving a
37.88% reduction in CDD and over 34% in MEVD.

Table 2. Bounding Box Reductions

Dataset Baseline PGCNN Reduction (%)
CDD 598 451 37.88

MEVD 909 726 34.21
DVD 6192 5548 10.56

Mislabeled Box Reduction: Table 3 shows PGCNN re-
duces water vehicle false positives by 74.55% and land ve-
hicle FPs by 39.01%, based on 78 images from MEVD.

Table 3. False Positive Reductions in MEVD

Class Baseline PGCNN Reduction (%)
Water 110 28 74.55
Land 182 111 39.01
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4.5. Confidence Score Optimization

The PGCNN model improved both high-confidence true de-
tections and lowered confidence of false predictions. Ta-
ble 4 summarizes these changes on MEVD (78 samples).
Over 66% of correct predictions had increased confidence,
and 71.9% of false positives saw reduced scores, reflecting
improved contextual understanding.

Table 4. Change in Confidence Scores Before and After Rule Ap-
plication on MEVD Dataset. “↑” indicates increased score con-
fidence, while “↓” indicates reduced confidence, typically due to
penalized rule violations.

Metric Score↑ Score ↓
No. of Samples 395 430
Percentage (%) 66.05 71.91

Figures 5 and 6 illustrate sample predictions. PGCNN
suppresses redundant bounding boxes and boosts confi-
dence in context-aware predictions using physical con-
straints, demonstrating its capability to reduce model am-
biguity and enhance interpretability.

Table 4 shows that PGCNN increases prediction relia-
bility by raising confidence in right labels while suppress-
ing plausible but wrong alternatives. This may not always
increase precision in the classical sense (true positives), but
it does reduce misunderstanding and ambiguity, which is
critical in real-world deployment. Consider a model that
forecasts an object as 85% boat, 70% table, and 60% ship.
This prediction is less reliable than those for boats (85%),
ships (65%), and tables (30%).

The second scenario demonstrates more consistent and
physically realistic thinking, favoring useful categories
while pushing down implausible ones. This type of ”se-
mantic disambiguation” is not captured by mAP but can be
observed in qualitative results and human judgment.

Figures 5 and 6 show this impact. In Figure 6, the base-
line awards 0.96 to a truck class among multiple possibili-
ties, but the PGCNN model adjusts this to a more calibrated
0.76, delivering higher scores only when there’s more con-
textual and visual alignment. This adjustment improves
interpretability, prevents overconfidence in wrong options,
and increases user trust in model results.

5. Conclusion and Future Works
Our primary focus was on integrating physical-attribute-
based principles into CNN architecture to enhance the
model’s understanding beyond raw data features for the ob-
jects, rather than optimizing data selection strategies. We
acknowledge that our method does not result in signifi-
cant accuracy improvements, our target was to improving
the confidence scores of each objets identified in a frame.
Our model, which incorporates custom layers guided by

Figure 5. Inference of Reduced Confidence Scores in FP

(a) Baseline model predicts
two cars: one with high con-
fidence and another redundant
but accurate with a confidence
score of 0.12.

(b) Custom model removes the
redundant car Boundary box
from the image.

Figure 6. Demonstration of Updated Confidence Scores

(a) Baseline model predicts truck
with highest 0.76 score and more
redundant boxes.

(b) Custom model detects truck
with 0.96 score and the cars with
either 1 or 0.99.

LLM, is designed to be adaptable to any base model (e.g.,
RCNN, YOLO) without negatively affecting their perfor-
mance through overfitting or underfitting. Our primary con-
tribution lies in integrating physical attributes alongside raw
data, enhancing the model’s understanding. We have found
that LLM can generate effective weight graphs to auto-
mate these custom layers, which can be retrained during
the base model’s training process. In the evaluation sec-
tion, we recognize that measurements such as mAP are in-
sensitive to such enhancements. As a result, in future re-
search, we intend to include auxiliary metrics that evaluate
”confidence concentration” or ”prediction entropy reduc-
tion” across competing labels, as well as human evaluation
tests for perceptual alignment and trust calibration.

This pioneering approach not only improves the model’s
precision and reliability but also represents the first instance
of incorporating rule-based modifications into a CNN net-
work, paving the way for more dependable applications
across diverse domains such as speech, robotics, health-
care, and natural language processing. Specially with ar-
eas where more reliable models are ought to be imple-
mented.
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