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ABSTRACT

Training robotic manipulation policies traditionally requires numerous demonstra-
tions and/or environmental rollouts. While recent Imitation Learning (IL) and Re-
inforcement Learning (RL) methods have reduced the number of required demon-
strations, they still rely on expert knowledge to collect high-quality data, limit-
ing scalability and accessibility. We propose SKETCH-TO-SKILL, a novel frame-
work that leverages human-drawn 2D sketch trajectories to bootstrap and guide
RL for robotic manipulation. Our approach extends beyond previous sketch-
based methods, which were primarily focused on imitation learning or policy
conditioning, limited to specific trained tasks. SKETCH-TO-SKILL employs a
Sketch-to-3D Trajectory Generator that translates 2D sketches into 3D trajecto-
ries, which are then used to autonomously collect initial demonstrations. We
utilize these sketch-generated demonstrations in two ways: to pre-train an ini-
tial policy through behavior cloning and to refine this policy through RL with
guided exploration. Experimental results demonstrate that SKETCH-TO-SKILL
achieves ∼96% of the performance of the baseline model that leverages teleoper-
ated demonstration data, while exceeding the performance of a pure reinforcement
learning policy by ∼170%, only from sketch inputs. This makes robotic manip-
ulation learning more accessible and potentially broadens its applications across
various domains.

1 INTRODUCTION

Robots are increasingly being deployed in dynamic environments, where they must perform a wide
range of tasks with precision and adaptability. One of the key challenges in enabling robots to learn
new skills lies in specifying complex, task-specific behaviors. Learning from Demonstration (LfD)
(Billard & Grollman (2013)) has become a widely used approach, allowing robots to acquire novel
motions by imitating expert-provided trajectories. However, collecting demonstration data for LfD
is challenging, particularly for high degree-of-freedom (DOF) robots performing manipulation.

Traditional methods such as kinesthetic teaching and teleoperation while useful also have challenges
with safety risks, scalability, and the need for specialized expertise (Chan et al., 2014; Ferraguti et al.,
2015; Bimbo et al., 2017). Recent approaches, such as using manually-operated grippers instru-
mented with smartphone apps (Shafiullah et al., 2023) and Virtual Reality (VR) based teleoperation
systems (Kamijo et al., 2024), offer more intuitive hardware interfaces for collecting demonstrations.
However, they require specialized hardware which may limit their flexibility and accessibility. Re-
cently there has been interest in leveraging an innate human ability to communicate spatial ideas and
motions through simple sketches. For example, a quick sketch of a path can easily communicate the
intended movement for navigating toward a goal location.

Researchers have begun to explore this promising direction. RT-Trajectory (Gu et al., 2023) intro-
duced the notion of sketches and showed how to use coarse trajectory sketches for policy condi-
tioning in Imitation Learning (IL). RT-Sketch (Sundaresan et al., 2024) extended this concept to
leverage hand-drawn sketches of the entire environment for goal-conditioned IL. These methods
demonstrated the potential of utilizing sketches in robotics, but they were primarily focused on IL
and biased towards tasks they were specifically trained on. Zhi et al. (2023) expanded this idea
with diagrammatic teaching, where users instruct robots by sketching motion trajectories directly
on 2D images of the scene. Their approach uses density estimation and ray tracing to reconstruct
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Step 1: take two photos 
of the task scenario and collect 
task instructing sketches

Step 2: convert 2D sketches 
into 3D trajectories through 
pretrained generator

Step 3: follow generated trajs 
and perform open-loop servoing 
to collect experience data

{ 𝑝, 𝑜, 𝑎 !}

Step 4: learn manipulation 
policy through BC warm up and 
demo-bootstrapped RL

{ 𝑥, 𝑦, 𝑧 "}

Figure 1: Learning a new skill in the SKETCH-TO-SKILL framework. Step 1: Capture the task
scenario from two views and collect human-drawn sketches. Step 2: Convert 2D sketches to 3D
trajectories using a pretrained generator. Step 3: Execute generated trajectories to collect experience
data. Step 4: Learn manipulation policy using reinforcement learning bootstrapping from behavior
cloning and using guidance for experience data.

3D trajectories from the sketches, thus limiting its ability to replicate only the provided sketches and
restricting its generalization to new or unseen task setups.

Unlike prior work that used sketches only as conditioning in IL, we present a more generalizable ap-
proach that learns to predict 3D trajectories from sketches in Reinforcement Learning (RL). Specifi-
cally, we propose SKETCH-TO-SKILL (Figure 1), a framework that bootstraps and guides RL using
sketches. Our approach first learns to map 2D sketches to 3D trajectories, which are then used to
collect demonstrations. We utilize these sketch-generated demonstrations in two ways: first, by pre-
training an initial policy through Behavior Cloning (BC), and second, by refining this policy through
reinforcement learning with guided exploration. Although sketch-generated demonstrations are not
as precise or high-quality as teleoperated ones, they still contain enough useful information to aid
RL and reduce learning time.

Unlike teleoperation which requires specialized hardware and proficiency in using the system,
sketches can generally be provided by non-robotics experts. By treating these sketch-based trajecto-
ries as approximate guiding signals rather than high-fidelity demonstrations, we allow the agent to
learn more effectively even with coarse sketches. We summarize our contributions as follows:

(1) We identify and address a crucial gap by integrating sketches into RL, extending their appli-
cation beyond imitation learning and policy conditioning.

(2) We propose SKETCH-TO-SKILL, a framework that leverages sketches to bootstrap and guide
RL, reducing reliance on high-quality, real-world demonstrations.

(3) Through extensive experiments, we demonstrate that sketches, despite their low fidelity,
significantly accelerate learning by improving exploration and task comprehension in RL.
SKETCH-TO-SKILL achieves∼96% of the performance of the baseline model utilizing high-
quality teleoperation demonstrations, while exceeding the performance of a pure reinforce-
ment learning policy by ∼170% during evaluation.

2 RELATED WORK

Learning from Demonstration (LfD). LfD (Billard & Grollman, 2013) is a key method in robot
learning, allowing robots to acquire skills through expert demonstrations, bypassing the complexities
of action programming and cost function design (chaandar Ravichandar et al., 2020). Kinesthetic
teaching, where an expert physically guides the robot while its movements are recorded, is widely
used in methods like DMPs (Kober & Peters, 2009; Ijspeert et al., 2013), Probabilistic Movement
Primitives (Paraschos et al., 2015), and stable dynamical systems (Khansari-Zadeh & Billard, 2011;
Mohammad Khansari-Zadeh & Billard, 2014; Bevanda et al., 2022). However, it is labor-intensive
and challenging to scale. Teleoperation (Si et al., 2021), where users control robots remotely, offers
more flexibility but can be complex and requires expertise to operate. VR interfaces (Zhang et al.,
2018; Kamijo et al., 2024) provide a more immersive alternative but depend on specialized hard-
ware. To overcome these limitations, recent research has introduced more accessible approaches,
like sketch-based demonstrations (Drolet et al., 2024).
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Sketches in Robotics. Sketches have become a powerful tool in computer vision, aiding tasks
like scene understanding (Chowdhury et al., 2023b) and object detection (Chowdhury et al., 2023a;
Bhunia et al., 2023). RT-Sketch (Sundaresan et al., 2024) first explored hand-drawn sketches for
goal-conditioned imitation learning (IL), using them to define tasks intuitively. RT-Trajectory (Gu
et al., 2023) extended this by using trajectory sketches as IL policy conditioning, either drawn by
users or generated by a Large Language Model from task descriptions. Similarly, the Diagrammatic
Teaching framework (Zhi et al., 2023) uses density estimation and ray tracing to reconstruct 3D
trajectories from the sketches. These methods, however, only use sketches as conditioning for task
completion, and thus do not generalize beyond the tasks where the sketches are provided.

Demonstration-Enhanced Strategies for Efficient RL. Incorporating demonstration data in RL
can improve sample efficiency, especially in environments where rewards are sparse. Methods such
as Reinforcement Learning from Prior Data (RLPD) (Smith et al., 2022), Imitation Bootstrapped
RL (IBRL) (Hu et al., 2023) and NAVINACT (Bhaskar et al., 2024) take advantage of prior demon-
strations by embedding them into the agent’s replay buffer. During training, these examples are
oversampled, offering the agent more frequent exposure to expert-guided trajectories. Such ap-
proaches significantly improve learning speed and performance, particularly in continuous control
tasks where learning from scratch can be prohibitively slow and inefficient (Yu et al., 2024). Our
research expands upon these techniques by exploring how sketch-based trajectories can be used as
an additional source of prior data in RL.

3 SKETCH-TO-SKILL

Our approach bootstraps robot learning from trajectory sketches, significantly lowering the barrier
to entry for robotic task specification. This section details our three-stage method: (1) training a
Sketch-to-3D Trajectory Generator, (2) obtaining 3D trajectories and execution experiences through
the Generator and open-loop servoing, (3) pre-training an initial robotic manipulation policy through
behavior cloning, and refining the policy through reinforcement learning with guided exploration.
By integrating intuitive human input with powerful learning algorithms, our approach aims to create
more accessible and adaptable robotic learning systems.

3.1 SKETCH-TO-3D TRAJECTORY GENERATOR

Our method begins with a Sketch-to-3D Trajectory Generator, T , that translates a pair of 2D sketch
images (I1, I2) obtained from different viewpoints into corresponding 3D robot trajectory ξg . To
train this generator, we use a dataset consisting of 3D robot end-effector trajectories along with their
2D sketches from two viewpoints. These trajectories can be obtained from various sources, such as
play data where the robot executes sequences of actions. Sketches during inference can be provided
by a human on RGB images of the scene, as shown in Figure 4. However, the sketches fed as input
to the generator are 2D projections on blank backgrounds, with green and red dots representing the
start and end points respectively, and yellow lines for the trajectory (see Figure 2 for an example).
By focusing solely on the trajectory information without additional scene complexity, our model
can efficiently learn to encode the dual-view sketches and decode them into the corresponding 3D
trajectory.

The generator uses a neural network to map dual-view 2D sketches to 3D trajectories, where we
adopt a hybrid architecture combining a Variational Autoencoder (VAE) (Kingma, 2013) and a Mul-
tilayer Perceptron (MLP), as illustrated in Figure 2. The VAE encodes sketches from two viewpoints,
ideally orthogonal, to resolve depth ambiguity and capture essential trajectory features. The MLP
decoder generates B-spline (Prautzsch et al., 2002) control points C ∈ Rncp×3 from the latent rep-
resentation, which we then use to interpolate smooth 3D trajectories. We adopted uniform knots and
pre-compute the B-spline parametrization matrix W ∈ Rntp×ncp to reduce computational complex-
ity and facilitate efficient backpropagation. The calculation of W only depends on the uniform knot
vector u and the desired number of points ntp in the generated trajectory, and can be pre-calculated
using the Cox-de Boor recursion formula (also known as de Boor’s algorithm de Boor (1977), see
Appendix A for details). Then the final trajectory generation is simply a matrix multiplication:
ξg ∈ Rntp×3 = W ·C. With the generated control point parameter C, we can also easily generate
trajectories of varying density from the same parameters, making our method adaptable to different
task requirements.

3
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Figure 2: The Sketch-to-3D Trajectory Generator takes dual-view 2D sketches as inputs and predicts
B-spline parameters to generate the final 3D trajectory output.

Our training process uses a multi-component loss function L = Ltraj + Lsketch + Lkld, where
Ltraj handles trajectory reconstruction, Lsketch manages sketch reconstruction (Mean Square Er-
ror), and Lkld is KL-divergence for latent space regularization (Figure 2). This ensures accurate
trajectory generation while preserving sketch fidelity and latent space structure. We also applied
data augmentation to both the sketch images and the trajectories to enhance the model’s robustness
and generalization (more details can be found in Appendix B).

We can use the trained Sketch-to-3D Trajectory Generator, T , to generate demonstrations {ξD}
for learning new tasks using sketches drawn by a human. Specifically, the human draws trajectory
sketches on two views of RGB images captured from the initial task state. This is similar to how
human-drawn sketches are generated in prior works (Gu et al., 2023; Zhi et al., 2023). These paired
sketch images, {(I1, I2)}, are input into our trained generator, which produces corresponding 3D
trajectories, {ξg}, serving as the basis for guiding the robot’s actions. We can also generate more
than one trajectory from the same pair of sketches by adding controlled noise to the latent repre-
sentation. Then we proceed to collect demonstrations for manipulation policy learning. We execute
these trajectories on the robotic arm using open-loop servoing, which enables precise trajectory fol-
lowing based on pre-computed motor commands. During execution, we record a demonstration
dataset {ξD = {(pt, ot, at)}Tt=1} at a fixed frequency, where pt = (x, y, z)t denotes the robot’s
end-effector 3D position, ot represents the robot’s observation, at is the corresponding action, and
T is the total number of timesteps per demonstration. The collected demonstrations, which do not
need to be optimal, follow the intended path while capturing the robot’s actual behavior in the target
environment. They serve as an effective starting point for bootstrapping the policy learning process,
offering initial guidance grounded in the robot’s real-world performance.

𝑟!"#
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Figure 3: Overview of SKETCH-TO-SKILL integrating sketch-generated demonstrations with rein-
forcement learning. Sketch-generated experiences train an IL policy, which bootstraps the RL pro-
cess. A discriminator guides exploration by rewarding similarity to sketch-generated trajectories.
The final action, combining IL and RL policy outputs, further enhances the exploration guidance.
The asterisk after ”Replay Buffer” indicates that the buffer is initialized with the open-loop servoing
demonstrations.
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Algorithm 1 SKETCH-TO-SKILL. Major modifications of IBRL highlighted in blue.

1: Hyperparameters: Number of critics E, number of critic updates G, update frequency U ,
exploration std σ, noise clip c, number of generated trajectories m per input sketch pair, reward
weighting term λ

2: Inputs: Pre-trained Sketch-to-3D Trajectory Generator T , sketch dataset S = {(I1i , I2i )}ni=1,
3: Outputs: Policy πθ, discriminator Dψ

Stage 1: Demonstration Generation
4: {ξg}1:mn ← generate m trajectories per sketch from S using T
5: {ξD}1:mn ← generated demonstrations through open-loop servoing

Stage 2: Policy Learning
6: Train imitation policy πIL on demonstrations {ξD}1:mn using the selected IL algorithm.
7: Initialize policy πθ, target policy πθ′ , and critics Qϕ, target critics Qϕ′ , discriminator Dψ for

i = 1, . . . , E
8: Initialize replay buffer B with demonstrations {ξD}1:mn
9: for t = 1 to N do

10: Observe current observation ot from the environment
11: Compute IL action aIL

t ∼ πIL(ot) and RL action aRL
t = πθ(ot) + ϵ, where ϵ ∼ N(0, σ2)

12: Sample a set K of 2 indices from {1, 2, . . . , E}
13: Select action at with higher Q-value from {aIL, aRL}
14: Execute action at
15: Store transition (pt, ot, at, rt, pt+1, ot+1) in replay buffer B
16: if t%U = 0 then
17: Perform discriminator Dψ update by optimizing Equation 1
18: Perform TD3 update using minibatches from replay buffer B (Fujimoto et al., 2018)
19: end if
20: end for

3.2 POLICY LEARNING

We now describe the policy learning of the SKETCH-TO-SKILL algorithm (given in Algorithm 1).
Taking as input the demonstration data {ξD} collected from our Sketch-to-3D Trajectory Generator
T and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot-
strap and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement
Learning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and
constraint policy search space.

In IBRL we replace traditional real-world demonstrations with sketch-generated demonstrations.
Initially, these sketch-based demonstrations are used to train an IL policy (line 6), which serves
as a coarse approximation of the task. Although these sketches do not capture every fine detail of
manipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that
they still carry significant, actionable information that can effectively guide the learning process in
reinforcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3):

(1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are
not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the
task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a prelim-
inary direction and reducing the cold start problem common in RL scenarios. This use of
imperfect demonstrations is intended to establish an initial policy that avoids random explo-
ration at the outset, making subsequent training more focused and efficient.

(2) Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated
trajectories continue to serve as a guide, shaping the exploration strategy. Instead of relying
on these trajectories as definitive guides, we treat them as rough outlines that suggest areas
of the task space worth exploring. This guided exploration helps concentrate the agent’s
learning efforts on potentially fruitful regions of the action space, thus optimizing the learning
speed and improving the relevance of the experiences gathered.

In both steps, the use of sketch-generated trajectories acknowledges their limitations—they are not
treated as ground truth but as valuable signals to help bootstrap RL and guide exploration throughout
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the learning process. For the RL algorithm, we employ TD3 (Fujimoto et al., 2018), an off-policy
algorithm known for its sample efficiency. In our approach, the replay buffer is initialized with
the sketch-generated demonstration trajectories (line 8), which provide an initial foundation for
learning and is later updated with online experiences as the agent interacts with the environment.
This combination allows the agent to refine its policy through both sketch-generated demonstration
data ξD and real-world interaction (line 13).

To further enhance the learning process and maintain consistency with the sketch-generated tra-
jectories, we introduce a discriminator-based guided exploration mechanism (Kang et al., 2018).
This discriminator, Dψ , is trained to distinguish between trajectories produced by our Sketch-to-3D
Trajectory Generator and those generated by the current policy:

LD(ψ) = Ep,g∼{ξD}[logDψ(p,∆p, g)] + Ep,g∼πθ
[log(1−Dψ(p,∆p, g))], (1)

where p represents the end-effector location, ∆p is the normalized difference between the current
and next end-effector positions, capturing local trajectory characteristics, and g is the task-specific
information (e.g., target location). This formulation allows the discriminator to assess trajectory
similarity while accounting for task variability. We then augment the TD3 reward function with an
additional term based on the discriminator’s output (line 18):

r̂(ot, at) = r(ot, at) + λ logDψ(pt,∆pt, g), (2)

where λ is a hyperparameter controlling the influence of the discriminator. This augmented reward
encourages the policy to explore state-action spaces more likely to produce trajectories similar to
those generated from human sketches, potentially leading to faster learning and better performance.

Our overall learning process iterates between TD3 optimization and discriminator training. In each
iteration: (1) We update the discriminator using the latest policy-generated trajectories and the origi-
nal sketch-generated trajectories (line 17). (2) We then update the policy and Q-functions using TD3,
with the augmented reward and guidance from the frozen IL policy (line 18). This iterative process
allows the policy to refine its behavior while maintaining similarity to the initial demonstrations
derived from human sketches. By combining IL, TD3, and discriminator-based guided exploration,
we create a cohesive learning framework that effectively leverages sketch-based demonstrations to
accelerate and improve the learning of complex manipulation tasks. Please see the Appendix for
more implementation details and a complete list of hyper-parameters.

4 EXPERIMENTS

We report our evaluation of SKETCH-TO-SKILL, focusing on its main components: the Sketch-to-
3D Trajectory Generator, the Imitation-Bootstrapped RL Policy learning, and the use of the discrim-
inator. Our experiments address the following key questions:

Q1 How effectively does the Sketch-to-3D Trajectory Generator convert 2D sketches into usable
3D robot trajectories?

Q2 Can SKETCH-TO-SKILL utilize sketch-generated demonstrations to achieve comparable per-
formance to traditional methods using high-quality demonstration data?

Q3 How do various design choices in SKETCH-TO-SKILL, such as the number of generated
demonstrations per sketch and the discriminator reward weighting, affect the learning and
refinement of robotic policy?

Q4 How well does our method translate to the real world?

4.1 EVALUATION OF THE SKETCH-TO-3D TRAJECTORY GENERATOR

The Sketch-to-3D Trajectory Generator is a key component of SKETCH-TO-SKILL, translating 2D
sketch inputs into 3D robot trajectories. To train this generator, we collect data of the robot arm
executing play trajectories. We record the 3D trajectories as well as their 2D projections from two
viewpoints. We create such a dataset in the Metaworld (Yu et al., 2019) simulation environment
as well as a separate one using actual hardware (Figure 13). Once the Sketch-to-3D Trajectory
Generator is trained, we can use hand-drawn sketches as input to predict 3D trajectories.

Performance on Hand-drawn Sketches. We provide an example using the ButtonPress task to
qualitatively assess the generator’s effectiveness with hand-drawn inputs (Figure 4). We asked users
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(c)(a) (b)
Generated Trajs {𝜉!} Executed Trajs {𝜉"} Teleop Demo TrajHand-Drawn 

Sketches

Figure 4: Multi-stage trajectory generation and execution. On the left, we show hand-drawn sketches
on scenario RGB images and the extracted sketches on a blank background, (a) generated trajectory
from the Sketch-to-3D Trajectory Generator, and (b) executed trajectory via open-loop serving. In
(c), we visualize a teleoperated demo for the same task for reference.

to provide sketches for the task and also separately collected actual demonstrations as a reference.
We see that the Sketch-to-3D Trajectory Generator was able to predict trajectories (Figure 4a) similar
to the actual demonstrations (Figure 4c). We also generate more than one trajectory from the same
pair of sketches by adding controlled noise to the latent representation. This approach allows us to
produce a range of plausible trajectories for a given sketch input, enriching the demonstration set
and potentially leading to more robust and adaptable robot policies. We then execute the generated
trajectories to produce demonstrations for training the policy (Figure 4b). Despite the inherent
variability in sketch inputs, the executed trajectory further validates the practical applicability of
our approach. This demonstrates our model’s robustness to sketch imperfections and its ability to
reliably interpret user intent, bridging the gap between simple 2D sketches and actionable 3D robot
trajectories.

Latent Space Representation and Interpolation. To further understand the generator’s latent
space, we performed linear interpolation in the latent space between different input samples. Specif-
ically, we selected two distinct sketch pairs with different trajectories, extracted their feature vectors,
linearly interpolated between them, reconstructed the sketches, and generated new trajectories. Fig-
ure 12 shows smooth transitions in both 2D sketches and 3D trajectories across the interpolated
latent space. This smoothness demonstrates that our model has learned a continuous and semanti-
cally meaningful representation, suggesting good generalization capability to unseen inputs that lie
between known examples (Kingma, 2013). The coherence between interpolated sketches and their
corresponding 3D trajectories further validates the model’s robust sketch-to-trajectory mapping.

4.2 COMPARISONS WITH BASELINES

In this section, we conduct extensive experiments in MetaWorld (Yu et al., 2019) to answer Q2: can
SKETCH-TO-SKILL utilize sketch-generated demonstrations to achieve comparable performance
to traditional methods using high-quality demonstration data? Specifically, we compare SKETCH-
TO-SKILL with: (1) IBRL (Hu et al., 2023), a strong baseline that utilizes traditional high-quality
demonstration data (rather than sketches as what our method uses), and (2) TD3 (Fujimoto et al.,
2018), a state-of-the-art pure RL approach without using any demonstrations. We hypothesize that
although the sketches have only partial information (namely, 2D projections of 3D trajectories and
no gripper information), we can still generate good enough demonstration data to perform compara-
bly with the baseline that uses full demonstrations. We show that to be the case in these experiments.

We perform evaluations on six tasks from the MetaWorld benchmark, namely Coffeepush,
Boxclose, Buttonpress, Reach, Reachwall, and ButtonpressTopdownwall, each using
sparse 0/1 task completion rewards at the end of each episode. For each task, we collected 3
high-quality demonstrations using an expert policy. These demonstrations served as our baseline
for traditional demonstration-based methods. For our approach, we collected a total of three hand-
drawn sketches, one on each demonstration’s initial frames (Figure 4). These sketches were used to
generate and execute trajectories, creating a parallel set of sketch-based demonstrations for compar-
ison.

Figures 5 and 6 show the training and evaluation performance across all the tasks. We present
SKETCH-TO-SKILL’s results with and without the discriminator reward. We observe that in all
cases SKETCH-TO-SKILL performs better, often significantly better than pure RL. In most tasks,
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Figure 5: Performance Comparison of SKETCH-TO-SKILL Across MetaWorld Tasks with
Baselines. This figure shows the training score (success rate) for six MetaWorld environments.
SKETCH-TO-SKILL, with hand-drawn sketches, achieves comparable performance to IBRL which
uses actual teleoperated demonstrations while being much better than pure RL.
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Figure 6: Evaluation Scores. This figure shows the evaluation score (success rate) for six Meta-
World environments during evaluation.

SKETCH-TO-SKILL’s performance using only sketches as input is comparable to IBRL which uses
high-quality demonstrations. This is particularly notable in the CoffeePush and Boxclose tasks.
These tasks require actuating the gripper — information that is not provided in the sketches. Nev-
ertheless, SKETCH-TO-SKILL is able to bootstrap and use guidance from the sketch generated sub-
optimal demonstrations to learn a policy efficiently. This provides evidence to the claim that the
sketch-generated demonstrations do not lead to much degradation in performance while being much
easier to obtain.

Behavioral Cloning Performance. SKETCH-TO-SKILL employs behavior cloning (BC) to boot-
strap policy learning, similar to IBRL. However, the key difference is that IBRL relies on high-
quality teleoperated demonstrations, whereas SKETCH-TO-SKILL uses sketch-generated demon-
strations. We compare the performance between them (Figure 7) and ablate the number of gener-
ated demonstrations m per input sketch pair. Not surprisingly the BC policy with teleoperated data
performs better than the sketch generated ones. However, despite the lower performance of the BC
policy, SKETCH-TO-SKILL is still able to achieve comparable performance in RL training (as seen
in Figures 5 and 6), showing that it is not as sensitive to the quality of the bootstrapping policy.
Increasing the number of generated demonstrations m per input sketch pair (from 1 to 10) does not
significantly improve the BC performance.

In ButtonpressTopdownWall, the sketch-generated dataset resulted in a BC policy that fails
in all cases. However, as we observe in Figures 5 and 6, SKETCH-TO-SKILL that uses this policy is
still able to perform better than pure RL. This can be attributed to the fact that the sketch-generated
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Figure 7: Behavioral Cloning (BC) scores using actual teleoperated data and sketch generated
demonstrations. The blue bars represent the baseline BC policy trained with 3 high-quality demon-
strations, while the red bars show BC policies trained with sketch-generated demonstrations, varying
in the number of demonstrations m per input sketch pair (1, 3, 5, and 10). Darker shades of red in-
dicate an increase in the number of sketch-based demonstrations used for training. Despite poor
success rate, the actual trajectories and policy learned with sketches are useful for bootstrapping as
evidenced by the training performance (Figures 5 and 6).
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Figure 8: Top row illustrates ablation training scores for SKETCH-TO-SKILL without discriminator
and the bottom row shows with discriminator. We vary m, the number of demonstrations generated
per sketch pair (1, 3, 5, and 10).

demonstrations, due to the inherent noise, are not able to actually succeed in pushing the button.
However, the trajectories themselves reach very close to the button. To verify this, we computed
the final position difference between the teleoperated demonstrations and the sketch-generated ones
which was 0.001. Therefore, even though the success rate of the BC policy is close to 0, the dis-
criminator guidance and the bootstrapping allow SKETCH-TO-SKILL to learn effectively.

4.3 ABLATION STUDY

To understand the impact of the key components in SKETCH-TO-SKILL and answer Q3, we con-
ducted ablation studies focusing on two critical aspects: the number of generated trajectories m per
input sketch pair and the reward weighting scheme λ.

Impact of Generated Trajectories per Sketch. We investigated how the number of trajectories
generated from each input sketch pair affects the learning performance. Figure 14, shows the learn-
ing curves for policies trained with varying numbers of generated trajectories per sketch. We see that
the performance is improved when we generate m = 3 trajectories per sketch, instead of just one
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trajectory per sketch. Here, the additional demonstrations can make up for the deficiency of not hav-
ing actual teleoperated demonstrations. However, increasing the number of trajectories per sketch
has diminishing value. It is useful when the tasks are difficult, such as BoxClose and CoffeePush
which involve gripper actions, but does not affect much for easier tasks.

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

CoffeePush
Reward Weights

rw_0.5
rw_0.1
rw_0.05
rw_0.005

Figure 9: Reward weighting term abla-
tion

Effect of Reward Weighting: We examined the impact
of different reward weighting schemes on policy learn-
ing. Our reward function combines the environmental re-
ward with a discriminator-based reward by Equation 2,
where λ is the weighting parameter. Figure 9 illustrates
the learning performance across different values of λ.
The model demonstrates comparable performance with
reward weights of 0.1 and 0.005, but significantly under-
performs with a reward weight of 0.5.

4.4 HARDWARE EXPERIMENTS

We validate SKETCH-TO-SKILL on physical robot hardware to demonstrate its effective transfer
from simulation to real-world applications.

Experimental Setup. We set up the ButtonPress task as shown in Figure 10. We use a UR3e robot
equipped with a Robotiq hand-e gripper and a realsense camera mounted on the wrist. We also use
two additional environmental cameras to capture frames for humans to draw sketches on (Figure
13). The details of the task, success detection, and reset mechanism are in the Appendix.

camera1 : [corner] camera2 : [corner2]
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Figure 10: Real experiment training scores for SKETCH-TO-SKILL with BC success rate of 0.8.

Performance. The evaluation success rate of the BC policy of ButtonPress task trained on sketch-
generated demonstrations is notably high at 0.8 within the randomized environment where we exe-
cuted the policy. Consequently, our sketch-to-skill policy without a discriminator, quickly demon-
strated strong performance, achieving a training success rate of 0.8 within just 30K samples.

5 CONCLUSIONS AND FUTURE WORK

We present SKETCH-TO-SKILL that uses 2D sketches to improve the efficiency of learning a ma-
nipulation skill. While prior work has shown the power of sketches in IL, we are the first to show
how to do so using RL. The key ideas are to train a 2D sketch to 3D trajectory generator whose
output is used to bootstrap learning of the RL policy and used as an extra exploration guidance
signal, all of which contributes to improved efficiency. There are several avenues for future work.
SKETCH-TO-SKILL currently does not include any gripper information or timing information in the
sketches. While we have shown that even without this information, we can learn effectively, an im-
mediate line of work would be to include this in the sketches. Fundamentally, this does not change
the Sketch-To-3D trajectory generator model which would now also have to predict the gripper state
and time parameterization of the trajectory. The second avenue for future work is to generate the
sketches from sources other than humans. For example, Gu et al. (2023) showed how to generate
sketches using a Vision Language Model given a natural language description of the task. We can
directly incorporate such sketches into our framework.
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6 REPRODUCIBILITY

Anonymized code and demo datasets will be available on our webpage. We use the standard Meta-
World benchmark to allow for easy comparison with other algorithms and to facilitate the reproduc-
ing of our results. All details about the hyperparameters, environment specifications, and real-world
experiment setup are provided in the appendix.
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A DE BOOR’S ALGORITHM DETAILS

The uniform knot vector for a B-spline of degree p with n+ 1 control points is defined as:

u = [0, ..., 0︸ ︷︷ ︸
p+1

,
1

n− p+ 1
,

2

n− p+ 1
, ...,

n− p

n− p+ 1
, 1, ..., 1︸ ︷︷ ︸

p+1

] (3)

The B-spline basis functions Wi,p(t) are defined recursively using the Cox-de Boor recursion for-
mula:

Wi,0(t) =

{
1 if ui ≤ t < ui+1

0 otherwise
(4)

Wi,p(t) =
t− ui

ui+p − ui
Wi,p−1(t) +

ui+p+1 − t

ui+p+1 − ui+1
Wi+1,p−1(t) (5)

where ui are the knot values from the knot vector u.

The B-spline parametrization matrix N for m evaluation points is an m× (n+ 1) matrix:

W =


W0,p(t1) W1,p(t1) · · · Wn,p(t1)
W0,p(t2) W1,p(t2) · · · Wn,p(t2)

...
...

. . .
...

W0,p(tm) W1,p(tm) · · · Wn,p(tm)

 (6)

where tj (j = 1, ...,m) are evenly spaced parameters in the interval [0, 1].

B SKETCH-TO-3D TRAJECTORY GENERATOR ARCHITECTURE

OVERVIEW OF THE MODEL

The proposed model converts 2D image sketches into 3D motion trajectories using a Variational
Autoencoder (VAE) combined with a Multi-Layer Perceptron (MLP). The VAE encoder processes
64×64 pixel 2D sketches (3 channels) into a latent vector (dv = 32), while the decoder reconstructs
the sketches to retain essential features for trajectory generation. The latent space outputs the mean
(µ) and variance (σ2), sampled using the reparameterization trick.

The MLP takes the latent vectors from two sketches, concatenates them, and generates 3D control
points for B-spline trajectory interpolation. The MLP takes an input of size (dv × 2), processes it
through hidden layers [1024, 512, 256], and outputs ncp × 3. The generated 3D control points are
then used for B-spline interpolation to produce smooth trajectories.

INITIALIZATION, REGULARIZATION, AND HYPERPARAMETERS

We initialize all network parameters using Xavier initialization. Regularization is done with
Kullback-Leibler Divergence (KLD), using a loss function that combines Sketch Reconstruction
Loss, KLD Loss, and Trajectory Loss. The Sketch Reconstruction Loss is the MSE loss on sketch im-
ages, the Trajectory Loss computes the MSE between predicted and ground truth trajectories, where
the ground truth trajectory is first densely fitted and resampled to ensure uniform point spacing,
and the KLD Loss applies Kullback-Leibler Divergence for regularization. Key hyperparameters
include:

• Image size: 64× 64 pixels
• Latent dimension: 32
• Number of control points: 20
• B-spline degree: 3
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• MLP hidden layers: [1024, 512, 256]

• Learning rate: 1× 10−3 (Adam optimizer)

• Batch size: 128

• KLD weight: 0.0001 (with optional annealing)

• Training epochs: 200

Figure 11: Diversity in generated 3D
trajectories. Each subplot shows multi-
ple generated trajectories (colored lines)
for a single input, demonstrating vari-
ability. Scattered points represent the
ground truth trajectory.

To enhance robustness and generalization, our train-
ing process employs two concurrent data augmentation
strategies. The first applies diverse image augmentations
(rotations, scaling, affine transformations, noise) to in-
put sketches, used exclusively for updating the VAE to
learn robust sketch representations. The second strategy
targets potential mismatches in hand-drawn sketches by
subtly modifying both original sketches and their 3D tra-
jectories. This involves adding noise and minor elastic
deformations to sketches, and noise with refitting to tra-
jectories. These augmented pairs update the entire model,
preparing it for hand-drawn input variability while main-
taining sketch-trajectory consistency. This augmentation
approach enhances the model’s ability to handle diverse,
imperfect sketches while ensuring accurate 3D trajectory
generation in real-world scenarios. To train the sketch
generation network we collect 22000 samples for simula-
tion tasks and 85 for the real world. During the training
for the real-world task, we use the data collected from
simulation to train the VAE part as well. We provide additional visualizations to demonstrate the
learned model’s generalizability in Figure 11 and 12.

Figure 12: Latent space interpolation results showing smooth transitions between original samples
(leftmost and rightmost) and reconstructed samples (middle) from two viewpoints, demonstrating
the model’s ability to generate coherent 3D trajectories from 2D sketch pairs.

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS OF
SKETCH-TO-SKILL POLICY AND BASELINES

This section outlines the implementation details of Sketch-To-Skill and the baselines. The behavior
cloning (BC) policies utilize a ResNet-18 encoder, where the output is flattened and processed by
MLPs to produce final 4D actions. We replace the BatchNorm layers in ResNet with GroupNorm,
matching the number of groups to the input channels. To prevent overfitting, we employ random-
shift data augmentation.

In the Meta-World environment, we utilize a corner2-image camera setup. We use wrist cameras to
enhance generalization and sample efficiency in real-world experiments, specifically using them for
the ButtonPress task.
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Table 1: Hyperparameters for RL in SKETCH-TO-SKILL.

Parameter Meta-World Real-World
Optimizer Adam Adam
Learning Rate 1e-4 1e-4
Batch Size 256 256
Discount (γ) 0.99 0.99
Exploration Std. (σ) 0.1 0.1
Noise Clip (c) 0.3 0.3
EMA Update Factor (ρ) 0.99 0.99
Update Frequency (U ) 2 2
Actor Dropout 0.5 0.5
Q-Ensemble Size (E) 2 N/A
Num Critic Update (G) 1 N/A
Image Size 96×96 96×96
Use Proprio No N/A
Proprio Stack N/A N/A
State Stack N/A N/A
Action Repeat N/A N/A

D ADDITIONAL DETAILS OF REAL-WORLD EXPERIMENTS

In this section, we present insights into the real-world experiments conducted using Sketch-To-
RL, specifically for the ButtonPress manipulation task. We utilized a UR3e robot equipped with
a Robot Hand gripper, operating in an action space with 4 dimensions: 3 for end-effector position
deltas under a Cartesian impedance controller and 1 for the absolute gripper position, with policies
functioning at 7.5 Hz.

To train the Sketch-To-3D Trajectory generator, we collected approximately 85 teleoperated trajec-
tories. RGB images were captured using two orthogonally positioned RealSense cameras to enhance
trajectory insight. A green marker was placed on the gripper tip to facilitate sketch generation on
the frames, enabling the model to learn 2D sketch projections onto 3D trajectories.

After training the Sketch-To-3D Trajectory generator, we created 30 sketches based on RGB frames
from the two cameras. We then collected 30 sketch-generated demonstrations, ξD using openloop
servoing on 3D trajectory ξg produced by the generator T . We then train Behavior Cloning (BC)
policy using the sketch-generated demonstrations, ξD, achieving a score of 0.8 and thus leading to
good performance in the sketch-to-skill policy.

All methods maintained the same hyperparameters and network architectures as those used in the
Meta-World tasks. The task is illustrated in Figure 10 and briefly described below:

ButtonPress: The objective is to press the Button, with its initial position randomized within a 20cm
by 20cm to 25cm trapezoidal area visible from the wrist camera. We collected 30 demonstrations
for this task.

Reward Detection : We used a manual method to reward the agent if it successfully pushed the
button. The agent receives a reward of 1 for successfully completing the task and a reward of 0 in
all other cases. Each episode has a set number of timesteps, and if the agent doesn’t succeed within
that limit, it resets and starts over. The length of each episode may be shorter than the given limit
depending on how quickly the agent completes the task.

Reset : For the object, we manually reset the environment by pulling back the button (if pressed)
and uniformly randomizing the position of the button in each episode. The robot is initially set to
a specific joint configuration known as the home position. Whenever the agent receives a reward
or an episode ends, it resets back to the home configuration and the training continues. The object
randomization is done by placing the button at the center, and the position remains unchanged until
the agent receives its first reward. After that, the object is gradually moved towards the boundary,
circled around the workspace, returned to the center, and the process is repeated until the training
ends.
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wrist camera

camera1

camera2

Push Button

robot arm

Figure 13: Complete setup for the ButtonPress task in a real-world experiment. The configuration
includes a UR3e robot arm equipped with a Robot Hand gripper, and a RealSense D435i camera
mounted on the wrist. Two additional RealSense cameras are positioned orthogonally to capture the
trajectory from two different viewpoints.

Safety Boundaries: We have restricted the movement of the robot to the x, y, and z directions of
the end-effector. Each step that the robot takes is limited to a specific value. If the action taken by
the agent exceeds this limit, the robot will not move and will remain in its current position. To avoid
collision after pressing the button and pushing it into the table, we have set a minimum limit for the
z direction of the robot, ensuring it can still press the button. Even if the agent attempts to move
downward into the table, the robot will remain at the specified z position threshold.
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Figure 14: Top row illustrates ablation training scores for SKETCH-TO-SKILL without discriminator
and the bottom row shows the ablation training scores for SKETCH-TO-SKILL, trained with demon-
strations generated from sketches for bootstrapping, varying in the number of generated demonstra-
tions m per input sketch pair (1, 3, 5, and 10).

E ADDITIONAL EXPERIMENTS FOR REBUTTAL

E.1 AE1: ROBOMIMIC EXPERIMENTS

E.1.1 TASK COMPLEXITY:

The PickPlaceCan task in RoboMimic is another demanding two-stage challenge. It requires the
robot to accurately locate and reach a can, then pick it up and place it into a designated bin. This
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task not only tests the robot’s ability to handle objects with precision but also demands correct
orientation of the gripper throughout the process. RoboMimic, a well-established benchmark,
provides high-quality demonstrations collected via human teleoperation, which are instrumental for
training successful policies.

E.1.2 IMPLEMENTATION AND STRATEGY:

In this setup, the sketch-based demonstrations provide initial positional cues for the robot. Our
framework utilizes reinforcement learning (RL) to refine these initial cues, dynamically adjusting
the robot’s approach to manage both the orientation and timing necessary for successful task
execution. This method proves particularly effective as it does not rely on fully detailed trajectory
information from the start; instead, it uses the sketches to guide the initial exploration phase of RL,
significantly simplifying the data collection process.

Results and Performance Metrics:

• Performance: Our sketch-to-skill framework, even with limited initial data, performs ad-
mirably in this demanding scenario. The results are on par with those from IBRL methods
98%, which benefit from complete and detailed human demonstrations, including explicit
orientation details (as shown in Figure 15).

• Comparison to IBRL: The comparative success illustrates the robustness and effective-
ness of our method in managing the task’s orientation and other complexities without fully
specified trajectory inputs. This is particularly notable given that RoboMimic’s Pick and
Place Can task offers a significantly higher level of difficulty than similar tasks in Meta-
World.
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Figure 15: Evaluation Scores (success rate) for the robomimic PickPlaceCan environment during
evaluation.

E.2 AE2: HARDWARE EXPERIMENTS

camera1 : [corner] camera2 : [corner2]

ToastPress

Figure 16: Training curves of the real-world ToastButtonPress task, where the environment is clut-
tered
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camera1 : [corner] camera2 : [corner2]

ToastPick

Figure 17: Training curves of the real-world ToastPickPlace task, where the environment is cluttered

This appendix provides detailed insights into additional real-world experiments conducted using the
Sketch-To-RL framework, focusing on the Toaster Button Press and Bread Pick Place tasks. Both
experiments were carried out using a UR3e robot equipped with a Robotiq Hand gripper, navigating
an action space that included three dimensions for end-effector position deltas and one for absolute
gripper position. The policies operated at 7.5 Hz. These experiments were designed to test the
robustness and adaptability of our sketch-based approach under dynamic, cluttered environments
with randomized initial conditions.

E.2.1 TOASTER BUTTON PRESS EXPERIMENT

• Sketch and Demonstration Generation: Created 10 sketches based on the camera feeds.
From these, 10 sketch-generated demonstrations were collected using open-loop servoing
based on 3D trajectories produced by the generator which was previously trained on 85
trajectories collected earlier.

• Experimental Design: Each episode featured a cluttered environment around the toaster,
with objects commonly found in household settings to simulate realistic conditions. The
initial position of the gripper was randomized in every episode to test the adaptability of
the learned policy.

• Training and Performance Trained a Behavior Cloning (BC) policy using the sketch-
generated demonstrations, achieving a preliminary success rate of 60%, and trained Sketch-
To-Skill over 12k interaction achieving 90% within 10K interactions.

E.2.2 BREAD PICK PLACE EXPERIMENT

• Setup and Data Collection: For this task, sketches were specifically collected in randomly
cluttered environments to reflect typical variability in real-world scenarios.

• Experimental Design: The task involves picking a piece of bread from a toaster and plac-
ing it on a nearby plate, requiring precise manipulation and handling. Both the environment
clutter and the initial gripper positions were randomized in each episode, presenting a dif-
ferent challenge each time to test the robustness of the policy.

• Training and Performance: The BC policy was similarly trained using sketch-generated
demonstrations, with performance metrics collected to assess the effectiveness of the ap-
proach under varied and dynamic conditions achieving success of 36% and trained Sketch-
To-Skill over 30K interaction achieving 80% within 30 interactions.

E.2.3 COMMON ELEMENTS ACROSS EXPERIMENTS:

Network Architecture and Hyperparameters: All methods maintained consistent network archi-
tectures and hyperparameters as used in the Meta-World tasks.
Reward Detection and Reset Protocol: A manual reward detection method was employed, where
the robot received a reward for successfully completing the designated task. The environment and
robot position were reset at the end of each episode to ensure consistent training conditions.
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These experiments underscore our method’s capability to handle real-world variability and complex
task execution, supporting its potential utility beyond controlled experimental setups. The detailed
results from these tasks, illustrated in Figures 16 and 17, highlight the practical applications and
adaptability of our sketch-to-skill framework in dynamic, cluttered settings.

E.3 AE3: HARD METAWORLD EXPERIMENTS

Figure 18: Figure on top shows sketches for the MetaWorld Assembly task. Figures on the bottom
show training scores (success rate).

MetaWorld Assembly Task Description

Task Complexity: The Assembly task in MetaWorld is a “hard” task Seo et al. (2023) that requires
the robot to execute two-stage manipulations. The task involves precise movements to pick up a
peg, navigate it to a specific location, and insert it into a hole within a larger assembly fixture. This
task tests the robot’s precision, spatial awareness, and ability to handle complex sequences.

Results and Performance Metrics:

• Sketch-To-Skill: Demonstrated a high success rate of 93%, effectively using sketches for
coarse guidance to navigate and complete complex task sequences, even without actual
teleoperated demonstrations.

• Sketch-to-Skill without Discriminator: Initially struggled with a success rate of 20%, but
extended interaction up to 100K steps improved performance dramatically, reaching a near-
perfect success rate of 98%. This underscores the potential for learning even without dis-
criminator guidance, given sufficient training time.

• IBRL: Achieved the highest success rates of approximately 100%, benefiting from high-
quality teleoperated demonstrations that include precise details on orientation and position-
ing.

• Standard BC: Achieves a success rate of around 60%, showing limitations in environments
where adaptive behaviors and fine-tuning through reinforcement learning are necessary.

These results highlight the effectiveness of the Sketch-to-Skill approach in handling complex, multi-
stage tasks through initial coarse guidance, with the potential for significant improvement over time.
They also illustrate the advantage of incorporating discriminator feedback to accelerate learning and
enhance performance.

E.4 AE4: USE OF VAE IN SKETCH-TO-3D TRAJECTORY GENERATOR

We conducted an ablation study of the Sketch-to-3D Trajectory Generator to evaluate the effect of
the VAE in the architecture. We used 1000 trajectories, split 80:20 for validation and report the
training and validation loss in Table 2. We compare the performance of using the VAE in Figure 2
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versus without the VAE and using an CNN (with the same architecture as the VAE’s encoder, minus
the decoder and loss components) instead. We observe that the VAE improves the performance
across all the losses including the reconstruction loss and trajectory loss.

Table 2: Performance Metrics for generator model

Metric with VAE without VAE

Training Loss 0.6019 0.6286
Validation Loss 0.9128 1.2804
Reconstruction Loss 0.0004 0.3258
KLD Loss 69.8592 107.167
Parameter MSE Loss 0.0820 0.0928
Trajectory Loss 0.770 0.1180

E.5 AE5: USING COLOR GRADIENTS FOR OVERLAPPING TRAJECTORIES

We can also incorporate time-parameterization of the trajectory in the sketches using a color gradi-
ent, instead of a binary sketch image. This notion of color gradient in sketches was introduced by
RT-Trajectory Gu et al. (2023). An example is shown in Figure 19. Here, the color of the sketch
changes from green (start) to red (end). This is particularly helpful when the sketch crosses each
other or overlaps. We conduct additional experiments with the generator to evaluate the effect of
incorporating gradients in the Sketch-To-3D trajectory generator.

Specifically, we use the MetaWorld Assembly task (Figure 18) where the sketch overlaps in the
middle as the end-effector picks up the tool and carries it to the goal position. We trained two
generators without and with color gradients. The performance of these two generators are reported
in Table 3. We observe that incorporating the gradient in such a case results in lower reconstruction
and trajectory losses. With lower trajectory losses we can handle more complex trajectories that
overlap with color gradients. Note that incorporating gradients also does not require any change to
the downstream architecture, and only requires minimal changes to the generator architecture.

Table 3: Performance Metrics for Overlapping and Non-Overlapping Trajectories

Metric with color gradient without color
gradient

Training Loss 0.2438 0.3107
Validation Loss 0.3120 0.3585
Reconstruction Loss 0.0001 0.0003
KLD Loss 77.167 76.4683
Parameter MSE Loss 0.1028 0.1135
Trajectory loss 0.1530 0.2379

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 19: Trajectories with time-based color gradient for Assembly Metaworld simulation task.
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