
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SKETCH-TO-SKILL: BOOTSTRAPPING ROBOT LEARN-
ING WITH HUMAN DRAWN TRAJECTORY SKETCHES

Anonymous authors
Paper under double-blind review

ABSTRACT

Training robotic manipulation policies traditionally requires numerous demonstra-
tions and/or environmental rollouts. While recent Imitation Learning (IL) and Re-
inforcement Learning (RL) methods have reduced the number of required demon-
strations, they still rely on expert knowledge to collect high-quality data, limit-
ing scalability and accessibility. We propose SKETCH-TO-SKILL, a novel frame-
work that leverages human-drawn 2D sketch trajectories to bootstrap and guide
RL for robotic manipulation. Our approach extends beyond previous sketch-
based methods, which were primarily focused on imitation learning or policy
conditioning, limited to specific trained tasks. SKETCH-TO-SKILL employs a
Sketch-to-3D Trajectory Generator that translates 2D sketches into 3D trajecto-
ries, which are then used to autonomously collect initial demonstrations. We
utilize these sketch-generated demonstrations in two ways: to pre-train an ini-
tial policy through behavior cloning and to refine this policy through RL with
guided exploration. Experimental results demonstrate that SKETCH-TO-SKILL
achieves ∼96% of the performance of the baseline model that leverages teleoper-
ated demonstration data, while exceeding the performance of a pure reinforcement
learning policy by ∼170%, only from sketch inputs. This makes robotic manip-
ulation learning more accessible and potentially broadens its applications across
various domains.

1 INTRODUCTION

Robots are increasingly being deployed in dynamic environments, where they must perform a wide
range of tasks with precision and adaptability. One of the key challenges in enabling robots to learn
new skills lies in specifying complex, task-specific behaviors. Learning from Demonstration (LfD)
(Billard & Grollman (2013)) has become a widely used approach, allowing robots to acquire novel
motions by imitating expert-provided trajectories. However, collecting demonstration data for LfD
is challenging, particularly for high degree-of-freedom (DOF) robots performing manipulation.

Traditional methods such as kinesthetic teaching and teleoperation while useful also have challenges
with safety risks, scalability, and the need for specialized expertise (Chan et al., 2014; Ferraguti et al.,
2015; Bimbo et al., 2017). Recent approaches, such as using manually-operated grippers instru-
mented with smartphone apps (Shafiullah et al., 2023) and Virtual Reality (VR) based teleoperation
systems (Kamijo et al., 2024), offer more intuitive hardware interfaces for collecting demonstrations.
However, they require specialized hardware which may limit their flexibility and accessibility. Re-
cently there has been interest in leveraging an innate human ability to communicate spatial ideas and
motions through simple sketches. For example, a quick sketch of a path can easily communicate the
intended movement for navigating toward a goal location.

Researchers have begun to explore this promising direction. RT-Trajectory (Gu et al., 2023) intro-
duced the notion of sketches and showed how to use coarse trajectory sketches for policy condi-
tioning in Imitation Learning (IL). RT-Sketch (Sundaresan et al., 2024) extended this concept to
leverage hand-drawn sketches of the entire environment for goal-conditioned IL. These methods
demonstrated the potential of utilizing sketches in robotics, but they were primarily focused on IL
and biased towards tasks they were specifically trained on. Zhi et al. (2023) expanded this idea
with diagrammatic teaching, where users instruct robots by sketching motion trajectories directly
on 2D images of the scene. Their approach uses density estimation and ray tracing to reconstruct

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Step 1: take two photos 
of the task scenario and collect 
task instructing sketches

Step 2: convert 2D sketches 
into 3D trajectories through 
pretrained generator

Step 3: follow generated trajs 
and perform open-loop servoing 
to collect experience data

{ 𝑝, 𝑜, 𝑎 !}

Step 4: learn manipulation 
policy through BC warm up and 
demo-bootstrapped RL

{ 𝑥, 𝑦, 𝑧 "}

Figure 1: Learning a new skill in the SKETCH-TO-SKILL framework. Step 1: Capture the task
scenario from two views and collect human-drawn sketches. Step 2: Convert 2D sketches to 3D
trajectories using a pretrained generator. Step 3: Execute generated trajectories to collect experience
data. Step 4: Learn manipulation policy using reinforcement learning bootstrapping from behavior
cloning and using guidance for experience data.

3D trajectories from the sketches, thus limiting its ability to replicate only the provided sketches and
restricting its generalization to new or unseen task setups.

Unlike prior work that used sketches only as conditioning in IL, we present a more generalizable ap-
proach that learns to predict 3D trajectories from sketches in Reinforcement Learning (RL). Specifi-
cally, we propose SKETCH-TO-SKILL (Figure 1), a framework that bootstraps and guides RL using
sketches. Our approach first learns to map 2D sketches to 3D trajectories, which are then used to
collect demonstrations. We utilize these sketch-generated demonstrations in two ways: first, by pre-
training an initial policy through Behavior Cloning (BC), and second, by refining this policy through
reinforcement learning with guided exploration. Although sketch-generated demonstrations are not
as precise or high-quality as teleoperated ones, they still contain enough useful information to aid
RL and reduce learning time.

Unlike teleoperation which requires specialized hardware and proficiency in using the system,
sketches can generally be provided by non-robotics experts. By treating these sketch-based trajecto-
ries as approximate guiding signals rather than high-fidelity demonstrations, we allow the agent to
learn more effectively even with coarse sketches. We summarize our contributions as follows:

(1) We identify and address a crucial gap by integrating sketches into RL, extending their appli-
cation beyond imitation learning and policy conditioning.

(2) We propose SKETCH-TO-SKILL, a framework that leverages sketches to bootstrap and guide
RL, reducing reliance on high-quality, real-world demonstrations.

(3) Through extensive experiments, we demonstrate that sketches, despite their low fidelity,
significantly accelerate learning by improving exploration and task comprehension in RL.
SKETCH-TO-SKILL achieves∼96% of the performance of the baseline model utilizing high-
quality teleoperation demonstrations, while exceeding the performance of a pure reinforce-
ment learning policy by ∼170% during evaluation.

2 RELATED WORK

Learning from Demonstration (LfD). LfD (Billard & Grollman, 2013) is a key method in robot
learning, allowing robots to acquire skills through expert demonstrations, bypassing the complexities
of action programming and cost function design (chaandar Ravichandar et al., 2020). Kinesthetic
teaching, where an expert physically guides the robot while its movements are recorded, is widely
used in methods like DMPs (Kober & Peters, 2009; Ijspeert et al., 2013), Probabilistic Movement
Primitives (Paraschos et al., 2015), and stable dynamical systems (Khansari-Zadeh & Billard, 2011;
Mohammad Khansari-Zadeh & Billard, 2014; Bevanda et al., 2022). However, it is labor-intensive
and challenging to scale. Teleoperation (Si et al., 2021), where users control robots remotely, offers
more flexibility but can be complex and requires expertise to operate. VR interfaces (Zhang et al.,
2018; Kamijo et al., 2024) provide a more immersive alternative but depend on specialized hard-
ware. To overcome these limitations, recent research has introduced more accessible approaches,
like sketch-based demonstrations (Drolet et al., 2024).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Sketches in Robotics. Sketches have become a powerful tool in computer vision, aiding tasks
like scene understanding (Chowdhury et al., 2023b) and object detection (Chowdhury et al., 2023a;
Bhunia et al., 2023). RT-Sketch (Sundaresan et al., 2024) first explored hand-drawn sketches for
goal-conditioned imitation learning (IL), using them to define tasks intuitively. RT-Trajectory (Gu
et al., 2023) extended this by using trajectory sketches as IL policy conditioning, either drawn by
users or generated by a Large Language Model from task descriptions. Similarly, the Diagrammatic
Teaching framework (Zhi et al., 2023) uses density estimation and ray tracing to reconstruct 3D
trajectories from the sketches. These methods, however, only use sketches as conditioning for task
completion, and thus do not generalize beyond the tasks where the sketches are provided.

Demonstration-Enhanced Strategies for Efficient RL. Incorporating demonstration data in RL
can improve sample efficiency, especially in environments where rewards are sparse. Methods such
as Reinforcement Learning from Prior Data (RLPD) (Smith et al., 2022), Imitation Bootstrapped
RL (IBRL) (Hu et al., 2023) and NAVINACT (Bhaskar et al., 2024) take advantage of prior demon-
strations by embedding them into the agent’s replay buffer. During training, these examples are
oversampled, offering the agent more frequent exposure to expert-guided trajectories. Such ap-
proaches significantly improve learning speed and performance, particularly in continuous control
tasks where learning from scratch can be prohibitively slow and inefficient (Yu et al., 2024). Our
research expands upon these techniques by exploring how sketch-based trajectories can be used as
an additional source of prior data in RL.

3 SKETCH-TO-SKILL

Our approach bootstraps robot learning from trajectory sketches, significantly lowering the barrier
to entry for robotic task specification. This section details our three-stage method: (1) training a
Sketch-to-3D Trajectory Generator, (2) obtaining 3D trajectories and execution experiences through
the Generator and open-loop servoing, (3) pre-training an initial robotic manipulation policy through
behavior cloning, and refining the policy through reinforcement learning with guided exploration.
By integrating intuitive human input with powerful learning algorithms, our approach aims to create
more accessible and adaptable robotic learning systems.

3.1 SKETCH-TO-3D TRAJECTORY GENERATOR

Our method begins with a Sketch-to-3D Trajectory Generator, T , that translates a pair of 2D sketch
images (I1, I2) obtained from different viewpoints into corresponding 3D robot trajectory ξg . To
train this generator, we use a dataset consisting of 3D robot end-effector trajectories along with their
2D sketches from two viewpoints. These trajectories can be obtained from various sources, such as
play data where the robot executes sequences of actions. Sketches during inference can be provided
by a human on RGB images of the scene, as shown in Figure 4. However, the sketches fed as input
to the generator are 2D projections on blank backgrounds, with green and red dots representing the
start and end points respectively, and yellow lines for the trajectory (see Figure 2 for an example).
By focusing solely on the trajectory information without additional scene complexity, our model
can efficiently learn to encode the dual-view sketches and decode them into the corresponding 3D
trajectory.

The generator uses a neural network to map dual-view 2D sketches to 3D trajectories, where we
adopt a hybrid architecture combining a Variational Autoencoder (VAE) (Kingma, 2013) and a Mul-
tilayer Perceptron (MLP), as illustrated in Figure 2. The VAE encodes sketches from two viewpoints,
ideally orthogonal, to resolve depth ambiguity and capture essential trajectory features. The MLP
decoder generates B-spline (Prautzsch et al., 2002) control points C ∈ Rncp×3 from the latent rep-
resentation, which we then use to interpolate smooth 3D trajectories. We adopted uniform knots and
pre-compute the B-spline parametrization matrix W ∈ Rntp×ncp to reduce computational complex-
ity and facilitate efficient backpropagation. The calculation of W only depends on the uniform knot
vector u and the desired number of points ntp in the generated trajectory, and can be pre-calculated
using the Cox-de Boor recursion formula (also known as de Boor’s algorithm de Boor (1977), see
Appendix A for details). Then the final trajectory generation is simply a matrix multiplication:
ξg ∈ Rntp×3 = W ·C. With the generated control point parameter C, we can also easily generate
trajectories of varying density from the same parameters, making our method adaptable to different
task requirements.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

…

…

…

…

…

Bspline Params
3D Trajs

𝐿!"#
𝐿$!%&'(

𝐿&)*+

Figure 2: The Sketch-to-3D Trajectory Generator takes dual-view 2D sketches as inputs and predicts
B-spline parameters to generate the final 3D trajectory output.

Our training process uses a multi-component loss function L = Ltraj + Lsketch + Lkld, where
Ltraj handles trajectory reconstruction, Lsketch manages sketch reconstruction (Mean Square Er-
ror), and Lkld is KL-divergence for latent space regularization (Figure 2). This ensures accurate
trajectory generation while preserving sketch fidelity and latent space structure. We also applied
data augmentation to both the sketch images and the trajectories to enhance the model’s robustness
and generalization (more details can be found in Appendix B).

We can use the trained Sketch-to-3D Trajectory Generator, T , to generate demonstrations {ξD}
for learning new tasks using sketches drawn by a human. Specifically, the human draws trajectory
sketches on two views of RGB images captured from the initial task state. This is similar to how
human-drawn sketches are generated in prior works (Gu et al., 2023; Zhi et al., 2023). These paired
sketch images, {(I1, I2)}, are input into our trained generator, which produces corresponding 3D
trajectories, {ξg}, serving as the basis for guiding the robot’s actions. We can also generate more
than one trajectory from the same pair of sketches by adding controlled noise to the latent repre-
sentation. Then we proceed to collect demonstrations for manipulation policy learning. We execute
these trajectories on the robotic arm using open-loop servoing, which enables precise trajectory fol-
lowing based on pre-computed motor commands. During execution, we record a demonstration
dataset {ξD = {(pt, ot, at)}Tt=1} at a fixed frequency, where pt = (x, y, z)t denotes the robot’s
end-effector 3D position, ot represents the robot’s observation, at is the corresponding action, and
T is the total number of timesteps per demonstration. The collected demonstrations, which do not
need to be optimal, follow the intended path while capturing the robot’s actual behavior in the target
environment. They serve as an effective starting point for bootstrapping the policy learning process,
offering initial guidance grounded in the robot’s real-world performance.

𝑟!"#

𝑟!"#

{ 𝑝, 𝑜, 𝑎, 𝑟!"# $}

> 𝑄?𝑄?

Sketch-Generated
Experiences

𝜋%&

Train
{ 𝑥, 𝑦, 𝑧 $}

{ 𝑜, 𝑎 $}
𝑎%& 𝑎'(

𝑜$

Env

Replay Buffer*

Update

Similar?
Yes!

No!

Bootstrapped RL 
with sketch-generated demo

Guided Exploration 
with sketch-generated Trajs

𝜋)𝜋%&

�̂� = 𝑟!"# + 𝜆 , 𝑟*+,

Figure 3: Overview of SKETCH-TO-SKILL integrating sketch-generated demonstrations with rein-
forcement learning. Sketch-generated experiences train an IL policy, which bootstraps the RL pro-
cess. A discriminator guides exploration by rewarding similarity to sketch-generated trajectories.
The final action, combining IL and RL policy outputs, further enhances the exploration guidance.
The asterisk after ”Replay Buffer” indicates that the buffer is initialized with the open-loop servoing
demonstrations.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 SKETCH-TO-SKILL. Major modifications of IBRL highlighted in blue.

1: Hyperparameters: Number of critics E, number of critic updates G, update frequency U ,
exploration std σ, noise clip c, number of generated trajectories m per input sketch pair, reward
weighting term λ

2: Inputs: Pre-trained Sketch-to-3D Trajectory Generator T , sketch dataset S = {(I1i , I2i )}ni=1,
3: Outputs: Policy πθ, discriminator Dψ

Stage 1: Demonstration Generation
4: {ξg}1:mn ← generate m trajectories per sketch from S using T
5: {ξD}1:mn ← generated demonstrations through open-loop servoing

Stage 2: Policy Learning
6: Train imitation policy πIL on demonstrations {ξD}1:mn using the selected IL algorithm.
7: Initialize policy πθ, target policy πθ′ , and critics Qϕ, target critics Qϕ′ , discriminator Dψ for

i = 1, . . . , E
8: Initialize replay buffer B with demonstrations {ξD}1:mn
9: for t = 1 to N do

10: Observe current observation ot from the environment
11: Compute IL action aIL

t ∼ πIL(ot) and RL action aRL
t = πθ(ot) + ϵ, where ϵ ∼ N(0, σ2)

12: Sample a set K of 2 indices from {1, 2, . . . , E}
13: Select action at with higher Q-value from {aIL, aRL}
14: Execute action at
15: Store transition (pt, ot, at, rt, pt+1, ot+1) in replay buffer B
16: if t%U = 0 then
17: Perform discriminator Dψ update by optimizing Equation 1
18: Perform TD3 update using minibatches from replay buffer B (Fujimoto et al., 2018)
19: end if
20: end for

3.2 POLICY LEARNING

We now describe the policy learning of the SKETCH-TO-SKILL algorithm (given in Algorithm 1).
Taking as input the demonstration data {ξD} collected from our Sketch-to-3D Trajectory Generator
T and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot-
strap and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement
Learning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and
constraint policy search space.

In IBRL we replace traditional real-world demonstrations with sketch-generated demonstrations.
Initially, these sketch-based demonstrations are used to train an IL policy (line 6), which serves
as a coarse approximation of the task. Although these sketches do not capture every fine detail of
manipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that
they still carry significant, actionable information that can effectively guide the learning process in
reinforcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3):

(1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are
not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the
task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a prelim-
inary direction and reducing the cold start problem common in RL scenarios. This use of
imperfect demonstrations is intended to establish an initial policy that avoids random explo-
ration at the outset, making subsequent training more focused and efficient.

(2) Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated
trajectories continue to serve as a guide, shaping the exploration strategy. Instead of relying
on these trajectories as definitive guides, we treat them as rough outlines that suggest areas
of the task space worth exploring. This guided exploration helps concentrate the agent’s
learning efforts on potentially fruitful regions of the action space, thus optimizing the learning
speed and improving the relevance of the experiences gathered.

In both steps, the use of sketch-generated trajectories acknowledges their limitations—they are not
treated as ground truth but as valuable signals to help bootstrap RL and guide exploration throughout

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the learning process. For the RL algorithm, we employ TD3 (Fujimoto et al., 2018), an off-policy
algorithm known for its sample efficiency. In our approach, the replay buffer is initialized with
the sketch-generated demonstration trajectories (line 8), which provide an initial foundation for
learning and is later updated with online experiences as the agent interacts with the environment.
This combination allows the agent to refine its policy through both sketch-generated demonstration
data ξD and real-world interaction (line 13).

To further enhance the learning process and maintain consistency with the sketch-generated tra-
jectories, we introduce a discriminator-based guided exploration mechanism (Kang et al., 2018).
This discriminator, Dψ , is trained to distinguish between trajectories produced by our Sketch-to-3D
Trajectory Generator and those generated by the current policy:

LD(ψ) = Ep,g∼{ξD}[logDψ(p,∆p, g)] + Ep,g∼πθ
[log(1−Dψ(p,∆p, g))], (1)

where p represents the end-effector location, ∆p is the normalized difference between the current
and next end-effector positions, capturing local trajectory characteristics, and g is the task-specific
information (e.g., target location). This formulation allows the discriminator to assess trajectory
similarity while accounting for task variability. We then augment the TD3 reward function with an
additional term based on the discriminator’s output (line 18):

r̂(ot, at) = r(ot, at) + λ logDψ(pt,∆pt, g), (2)

where λ is a hyperparameter controlling the influence of the discriminator. This augmented reward
encourages the policy to explore state-action spaces more likely to produce trajectories similar to
those generated from human sketches, potentially leading to faster learning and better performance.

Our overall learning process iterates between TD3 optimization and discriminator training. In each
iteration: (1) We update the discriminator using the latest policy-generated trajectories and the origi-
nal sketch-generated trajectories (line 17). (2) We then update the policy and Q-functions using TD3,
with the augmented reward and guidance from the frozen IL policy (line 18). This iterative process
allows the policy to refine its behavior while maintaining similarity to the initial demonstrations
derived from human sketches. By combining IL, TD3, and discriminator-based guided exploration,
we create a cohesive learning framework that effectively leverages sketch-based demonstrations to
accelerate and improve the learning of complex manipulation tasks. Please see the Appendix for
more implementation details and a complete list of hyper-parameters.

4 EXPERIMENTS

We report our evaluation of SKETCH-TO-SKILL, focusing on its main components: the Sketch-to-
3D Trajectory Generator, the Imitation-Bootstrapped RL Policy learning, and the use of the discrim-
inator. Our experiments address the following key questions:

Q1 How effectively does the Sketch-to-3D Trajectory Generator convert 2D sketches into usable
3D robot trajectories?

Q2 Can SKETCH-TO-SKILL utilize sketch-generated demonstrations to achieve comparable per-
formance to traditional methods using high-quality demonstration data?

Q3 How do various design choices in SKETCH-TO-SKILL, such as the number of generated
demonstrations per sketch and the discriminator reward weighting, affect the learning and
refinement of robotic policy?

Q4 How well does our method translate to the real world?

4.1 EVALUATION OF THE SKETCH-TO-3D TRAJECTORY GENERATOR

The Sketch-to-3D Trajectory Generator is a key component of SKETCH-TO-SKILL, translating 2D
sketch inputs into 3D robot trajectories. To train this generator, we collect data of the robot arm
executing play trajectories. We record the 3D trajectories as well as their 2D projections from two
viewpoints. We create such a dataset in the Metaworld (Yu et al., 2019) simulation environment
as well as a separate one using actual hardware (Figure 13). Once the Sketch-to-3D Trajectory
Generator is trained, we can use hand-drawn sketches as input to predict 3D trajectories.

Performance on Hand-drawn Sketches. We provide an example using the ButtonPress task to
qualitatively assess the generator’s effectiveness with hand-drawn inputs (Figure 4). We asked users

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(c)(a) (b)
Generated Trajs {𝜉!} Executed Trajs {𝜉"} Teleop Demo TrajHand-Drawn 

Sketches

Figure 4: Multi-stage trajectory generation and execution. On the left, we show hand-drawn sketches
on scenario RGB images and the extracted sketches on a blank background, (a) generated trajectory
from the Sketch-to-3D Trajectory Generator, and (b) executed trajectory via open-loop serving. In
(c), we visualize a teleoperated demo for the same task for reference.

to provide sketches for the task and also separately collected actual demonstrations as a reference.
We see that the Sketch-to-3D Trajectory Generator was able to predict trajectories (Figure 4a) similar
to the actual demonstrations (Figure 4c). We also generate more than one trajectory from the same
pair of sketches by adding controlled noise to the latent representation. This approach allows us to
produce a range of plausible trajectories for a given sketch input, enriching the demonstration set
and potentially leading to more robust and adaptable robot policies. We then execute the generated
trajectories to produce demonstrations for training the policy (Figure 4b). Despite the inherent
variability in sketch inputs, the executed trajectory further validates the practical applicability of
our approach. This demonstrates our model’s robustness to sketch imperfections and its ability to
reliably interpret user intent, bridging the gap between simple 2D sketches and actionable 3D robot
trajectories.

Latent Space Representation and Interpolation. To further understand the generator’s latent
space, we performed linear interpolation in the latent space between different input samples. Specif-
ically, we selected two distinct sketch pairs with different trajectories, extracted their feature vectors,
linearly interpolated between them, reconstructed the sketches, and generated new trajectories. Fig-
ure 12 shows smooth transitions in both 2D sketches and 3D trajectories across the interpolated
latent space. This smoothness demonstrates that our model has learned a continuous and semanti-
cally meaningful representation, suggesting good generalization capability to unseen inputs that lie
between known examples (Kingma, 2013). The coherence between interpolated sketches and their
corresponding 3D trajectories further validates the model’s robust sketch-to-trajectory mapping.

4.2 COMPARISONS WITH BASELINES

In this section, we conduct extensive experiments in MetaWorld (Yu et al., 2019) to answer Q2: can
SKETCH-TO-SKILL utilize sketch-generated demonstrations to achieve comparable performance
to traditional methods using high-quality demonstration data? Specifically, we compare SKETCH-
TO-SKILL with: (1) IBRL (Hu et al., 2023), a strong baseline that utilizes traditional high-quality
demonstration data (rather than sketches as what our method uses), and (2) TD3 (Fujimoto et al.,
2018), a state-of-the-art pure RL approach without using any demonstrations. We hypothesize that
although the sketches have only partial information (namely, 2D projections of 3D trajectories and
no gripper information), we can still generate good enough demonstration data to perform compara-
bly with the baseline that uses full demonstrations. We show that to be the case in these experiments.

We perform evaluations on six tasks from the MetaWorld benchmark, namely Coffeepush,
Boxclose, Buttonpress, Reach, Reachwall, and ButtonpressTopdownwall, each using
sparse 0/1 task completion rewards at the end of each episode. For each task, we collected 3
high-quality demonstrations using an expert policy. These demonstrations served as our baseline
for traditional demonstration-based methods. For our approach, we collected a total of three hand-
drawn sketches, one on each demonstration’s initial frames (Figure 4). These sketches were used to
generate and execute trajectories, creating a parallel set of sketch-based demonstrations for compar-
ison.

Figures 5 and 6 show the training and evaluation performance across all the tasks. We present
SKETCH-TO-SKILL’s results with and without the discriminator reward. We observe that in all
cases SKETCH-TO-SKILL performs better, often significantly better than pure RL. In most tasks,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ButtonPress

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

CoffeePush

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

BoxClose

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

Reach

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ReachWall

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ButtonPressTopdownWall

IBRL (3) Sketch-to-Skill (3) Sketch-to-Skill (3) no Discrim Sketch-to-Skill no BC Policy TD3

Figure 5: Performance Comparison of SKETCH-TO-SKILL Across MetaWorld Tasks with
Baselines. This figure shows the training score (success rate) for six MetaWorld environments.
SKETCH-TO-SKILL, with hand-drawn sketches, achieves comparable performance to IBRL which
uses actual teleoperated demonstrations while being much better than pure RL.

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
co

re
s

ButtonPress

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
co

re
s

CoffeePush

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
co

re
s

BoxClose

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
co

re
s

Reach

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
co

re
s

ReachWall

0 10000 20000 30000 40000 50000 60000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
co

re
s

ButtonPressTopdownWall

IBRL (3) Sketch-to-Skill (3) Sketch-to-Skill (3) no Discrim Sketch-to-Skill no BC Policy TD3

Figure 6: Evaluation Scores. This figure shows the evaluation score (success rate) for six Meta-
World environments during evaluation.

SKETCH-TO-SKILL’s performance using only sketches as input is comparable to IBRL which uses
high-quality demonstrations. This is particularly notable in the CoffeePush and Boxclose tasks.
These tasks require actuating the gripper — information that is not provided in the sketches. Nev-
ertheless, SKETCH-TO-SKILL is able to bootstrap and use guidance from the sketch generated sub-
optimal demonstrations to learn a policy efficiently. This provides evidence to the claim that the
sketch-generated demonstrations do not lead to much degradation in performance while being much
easier to obtain.

Behavioral Cloning Performance. SKETCH-TO-SKILL employs behavior cloning (BC) to boot-
strap policy learning, similar to IBRL. However, the key difference is that IBRL relies on high-
quality teleoperated demonstrations, whereas SKETCH-TO-SKILL uses sketch-generated demon-
strations. We compare the performance between them (Figure 7) and ablate the number of gener-
ated demonstrations m per input sketch pair. Not surprisingly the BC policy with teleoperated data
performs better than the sketch generated ones. However, despite the lower performance of the BC
policy, SKETCH-TO-SKILL is still able to achieve comparable performance in RL training (as seen
in Figures 5 and 6), showing that it is not as sensitive to the quality of the bootstrapping policy.
Increasing the number of generated demonstrations m per input sketch pair (from 1 to 10) does not
significantly improve the BC performance.

In ButtonpressTopdownWall, the sketch-generated dataset resulted in a BC policy that fails
in all cases. However, as we observe in Figures 5 and 6, SKETCH-TO-SKILL that uses this policy is
still able to perform better than pure RL. This can be attributed to the fact that the sketch-generated

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

CoffeePush BoxClose ButtonPress Reach ReachWall ButtonPress
TopdownWall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fin
al

 S
co

re
s

Gripper Tasks Non-Gripper Tasks

3 teleop demos 3 sketches; 3 demos 3 sketches; 9 demos 3 sketches; 15 demos 3 sketches; 30 demos

Figure 7: Behavioral Cloning (BC) scores using actual teleoperated data and sketch generated
demonstrations. The blue bars represent the baseline BC policy trained with 3 high-quality demon-
strations, while the red bars show BC policies trained with sketch-generated demonstrations, varying
in the number of demonstrations m per input sketch pair (1, 3, 5, and 10). Darker shades of red in-
dicate an increase in the number of sketch-based demonstrations used for training. Despite poor
success rate, the actual trajectories and policy learned with sketches are useful for bootstrapping as
evidenced by the training performance (Figures 5 and 6).

Sketch-to-Skill (1)
No discrim

Sketch-to-Skill (3)
No discrim

Sketch-to-Skill (5)
No discrim

Sketch-to-Skill (10)
No discrim

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ButtonPress

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

CoffeePush

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

BoxClose

Sketch-to-Skill (1) Sketch-to-Skill (3) Sketch-to-Skill (5) Sketch-to-Skill (10)

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ButtonPress

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

CoffeePush

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

BoxClose

Figure 8: Top row illustrates ablation training scores for SKETCH-TO-SKILL without discriminator
and the bottom row shows with discriminator. We vary m, the number of demonstrations generated
per sketch pair (1, 3, 5, and 10).

demonstrations, due to the inherent noise, are not able to actually succeed in pushing the button.
However, the trajectories themselves reach very close to the button. To verify this, we computed
the final position difference between the teleoperated demonstrations and the sketch-generated ones
which was 0.001. Therefore, even though the success rate of the BC policy is close to 0, the dis-
criminator guidance and the bootstrapping allow SKETCH-TO-SKILL to learn effectively.

4.3 ABLATION STUDY

To understand the impact of the key components in SKETCH-TO-SKILL and answer Q3, we con-
ducted ablation studies focusing on two critical aspects: the number of generated trajectories m per
input sketch pair and the reward weighting scheme λ.

Impact of Generated Trajectories per Sketch. We investigated how the number of trajectories
generated from each input sketch pair affects the learning performance. Figure 14, shows the learn-
ing curves for policies trained with varying numbers of generated trajectories per sketch. We see that
the performance is improved when we generate m = 3 trajectories per sketch, instead of just one

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

trajectory per sketch. Here, the additional demonstrations can make up for the deficiency of not hav-
ing actual teleoperated demonstrations. However, increasing the number of trajectories per sketch
has diminishing value. It is useful when the tasks are difficult, such as BoxClose and CoffeePush
which involve gripper actions, but does not affect much for easier tasks.

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

CoffeePush
Reward Weights

rw_0.5
rw_0.1
rw_0.05
rw_0.005

Figure 9: Reward weighting term abla-
tion

Effect of Reward Weighting: We examined the impact
of different reward weighting schemes on policy learn-
ing. Our reward function combines the environmental re-
ward with a discriminator-based reward by Equation 2,
where λ is the weighting parameter. Figure 9 illustrates
the learning performance across different values of λ.
The model demonstrates comparable performance with
reward weights of 0.1 and 0.005, but significantly under-
performs with a reward weight of 0.5.

4.4 HARDWARE EXPERIMENTS

We validate SKETCH-TO-SKILL on physical robot hardware to demonstrate its effective transfer
from simulation to real-world applications.

Experimental Setup. We set up the ButtonPress task as shown in Figure 10. We use a UR3e robot
equipped with a Robotiq hand-e gripper and a realsense camera mounted on the wrist. We also use
two additional environmental cameras to capture frames for humans to draw sketches on (Figure
13). The details of the task, success detection, and reset mechanism are in the Appendix.

camera1 : [corner] camera2 : [corner2]

0k 5k 10k 15k 20k 25k 30k
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

Sketch_To_RL

Figure 10: Real experiment training scores for SKETCH-TO-SKILL with BC success rate of 0.8.

Performance. The evaluation success rate of the BC policy of ButtonPress task trained on sketch-
generated demonstrations is notably high at 0.8 within the randomized environment where we exe-
cuted the policy. Consequently, our sketch-to-skill policy without a discriminator, quickly demon-
strated strong performance, achieving a training success rate of 0.8 within just 30K samples.

5 CONCLUSIONS AND FUTURE WORK

We present SKETCH-TO-SKILL that uses 2D sketches to improve the efficiency of learning a ma-
nipulation skill. While prior work has shown the power of sketches in IL, we are the first to show
how to do so using RL. The key ideas are to train a 2D sketch to 3D trajectory generator whose
output is used to bootstrap learning of the RL policy and used as an extra exploration guidance
signal, all of which contributes to improved efficiency. There are several avenues for future work.
SKETCH-TO-SKILL currently does not include any gripper information or timing information in the
sketches. While we have shown that even without this information, we can learn effectively, an im-
mediate line of work would be to include this in the sketches. Fundamentally, this does not change
the Sketch-To-3D trajectory generator model which would now also have to predict the gripper state
and time parameterization of the trajectory. The second avenue for future work is to generate the
sketches from sources other than humans. For example, Gu et al. (2023) showed how to generate
sketches using a Vision Language Model given a natural language description of the task. We can
directly incorporate such sketches into our framework.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY

Anonymized code and demo datasets will be available on our webpage. We use the standard Meta-
World benchmark to allow for easy comparison with other algorithms and to facilitate the reproduc-
ing of our results. All details about the hyperparameters, environment specifications, and real-world
experiment setup are provided in the appendix.

REFERENCES

Petar Bevanda, Johannes Kirmayr, Stefan Sosnowski, and Sandra Hirche. Learning the koopman
eigendecomposition: A diffeomorphic approach. In 2022 American Control Conference (ACC),
volume 22, pp. 2736–2741. IEEE, June 2022. doi: 10.23919/acc53348.2022.9867829. URL
http://dx.doi.org/10.23919/acc53348.2022.9867829.

Amisha Bhaskar, Zahiruddin Mahammad, Sachin R Jadhav, and Pratap Tokekar. Navinact: Com-
bining navigation and imitation learning for bootstrapping reinforcement learning. arXiv preprint
arXiv:2408.04054, 2024.

Ayan Kumar Bhunia, Subhadeep Koley, Amandeep Kumar, Aneeshan Sain, Pinaki Nath Chowd-
hury, Tao Xiang, and Yi-Zhe Song. Sketch2saliency: learning to detect salient objects from
human drawings. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2733–2743, 2023.

A. Billard and D. Grollman. Robot learning by demonstration. Scholarpedia, 8(12):3824, 2013.
doi: 10.4249/scholarpedia.3824. revision #138061.

Joao Bimbo, Claudio Pacchierotti, Marco Aggravi, Nikos Tsagarakis, and Domenico Prattichizzo.
Teleoperation in cluttered environments using wearable haptic feedback. In 2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pp. 3401–3408. IEEE, 2017.

Harish chaandar Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. Recent
advances in robot learning from demonstration. Annu. Rev. Control. Robotics Auton. Syst., 3:297–
330, 2020. URL https://api.semanticscholar.org/CorpusID:208958394.

Linping Chan, Fazel Naghdy, and David Stirling. Application of adaptive controllers in teleoperation
systems: A survey. IEEE Transactions on Human-Machine Systems, 44(3):337–352, 2014.

Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan Sain, Subhadeep Koley, Tao Xiang, and
Yi-Zhe Song. What can human sketches do for object detection? In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 15083–15094, 2023a.

Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan Sain, Subhadeep Koley, Tao Xiang, and
Yi-Zhe Song. Scenetrilogy: On human scene-sketch and its complementarity with photo and text.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10972–10983, 2023b.

Carl de Boor. Package for calculating with b-splines. SIAM Journal on Numerical Analysis, 14(3):
441–472, 1977. doi: 10.1137/0714026. URL https://doi.org/10.1137/0714026.

Michael Drolet, Simon Stepputtis, Siva Kailas, Ajinkya Jain, Jan Peters, Stefan Schaal, and
Heni Ben Amor. A comparison of imitation learning algorithms for bimanual manipulation. IEEE
Robotics and Automation Letters, 2024.

Federica Ferraguti, Nicola Preda, Marcello Bonfe, and Cristian Secchi. Bilateral teleoperation of a
dual arms surgical robot with passive virtual fixtures generation. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4223–4228. IEEE, 2015.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches. arXiv preprint arXiv:2311.01977, 2023.

11

https://gsalerts-cyber.github.io/sketch-to-skill/
http://dx.doi.org/10.23919/acc53348.2022.9867829
https://api.semanticscholar.org/CorpusID:208958394
https://doi.org/10.1137/0714026


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learn-
ing. arXiv preprint arXiv:2311.02198, 2023.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25
(2):328–373, February 2013. ISSN 1530-888X. doi: 10.1162/neco a 00393. URL http://
dx.doi.org/10.1162/neco_a_00393.

Tatsuya Kamijo, Cristian C Beltran-Hernandez, and Masashi Hamaya. Learning variable compli-
ance control from a few demonstrations for bimanual robot with haptic feedback teleoperation
system. arXiv preprint arXiv:2406.14990, 2024.

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In International
conference on machine learning, pp. 2469–2478. PMLR, 2018.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems
with gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, October 2011.
ISSN 1941-0468. doi: 10.1109/tro.2011.2159412. URL http://dx.doi.org/10.1109/
tro.2011.2159412.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Jens Kober and Jan Peters. Learning motor primitives for robotics. In 2009 IEEE International
Conference on Robotics and Automation. IEEE, May 2009. doi: 10.1109/robot.2009.5152577.
URL http://dx.doi.org/10.1109/robot.2009.5152577.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning control lyapunov function to ensure
stability of dynamical system-based robot reaching motions. Robotics and Autonomous Systems,
62(6):752–765, June 2014. ISSN 0921-8890. doi: 10.1016/j.robot.2014.03.001. URL http:
//dx.doi.org/10.1016/j.robot.2014.03.001.

Alexandros Paraschos, Elmar Rueckert, Jan Peters, and Gerhard Neumann. Model-free probabilistic
movement primitives for physical interaction. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, September 2015. doi: 10.1109/iros.2015.7353771.
URL http://dx.doi.org/10.1109/iros.2015.7353771.

Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline techniques, vol-
ume 6. Springer, 2002.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning, pp. 1332–
1344. PMLR, 2023.

Nur Muhammad Mahi Shafiullah, Anant Rai, Haritheja Etukuru, Yiqian Liu, Ishan Misra, Soumith
Chintala, and Lerrel Pinto. On bringing robots home. arXiv preprint arXiv:2311.16098, 2023.

Weiyong Si, Ning Wang, and Chenguang Yang. A review on manipulation skill acquisition through
teleoperation-based learning from demonstration. Cognitive Computation and Systems, 3(1):1–
16, 2021.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20 minutes
with model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

Priya Sundaresan, Quan Vuong, Jiayuan Gu, Peng Xu, Ted Xiao, Sean Kirmani, Tianhe Yu, Michael
Stark, Ajinkya Jain, Karol Hausman, et al. Rt-sketch: Goal-conditioned imitation learning from
hand-drawn sketches. 2024.

Peihong Yu, Manav Mishra, Alec Koppel, Carl Busart, Priya Narayan, Dinesh Manocha, Amrit Bedi,
and Pratap Tokekar. Beyond joint demonstrations: Personalized expert guidance for efficient
multi-agent reinforcement learning. arXiv preprint arXiv:2403.08936, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

12

http://dx.doi.org/10.1162/neco_a_00393
http://dx.doi.org/10.1162/neco_a_00393
http://dx.doi.org/10.1109/tro.2011.2159412
http://dx.doi.org/10.1109/tro.2011.2159412
http://dx.doi.org/10.1109/robot.2009.5152577
http://dx.doi.org/10.1016/j.robot.2014.03.001
http://dx.doi.org/10.1016/j.robot.2014.03.001
http://dx.doi.org/10.1109/iros.2015.7353771
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter Abbeel.
Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 5628–5635. IEEE,
2018.

Weiming Zhi, Tianyi Zhang, and Matthew Johnson-Roberson. Learning from demonstration via
probabilistic diagrammatic teaching. arXiv preprint arXiv:2309.03835, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DE BOOR’S ALGORITHM DETAILS

The uniform knot vector for a B-spline of degree p with n+ 1 control points is defined as:

u = [0, ..., 0︸ ︷︷ ︸
p+1

,
1

n− p+ 1
,

2

n− p+ 1
, ...,

n− p

n− p+ 1
, 1, ..., 1︸ ︷︷ ︸

p+1

] (3)

The B-spline basis functions Wi,p(t) are defined recursively using the Cox-de Boor recursion for-
mula:

Wi,0(t) =

{
1 if ui ≤ t < ui+1

0 otherwise
(4)

Wi,p(t) =
t− ui

ui+p − ui
Wi,p−1(t) +

ui+p+1 − t

ui+p+1 − ui+1
Wi+1,p−1(t) (5)

where ui are the knot values from the knot vector u.

The B-spline parametrization matrix N for m evaluation points is an m× (n+ 1) matrix:

W =


W0,p(t1) W1,p(t1) · · · Wn,p(t1)
W0,p(t2) W1,p(t2) · · · Wn,p(t2)

...
...

. . .
...

W0,p(tm) W1,p(tm) · · · Wn,p(tm)

 (6)

where tj (j = 1, ...,m) are evenly spaced parameters in the interval [0, 1].

B SKETCH-TO-3D TRAJECTORY GENERATOR ARCHITECTURE

OVERVIEW OF THE MODEL

The proposed model converts 2D image sketches into 3D motion trajectories using a Variational
Autoencoder (VAE) combined with a Multi-Layer Perceptron (MLP). The VAE encoder processes
64×64 pixel 2D sketches (3 channels) into a latent vector (dv = 32), while the decoder reconstructs
the sketches to retain essential features for trajectory generation. The latent space outputs the mean
(µ) and variance (σ2), sampled using the reparameterization trick.

The MLP takes the latent vectors from two sketches, concatenates them, and generates 3D control
points for B-spline trajectory interpolation. The MLP takes an input of size (dv × 2), processes it
through hidden layers [1024, 512, 256], and outputs ncp × 3. The generated 3D control points are
then used for B-spline interpolation to produce smooth trajectories.

INITIALIZATION, REGULARIZATION, AND HYPERPARAMETERS

We initialize all network parameters using Xavier initialization. Regularization is done with
Kullback-Leibler Divergence (KLD), using a loss function that combines Sketch Reconstruction
Loss, KLD Loss, and Trajectory Loss. The Sketch Reconstruction Loss is the MSE loss on sketch im-
ages, the Trajectory Loss computes the MSE between predicted and ground truth trajectories, where
the ground truth trajectory is first densely fitted and resampled to ensure uniform point spacing,
and the KLD Loss applies Kullback-Leibler Divergence for regularization. Key hyperparameters
include:

• Image size: 64× 64 pixels
• Latent dimension: 32
• Number of control points: 20
• B-spline degree: 3

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• MLP hidden layers: [1024, 512, 256]

• Learning rate: 1× 10−3 (Adam optimizer)

• Batch size: 128

• KLD weight: 0.0001 (with optional annealing)

• Training epochs: 200

Figure 11: Diversity in generated 3D
trajectories. Each subplot shows multi-
ple generated trajectories (colored lines)
for a single input, demonstrating vari-
ability. Scattered points represent the
ground truth trajectory.

To enhance robustness and generalization, our train-
ing process employs two concurrent data augmentation
strategies. The first applies diverse image augmentations
(rotations, scaling, affine transformations, noise) to in-
put sketches, used exclusively for updating the VAE to
learn robust sketch representations. The second strategy
targets potential mismatches in hand-drawn sketches by
subtly modifying both original sketches and their 3D tra-
jectories. This involves adding noise and minor elastic
deformations to sketches, and noise with refitting to tra-
jectories. These augmented pairs update the entire model,
preparing it for hand-drawn input variability while main-
taining sketch-trajectory consistency. This augmentation
approach enhances the model’s ability to handle diverse,
imperfect sketches while ensuring accurate 3D trajectory
generation in real-world scenarios. To train the sketch
generation network we collect 22000 samples for simula-
tion tasks and 85 for the real world. During the training
for the real-world task, we use the data collected from
simulation to train the VAE part as well. We provide additional visualizations to demonstrate the
learned model’s generalizability in Figure 11 and 12.

Figure 12: Latent space interpolation results showing smooth transitions between original samples
(leftmost and rightmost) and reconstructed samples (middle) from two viewpoints, demonstrating
the model’s ability to generate coherent 3D trajectories from 2D sketch pairs.

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS OF
SKETCH-TO-SKILL POLICY AND BASELINES

This section outlines the implementation details of Sketch-To-Skill and the baselines. The behavior
cloning (BC) policies utilize a ResNet-18 encoder, where the output is flattened and processed by
MLPs to produce final 4D actions. We replace the BatchNorm layers in ResNet with GroupNorm,
matching the number of groups to the input channels. To prevent overfitting, we employ random-
shift data augmentation.

In the Meta-World environment, we utilize a corner2-image camera setup. We use wrist cameras to
enhance generalization and sample efficiency in real-world experiments, specifically using them for
the ButtonPress task.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 1: Hyperparameters for RL in SKETCH-TO-SKILL.

Parameter Meta-World Real-World
Optimizer Adam Adam
Learning Rate 1e-4 1e-4
Batch Size 256 256
Discount (γ) 0.99 0.99
Exploration Std. (σ) 0.1 0.1
Noise Clip (c) 0.3 0.3
EMA Update Factor (ρ) 0.99 0.99
Update Frequency (U ) 2 2
Actor Dropout 0.5 0.5
Q-Ensemble Size (E) 2 N/A
Num Critic Update (G) 1 N/A
Image Size 96×96 96×96
Use Proprio No N/A
Proprio Stack N/A N/A
State Stack N/A N/A
Action Repeat N/A N/A

D ADDITIONAL DETAILS OF REAL-WORLD EXPERIMENTS

In this section, we present insights into the real-world experiments conducted using Sketch-To-
RL, specifically for the ButtonPress manipulation task. We utilized a UR3e robot equipped with
a Robot Hand gripper, operating in an action space with 4 dimensions: 3 for end-effector position
deltas under a Cartesian impedance controller and 1 for the absolute gripper position, with policies
functioning at 7.5 Hz.

To train the Sketch-To-3D Trajectory generator, we collected approximately 85 teleoperated trajec-
tories. RGB images were captured using two orthogonally positioned RealSense cameras to enhance
trajectory insight. A green marker was placed on the gripper tip to facilitate sketch generation on
the frames, enabling the model to learn 2D sketch projections onto 3D trajectories.

After training the Sketch-To-3D Trajectory generator, we created 30 sketches based on RGB frames
from the two cameras. We then collected 30 sketch-generated demonstrations, ξD using openloop
servoing on 3D trajectory ξg produced by the generator T . We then train Behavior Cloning (BC)
policy using the sketch-generated demonstrations, ξD, achieving a score of 0.8 and thus leading to
good performance in the sketch-to-skill policy.

All methods maintained the same hyperparameters and network architectures as those used in the
Meta-World tasks. The task is illustrated in Figure 10 and briefly described below:

ButtonPress: The objective is to press the Button, with its initial position randomized within a 20cm
by 20cm to 25cm trapezoidal area visible from the wrist camera. We collected 30 demonstrations
for this task.

Reward Detection : We used a manual method to reward the agent if it successfully pushed the
button. The agent receives a reward of 1 for successfully completing the task and a reward of 0 in
all other cases. Each episode has a set number of timesteps, and if the agent doesn’t succeed within
that limit, it resets and starts over. The length of each episode may be shorter than the given limit
depending on how quickly the agent completes the task.

Reset : For the object, we manually reset the environment by pulling back the button (if pressed)
and uniformly randomizing the position of the button in each episode. The robot is initially set to
a specific joint configuration known as the home position. Whenever the agent receives a reward
or an episode ends, it resets back to the home configuration and the training continues. The object
randomization is done by placing the button at the center, and the position remains unchanged until
the agent receives its first reward. After that, the object is gradually moved towards the boundary,
circled around the workspace, returned to the center, and the process is repeated until the training
ends.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

wrist camera

camera1

camera2

Push Button

robot arm

Figure 13: Complete setup for the ButtonPress task in a real-world experiment. The configuration
includes a UR3e robot arm equipped with a Robot Hand gripper, and a RealSense D435i camera
mounted on the wrist. Two additional RealSense cameras are positioned orthogonally to capture the
trajectory from two different viewpoints.

Safety Boundaries: We have restricted the movement of the robot to the x, y, and z directions of
the end-effector. Each step that the robot takes is limited to a specific value. If the action taken by
the agent exceeds this limit, the robot will not move and will remain in its current position. To avoid
collision after pressing the button and pushing it into the table, we have set a minimum limit for the
z direction of the robot, ensuring it can still press the button. Even if the agent attempts to move
downward into the table, the robot will remain at the specified z position threshold.

Sketch-to-Skill (1)
No discrim

Sketch-to-Skill (3)
No discrim

Sketch-to-Skill (5)
No discrim

Sketch-to-Skill (10)
No discrim

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

Reach

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ReachWall

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ButtonPressTopdownWall

Sketch-to-Skill (1) Sketch-to-Skill (3) Sketch-to-Skill (5) Sketch-to-Skill (10)

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

Reach

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ReachWall

0 1 2 3 4 5 6
Environment Steps (×10 )

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Sc

or
es

ButtonPressTopdownWall

Figure 14: Top row illustrates ablation training scores for SKETCH-TO-SKILL without discriminator
and the bottom row shows the ablation training scores for SKETCH-TO-SKILL, trained with demon-
strations generated from sketches for bootstrapping, varying in the number of generated demonstra-
tions m per input sketch pair (1, 3, 5, and 10).

E ADDITIONAL EXPERIMENTS FOR REBUTTAL

E.1 AE1: ROBOMIMIC EXPERIMENTS

E.1.1 TASK COMPLEXITY:

The PickPlaceCan task in RoboMimic is another demanding two-stage challenge. It requires the
robot to accurately locate and reach a can, then pick it up and place it into a designated bin. This

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

task not only tests the robot’s ability to handle objects with precision but also demands correct
orientation of the gripper throughout the process. RoboMimic, a well-established benchmark,
provides high-quality demonstrations collected via human teleoperation, which are instrumental for
training successful policies.

E.1.2 IMPLEMENTATION AND STRATEGY:

In this setup, the sketch-based demonstrations provide initial positional cues for the robot. Our
framework utilizes reinforcement learning (RL) to refine these initial cues, dynamically adjusting
the robot’s approach to manage both the orientation and timing necessary for successful task
execution. This method proves particularly effective as it does not rely on fully detailed trajectory
information from the start; instead, it uses the sketches to guide the initial exploration phase of RL,
significantly simplifying the data collection process.

Results and Performance Metrics:

• Performance: Our sketch-to-skill framework, even with limited initial data, performs ad-
mirably in this demanding scenario. The results are on par with those from IBRL methods
98%, which benefit from complete and detailed human demonstrations, including explicit
orientation details (as shown in Figure 15).

• Comparison to IBRL: The comparative success illustrates the robustness and effective-
ness of our method in managing the task’s orientation and other complexities without fully
specified trajectory inputs. This is particularly notable given that RoboMimic’s Pick and
Place Can task offers a significantly higher level of difficulty than similar tasks in Meta-
World.

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
co

re
s

PickPlaceCan

IBRL (10)
TD3

Sketch-to-Skill no BC Policy
Sketch-to-Skill (10) no Discrim

Sketch-to-Skill (10)

Figure 15: Evaluation Scores (success rate) for the robomimic PickPlaceCan environment during
evaluation.

E.2 AE2: HARDWARE EXPERIMENTS

camera1 : [corner] camera2 : [corner2]

ToastPress

Figure 16: Training curves of the real-world ToastButtonPress task, where the environment is clut-
tered

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

camera1 : [corner] camera2 : [corner2]

ToastPick

Figure 17: Training curves of the real-world ToastPickPlace task, where the environment is cluttered

This appendix provides detailed insights into additional real-world experiments conducted using the
Sketch-To-RL framework, focusing on the Toaster Button Press and Bread Pick Place tasks. Both
experiments were carried out using a UR3e robot equipped with a Robotiq Hand gripper, navigating
an action space that included three dimensions for end-effector position deltas and one for absolute
gripper position. The policies operated at 7.5 Hz. These experiments were designed to test the
robustness and adaptability of our sketch-based approach under dynamic, cluttered environments
with randomized initial conditions.

E.2.1 TOASTER BUTTON PRESS EXPERIMENT

• Sketch and Demonstration Generation: Created 10 sketches based on the camera feeds.
From these, 10 sketch-generated demonstrations were collected using open-loop servoing
based on 3D trajectories produced by the generator which was previously trained on 85
trajectories collected earlier.

• Experimental Design: Each episode featured a cluttered environment around the toaster,
with objects commonly found in household settings to simulate realistic conditions. The
initial position of the gripper was randomized in every episode to test the adaptability of
the learned policy.

• Training and Performance Trained a Behavior Cloning (BC) policy using the sketch-
generated demonstrations, achieving a preliminary success rate of 60%, and trained Sketch-
To-Skill over 12k interaction achieving 90% within 10K interactions.

E.2.2 BREAD PICK PLACE EXPERIMENT

• Setup and Data Collection: For this task, sketches were specifically collected in randomly
cluttered environments to reflect typical variability in real-world scenarios.

• Experimental Design: The task involves picking a piece of bread from a toaster and plac-
ing it on a nearby plate, requiring precise manipulation and handling. Both the environment
clutter and the initial gripper positions were randomized in each episode, presenting a dif-
ferent challenge each time to test the robustness of the policy.

• Training and Performance: The BC policy was similarly trained using sketch-generated
demonstrations, with performance metrics collected to assess the effectiveness of the ap-
proach under varied and dynamic conditions achieving success of 36% and trained Sketch-
To-Skill over 30K interaction achieving 80% within 30 interactions.

E.2.3 COMMON ELEMENTS ACROSS EXPERIMENTS:

Network Architecture and Hyperparameters: All methods maintained consistent network archi-
tectures and hyperparameters as used in the Meta-World tasks.
Reward Detection and Reset Protocol: A manual reward detection method was employed, where
the robot received a reward for successfully completing the designated task. The environment and
robot position were reset at the end of each episode to ensure consistent training conditions.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

These experiments underscore our method’s capability to handle real-world variability and complex
task execution, supporting its potential utility beyond controlled experimental setups. The detailed
results from these tasks, illustrated in Figures 16 and 17, highlight the practical applications and
adaptability of our sketch-to-skill framework in dynamic, cluttered settings.

E.3 AE3: HARD METAWORLD EXPERIMENTS

Figure 18: Figure on top shows sketches for the MetaWorld Assembly task. Figures on the bottom
show training scores (success rate).

MetaWorld Assembly Task Description

Task Complexity: The Assembly task in MetaWorld is a “hard” task Seo et al. (2023) that requires
the robot to execute two-stage manipulations. The task involves precise movements to pick up a
peg, navigate it to a specific location, and insert it into a hole within a larger assembly fixture. This
task tests the robot’s precision, spatial awareness, and ability to handle complex sequences.

Results and Performance Metrics:

• Sketch-To-Skill: Demonstrated a high success rate of 93%, effectively using sketches for
coarse guidance to navigate and complete complex task sequences, even without actual
teleoperated demonstrations.

• Sketch-to-Skill without Discriminator: Initially struggled with a success rate of 20%, but
extended interaction up to 100K steps improved performance dramatically, reaching a near-
perfect success rate of 98%. This underscores the potential for learning even without dis-
criminator guidance, given sufficient training time.

• IBRL: Achieved the highest success rates of approximately 100%, benefiting from high-
quality teleoperated demonstrations that include precise details on orientation and position-
ing.

• Standard BC: Achieves a success rate of around 60%, showing limitations in environments
where adaptive behaviors and fine-tuning through reinforcement learning are necessary.

These results highlight the effectiveness of the Sketch-to-Skill approach in handling complex, multi-
stage tasks through initial coarse guidance, with the potential for significant improvement over time.
They also illustrate the advantage of incorporating discriminator feedback to accelerate learning and
enhance performance.

E.4 AE4: USE OF VAE IN SKETCH-TO-3D TRAJECTORY GENERATOR

We conducted an ablation study of the Sketch-to-3D Trajectory Generator to evaluate the effect of
the VAE in the architecture. We used 1000 trajectories, split 80:20 for validation and report the
training and validation loss in Table 2. We compare the performance of using the VAE in Figure 2

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

versus without the VAE and using an CNN (with the same architecture as the VAE’s encoder, minus
the decoder and loss components) instead. We observe that the VAE improves the performance
across all the losses including the reconstruction loss and trajectory loss.

Table 2: Performance Metrics for generator model

Metric with VAE without VAE

Training Loss 0.6019 0.6286
Validation Loss 0.9128 1.2804
Reconstruction Loss 0.0004 0.3258
KLD Loss 69.8592 107.167
Parameter MSE Loss 0.0820 0.0928
Trajectory Loss 0.770 0.1180

E.5 AE5: USING COLOR GRADIENTS FOR OVERLAPPING TRAJECTORIES

We can also incorporate time-parameterization of the trajectory in the sketches using a color gradi-
ent, instead of a binary sketch image. This notion of color gradient in sketches was introduced by
RT-Trajectory Gu et al. (2023). An example is shown in Figure 19. Here, the color of the sketch
changes from green (start) to red (end). This is particularly helpful when the sketch crosses each
other or overlaps. We conduct additional experiments with the generator to evaluate the effect of
incorporating gradients in the Sketch-To-3D trajectory generator.

Specifically, we use the MetaWorld Assembly task (Figure 18) where the sketch overlaps in the
middle as the end-effector picks up the tool and carries it to the goal position. We trained two
generators without and with color gradients. The performance of these two generators are reported
in Table 3. We observe that incorporating the gradient in such a case results in lower reconstruction
and trajectory losses. With lower trajectory losses we can handle more complex trajectories that
overlap with color gradients. Note that incorporating gradients also does not require any change to
the downstream architecture, and only requires minimal changes to the generator architecture.

Table 3: Performance Metrics for Overlapping and Non-Overlapping Trajectories

Metric with color gradient without color
gradient

Training Loss 0.2438 0.3107
Validation Loss 0.3120 0.3585
Reconstruction Loss 0.0001 0.0003
KLD Loss 77.167 76.4683
Parameter MSE Loss 0.1028 0.1135
Trajectory loss 0.1530 0.2379

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 19: Trajectories with time-based color gradient for Assembly Metaworld simulation task.

22


	Introduction
	Related Work
	Sketch-To-Skill
	Sketch-to-3D Trajectory Generator
	Policy Learning

	Experiments
	Evaluation of the Sketch-to-3D Trajectory Generator
	Comparisons with Baselines
	Ablation Study
	Hardware Experiments

	Conclusions and Future Work
	Reproducibility
	De Boor's Algorithm Details
	Sketch-to-3D Trajectory Generator Architecture
	Implementation Details and Hyperparameters of Sketch-To-Skill Policy and baselines
	ADDITIONAL DETAILS OF REAL-WORLD EXPERIMENTS
	Additional Experiments for Rebuttal
	AE1: Robomimic Experiments
	Task Complexity:
	Implementation and Strategy:

	AE2: Hardware Experiments
	Toaster Button Press Experiment
	Bread Pick Place Experiment
	Common Elements Across Experiments:

	AE3: Hard Metaworld Experiments
	AE4: Use of VAE in Sketch-to-3D Trajectory Generator
	AE5: Using Color Gradients for Overlapping Trajectories


