SKETCH-TO-SKILL: BOOTSTRAPPING ROBOT LEARN ING WITH HUMAN DRAWN TRAJECTORY SKETCHES

Anonymous authors

Paper under double-blind review

ABSTRACT

Training robotic manipulation policies traditionally requires numerous demonstrations and/or environmental rollouts. While recent Imitation Learning (IL) and Reinforcement Learning (RL) methods have reduced the number of required demonstrations, they still rely on expert knowledge to collect high-quality data, limiting scalability and accessibility. We propose SKETCH-TO-SKILL, a novel framework that leverages human-drawn 2D sketch trajectories to bootstrap and guide RL for robotic manipulation. Our approach extends beyond previous sketchbased methods, which were primarily focused on imitation learning or policy conditioning, limited to specific trained tasks. SKETCH-TO-SKILL employs a Sketch-to-3D Trajectory Generator that translates 2D sketches into 3D trajectories, which are then used to autonomously collect initial demonstrations. We utilize these sketch-generated demonstrations in two ways: to pre-train an initial policy through behavior cloning and to refine this policy through RL with guided exploration. Experimental results demonstrate that SKETCH-TO-SKILL achieves $\sim 96\%$ of the performance of the baseline model that leverages teleoperated demonstration data, while exceeding the performance of a pure reinforcement learning policy by $\sim 170\%$, only from sketch inputs. This makes robotic manipulation learning more accessible and potentially broadens its applications across various domains.

028 029

031

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

Robots are increasingly being deployed in dynamic environments, where they must perform a wide range of tasks with precision and adaptability. One of the key challenges in enabling robots to learn new skills lies in specifying complex, task-specific behaviors. Learning from Demonstration (LfD) (Billard & Grollman (2013)) has become a widely used approach, allowing robots to acquire novel motions by imitating expert-provided trajectories. However, collecting demonstration data for LfD is challenging, particularly for high degree-of-freedom (DOF) robots performing manipulation.

038 Traditional methods such as kinesthetic teaching and teleoperation while useful also have challenges with safety risks, scalability, and the need for specialized expertise (Chan et al., 2014; Ferraguti et al., 040 2015; Bimbo et al., 2017). Recent approaches, such as using manually-operated grippers instru-041 mented with smartphone apps (Shafiullah et al., 2023) and Virtual Reality (VR) based teleoperation 042 systems (Kamijo et al., 2024), offer more intuitive hardware interfaces for collecting demonstrations. 043 However, they require specialized hardware which may limit their flexibility and accessibility. Re-044 cently there has been interest in leveraging an innate human ability to communicate spatial ideas and motions through simple sketches. For example, a quick sketch of a path can easily communicate the intended movement for navigating toward a goal location. 046

Researchers have begun to explore this promising direction. RT-Trajectory (Gu et al., 2023) introduced the notion of sketches and showed how to use coarse trajectory sketches for policy conditioning in Imitation Learning (IL). RT-Sketch (Sundaresan et al., 2024) extended this concept to
leverage hand-drawn sketches of the entire environment for goal-conditioned IL. These methods
demonstrated the potential of utilizing sketches in robotics, but they were primarily focused on IL
and biased towards tasks they were specifically trained on. Zhi et al. (2023) expanded this idea
with *diagrammatic teaching*, where users instruct robots by sketching motion trajectories directly on 2D images of the scene. Their approach uses density estimation and ray tracing to reconstruct

Figure 1: Learning a new skill in the SKETCH-TO-SKILL framework. Step 1: Capture the task scenario from two views and collect human-drawn sketches. Step 2: Convert 2D sketches to 3D trajectories using a pretrained generator. Step 3: Execute generated trajectories to collect experience data. Step 4: Learn manipulation policy using reinforcement learning bootstrapping from behavior cloning and using guidance for experience data.

3D trajectories from the sketches, thus limiting its ability to replicate only the provided sketches and restricting its generalization to new or unseen task setups.

Unlike prior work that used sketches only as conditioning in IL, we present a more generalizable ap-071 proach that learns to predict 3D trajectories from sketches in Reinforcement Learning (RL). Specifi-072 cally, we propose SKETCH-TO-SKILL (Figure 1), a framework that bootstraps and guides RL using 073 sketches. Our approach first learns to map 2D sketches to 3D trajectories, which are then used to 074 collect demonstrations. We utilize these sketch-generated demonstrations in two ways: first, by pre-075 training an initial policy through Behavior Cloning (BC), and second, by refining this policy through 076 reinforcement learning with guided exploration. Although sketch-generated demonstrations are not 077 as precise or high-quality as teleoperated ones, they still contain enough useful information to aid 078 RL and reduce learning time.

Unlike teleoperation which requires specialized hardware and proficiency in using the system, sketches can generally be provided by non-robotics experts. By treating these sketch-based trajectories as approximate guiding signals rather than high-fidelity demonstrations, we allow the agent to learn more effectively even with coarse sketches. We summarize our contributions as follows:

- (1) We identify and address a crucial gap by integrating sketches into RL, extending their application beyond imitation learning and policy conditioning.
- (2) We propose SKETCH-TO-SKILL, a framework that leverages sketches to bootstrap and guide RL, reducing reliance on high-quality, real-world demonstrations.
- (3) Through extensive experiments, we demonstrate that sketches, despite their low fidelity, significantly accelerate learning by improving exploration and task comprehension in RL. SKETCH-TO-SKILL achieves ~96% of the performance of the baseline model utilizing high-quality teleoperation demonstrations, while exceeding the performance of a pure reinforcement learning policy by ~170% during evaluation.
- 092 093 094

061 062

063

064

065

066 067

079

084

085

087

090

2 Related Work

096

Learning from Demonstration (LfD). LfD (Billard & Grollman, 2013) is a key method in robot 098 learning, allowing robots to acquire skills through expert demonstrations, bypassing the complexities 099 of action programming and cost function design (chaandar Ravichandar et al., 2020). Kinesthetic 100 teaching, where an expert physically guides the robot while its movements are recorded, is widely 101 used in methods like DMPs (Kober & Peters, 2009; Ijspeert et al., 2013), Probabilistic Movement 102 Primitives (Paraschos et al., 2015), and stable dynamical systems (Khansari-Zadeh & Billard, 2011; 103 Mohammad Khansari-Zadeh & Billard, 2014; Bevanda et al., 2022). However, it is labor-intensive 104 and challenging to scale. Teleoperation (Si et al., 2021), where users control robots remotely, offers 105 more flexibility but can be complex and requires expertise to operate. VR interfaces (Zhang et al., 2018; Kamijo et al., 2024) provide a more immersive alternative but depend on specialized hard-106 ware. To overcome these limitations, recent research has introduced more accessible approaches, 107 like sketch-based demonstrations (Drolet et al., 2024).

108 **Sketches in Robotics.** Sketches have become a powerful tool in computer vision, aiding tasks 109 like scene understanding (Chowdhury et al., 2023b) and object detection (Chowdhury et al., 2023a; 110 Bhunia et al., 2023). RT-Sketch (Sundaresan et al., 2024) first explored hand-drawn sketches for 111 goal-conditioned imitation learning (IL), using them to define tasks intuitively. RT-Trajectory (Gu 112 et al., 2023) extended this by using trajectory sketches as IL policy conditioning, either drawn by users or generated by a Large Language Model from task descriptions. Similarly, the Diagrammatic 113 Teaching framework (Zhi et al., 2023) uses density estimation and ray tracing to reconstruct 3D 114 trajectories from the sketches. These methods, however, only use sketches as conditioning for task 115 completion, and thus do not generalize beyond the tasks where the sketches are provided. 116

117 Demonstration-Enhanced Strategies for Efficient RL. Incorporating demonstration data in RL 118 can improve sample efficiency, especially in environments where rewards are sparse. Methods such as Reinforcement Learning from Prior Data (RLPD) (Smith et al., 2022), Imitation Bootstrapped 119 RL (IBRL) (Hu et al., 2023) and NAVINACT (Bhaskar et al., 2024) take advantage of prior demon-120 strations by embedding them into the agent's replay buffer. During training, these examples are 121 oversampled, offering the agent more frequent exposure to expert-guided trajectories. Such ap-122 proaches significantly improve learning speed and performance, particularly in continuous control 123 tasks where learning from scratch can be prohibitively slow and inefficient (Yu et al., 2024). Our 124 research expands upon these techniques by exploring how sketch-based trajectories can be used as 125 an additional source of prior data in RL. 126

120 127 128

129

3 SKETCH-TO-SKILL

Our approach bootstraps robot learning from trajectory sketches, significantly lowering the barrier to entry for robotic task specification. This section details our three-stage method: (1) training a Sketch-to-3D Trajectory Generator, (2) obtaining 3D trajectories and execution experiences through the Generator and open-loop servoing, (3) pre-training an initial robotic manipulation policy through behavior cloning, and refining the policy through reinforcement learning with guided exploration. By integrating intuitive human input with powerful learning algorithms, our approach aims to create more accessible and adaptable robotic learning systems.

136 137 138

3.1 Sketch-to-3D Trajectory Generator

139 Our method begins with a Sketch-to-3D Trajectory Generator, T, that translates a pair of 2D sketch 140 images (I^1, I^2) obtained from different viewpoints into corresponding 3D robot trajectory ξ_q . To 141 train this generator, we use a dataset consisting of 3D robot end-effector trajectories along with their 142 2D sketches from two viewpoints. These trajectories can be obtained from various sources, such as play data where the robot executes sequences of actions. Sketches during inference can be provided 143 by a human on RGB images of the scene, as shown in Figure 4. However, the sketches fed as input 144 to the generator are 2D projections on blank backgrounds, with green and red dots representing the 145 start and end points respectively, and yellow lines for the trajectory (see Figure 2 for an example). 146 By focusing solely on the trajectory information without additional scene complexity, our model 147 can efficiently learn to encode the dual-view sketches and decode them into the corresponding 3D 148 trajectory. 149

The generator uses a neural network to map dual-view 2D sketches to 3D trajectories, where we 150 adopt a hybrid architecture combining a Variational Autoencoder (VAE) (Kingma, 2013) and a Mul-151 tilayer Perceptron (MLP), as illustrated in Figure 2. The VAE encodes sketches from two viewpoints, 152 ideally orthogonal, to resolve depth ambiguity and capture essential trajectory features. The MLP 153 decoder generates B-spline (Prautzsch et al., 2002) control points $C \in \mathbb{R}^{n_{cp} \times 3}$ from the latent rep-154 resentation, which we then use to interpolate smooth 3D trajectories. We adopted uniform knots and 155 pre-compute the B-spline parametrization matrix $W \in \mathbb{R}^{n_{t_p} \times n_{c_p}}$ to reduce computational complex-156 ity and facilitate efficient backpropagation. The calculation of W only depends on the uniform knot 157 vector u and the desired number of points n_{tp} in the generated trajectory, and can be pre-calculated 158 using the Cox-de Boor recursion formula (also known as de Boor's algorithm de Boor (1977), see Appendix A for details). Then the final trajectory generation is simply a matrix multiplication: 159 $\xi_a \in \mathbb{R}^{n_{tp} \times 3} = \boldsymbol{W} \cdot \boldsymbol{C}$. With the generated control point parameter \boldsymbol{C} , we can also easily generate 160 trajectories of varying density from the same parameters, making our method adaptable to different 161 task requirements.

Figure 2: The Sketch-to-3D Trajectory Generator takes dual-view 2D sketches as inputs and predicts B-spline parameters to generate the final 3D trajectory output.

Our training process uses a multi-component loss function $L = L_{traj} + L_{sketch} + L_{kld}$, where L_{traj} handles trajectory reconstruction, L_{sketch} manages sketch reconstruction (Mean Square Error), and L_{kld} is KL-divergence for latent space regularization (Figure 2). This ensures accurate trajectory generation while preserving sketch fidelity and latent space structure. We also applied data augmentation to both the sketch images and the trajectories to enhance the model's robustness and generalization (more details can be found in Appendix B).

We can use the trained Sketch-to-3D Trajectory Generator, T, to generate demonstrations $\{\xi_D\}$ 183 for learning new tasks using sketches drawn by a human. Specifically, the human draws trajectory 184 sketches on two views of RGB images captured from the initial task state. This is similar to how 185 human-drawn sketches are generated in prior works (Gu et al., 2023; Zhi et al., 2023). These paired sketch images, $\{(I^1, I^2)\}$, are input into our trained generator, which produces corresponding 3D 187 trajectories, $\{\xi_a\}$, serving as the basis for guiding the robot's actions. We can also generate more 188 than one trajectory from the same pair of sketches by adding controlled noise to the latent repre-189 sentation. Then we proceed to collect demonstrations for manipulation policy learning. We execute 190 these trajectories on the robotic arm using open-loop servoing, which enables precise trajectory fol-191 lowing based on pre-computed motor commands. During execution, we record a demonstration 192 dataset $\{\xi_D = \{(p_t, o_t, a_t)\}_{t=1}^T\}$ at a fixed frequency, where $p_t = (x, y, z)_t$ denotes the robot's 193 end-effector 3D position, o_t represents the robot's observation, a_t is the corresponding action, and T is the total number of timesteps per demonstration. The collected demonstrations, which do not 194 need to be optimal, follow the intended path while capturing the robot's actual behavior in the target 195 environment. They serve as an effective starting point for bootstrapping the policy learning process, 196 offering initial guidance grounded in the robot's real-world performance. 197

162 163 164

166

167 168

169

170 171

172

Figure 3: Overview of SKETCH-TO-SKILL integrating sketch-generated demonstrations with reinforcement learning. Sketch-generated experiences train an IL policy, which bootstraps the RL process. A discriminator guides exploration by rewarding similarity to sketch-generated trajectories. The final action, combining IL and RL policy outputs, further enhances the exploration guidance. The asterisk after "Replay Buffer" indicates that the buffer is initialized with the open-loop servoing demonstrations.

	orithm 1 SKETCH-TO-SKILL. Major modifications of IBRL highlighted in blue.
1:	Hyperparameters: Number of critics E , number of critic updates G , update frequency U ,
	exploration std σ , noise clip c, number of generated trajectories m per input sketch pair, reward
2	Weighting term λ
2:	Inputs: Pre-trained Sketch-to-5D Trajectory Generator 1 , sketch dataset $S = \{(I_i, I_i)\}_{i=1}^{n}$, Outputs: Policy π_i , discriminator D .
5.	Stage 1: Demonstration Generation
4.	$\{\xi_i\}_1$ \leftarrow generate <i>m</i> trajectories per sketch from S using T
5:	$\{\xi_D\}_{1,mn} \leftarrow$ generated demonstrations through open-loop servoing
	Stage 2: Policy Learning
6:	Train imitation policy π_{IL} on demonstrations $\{\xi_D\}_{1:mn}$ using the selected IL algorithm.
7:	Initialize policy π_{θ} , target policy $\pi_{\theta'}$, and critics Q_{ϕ} , target critics $Q_{\phi'}$, discriminator D_{ψ} for
	$i = 1, \dots, E$
8:	Initialize replay buffer B with demonstrations $\{\xi_D\}_{1:mn}$
9:	for $t = 1$ to N do
10:	Observe current observation o_t from the environment Compute II settion o_{li} and DI settion $o_{li}^{R_{li}} = (a_{li}) + c_{li}$ where $c_{li} = N(0, -2)$
11:	Compute L action $a_t^- \sim \pi_{IL}(o_t)$ and KL action $a_t^- = \pi_{\theta}(o_t) + \epsilon$, where $\epsilon \sim N(0, \sigma^-)$
12:	Sample a set K of 2 marces from $\{1, 2, \dots, L\}$ Select action a, with higher O-value from $\{a^{\text{IL}}, a^{\text{RL}}\}$
$14 \cdot$	Execute action a_t with higher Q value from $\{a^{a}, a^{a}\}$
15:	Store transition $(p_t, o_t, a_t, r_t, p_{t+1}, o_{t+1})$ in replay buffer B
16:	if $t\%U = 0$ then
17:	Perform discriminator D_{ψ} update by optimizing Equation 1
18:	Perform TD3 update using minibatches from replay buffer B (Fujimoto et al., 2018)
19:	end if
20:	end for
2 7	DOLICY I FARMING
3.2	I OLIC I LEARNING
We	now describe the policy learning of the SKETCH-TO-SKILL algorithm (given in Algorithm 1).
Tak	ing as input the domonstration data (c_{i}) collected from our Statch to 2D Trainstone Commuter
	ing as input the demonstration data $\{\zeta_D\}$ confected from our Sketch-to-3D frajectory Generator
T a	ng as input the demonstration data $\{\zeta_D\}$ confected from our Sketch-to-5D frajectory Generator nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot-
T a stra	nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement
T a stra Lea	nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and
T a stra Lea con	Ing as input the demonstration data $\{\zeta D\}$ confected from our Sketch-to-3D frajectory Generator nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space.
T a stra Lea con In I	Ing as input the demonstration data $\{\zeta D\}$ confected from our Sketch-to-5D frajectory Generator nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations.
T a stra Lea con In I Init	Ing as input the demonstration data $\{\zeta_D\}$ confected from our Sketch-to-5D frajectory Generator nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves
T a stra Lea con In I Init as a	Ing as input the demonstration data $\{\varsigma_D\}$ confected from our Sketch-to-5D frajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. fally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of
T a stra Lea con In I Init as a mar	Ing as input the demonstration data $\{\varsigma_D\}$ confected from our Sketch-to-5D frajectory Generator ind through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of inpulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that
T a stra Lea con In I Init as a mar they	Ing as input the demonstration data $\{\zeta_D\}$ confected from our Sketch-to-5D fragectory Generator ind through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of inpulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that y still carry significant, actionable information that can effectively guide the learning process in
T a stra Lea con In I Initi as a mar they rein	Ing as input the demonstration data $\{\zeta_D\}$ confected from our Sketch-to-5D frajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. fally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of ipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that α still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3):
T a stra Lea con In I Init: as a mar chey rein	Ing as input the demonstration data $\{\zeta_D\}$ confected from our Sketch-to-5D frajectory Generator nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of hipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that v still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3):
T a stra Lea con In I Initi as a mar hey rein (Ing as input the demonstration data $\{\zeta_D\}$ confected from our Sketch-to-5D frajectory Generator nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively boot- p and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of hipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that v still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as telepherated demonstrations, they provide a foundational blue prior of the
T a stra Lea con In I Initi as a mar they rein (as input the demonstration data {5D} confected from our Sketch-to-5D frajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. fally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of hipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that a still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a prelime.
T a stra Lea con In I Init: they rein (as input the demonstration data {5D} confected from our Sketch-to-5D frajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of ipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that a still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of
T a stra Lea con In I Initi as a mar they rein (as input the demonstration data {<i>ξD}</i> conected from our Sketch-to-5D frajectory Generator nd through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of tipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that a still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random explo-
T a stra Lea con In I Initi hey rein (Ing as input the demonstration data {<i>ξD</i>} confected from our Sketch-to-3<i>D</i> frajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. If the sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of tipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that a still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random exploration at the outset, making subsequent training more focused and efficient.
T a stra Lea con In I Initi as a mar they rein (Ing as input the demonstration data {<i>ζD}</i> confected from our Sketch-to-5D Trajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of tipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that v still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random exploration at the outset, making subsequent training more focused and efficient. 2) Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated
T a stra Lea con In I Initi as a mar they rein (Ing as input the demonstration data {<i>ζD}</i> conected from our Sketch-to-3D Trajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. Tally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of hipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that <i>v</i> still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random exploration at the outset, making subsequent training more focused and efficient. 2) Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated trajectories continue to serve as a guide, shaping the exploration strategy. Instead of relying
T a stra Lea con In I Initi as a mar they rein (Ing as input the demonstration data {<i>CD</i>} conected from our Sketch-to-3D frajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. tally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of hipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that a still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random exploration at the outset, making subsequent training more focused and efficient. 2) Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated trajectories as a guide, shaping the exploration strategy. Instead of relying on these trajectories as definitive guides, we treat them as rough outlines that suggest areas
T a stra Lea con In I Initi as a mar they rein (Ing as input the demonstration data {<i>ξD</i>} concrede from our Sketch-to-5D Trajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of ipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random exploration at the outset, making subsequent training more focused and efficient. Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated trajectories as a guide, shaping the exploration strategy. Instead of relying on these trajectories as definitive guides, we treat them as rough outlines that suggest areas of the task space worth exploring. This guided exploration helps concentrate the agent's
T a stra Lea con In I Initi as a mar they rein (Ing as input the demonstration data {<i>ξD}</i> concreted from our Sketch-to-3D Trajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of ipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): 1) Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random exploration at the outset, making subsequent training more focused and efficient. 2) Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated trajectories as definitive guides, we treat them as rough outlines that suggest areas of the task space worth exploring. This guided exploration helps concentrate the agent's learning efforts on potentially fruitful regions of the action space, thus optimizing the learning
T a stra Lea con In I Initi as a mar they rein (Ing as input the demonstration data (<i>SD</i>) conected from our Sketch-to-5D Trajectory Generator and through open-loop serving (lines 4–5), our approach combines IL and RL to effectively bootp and refine the policy. Specifically, we build upon the Imitation Bootstrapped Reinforcement rning (IBRL) framework (Hu et al., 2023), integrating our sketch-based trajectories to guide and straint policy search space. BRL we replace traditional real-world demonstrations with sketch-generated demonstrations. ally, these sketch-based demonstrations are used to train an IL policy (line 6), which serves coarse approximation of the task. Although these sketches do not capture every fine detail of ipulation (e.g., gripper closing/opening actions or exact force control), our hypothesis posits that still carry significant, actionable information that can effectively guide the learning process in forcement learning (RL). We leverage this information in RL in two ways (as shown in Fig. 3): Bootstrap RL with Sketch-Generated Demos: Even though sketch-generated trajectories are not as detailed as teleoperated demonstrations, they provide a foundational blueprint of the task. We leverage these initial trajectories to bootstrap our RL algorithm, giving it a preliminary direction and reducing the cold start problem common in RL scenarios. This use of imperfect demonstrations is intended to establish an initial policy that avoids random exploration at the outset, making subsequent training more focused and efficient. Guide Exploration During RL: As the agent progresses in its learning, the sketch-generated trajectories as of the task space worth exploring. This guided exploration helps concentrate the agent's learning efforts on potentially fruitful regions of the action space, thus optimizing the learning speed and improving the relevance of the experiences gathered.

269 In both steps, the use of sketch-generated trajectories acknowledges their limitations—they are not treated as ground truth but as valuable signals to help bootstrap RL and guide exploration throughout

the learning process. For the RL algorithm, we employ TD3 (Fujimoto et al., 2018), an off-policy algorithm known for its sample efficiency. In our approach, the replay buffer is initialized with the sketch-generated demonstration trajectories (line 8), which provide an initial foundation for learning and is later updated with online experiences as the agent interacts with the environment. This combination allows the agent to refine its policy through both sketch-generated demonstration data ξ_D and real-world interaction (line 13).

To further enhance the learning process and maintain consistency with the sketch-generated trajectories, we introduce a discriminator-based guided exploration mechanism (Kang et al., 2018). This discriminator, D_{ψ} , is trained to distinguish between trajectories produced by our Sketch-to-3D Trajectory Generator and those generated by the current policy:

$$\mathcal{L}_{D(\psi)} = \mathbb{E}_{p,g \sim \{\xi_D\}}[\log D_{\psi}(p,\Delta p,g)] + \mathbb{E}_{p,g \sim \pi_{\theta}}[\log(1 - D_{\psi}(p,\Delta p,g))],$$
(1)

where p represents the end-effector location, Δp is the normalized difference between the current and next end-effector positions, capturing local trajectory characteristics, and g is the task-specific information (e.g., target location). This formulation allows the discriminator to assess trajectory similarity while accounting for task variability. We then augment the TD3 reward function with an additional term based on the discriminator's output (line 18):

$$\hat{r}(o_t, a_t) = r(o_t, a_t) + \lambda \log D_{\psi}(p_t, \Delta p_t, g),$$
(2)

288 where λ is a hyperparameter controlling the influence of the discriminator. This augmented reward 289 encourages the policy to explore state-action spaces more likely to produce trajectories similar to 290 those generated from human sketches, potentially leading to faster learning and better performance.

291 Our overall learning process iterates between TD3 optimization and discriminator training. In each 292 iteration: (1) We update the discriminator using the latest policy-generated trajectories and the original sketch-generated trajectories (line 17). (2) We then update the policy and Q-functions using TD3, 293 with the augmented reward and guidance from the frozen IL policy (line 18). This iterative process 294 allows the policy to refine its behavior while maintaining similarity to the initial demonstrations 295 derived from human sketches. By combining IL, TD3, and discriminator-based guided exploration, 296 we create a cohesive learning framework that effectively leverages sketch-based demonstrations to 297 accelerate and improve the learning of complex manipulation tasks. Please see the Appendix for 298 more implementation details and a complete list of hyper-parameters. 299

4 EXPERIMENTS

287

300

301 302

303

304

305 306

307

308

310

311

312

313

314 315 We report our evaluation of SKETCH-TO-SKILL, focusing on its main components: the Sketch-to-3D Trajectory Generator, the Imitation-Bootstrapped RL Policy learning, and the use of the discriminator. Our experiments address the following key questions:

- Q1 How effectively does the Sketch-to-3D Trajectory Generator convert 2D sketches into usable 3D robot trajectories?
- Q2 Can SKETCH-TO-SKILL utilize sketch-generated demonstrations to achieve comparable performance to traditional methods using high-quality demonstration data?
- Q3 How do various design choices in SKETCH-TO-SKILL, such as the number of generated demonstrations per sketch and the discriminator reward weighting, affect the learning and refinement of robotic policy?
- Q4 How well does our method translate to the real world?
- 4.1 EVALUATION OF THE SKETCH-TO-3D TRAJECTORY GENERATOR

The Sketch-to-3D Trajectory Generator is a key component of SKETCH-TO-SKILL, translating 2D sketch inputs into 3D robot trajectories. To train this generator, we collect data of the robot arm executing *play* trajectories. We record the 3D trajectories as well as their 2D projections from two viewpoints. We create such a dataset in the Metaworld (Yu et al., 2019) simulation environment as well as a separate one using actual hardware (Figure 13). Once the Sketch-to-3D Trajectory Generator is trained, we can use hand-drawn sketches as input to predict 3D trajectories.

Performance on Hand-drawn Sketches. We provide an example using the ButtonPress task to qualitatively assess the generator's effectiveness with hand-drawn inputs (Figure 4). We asked users

Figure 4: Multi-stage trajectory generation and execution. On the left, we show hand-drawn sketches on scenario RGB images and the extracted sketches on a blank background, (a) generated trajectory from the Sketch-to-3D Trajectory Generator, and (b) executed trajectory via open-loop serving. In (c), we visualize a teleoperated demo for the same task for reference.

335 336

332

333

334

337 to provide sketches for the task and also separately collected actual demonstrations as a reference. 338 We see that the Sketch-to-3D Trajectory Generator was able to predict trajectories (Figure 4a) similar 339 to the actual demonstrations (Figure 4c). We also generate more than one trajectory from the same 340 pair of sketches by adding controlled noise to the latent representation. This approach allows us to 341 produce a range of plausible trajectories for a given sketch input, enriching the demonstration set 342 and potentially leading to more robust and adaptable robot policies. We then execute the generated trajectories to produce demonstrations for training the policy (Figure 4b). Despite the inherent 343 variability in sketch inputs, the executed trajectory further validates the practical applicability of 344 our approach. This demonstrates our model's robustness to sketch imperfections and its ability to 345 reliably interpret user intent, bridging the gap between simple 2D sketches and actionable 3D robot 346 trajectories. 347

Latent Space Representation and Interpolation. To further understand the generator's latent 348 space, we performed linear interpolation in the latent space between different input samples. Specif-349 ically, we selected two distinct sketch pairs with different trajectories, extracted their feature vectors, 350 linearly interpolated between them, reconstructed the sketches, and generated new trajectories. Fig-351 ure 12 shows smooth transitions in both 2D sketches and 3D trajectories across the interpolated 352 latent space. This smoothness demonstrates that our model has learned a continuous and semanti-353 cally meaningful representation, suggesting good generalization capability to unseen inputs that lie 354 between known examples (Kingma, 2013). The coherence between interpolated sketches and their 355 corresponding 3D trajectories further validates the model's robust sketch-to-trajectory mapping.

356 357 358

4.2 COMPARISONS WITH BASELINES

359 In this section, we conduct extensive experiments in MetaWorld (Yu et al., 2019) to answer Q2: can 360 SKETCH-TO-SKILL utilize sketch-generated demonstrations to achieve comparable performance 361 to traditional methods using high-quality demonstration data? Specifically, we compare SKETCH-362 TO-SKILL with: (1) IBRL (Hu et al., 2023), a strong baseline that utilizes traditional high-quality 363 demonstration data (rather than sketches as what our method uses), and (2) TD3 (Fujimoto et al., 2018), a state-of-the-art pure RL approach without using any demonstrations. We hypothesize that 364 although the sketches have only partial information (namely, 2D projections of 3D trajectories and 365 no gripper information), we can still generate good enough demonstration data to perform compara-366 bly with the baseline that uses full demonstrations. We show that to be the case in these experiments. 367

368 We perform evaluations on six tasks from the MetaWorld benchmark, namely Coffeepush, 369 Boxclose, Buttonpress, Reach, Reachwall, and ButtonpressTopdownwall, each using sparse 0/1 task completion rewards at the end of each episode. For each task, we collected 3 370 high-quality demonstrations using an expert policy. These demonstrations served as our baseline 371 for traditional demonstration-based methods. For our approach, we collected a total of three hand-372 drawn sketches, one on each demonstration's initial frames (Figure 4). These sketches were used to 373 generate and execute trajectories, creating a parallel set of sketch-based demonstrations for compar-374 ison. 375

Figures 5 and 6 show the training and evaluation performance across all the tasks. We present SKETCH-TO-SKILL's results with and without the discriminator reward. We observe that in all cases SKETCH-TO-SKILL performs better, often significantly better than pure RL. In most tasks,

Figure 5: Performance Comparison of SKETCH-TO-SKILL Across MetaWorld Tasks with Baselines. This figure shows the training score (success rate) for six MetaWorld environments. SKETCH-TO-SKILL, with hand-drawn sketches, achieves comparable performance to IBRL which uses actual teleoperated demonstrations while being much better than pure RL.

Figure 6: Evaluation Scores. This figure shows the evaluation score (success rate) for six Meta-World environments during evaluation.

SKETCH-TO-SKILL's performance using only sketches as input is comparable to IBRL which uses
 high-quality demonstrations. This is particularly notable in the CoffeePush and Boxclose tasks.
 These tasks require actuating the gripper — information that is not provided in the sketches. Nev ertheless, SKETCH-TO-SKILL is able to bootstrap and use guidance from the sketch generated sub optimal demonstrations to learn a policy efficiently. This provides evidence to the claim that the
 sketch-generated demonstrations do not lead to much degradation in performance while being much
 easier to obtain.

Behavioral Cloning Performance. SKETCH-TO-SKILL employs behavior cloning (BC) to boot-strap policy learning, similar to IBRL. However, the key difference is that IBRL relies on high-quality teleoperated demonstrations, whereas SKETCH-TO-SKILL uses sketch-generated demonstrations. We compare the performance between them (Figure 7) and ablate the number of gener-ated demonstrations m per input sketch pair. Not surprisingly the BC policy with teleoperated data performs better than the sketch generated ones. However, despite the lower performance of the BC policy, SKETCH-TO-SKILL is still able to achieve comparable performance in RL training (as seen in Figures 5 and 6), showing that it is not as sensitive to the quality of the bootstrapping policy. Increasing the number of generated demonstrations m per input sketch pair (from 1 to 10) does not significantly improve the BC performance.

In ButtonpressTopdownWall, the sketch-generated dataset resulted in a BC policy that fails
 in all cases. However, as we observe in Figures 5 and 6, SKETCH-TO-SKILL that uses this policy is
 still able to perform better than pure RL. This can be attributed to the fact that the sketch-generated

Figure 7: Behavioral Cloning (BC) scores using actual teleoperated data and sketch generated demonstrations. The blue bars represent the baseline BC policy trained with 3 high-quality demonstrations, while the red bars show BC policies trained with sketch-generated demonstrations, varying in the number of demonstrations m per input sketch pair (1, 3, 5, and 10). Darker shades of red indicate an increase in the number of sketch-based demonstrations used for training. Despite poor success rate, the actual trajectories and policy learned with sketches are useful for bootstrapping as evidenced by the training performance (Figures 5 and 6).

Figure 8: Top row illustrates ablation training scores for SKETCH-TO-SKILL without discriminator and the bottom row shows with discriminator. We vary m, the number of demonstrations generated per sketch pair (1, 3, 5, and 10).

demonstrations, due to the inherent noise, are not able to actually succeed in pushing the button. However, the trajectories themselves reach very close to the button. To verify this, we computed the final position difference between the teleoperated demonstrations and the sketch-generated ones which was 0.001. Therefore, even though the success rate of the BC policy is close to 0, the discriminator guidance and the bootstrapping allow SKETCH-TO-SKILL to learn effectively.

478 4.3 ABLATION STUDY

To understand the impact of the key components in SKETCH-TO-SKILL and answer Q3, we conducted ablation studies focusing on two critical aspects: the number of generated trajectories m per input sketch pair and the reward weighting scheme λ .

Impact of Generated Trajectories per Sketch. We investigated how the number of trajectories generated from each input sketch pair affects the learning performance. Figure 14, shows the learning curves for policies trained with varying numbers of generated trajectories per sketch. We see that the performance is improved when we generate m = 3 trajectories per sketch, instead of just one trajectory per sketch. Here, the additional demonstrations can make up for the deficiency of not having actual teleoperated demonstrations. However, increasing the number of trajectories per sketch has diminishing value. It is useful when the tasks are difficult, such as BoxClose and CoffeePush which involve gripper actions, but does not affect much for easier tasks.

490 Effect of Reward Weighting: We examined the impact 491 of different reward weighting schemes on policy learn-492 ing. Our reward function combines the environmental re-493 ward with a discriminator-based reward by Equation 2, 494 where λ is the weighting parameter. Figure 9 illustrates 495 the learning performance across different values of λ . 496 The model demonstrates comparable performance with reward weights of 0.1 and 0.005, but significantly under-497 performs with a reward weight of 0.5. 498

Figure 9: Reward weighting term ablation

4.4 HARDWARE EXPERIMENTS

We validate SKETCH-TO-SKILL on physical robot hardware to demonstrate its effective transfer from simulation to real-world applications.

Experimental Setup. We set up the ButtonPress task as shown in Figure 10. We use a UR3e robot equipped with a Robotiq hand-e gripper and a realsense camera mounted on the wrist. We also use two additional environmental cameras to capture frames for humans to draw sketches on (Figure 13). The details of the task, success detection, and reset mechanism are in the Appendix.

Figure 10: Real experiment training scores for SKETCH-TO-SKILL with BC success rate of 0.8.

Performance. The evaluation success rate of the BC policy of ButtonPress task trained on sketchgenerated demonstrations is notably high at 0.8 within the randomized environment where we executed the policy. Consequently, our sketch-to-skill policy without a discriminator, quickly demonstrated strong performance, achieving a training success rate of 0.8 within just 30K samples.

5 CONCLUSIONS AND FUTURE WORK

526 527 528

499 500

501 502

503

504 505

506

507

508

516 517

518 519 520

521

522

523

524 525

We present SKETCH-TO-SKILL that uses 2D sketches to improve the efficiency of learning a ma-529 nipulation skill. While prior work has shown the power of sketches in IL, we are the first to show 530 how to do so using RL. The key ideas are to train a 2D sketch to 3D trajectory generator whose 531 output is used to bootstrap learning of the RL policy and used as an extra exploration guidance 532 signal, all of which contributes to improved efficiency. There are several avenues for future work. 533 SKETCH-TO-SKILL currently does not include any gripper information or timing information in the 534 sketches. While we have shown that even without this information, we can learn effectively, an immediate line of work would be to include this in the sketches. Fundamentally, this does not change 536 the Sketch-To-3D trajectory generator model which would now also have to predict the gripper state 537 and time parameterization of the trajectory. The second avenue for future work is to generate the sketches from sources other than humans. For example, Gu et al. (2023) showed how to generate 538 sketches using a Vision Language Model given a natural language description of the task. We can directly incorporate such sketches into our framework.

540 6 REPRODUCIBILITY

Anonymized code and demo datasets will be available on our webpage. We use the standard Meta World benchmark to allow for easy comparison with other algorithms and to facilitate the reproduc ing of our results. All details about the hyperparameters, environment specifications, and real-world
 experiment setup are provided in the appendix.

References

546 547

548

553

554

561

562 563

565

580

581

582

583

584

- Petar Bevanda, Johannes Kirmayr, Stefan Sosnowski, and Sandra Hirche. Learning the koopman eigendecomposition: A diffeomorphic approach. In 2022 American Control Conference (ACC), volume 22, pp. 2736–2741. IEEE, June 2022. doi: 10.23919/acc53348.2022.9867829. URL http://dx.doi.org/10.23919/acc53348.2022.9867829.
 - Amisha Bhaskar, Zahiruddin Mahammad, Sachin R Jadhav, and Pratap Tokekar. Navinact: Combining navigation and imitation learning for bootstrapping reinforcement learning. *arXiv preprint arXiv:2408.04054*, 2024.
- Ayan Kumar Bhunia, Subhadeep Koley, Amandeep Kumar, Aneeshan Sain, Pinaki Nath Chowdhury, Tao Xiang, and Yi-Zhe Song. Sketch2saliency: learning to detect salient objects from human drawings. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2733–2743, 2023.
 - A. Billard and D. Grollman. Robot learning by demonstration. *Scholarpedia*, 8(12):3824, 2013. doi: 10.4249/scholarpedia.3824. revision #138061.
 - Joao Bimbo, Claudio Pacchierotti, Marco Aggravi, Nikos Tsagarakis, and Domenico Prattichizzo. Teleoperation in cluttered environments using wearable haptic feedback. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3401–3408. IEEE, 2017.
- Harish chaandar Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. Recent advances in robot learning from demonstration. *Annu. Rev. Control. Robotics Auton. Syst.*, 3:297–330, 2020. URL https://api.semanticscholar.org/CorpusID:208958394.
- Linping Chan, Fazel Naghdy, and David Stirling. Application of adaptive controllers in teleoperation
 systems: A survey. *IEEE Transactions on Human-Machine Systems*, 44(3):337–352, 2014.
- Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan Sain, Subhadeep Koley, Tao Xiang, and Yi-Zhe Song. What can human sketches do for object detection? In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15083–15094, 2023a.
- Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan Sain, Subhadeep Koley, Tao Xiang, and
 Yi-Zhe Song. Scenetrilogy: On human scene-sketch and its complementarity with photo and text.
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10972–10983, 2023b.
 - Carl de Boor. Package for calculating with b-splines. *SIAM Journal on Numerical Analysis*, 14(3): 441–472, 1977. doi: 10.1137/0714026. URL https://doi.org/10.1137/0714026.
 - Michael Drolet, Simon Stepputtis, Siva Kailas, Ajinkya Jain, Jan Peters, Stefan Schaal, and Heni Ben Amor. A comparison of imitation learning algorithms for bimanual manipulation. *IEEE Robotics and Automation Letters*, 2024.
- Federica Ferraguti, Nicola Preda, Marcello Bonfe, and Cristian Secchi. Bilateral teleoperation of a
 dual arms surgical robot with passive virtual fixtures generation. In 2015 IEEE/RSJ International
 Conference on Intelligent Robots and Systems (IROS), pp. 4223–4228. IEEE, 2015.
- Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actorcritic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.
- Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
 Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task
 generalization via hindsight trajectory sketches. *arXiv preprint arXiv:2311.01977*, 2023.

624

626

594	Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh	Imitation bootstrapped reinforcement learn-
595	ing. arXiv preprint arXiv:2311.02198, 2023.	initiation bootstrapped termoreciment team
596	8	

- Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical movement primitives: Learning attractor models for motor behaviors. *Neural Computation*, 25 (2):328–373, February 2013. ISSN 1530-888X. doi: 10.1162/neco_a_00393. URL http://dx.doi.org/10.1162/neco_a_00393.
- Tatsuya Kamijo, Cristian C Beltran-Hernandez, and Masashi Hamaya. Learning variable compli ance control from a few demonstrations for bimanual robot with haptic feedback teleoperation
 system. arXiv preprint arXiv:2406.14990, 2024.
- Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In *International conference on machine learning*, pp. 2469–2478. PMLR, 2018.
- S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems with gaussian mixture models. *IEEE Transactions on Robotics*, 27(5):943–957, October 2011. ISSN 1941-0468. doi: 10.1109/tro.2011.2159412. URL http://dx.doi.org/10.1109/tro.2011.2159412.
- 611 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- Jens Kober and Jan Peters. Learning motor primitives for robotics. In 2009 IEEE International Conference on Robotics and Automation. IEEE, May 2009. doi: 10.1109/robot.2009.5152577.
 URL http://dx.doi.org/10.1109/robot.2009.5152577.
- S. Mohammad Khansari-Zadeh and Aude Billard. Learning control lyapunov function to ensure stability of dynamical system-based robot reaching motions. *Robotics and Autonomous Systems*, 62(6):752–765, June 2014. ISSN 0921-8890. doi: 10.1016/j.robot.2014.03.001. URL http://dx.doi.org/10.1016/j.robot.2014.03.001.
- Alexandros Paraschos, Elmar Rueckert, Jan Peters, and Gerhard Neumann. Model-free probabilistic
 movement primitives for physical interaction. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, September 2015. doi: 10.1109/iros.2015.7353771.
 URL http://dx.doi.org/10.1109/iros.2015.7353771.
- Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. *Bézier and B-spline techniques*, volume 6. Springer, 2002.
- Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
 Abbeel. Masked world models for visual control. In *Conference on Robot Learning*, pp. 1332–1344. PMLR, 2023.
- Nur Muhammad Mahi Shafiullah, Anant Rai, Haritheja Etukuru, Yiqian Liu, Ishan Misra, Soumith
 Chintala, and Lerrel Pinto. On bringing robots home. *arXiv preprint arXiv:2311.16098*, 2023.
- Weiyong Si, Ning Wang, and Chenguang Yang. A review on manipulation skill acquisition through teleoperation-based learning from demonstration. *Cognitive Computation and Systems*, 3(1):1– 16, 2021.
- Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20 minutes
 with model-free reinforcement learning. *arXiv preprint arXiv:2208.07860*, 2022.
- Priya Sundaresan, Quan Vuong, Jiayuan Gu, Peng Xu, Ted Xiao, Sean Kirmani, Tianhe Yu, Michael
 Stark, Ajinkya Jain, Karol Hausman, et al. Rt-sketch: Goal-conditioned imitation learning from
 hand-drawn sketches. 2024.
- Peihong Yu, Manav Mishra, Alec Koppel, Carl Busart, Priya Narayan, Dinesh Manocha, Amrit Bedi,
 and Pratap Tokekar. Beyond joint demonstrations: Personalized expert guidance for efficient
 multi-agent reinforcement learning. *arXiv preprint arXiv:2403.08936*, 2024.
- Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In *Conference on Robot Learning (CoRL)*, 2019. URL https://arxiv.org/abs/1910.10897.

648 649 650 651	Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE international conference on robotics and automation (ICRA), pp. 5628–5635. IEEE, 2018.
652	
653	probabilistic diagrammatic teaching. <i>arXiv preprint arXiv:2309.03835</i> , 2023.
034	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
000	
000	
669	
660	
670	
671	
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	
693	
695	
393	
697	
698	
699	
700	
701	

A DE BOOR'S ALGORITHM DETAILS

The uniform knot vector for a B-spline of degree p with n + 1 control points is defined as:

$$\boldsymbol{u} = [\underbrace{0, ..., 0}_{p+1}, \frac{1}{n-p+1}, \frac{2}{n-p+1}, ..., \frac{n-p}{n-p+1}, \underbrace{1, ..., 1}_{p+1}]$$
(3)

The B-spline basis functions $W_{i,p}(t)$ are defined recursively using the Cox-de Boor recursion formula:

$$\boldsymbol{W}_{i,0}(t) = \begin{cases} 1 & \text{if } u_i \le t < u_{i+1} \\ 0 & \text{otherwise} \end{cases}$$
(4)

$$\boldsymbol{W}_{i,p}(t) = \frac{t - u_i}{u_{i+p} - u_i} \boldsymbol{W}_{i,p-1}(t) + \frac{u_{i+p+1} - t}{u_{i+p+1} - u_{i+1}} \boldsymbol{W}_{i+1,p-1}(t)$$
(5)

where u_i are the knot values from the knot vector u.

The B-spline parametrization matrix N for m evaluation points is an $m \times (n+1)$ matrix:

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{W}_{0,p}(t_1) & \boldsymbol{W}_{1,p}(t_1) & \cdots & \boldsymbol{W}_{n,p}(t_1) \\ \boldsymbol{W}_{0,p}(t_2) & \boldsymbol{W}_{1,p}(t_2) & \cdots & \boldsymbol{W}_{n,p}(t_2) \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{W}_{0,p}(t_m) & \boldsymbol{W}_{1,p}(t_m) & \cdots & \boldsymbol{W}_{n,p}(t_m) \end{bmatrix}$$
(6)

where t_j (j = 1, ..., m) are evenly spaced parameters in the interval [0, 1].

727 728 729 730

731

732

702 703 704

705 706

712

713 714

715 716

717 718

719

724 725 726

B SKETCH-TO-3D TRAJECTORY GENERATOR ARCHITECTURE

OVERVIEW OF THE MODEL

The proposed model converts 2D image sketches into 3D motion trajectories using a *Variational* Autoencoder (VAE) combined with a Multi-Layer Perceptron (MLP). The VAE encoder processes 64×64 pixel 2D sketches (3 channels) into a latent vector ($d_v = 32$), while the decoder reconstructs the sketches to retain essential features for trajectory generation. The latent space outputs the mean (μ) and variance (σ^2), sampled using the reparameterization trick.

The MLP takes the latent vectors from two sketches, concatenates them, and generates 3D control points for B-spline trajectory interpolation. The MLP takes an input of size $(d_v \times 2)$, processes it through hidden layers [1024, 512, 256], and outputs $n_{cp} \times 3$. The generated 3D control points are then used for B-spline interpolation to produce smooth trajectories.

742 743 744

755

INITIALIZATION, REGULARIZATION, AND HYPERPARAMETERS

We initialize all network parameters using *Xavier initialization*. Regularization is done with *Kullback-Leibler Divergence (KLD)*, using a loss function that combines *Sketch Reconstruction Loss*, *KLD Loss*, and *Trajectory Loss*. The *Sketch Reconstruction Loss* is the MSE loss on sketch images, the *Trajectory Loss* computes the MSE between predicted and ground truth trajectories, where
the ground truth trajectory is first densely fitted and resampled to ensure uniform point spacing,
and the *KLD Loss* applies Kullback-Leibler Divergence for regularization. Key hyperparameters
include:

- Image size: 64×64 pixels
- **Latent dimension:** 32
 - Number of control points: 20
 - B-spline degree: 3

757	• MLP hidden layers: [1024, 512, 256]
758	• Learning rate: 1×10^{-3} (Adam optimizer)
759	Batch size: 128
760	Dutch Size. 120
761	• KLD weight: 0.0001 (with optional annealing)
762	• Training anaphy 200
700	• Training epochs. 200

756

793 794

795

800

801 802

764 To enhance robustness and generalization, our train-765 ing process employs two concurrent data augmentation 766 strategies. The first applies diverse image augmentations 767 (rotations, scaling, affine transformations, noise) to in-768 put sketches, used exclusively for updating the VAE to learn robust sketch representations. The second strategy 769 targets potential mismatches in hand-drawn sketches by 770 subtly modifying both original sketches and their 3D tra-771 jectories. This involves adding noise and minor elastic 772 deformations to sketches, and noise with refitting to tra-773 jectories. These augmented pairs update the entire model, 774 preparing it for hand-drawn input variability while main-775 taining sketch-trajectory consistency. This augmentation 776 approach enhances the model's ability to handle diverse, 777 imperfect sketches while ensuring accurate 3D trajectory 778 generation in real-world scenarios. To train the sketch 779 generation network we collect 22000 samples for simulation tasks and 85 for the real world. During the training for the real-world task, we use the data collected from 781

Figure 11: Diversity in generated 3D trajectories. Each subplot shows multiple generated trajectories (colored lines) for a single input, demonstrating variability. Scattered points represent the ground truth trajectory.

simulation to train the VAE part as well. We provide additional visualizations to demonstrate the
 learned model's generalizability in Figure 11 and 12.

Figure 12: Latent space interpolation results showing smooth transitions between original samples (leftmost and rightmost) and reconstructed samples (middle) from two viewpoints, demonstrating the model's ability to generate coherent 3D trajectories from 2D sketch pairs.

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS OF SKETCH-TO-SKILL POLICY AND BASELINES

This section outlines the implementation details of Sketch-To-Skill and the baselines. The behavior cloning (BC) policies utilize a ResNet-18 encoder, where the output is flattened and processed by MLPs to produce final 4D actions. We replace the BatchNorm layers in ResNet with GroupNorm, matching the number of groups to the input channels. To prevent overfitting, we employ randomshift data augmentation.

In the Meta-World environment, we utilize a corner2-image camera setup. We use wrist cameras to
 enhance generalization and sample efficiency in real-world experiments, specifically using them for
 the ButtonPress task.

Parameter	Meta-World	Real-World
Optimizer	Adam	Adam
Learning Rate	1e-4	1e-4
Batch Size	256	256
Discount (γ)	0.99	0.99
Exploration Std. (σ)	0.1	0.1
Noise Clip (c)	0.3	0.3
EMA Update Factor (ρ)	0.99	0.99
Update Frequency (U)	2	2
Actor Dropout	0.5	0.5
Q-Ensemble Size (E)	2	N/A
Num Critic Update (G)	1	N/A
Image Size	96×96	96×96
Use Proprio	No	N/A
Proprio Stack	N/A	N/A
State Stack	N/A	N/A
Action Repeat	N/A	N/A

Table 1: Hyperparameters for RL in SKETCH-TO-SKILL.

827 828 829

830 831

823 824 825

810

D ADDITIONAL DETAILS OF REAL-WORLD EXPERIMENTS

In this section, we present insights into the real-world experiments conducted using Sketch-ToRL, specifically for the ButtonPress manipulation task. We utilized a UR3e robot equipped with
a Robot Hand gripper, operating in an action space with 4 dimensions: 3 for end-effector position
deltas under a Cartesian impedance controller and 1 for the absolute gripper position, with policies
functioning at 7.5 Hz.

To train the Sketch-To-3D Trajectory generator, we collected approximately 85 teleoperated trajectories. RGB images were captured using two orthogonally positioned RealSense cameras to enhance trajectory insight. A green marker was placed on the gripper tip to facilitate sketch generation on the frames, enabling the model to learn 2D sketch projections onto 3D trajectories.

After training the Sketch-To-3D Trajectory generator, we created 30 sketches based on RGB frames from the two cameras. We then collected 30 sketch-generated demonstrations, ξ_D using openloop servoing on 3D trajectory ξ_g produced by the generator T. We then train Behavior Cloning (BC) policy using the sketch-generated demonstrations, ξ_D , achieving a score of 0.8 and thus leading to good performance in the sketch-to-skill policy.

All methods maintained the same hyperparameters and network architectures as those used in the Meta-World tasks. The task is illustrated in Figure 10 and briefly described below:

849 ButtonPress: The objective is to press the Button, with its initial position randomized within a 20cm
850 by 20cm to 25cm trapezoidal area visible from the wrist camera. We collected 30 demonstrations
851 for this task.

Reward Detection : We used a manual method to reward the agent if it successfully pushed the
button. The agent receives a reward of 1 for successfully completing the task and a reward of 0 in
all other cases. Each episode has a set number of timesteps, and if the agent doesn't succeed within
that limit, it resets and starts over. The length of each episode may be shorter than the given limit
depending on how quickly the agent completes the task.

Reset : For the object, we manually reset the environment by pulling back the button (if pressed) and uniformly randomizing the position of the button in each episode. The robot is initially set to a specific joint configuration known as the home position. Whenever the agent receives a reward or an episode ends, it resets back to the home configuration and the training continues. The object randomization is done by placing the button at the center, and the position remains unchanged until the agent receives its first reward. After that, the object is gradually moved towards the boundary, circled around the workspace, returned to the center, and the process is repeated until the training ends.

Figure 13: Complete setup for the ButtonPress task in a real-world experiment. The configuration includes a UR3e robot arm equipped with a Robot Hand gripper, and a RealSense D435i camera mounted on the wrist. Two additional RealSense cameras are positioned orthogonally to capture the trajectory from two different viewpoints.

Safety Boundaries: We have restricted the movement of the robot to the x, y, and z directions of the end-effector. Each step that the robot takes is limited to a specific value. If the action taken by the agent exceeds this limit, the robot will not move and will remain in its current position. To avoid collision after pressing the button and pushing it into the table, we have set a minimum limit for the z direction of the robot, ensuring it can still press the button. Even if the agent attempts to move downward into the table, the robot will remain at the specified z position threshold.

Figure 14: Top row illustrates ablation training scores for SKETCH-TO-SKILL without discriminator and the bottom row shows the ablation training scores for SKETCH-TO-SKILL, trained with demonstrations generated from sketches for bootstrapping, varying in the number of generated demonstrations m per input sketch pair (1, 3, 5, and 10).

E ADDITIONAL EXPERIMENTS FOR REBUTTAL

- E.1 AE1: ROBOMIMIC EXPERIMENTS
- 915 E.1.1 TASK COMPLEXITY: 916
- **917** The PickPlaceCan task in RoboMimic is another demanding two-stage challenge. It requires the robot to accurately locate and reach a can, then pick it up and place it into a designated bin. This

task not only tests the robot's ability to handle objects with precision but also demands correct orientation of the gripper throughout the process. RoboMimic, a well-established benchmark, provides high-quality demonstrations collected via human teleoperation, which are instrumental for training successful policies.

E.1.2 IMPLEMENTATION AND STRATEGY:

In this setup, the sketch-based demonstrations provide initial positional cues for the robot. Our framework utilizes reinforcement learning (RL) to refine these initial cues, dynamically adjusting the robot's approach to manage both the orientation and timing necessary for successful task execution. This method proves particularly effective as it does not rely on fully detailed trajectory information from the start; instead, it uses the sketches to guide the initial exploration phase of RL, significantly simplifying the data collection process.

Results and Performance Metrics:

- Performance: Our sketch-to-skill framework, even with limited initial data, performs admirably in this demanding scenario. The results are on par with those from IBRL methods 98%, which benefit from complete and detailed human demonstrations, including explicit orientation details (as shown in Figure 15).
- **Comparison to IBRL:** The comparative success illustrates the robustness and effectiveness of our method in managing the task's orientation and other complexities without fully specified trajectory inputs. This is particularly notable given that RoboMimic's Pick and Place Can task offers a significantly higher level of difficulty than similar tasks in Meta-World.

Figure 15: Evaluation Scores (success rate) for the robomimic PickPlaceCan environment during evaluation.

E.2 **AE2: HARDWARE EXPERIMENTS**

Figure 16: Training curves of the real-world ToastButtonPress task, where the environment is cluttered

Figure 17: Training curves of the real-world ToastPickPlace task, where the environment is cluttered

This appendix provides detailed insights into additional real-world experiments conducted using the Sketch-To-RL framework, focusing on the Toaster Button Press and Bread Pick Place tasks. Both experiments were carried out using a UR3e robot equipped with a Robotiq Hand gripper, navigating an action space that included three dimensions for end-effector position deltas and one for absolute gripper position. The policies operated at 7.5 Hz. These experiments were designed to test the robustness and adaptability of our sketch-based approach under dynamic, cluttered environments with randomized initial conditions.

E.2.1 TOASTER BUTTON PRESS EXPERIMENT

- **Sketch and Demonstration Generation:** Created 10 sketches based on the camera feeds. From these, 10 sketch-generated demonstrations were collected using open-loop servoing based on 3D trajectories produced by the generator which was previously trained on 85 trajectories collected earlier.
- **Experimental Design:** Each episode featured a cluttered environment around the toaster, with objects commonly found in household settings to simulate realistic conditions. The initial position of the gripper was randomized in every episode to test the adaptability of the learned policy.
 - **Training and Performance** Trained a Behavior Cloning (BC) policy using the sketchgenerated demonstrations, achieving a preliminary success rate of 60%, and trained Sketch-To-Skill over 12k interaction achieving 90% within 10K interactions.
- E.2.2 BREAD PICK PLACE EXPERIMENT
 - Setup and Data Collection: For this task, sketches were specifically collected in randomly cluttered environments to reflect typical variability in real-world scenarios.
 - **Experimental Design:** The task involves picking a piece of bread from a toaster and placing it on a nearby plate, requiring precise manipulation and handling. Both the environment clutter and the initial gripper positions were randomized in each episode, presenting a different challenge each time to test the robustness of the policy.
 - **Training and Performance:** The BC policy was similarly trained using sketch-generated demonstrations, with performance metrics collected to assess the effectiveness of the approach under varied and dynamic conditions achieving success of 36% and trained Sketch-To-Skill over 30K interaction achieving 80% within 30 interactions.

- 1020 E.2.3 COMMON ELEMENTS ACROSS EXPERIMENTS:
- 1022 Network Architecture and Hyperparameters: All methods maintained consistent network architectures and hyperparameters as used in the Meta-World tasks.
- Reward Detection and Reset Protocol: A manual reward detection method was employed, where
 the robot received a reward for successfully completing the designated task. The environment and
 robot position were reset at the end of each episode to ensure consistent training conditions.

These experiments underscore our method's capability to handle real-world variability and complex task execution, supporting its potential utility beyond controlled experimental setups. The detailed results from these tasks, illustrated in Figures 16 and 17, highlight the practical applications and adaptability of our sketch-to-skill framework in dynamic, cluttered settings.

E.3 AE3: HARD METAWORLD EXPERIMENTS

Figure 18: Figure on top shows sketches for the MetaWorld Assembly task. Figures on the bottom show training scores (success rate).

1050 MetaWorld Assembly Task Description

Task Complexity: The Assembly task in MetaWorld is a "hard" task Seo et al. (2023) that requires the robot to execute two-stage manipulations. The task involves precise movements to pick up a peg, navigate it to a specific location, and insert it into a hole within a larger assembly fixture. This task tests the robot's precision, spatial awareness, and ability to handle complex sequences.

1055 1056 1057

1058

1062

1063

1064

1067

1068

1047

1048 1049

1031

Results and Performance Metrics:

- Sketch-To-Skill: Demonstrated a high success rate of 93%, effectively using sketches for coarse guidance to navigate and complete complex task sequences, even without actual teleoperated demonstrations.
- Sketch-to-Skill without Discriminator: Initially struggled with a success rate of 20%, but extended interaction up to 100K steps improved performance dramatically, reaching a nearperfect success rate of 98%. This underscores the potential for learning even without discriminator guidance, given sufficient training time.
- IBRL: Achieved the highest success rates of approximately 100%, benefiting from highquality teleoperated demonstrations that include precise details on orientation and positioning.
 - Standard BC: Achieves a success rate of around 60%, showing limitations in environments where adaptive behaviors and fine-tuning through reinforcement learning are necessary.
- 1069 1070

These results highlight the effectiveness of the Sketch-to-Skill approach in handling complex, multi-stage tasks through initial coarse guidance, with the potential for significant improvement over time.
They also illustrate the advantage of incorporating discriminator feedback to accelerate learning and enhance performance.

1075

1077

1076 E.4 AE4: USE OF VAE IN SKETCH-TO-3D TRAJECTORY GENERATOR

We conducted an ablation study of the Sketch-to-3D Trajectory Generator to evaluate the effect of
 the VAE in the architecture. We used 1000 trajectories, split 80:20 for validation and report the
 training and validation loss in Table 2. We compare the performance of using the VAE in Figure 2

versus without the VAE and using an CNN (with the same architecture as the VAE's encoder, minus the decoder and loss components) instead. We observe that the VAE improves the performance across all the losses including the reconstruction loss and trajectory loss.

 Table 2: Performance Metrics for generator model

Metric	with VAE	without VAE
Training Loss	0.6019	0.6286
Validation Loss	0.9128	1.2804
Reconstruction Loss	0.0004	0.3258
KLD Loss	69.8592	107.167
Parameter MSE Loss	0.0820	0.0928
Trajectory Loss	0.770	0.1180

E.5 AE5: USING COLOR GRADIENTS FOR OVERLAPPING TRAJECTORIES

We can also incorporate time-parameterization of the trajectory in the sketches using a color gradient, instead of a binary sketch image. This notion of color gradient in sketches was introduced by RT-Trajectory Gu et al. (2023). An example is shown in Figure 19. Here, the color of the sketch changes from green (start) to red (end). This is particularly helpful when the sketch crosses each other or overlaps. We conduct additional experiments with the generator to evaluate the effect of incorporating gradients in the Sketch-To-3D trajectory generator.

Specifically, we use the MetaWorld Assembly task (Figure 18) where the sketch overlaps in the middle as the end-effector picks up the tool and carries it to the goal position. We trained two generators without and with color gradients. The performance of these two generators are reported in Table 3. We observe that incorporating the gradient in such a case results in lower reconstruction and trajectory losses. With lower trajectory losses we can handle more complex trajectories that overlap with color gradients. Note that incorporating gradients also does not require any change to the downstream architecture, and only requires minimal changes to the generator architecture.

Table 3: Performance Metrics for Overlapping and Non-Overlapping Trajectories

Metric	with color gradient	without color gradient
Training Loss	0.2438	0.3107
Validation Loss	0.3120	0.3585
Reconstruction Loss	0.0001	0.0003
KLD Loss	77.167	76.4683
Parameter MSE Loss	0.1028	0.1135
Trajectory loss	0 1530	0.2379

Figure 19: Trajectories with time-based color gradient for Assembly Metaworld simulation task.