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Abstract

Large language models (LLMs) are empowering decision-making in open-world
agents in several applications, including tool or API usage and answering multiple
choice questions (MCQs). However, they often make overconfident, incorrect pre-
dictions or “hallucinations”, which can be risky in high-stakes settings like health-
care, and finance. To improve safety, we leverage conformal prediction (CP), a
model-agnostic framework that provides distribution-free uncertainty quantifica-
tion. CP transforms a score function, which measures how well an output “con-
forms” to a given input, into prediction sets that contain the true answer with high
probability. While CP ensures this coverage guarantee for arbitrary scores, the
quality of the scores significantly impacts the size of prediction sets. Prior works
have relied on LLM logits or other heuristic scores, lacking guarantees on their
quality. To address this issue, we propose an optimization framework (CP-OPT)
to learn scores that minimize set sizes while maintaining coverage guarantees.
Furthermore, leveraging the coverage guarantees of CP, we propose a conformal
revision of questions (CROQs) to revise the problem by narrowing down the avail-
able choices to those in the prediction set. Our results on MMLU and ToolAlpaca
datasets with Llama3 and Phi-3 models show that optimized CP scores reduce the
set sizes by up to 13% and CROQs improves accuracy relatively by up to 4.6%
overall and up to 15% in non-trivial parts of the input space.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in various natural lan-
guage tasks, including tool usage and multi-choice question answering (MCQ) tasks [14, 20, 8].
However, despite their success, LLMs often operate as black boxes, offering limited insight into the
uncertainty of their predictions. This lack of transparency becomes especially concerning in tool
usage, where the model must select the correct tool or API to complete a task. Missteps in such
scenarios, especially when made with high confidence, can lead to significant errors. To address
these challenges, we focus on improving uncertainty quantification in MCQ and tool usage tasks.
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There is an emerging line of work proposing to use conformal prediction for UQ in LLMs [10, 19,
12, 15]. Conformal prediction (CP) [23, 3] is a promising framework for uncertainty quantification in
machine learning models, offering distribution-free and model-agnostic guarantees on the reliability
of predictions. By producing prediction sets that contain the true outcome with a user-specified
confidence level (e.g. 95%), CP provides a rigorous and interpretable measure of uncertainty.

A critical component in CP is the score function, which measures how well a candidate output
“conforms” to a given input. For example, in classification settings, it is common to use the classifier
logits corresponding to each class for a given input as the score function [2]. While conformal
prediction gives coverage guarantee for any scoring function, the size of the output set depends on
the quality of scores – bad scores will lead to large sets. Previous works that apply CP for MCQs
have used readily available scores such as the logits (softmax) output from the LLM [10] or have
designed some heuristic scores based for example on repeated querying of the LLM [19]. Logits can
be overconfident and may have biases for some options [27] and heuristic scores lack performance
guarantees. Thus we need principled solutions to obtain scores that are guaranteed to minimize set
sizes while maintaining the coverage guarantee.

The interpretability of conformal prediction (CP) sets offers potential benefits beyond uncertainty
quantification in LLMs. While prior work has primarily focused on integrating CP with LLMs to
produce prediction sets, we believe these sets can be leveraged in more versatile ways. Specifically,
inspired by the Monty Hall problem [17], we hypothesize that by revising a multiple-choice question
to include only the options within the CP prediction set, the LLM is more likely to provide the correct
answer due to the reduced number of choices, leading to improved accuracy.

To summarize, we focus on the following two questions while applying CP in solving MCQs with
LLMs. R1. How can we get optimal scores for conformal prediction? R2. Can the prediction sets
from CP be utilized to improve accuracy?

To address R1, we design a post-hoc procedure to learn the optimal scores for conformal prediction.
To address R2, we conduct experiments in which we re-prompt the LLM with multi-choice questions
using the answer sets generated by conformal prediction. In all cases, we assume white-box access
to the LLM such that we are able to access the model logits and internal weights. We summarize
our main contributions as follows,

1. We design a post-hoc score function optimization framework (CP-OPT) that can be applied
to any pre-trained LLM. Moving away from the unreliable LLM logits and heuristic scores, it
provides a principled way to learn the scores for conformal prediction. Empirically, we show
that our procedure leads to a relative reduction in average set sizes by up to 13%, in contrast to
the baselines using LLM logits as scores, at the same level (95%) of marginal coverage.

2. Extending the utility of CP beyond uncertainty quantification, we propose the conformal revision
of questions (CROQs), in which we revise the question by narrowing down the choices to those
in the prediction sets output by CP. Then the LLM is re-prompted with the revised question. We
show that this procedure can lead to relative accuracy improvements up to 4.6% overall and up
to 15% in non-trivial parts of the input space.

2 Preliminaries

We provide background on solving MCQ tasks with LLMs and conformal prediction.

2.1 Solving Multiple Choice Questions (MCQs) Using LLMs

MCQ Setup. MCQs are a general abstraction for expressing problems where we need to select
the correct choice(s) from a given set of choices for each problem. These are common in con-
ventional question-answering tasks such as MMLU [8] and recently with the versatility of mod-
ern language models several tasks such as tool learning can be expressed as MCQs [20, 14].
An MCQ consists of the question text Qi, i.e. a sequence of tokens, and a set of choices
Oi = {(Y1, V

(i)
1 ), (Y2, V

(i)
2 ), . . . , (Ymi , V

(i)
mi )}. Here each Yj is a unique character from the En-

glish alphabet and we assume the number of choices m ≤ size of the alphabet and V
(i)
j is the option

text for jth option. Denote the whole MCQ instance as xi = (Qi, Oi). Let Xm denote the space of
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What is the grace period 
for mortgage payment? 

A. 1 day 
B. 1 week 
C. 15 days 
D. 1 month 
The correct answer is : 

Figure 1: In the high-stake applications using conformal prediction allows the answer of the LLM to both in-
clude multiple answers as well as enjoy a coverage guarantee, i.e., a probabilistic statement about the predicted
set containing the true answer with high probability.

MCQs with m choices and PXm
is a distribution over Xm, from which samples for training, valida-

tion, and testing are drawn independently. Here we assume for each question Qi there is only one
true answer key y⋆i ∈ {Y1, Y2, . . . Ymi

} = Ymi
.

Prompt for MCQ. We concatenate the question text Qi and the choices Oi, all separated by a new
line character, and in the end append text “The correct answer is: ”. The expectation is that
on this input prompt the next token predicted by the LLM will be one of the options keys. See
Appendix B for a prompt example. We consider zero-shot prompts and do not include example
questions and answers in the prompt. We also add the prefix and suffix tokens to the prompt as
recommended by the language model providers. Since these are fixed modifications to xi, we will
use xi to denote the final prompt and the MCQ instance analogously.

LLM Inference. We run the forward pass of the auto-regressive LLM [21, 7, 1] on the input prompt
xi. The whole prompt xi is a sequence of tokens t(i)1 , t

(i)
2 , . . . t

(i)
ni .

l
(i)
1 , l

(i)
2 , . . . , l(i)ni

← LLM
(
t
(i)
1 , t

(i)
2 , . . . t(i)ni

)
(1)

Here l
(i)
j ∈ R|V | and V is the universal set of tokens for the given LLM and |V | is its size. The

logits l(i)j express the likelihood of the next token after t(i)1 , . . . , t
(i)
j . Thus the last token’s logits l(i)ni

are expected to have a higher value for the correct answer key. We extract the logit vector l̄i ∈ Rmi

corresponding to the option keys as follows,

l̄i :=
[
l(i)ni

[Y1], l
(i)
ni
[Y2], . . . , l

(i)
ni
[Ymi

]
]
. (2)

Here l
(i)
ni [Yj ] means the logit value corresponding to the token Yj in the last token’s logits l(i)ni . The

logits l̄i are converted to softmax scores s(xi). The softmax score of point xi and option key y is
given by s(xi, y) and the predicted answer key ŷi corresponds to the maximum softmax value.

s(xi) := softmax(l̄i), s(xi, y) := s(xi)[y], ŷi := argmax
y∈{Y1,...Ymi

}
s(xi, y) (3)

Note that prior works on solving MCQs using LLMs [10, 19] use similar steps but lack precise
details, we outlined these here for clarity and to make the paper self-contained.

2.2 Conformal Prediction

Conformal prediction (CP) [23, 3] is a framework for quantifying uncertainty in machine learn-
ing models. It provides a flexible and user-friendly approach to output statistically valid predic-
tion sets (or intervals) on model predictions. The key strength of conformal prediction lies in its
distribution-free guarantees – it ensures that the constructed prediction sets are valid regardless of
the underlying data distribution and model. This property is particularly desirable in the context of
language models, as it is hard to characterize the language data distributions or put specific assump-
tions/restrictions on the LLMs.

Score Function. Let g : Xm × Ym 7→ R be a conformity score function – larger scores indicate
better agreement between x and y. A common choice of scoring function is the softmax scores from
the given model as in equation (3). There can be several other heuristic choices for score function
e.g. self-consistency based scores [19]. As such, CP can work with any scoring function but the
quality of the scores reflects in the size of the prediction sets.
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Prediction Sets. Given a threshold τ on the scores, the prediction set for point any x ∈ Xm is
defined as follows,

C(x | g, τ) := {y ∈ Ym : g(x, y) ≥ τ}. (4)

The size of the prediction set quantifies the uncertainty, i.e., the smaller the prediction set the smaller
the prediction uncertainty and vice versa.

Split Conformal Prediction. Similar to prior works [10, 19], we use Split Conformal Prediction
[13, 11] due to its popularity, ease of use, and computational efficiency. For a given scoring function
g : Xm×Ym 7→ R, Split Conformal Prediction first fits an arbitrary model on train dataset, Dtrain =
{xi, y

⋆
i }

ntrain
i=1 . Then a separate calibration dataset Dcal = {xi, y

⋆
i }

ncal
i=1 is used to compute a threshold

τ̂ such that

τ̂ = min

{
q :

1

ncal

ncal∑
i=1

1 (g(xi, y
⋆
i ) ≤ q) ≥ α

}
. (5)

When τ̂ is used in place of the unknown parameter, τ , in Equation 4, we enjoy a marginal coverage
guarantee for prediction sets constructed on unseen test data points, which we formalize below in
Proposition 2.1.

Proposition 2.1. (Marginal Coverage Guarantee) Let g being a (given) conformity score func-
tion and τ̂ be an α threshold computed via Split Conformal Prediction on Dcal = {xi, y

⋆
i }

ncal
i=1 ∼

PXm×Ym
. Then, for a new sample (x̃, ỹ⋆) ∼ PXm×Ym

, we have that

Px(ỹ
⋆ ∈ C(x̃ | g, τ̂)) ≥ 1− α. (6)

The above coverage guarantee makes CP an attractive tool for safely deploying LLMs. Figure 1
illustrates the usage of conformal prediction by the prior works in answering MCQs with LLMs.
While using CP is promising, the issue of score quality (critical to CP) can stymie its effectiveness.
Next, we discuss our solutions to improve CP and its utility in solving MCQs with LLMs.

3 Methodology

In this section, we discuss details of our pipeline for question revision using conformal prediction
and our method for learning optimal scores for conformal prediction.

3.1 Conformal Revision of Questions (CROQs)

Conformal prediction in language models can go beyond quantifying uncertainty in the output.
While the sizes of prediction sets quantify the uncertainty, the sets are interpretable and are backed
with the coverage guarantee. Inspired by the Monty Hall problem [17], these properties, in the
context of LLMs, open up the possibility to revise the question after first round of CP and give
the revised question back to the LLM. It is expected that with reduced choices in the question, the
chances of the LLM arriving at the right answer will increase. We describe this two step procedure
below and it is illustrated in Figure 2,

Step 1: Usual Conformal Procedure. In the first step we run the aforementioned split conformal
procedure with coverage level 1−α, to estimate the threshold τ̂ using the questions in the calibration
data. Then we pass each test instance xi through the LLM and CP procedure to obtain a first stage
prediction set, C(xi|g, τ̂).
Step 2: Revise and Ask LLM Again. After getting the first stage prediction set, C(xi|g, τ̂),
if the set size is greater than 1 and less than mi, it modifies xi to x′

i = (Qi, O
′
i), where O′

i =

{(Kj , V
(i)
j ) : Kj ∈ C(xi|g, τ̂)}. The keys in O′

i are changed, they start with the first alphabet and
go to the alphabet corresponding to the number of choices available. Next, we transform x′

i into a
prompt format and input to the LLM. We run the same inference procedure and extract the predicted
answer key ŷ′i as in equation (3).
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LLM Answer is A.  
(Option C in the original question)
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Answer is in {C,D}. 
 

True answer is in the  
predicted set 95% times.

Coverage guarantee

Score/confidence function:  gives model’s 
confidence on (input, output) pair. e.g., logits.

What is the grace period 
for mortgage payment? 

A. 1 day 
B. 1 week 
C. 15 days 
D. 1 month 
The correct answer is : 

What is the grace period 
for mortgage payment? 

A. 15 days 
B. 1 month 
The correct answer is : 

Correct answer

Figure 2: (CROQs) Illustration of conformal revision of questions and prompting the LLM with the revised
question. In this example, the initial predicted set by LLM + conformal prediction (CP) is {C, D}. The question
is revised to contain only the answer choices in the prediction set. The labels (keys) are revised as well. Then
the LLM is prompted with the revised question. Since CP provides rigorous coverage guarantees, we expect
that this way of re-prompting LLM with reduced answer choices will improve the chances of obtaining the
correct answer. See Section 3.1 for more details.

3.2 Scores Optimization for Conformal Prediction (CP-OPT)

We describe our method for post-hoc learning of the optimal scores for conformal prediction for
solving MCQ with LLMs. Similar ideas have been incorporated in the training objective of clas-
sifiers [18] so that the classifiers’ softmax output is better suited for CP. However, the LLMs are
not trained with this objective and we want to apply CP to any given LLM, therefore, we design a
post-hoc method to optimize the scores. We first describe the theoretical version to characterize the
optimal scores and then instantiate its practical version.

3.2.1 Theoretical Characterization of the optimal scores

For any scoring function g : Xm × Ym 7→ R and threshold τ , the membership of any y in the
prediction set C(x | g, τ) is given by 1(y ∈ C(x | g, τ)) ⇐⇒ 1{g(x, y) ≥ τ}. Define the
expected set size S(g, τ) and the marginal coverage P(g, τ) as follows,

S(g, τ) := Ex∼Xm

[ ∑
y∈Ym

1{g(x, y) ≥ τ}
]
=

∑
y∈Ym

Ex∼Xm [1{g(x, y) ≥ τ}] , (7)

P(g, τ) := Ex∼Xm [1{g(x, y⋆) ≥ τ}] . (8)

Let G be a flexible space of scoring functions. If we have an oracle that can give these expected set
sizes and coverage for any g ∈ G and τ ∈ R we can hope to find an optimal scoring function g⋆ and
threshold τ⋆ by minimizing the expected set size S(g, τ) over a flexible space of g and τ , subject to
the marginal coverage P(g, τ) being at least 1− α.

g⋆, τ⋆ := argmin
g:Xm×Ym 7→R,τ∈R

S(g, τ) s.t. P(g, τ) ≥ 1− α. (P1)

3.2.2 Practical Version: Differentiable Surrogates and Empirical Estimates

The above problem (P1) gives us a way to characterize optimal scoring functions and thresholds.
However, in practice, we do not know the distribution and thus do not have access to the quantities
in (7) and (8). Instead we get their estimates using a finite training sample Dtrain = {(xi, y

⋆
i )}

nt
i=1

drawn independently from the same distribution.

Ŝ(g, τ) :=
1

n

n∑
i=1

∑
y∈Ym

1{g(xi, y) ≥ τ}, P̂(g, τ) := 1

n

n∑
i=1

1{g(xi, y
⋆
i ) ≥ τ}. (9)
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Using these plug-in estimators in problem (P1) we get a revised optimization problem. However, it is
difficult to solve this problem as the objective and constraints are not differentiable. To make them
differentiable, we introduce the following surrogates. Given g(x, y) and τ , define the following
sigmoid function with β > 0, σ(x, y, g, τ, β) := 1/

(
1 + exp(−β (g(x, y)− τ))

)
. The sigmoid

function provides a nice differentiable approximation to the indicator variable for g(x, y) ≥ τ . The
approximation is tighter with higher β i.e., σ(x, y, g, τ, β) → 1{g(x, y) ≥ τ} as β → ∞, and
g(x, y) ≥ τ ⇐⇒ σ(x, y, g, τ) ≥ 1/2. By using these sigmoid surrogates in equation (9) we obtain
the following smooth plugin estimates,

S̃(g, τ) :=
1

n

n∑
i=1

∑
y∈Ym

σ(xi, y, g, τ, β), P̃(g, τ) := 1

n

n∑
i=1

σ(xi, y
⋆
i , g, τ, β). (10)

It is easy to see that as n, β → ∞, the surrogate average set size and coverage will converge
to their population versions, i.e. S̃(g, τ) → S(g, τ) and P̃(g, τ) → P(g, τ). We replace the
expected set size and marginal coverage by these smooth surrogates in (P1) and transform it into an
unconstrained problem with the penalty term λ > 0 and introduce ℓ2 regularization to encourage
low norm solutions. The resulting problem (P2) is differentiable and we solve it using stochastic
gradient descent. More details on training are deferred to later sections.

g̃, τ̃ := argmin
g:Xm×Ym 7→R,τ∈R

S̃(g, τ)− λP̃(g, τ) + λ2||g||2. (P2)

By solving the above optimization problem we obtain a score function g̃ and use it to compute scores
for conformal prediction. While we get the threshold τ̃ as well here, but since its estimated along
with g̃ on the same data so it could be biased and using it on test data may violate the coverage
guarantee. We re-estimate it using the split conformal procedure to ensure the coverage guarantee
is strictly followed. To train g we use the logits and penultimate layer’s representations from the
LLM corresponding to the last token as features. We learn g from a function class of 3−layer neural
networks with tanh activation. Note that while we made these specific choices here, our framework
is flexible to work with any choice of features and function class.

4 Experiments

We conduct experiments on benchmark MCQ and tool usage tasks with open-weight instruction-
tuned models to verify the following claims,

C1. Using our CP-OPT scores in conformal prediction on MCQ tasks with LLMs yields a smaller
average set size at the same level of coverage in comparison to LLM logits.

C2. Conformal revision of questions and asking LLM again (CROQs) improves the accuracy over
the standard inference.

C3. The accuracy improvement with CROQs happens with LLM logits and our CP-OPT scores
both. Moreover, the improvement is higher with our scores.

4.1 Experimental Setup

We first describe the setup for the experiments and then discuss the results for the above claims.

4.1.1 Datasets

MMLU [8] is a popular benchmark dataset for multiple choice questions (MCQs) from 57 domains
including humanities, math, medicine, etc. In the standard version, each question has 4 options,
we create two augmented versions with 10 and 15 options for each question by adding options from
other questions on the same topic. We ensure there is no duplication in options. The standard dataset
has few training points, we randomly draw 30%, and 10% of the points from the test split and include
them in the training and validation sets respectively. Note, that we remove these points from the test
set. The resulting splits have 4.5k, 2.9k, and 8.4k points in the train, validation, and test splits.
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Dataset Model Number of Options Scores Avg. Set Size Coverage

MMLU

Llama 3

4 Logits 2.56 95.8

CP-OPT 2.51 95.4

10 Logits 5.19 95.57

CP-OPT 4.74 95.02

15 Logits 7.66 95.3

CP-OPT 6.61 94.6

Phi 3

4 Logits 2.21 94.6

CP-OPT 2.15 94.6

10 Logits 4.61 94.7

CP-OPT 4.50 94.5

15 Logits 6.46 93.9

CP-OPT 6.66 94.0

ToolAlpaca

Llama 3

4 Logits 1.587 99.1

CP-OPT 1.642 98.2

10 Logits 1.853 94.5

CP-OPT 1.550 94.5

15 Logits 1.697 92.7

CP-OPT 1.413 89.9

Phi 3

4 Logits 1.257 99.1

CP-OPT 1.138 95.4

10 Logits 1.303 94.5

CP-OPT 1.266 94.5

15 Logits 1.642 95.4

CP-OPT 1.706 94.5

Table 1: Average set sizes and coverage rates for conformal prediction sets on the MMLU and ToolAlpaca
datasets using Llama-3-8B-Instruct (Llama 3) and Phi-3-4k-mini-Instruct (Phi 3). For each dataset,
we vary the number of responses. Using CP-OPT for a score function produces smaller average set sizes more
frequently compared to using logits.

Model Score Set Size 1 2 3 4 Overall

Llama 3

Logits

Coverage 98.61 100.00 100.00 100.00 99.08

Fraction 66.06 17.43 8.26 8.26 100.00

Acc. Before 98.61 68.42 77.78 55.56 88.07

Acc. After 98.61 78.95 77.78 55.56 89.91

Ours

Coverage 96.88 100.00 100.00 100.00 98.17

Fraction 58.72 23.85 11.93 5.50 100.00

Acc. Before 96.88 80.77 61.54 83.33 88.07

Acc. After 96.88 88.46 69.23 83.33 90.83

Phi 3

Logits

Coverage 98.81 100.00 100.00 0.00 99.08

Fraction 77.06 20.18 2.75 0.00 100.00

Acc. Before 98.81 72.73 0.00 0.00 90.83

Acc. After 98.81 59.09 0.00 0.00 88.07

Ours

Coverage 94.68 100.00 0.00 0.00 95.41

Fraction 86.24 13.76 0.00 0.00 100.00

Acc. Before 94.68 66.67 0.00 0.00 90.83

Acc. After 94.68 66.67 0.00 0.00 90.83

Table 2: Results for CROQ experiment on ToolAlpaca dataset with 4 response options. Using the CP-OPT
(Ours) score function results in a greater accuracy for LLama 3, while accuracy is maintained when using Phi
3. For brevity, we have omitted similar tables for when the number of response options is increased to 10 and
15 since very few prediction sets have size greater than 4.
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ToolAlpaca [20] contains 3.9k tool-use instances from a multi-agent simulation environment. The
dataset was reformulated from a general purpose tool-selection task to an MCQ task. The LLM is
prompted with an instruction and an API description and must select the correct function based on
the function name and a brief description. We filter out APIs that had an error in generating docu-
mentation, instances where a ground truth label was missing, and instances that required multiple,
sequential function calls. After filtering, 2703 MCQ examples remained. The “train” split contains
2503 synthetic examples, “validation” contains 108 synthetic validation examples, and “test” con-
tains 92 real API examples. This split is consistent with the original dataset. The number of functions
for each class varies. Since we fixed the number of responses, answers were either downselected, or
additional responses from different, random questions were inserted. Arguments were stripped from
the function call so that the MCQ task was focused on tool selection, a critical task in tool usage.
Example questions and responses for MMLU and ToolAlpaca are provided in Appendix B.

4.1.2 Models and Scores

We use auto-regressive language models based on the transformer architecture. We choose
instruction-tuned, open-weight, and small to medium sized models, for reproducibility and re-
duced computational cost. Specifically, we use Llama-3-8B-Instruct [7] by Meta and
Phi-3-4k-mini-Instruct [1] model by Microsoft.

We use the following scores for conformal prediction, (i) LLM Logits (Softmax) are extracted
from the LLM as discussed in section 2.1. They were used in prior works [10, 19]. (ii) CP-OPT
(Ours) are the scores learned by using the score optimization procedure discussed in section 3.2. We
use the data from the train split to learn these scores. We omit the self-consistency based heuristic
scores proposed by Su et al. [19], as it requires repeated inferences to get good estimates of the
scores, and hence has a high computational cost. We use the validation splits of the dataset as Dcal

for the conformal procedure and calibrate it for the coverage guarantee of 95% i.e. use α = 0.05.

4.2 Discussion

C1. Improvement in conformal set sizes with our CP-OPT scores. We run the conformal prediction
procedure on logits and CP-OPT scores and obtain conformal sets for points in the test set. We
observe the average set size and coverage for each dataset, model, and score combination. The
results are in table 1. As expected, we see a drop in the set sizes at a similar coverage level with
our scores in most cases. The improvement gets more pronounced with a higher number of options.
There are some cases, where we do not see a drop in set sizes or a significant drop in coverage.
We notice that this occurs when Llama-3-8B-Instruct is presented with fewer options and when
Phi-3-4k-mini-Instruct is presented with a large number of options.

C2. Test accuracy improvement with conformal revision of questions (CROQs). To verify this, we
run the conformal procedure as above with logits and CP-OPT scores to get the conformal sets
for the questions in the test data. Then we run the CROQs, as discussed in section 3.1, to get the
final predicted labels from the LLM following question revision. We report overall accuracy before
and after CROQs in the table 2 for Toolalpaca, and tables 3,4 for MMLU with 4 and 10 options
respectively and defer the results for MMLU with 15 options to the Appendix. Across all settings
except for MMLU with 4 options, we see improvements in accuracy with CROQs. Specifically, we
see relative improvements by up to 4.6% in overall accuracy and up to 15% in non-trivial parts of the
input space. The drop in accuracy in MMLU with 4 options is not consistent with the expectations,
we defer the diagnosis to future works.

Note that the conformal sets have a coverage guarantee of around 95%, and, for revision on test
samples, we do not know if our revised answer set contains the correct response. Thus, these im-
provements are even more significant given that up to 5% of the revised questions did not have the
true choice among the revised answer set. These findings suggest a multi-round CROQs procedure
with higher-level coverage guarantees in each round could be more effective. However, the inference
cost increases with each round and we may need fresh samples for conformal calibration to avoid
biases. We defer this multi-round CROQs exploration to future work.

C3. CROQs gives better final test accuracy when used with our CP-OPT scores, in contrast to logits.
This finding follows a similar pattern to C1. Since the use of CP-OPT will lead to a smaller set size
on average, the number of responses in the revised question is smaller than when using logits. We
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posit that this reduction in responses reduces the risk of the LLM losing context due to the presence
of additional, unrelated, or distracting answers.

5 Related Works

Conformal Prediction for Uncertainty Quantification with LLMs Recently there has been
growing interest in using conformal prediction to quantify and control uncertainty in LLM-related
tasks. In the context of multi-choice question answering (MCQ), previous works have investigated a
variety of conformal score functions, including (the softmax of) the LLM logits corresponding to the
response options [10, 16] or functions thereof [26], confidence scores generated by the LLM itself,
or “self-consistency” scores derived by repeated querying of the LLM [19]. We build on this work
by aiming to learn a conformal score function that yields small conformal sets, rather than taking
the score function as given.

In addition to the MCQ setting, there has been recent work utilizing conformal prediction in the
context of open-ended response generation [15, 12, 5]. This setting differs in that there is not nec-
essarily a unique correct response, so the notion of coverage must be redefined around acceptability
or factuality rather than correctness. When factuality is the target, the goal is to calibrate a pruning
procedure that removes a minimal number of claims from an LLM-generated open response, such
that the remaining claims are all factual with high probability; that is, the goal is to retain as large
a set as possible, rather than to generate a set with the smallest number of responses possible as in
MCQ. Conformal prediction has also been used to capture token-level uncertainty [6, 22].

Optimizing conformal prediction procedures Several recent works have considered how to learn
good conformal score functions from data, primarily in the context of supervised learning models
[4, 18, 25, 24]. With LLMs, Cherian et al. [5] consider how to learn a good score function to achieve
factuality guarantees; their optimization problem differs from ours due to the difference in setting
as well as the addition of conditional coverage constraints (ensuring that coverage holds in different
parts of the feature space). Kiyani et al. [9] design a framework to minimize the size (“length,” in
their terminology) of conformal sets, which they apply to MCQ as well as to supervised learning
problems. However, their framework is concerned with how to generate sets given a model and a
conformity score, rather than how to learn a conformity score.

The works mentioned above all aim to produce (small) conformal sets that satisfy coverage guaran-
tees. Among these, only Ren et al. [16] consider how conformal sets may be used downstream, in
their case to improve the efficiency and autonomy of robot behavior. To our knowledge, our work is
the first to investigate whether conformal prediction can be used to increase the accuracy of LLMs
on MCQ tasks.

6 Conclusion and Future Work

We investigated how conformal prediction (CP) can improve uncertainty quantification in open-
world decision-making scenarios, such as multiple-choice question answering (MCQ) and tool us-
age tasks with large language models (LLMs). We introduced CP-OPT, an optimization framework
that minimizes prediction set sizes while maintaining coverage guarantees, and demonstrated its su-
periority over baseline LLM logits across various models and datasets. Additionally, we proposed
CROQs, a method that re-prompts LLMs with the answer options from the conformal set, signifi-
cantly improving accuracy by narrowing down the available choices. Future work will explore the
conditions under which CROQs enhances performance, multi-round CROQs, and the calibration of
CP thresholds for tasks with varying numbers of answer options, such as tool usage, where the set
of APIs may differ across queries.
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A Additional Results

This appendix contains results for the CROQ experiment on the MMLU dataset with 15 response
options.

Model Score Set Size 1 2 3 4 Overall

Llama 3

Logits

Coverage 93.58 92.8 93.03 100.00 95.81

Fraction 33.87 13.93 14.66 37.54 100.00

Acc. Before 93.58 70.18 49.39 40.30 63.84
Acc. After 93.58 70.44 48.09 40.30 63.69

Ours

Coverage 93.55 90.71 93.71 100.00 95.37

Fraction 33.68 15.35 16.81 34.17 100.0

Acc. Before 93.55 69.14 53.53 37.27 63.84
Acc. After 93.55 68.14 52.47 37.27 63.52

Phi 3

Logits

Coverage 94.75 91.48 93.17 100.0 94.64

Fraction 37.30 22.86 21.20 18.64 100.0

Acc. Before 94.75 70.25 52.68 41.31 70.27
Acc. After 94.75 66.92 50.67 41.31 69.08

Ours

Coverage 93.88 91.55 94.37 100.0 94.64

Fraction 41.32 21.55 17.73 19.39 100.0

Acc. Before 93.88 67.78 52.14 39.29 70.27
Acc. After 93.88 64.81 50.87 39.29 69.41

Table 3: Results for CROQ experiment on MMLU dataset with 4 response options. In this setting,
the CROQ procedure leads to a lower accuracy after revision.

Model Score Set Size 1 2 3 4 5 6 7 8 9 10 Overall

Llama 3

Logits

Coverage 94.73 91.44 91.47 94.96 95.29 96.44 96.88 97.18 98.01 100.00 95.57

Fraction 16.67 11.51 9.04 8.24 7.81 8.01 8.75 9.67 8.96 11.33 100.00

Acc. Before 94.73 78.14 62.99 52.88 50.00 40.74 39.76 34.85 33.91 30.47 55.35

Acc. After 94.73 77.22 65.22 57.35 51.37 45.04 40.71 37.55 34.70 30.47 56.68

Ours

Coverage 94.61 92.23 90.39 92.82 95.85 96.66 96.88 97.46 99.60 100.00 95.02

Fraction 14.76 12.38 11.49 10.57 11.43 11.00 9.52 7.95 5.95 4.95 100.00

Acc. Before 94.61 80.54 63.22 50.06 47.04 39.48 37.53 31.19 29.14 27.34 55.35

Acc. After 94.61 81.02 63.95 54.32 52.54 42.72 40.15 32.99 28.14 27.34 57.26

Phi 3

Logits

Coverage 95.25 92.20 91.24 92.83 95.32 96.40 96.21 94.89 97.74 100.00 94.74

Fraction 17.23 13.24 10.56 10.92 10.40 9.57 9.09 7.67 5.77 5.55 100.00

Acc. Before 95.25 79.48 62.36 55.43 46.92 45.78 41.64 33.75 31.89 27.78 58.59

Acc. After 95.25 81.81 67.42 61.30 53.42 48.39 42.95 34.83 32.72 27.78 61.25

Ours

Coverage 94.81 90.79 91.27 92.95 94.73 95.58 95.77 97.28 98.52 100.00 94.53

Fraction 19.19 13.02 10.47 10.43 10.59 9.39 8.41 7.43 6.40 4.68 100.00

Acc. Before 94.81 77.12 64.17 54.38 47.31 44.50 39.21 32.11 29.87 25.38 58.59

Acc. After 94.81 79.40 68.14 60.41 54.71 48.93 39.77 32.43 31.35 25.38 61.30

Table 4: Results for CROQ experiment on MMLU dataset with 10 response options. The CROQ
procedure consistently increases accuracy. This effect is more pronounced with using CP-OPT
scores (Ours) in comparison to Logits.
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Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage 95.26 91.54 92.37 93.37 92.81 93.87 95.25 95.06 95.73 95.18 97.86 96.70 98.12 98.79 100.00 95.36

Fraction 9.02 7.86 7.46 6.80 5.95 6.01 5.74 6.49 6.94 7.14 6.10 5.76 5.68 5.87 7.17 100.00

Accuracy Before 95.26 83.38 73.45 65.27 58.88 52.77 44.42 42.78 44.27 35.22 39.49 32.37 33.19 27.88 26.49 52.35

Accuracy After 95.26 83.99 77.11 70.86 61.08 58.10 47.73 46.80 46.84 34.88 40.66 33.40 33.61 27.88 25.83 54.21

Table 5: Results for CROQ experiment on MMLU dataset with 15 response options, using
Llama-3-8B-Instruct and logits.

Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage 94.14 93.17 91.12 93.39 93.37 94.72 94.26 95.76 95.75 94.43 96.82 97.13 96.89 98.75 100.00 94.60

Fraction 8.11 8.69 8.69 8.97 8.41 8.77 8.27 8.12 7.54 6.61 5.59 4.14 3.43 2.85 1.82 100.00

Accuracy Before 94.14 84.02 71.04 63.76 54.44 50.34 41.32 41.52 35.59 34.11 29.30 28.65 29.07 21.25 20.92 52.35

Accuracy After 94.14 84.29 73.77 67.20 56.28 54.40 48.49 44.44 39.06 36.62 28.87 32.09 27.68 20.83 20.26 54.74

Table 6: Results for CROQ experiment on MMLU dataset with 15 response options, using
Llama-3-8B-Instruct and CP-OPT.

Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage 95.81 93.16 91.01 91.88 93.16 93.11 93.76 94.11 93.69 94.74 96.08 95.81 93.58 95.91 100.00 93.96

Fraction 11.33 10.23 8.71 8.47 8.15 7.93 7.42 6.44 5.83 5.19 5.15 4.82 4.25 3.19 2.88 100.00

Accuracy Before 95.81 81.55 67.30 58.40 53.86 50.45 41.76 40.52 40.12 38.67 35.02 28.82 24.30 21.56 20.58 53.96

Accuracy After 95.81 85.03 73.84 66.53 62.30 54.64 48.80 44.01 44.60 42.11 37.79 30.54 23.18 22.68 20.58 58.00

Table 7: Results for CROQ experiment on MMLU dataset with 15 response options, using
Phi-3-4k-mini-Instruct and logits.

Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage 95.25 92.64 92.09 92.69 92.22 93.96 94.05 95.06 93.05 96.35 94.20 94.80 93.58 97.15 100.00 94.02

Fraction 10.50 8.87 8.11 7.63 7.32 8.25 8.38 7.45 7.00 6.18 5.73 5.25 4.44 3.33 1.55 100.00

Accuracy Before 95.25 85.27 73.65 66.10 56.24 52.37 46.18 38.54 36.44 34.36 33.75 30.77 23.53 20.28 16.79 53.96

Accuracy After 95.25 86.08 78.18 72.94 62.40 59.28 53.40 46.50 42.03 35.70 36.02 31.67 23.53 21.35 16.79 57.83

Table 8: Results for CROQ experiment on MMLU dataset with 15 response options, using
Phi-3-4k-mini-Instruct and CP-OPT.

B Example Questions and Prompts

B.1 MMLU

The following is an example of an MCQ prompt in the CP-OPT format.

Llama 3 Prompt:

This question refers to the following information.
In order to make the title of this discourse generally intelligible, I have translated the term
“Protoplasm,” which is the scientific name of the substance of which I am about to speak, by
the words “the physical basis of life.” I suppose that, to many, the idea that there is such a thing
as a physical basis, or matter, of life may be novel-so widely spread is the conception of life as
something which works through matter. ... Thus the matter of life, so far as we know it (and we
have no right to speculate on any other), breaks up, in consequence of that continual death which
is the condition of its manifesting vitality, into carbonic acid, water, and nitrogenous compounds,
which certainly possess no properties but those of ordinary matter.
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Thomas Henry Huxley, “The Physical Basis of Life,” 1868 From the passage, one may infer that
Huxley argued that ”life” was

A. essentially a philosophical notion

B. a force that works through matter

C. merely a property of a certain kind of matter

D. a supernatural phenomenon

the correct answer is

Phi 3 Prompt:

<|user|>

This question refers to the following information.
In order to make the title of this discourse generally intelligible, I have translated the term
“Protoplasm,” which is the scientific name of the substance of which I am about to speak, by
the words “the physical basis of life.” I suppose that, to many, the idea that there is such a thing
as a physical basis, or matter, of life may be novel-so widely spread is the conception of life as
something which works through matter. ... Thus the matter of life, so far as we know it (and we
have no right to speculate on any other), breaks up, in consequence of that continual death which
is the condition of its manifesting vitality, into carbonic acid, water, and nitrogenous compounds,
which certainly possess no properties but those of ordinary matter.

Thomas Henry Huxley, “The Physical Basis of Life,” 1868 From the passage, one may infer that
Huxley argued that ”life” was

A. essentially a philosophical notion

B. a force that works through matter

C. merely a property of a certain kind of matter

D. a supernatural phenomenon

<|end|>
<|assistant|>
the correct answer is

Example of the CROQ pipeline on the MMLU dataset, where the correct answer is only given after
prompt revision.

Initial Prompt:

Each of the following are aspects of the McDonaldization of Society EXCEPT:

A. Spatial discrimination
B. Bureaucratic organization that formalizes well-establish division of labor and impersonal
structures
C. oxidative phosphorylation.
D. about 1 minute.
E. Competitive inhibition
F. DNA polymerase I
G. A dissolution of hierarchical modes of authority into collaborative teambased decision
protocols
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H. 1-butene rearranges to 2-butene in solution
I. Rationalization of decisions into cost/benefit analysis structures and away from traditional
modes of thinking
J. An intense effort on achieving sameness across diverse markets
the correct answer is

Output:
Prediction: C. oxidative phosphorylation.
Prediction Set: {A, C, D, E, F, G, H}

Revised Prompt:

Each of the following are aspects of the McDonaldization of Society EXCEPT:

A. Spatial discrimination
B. oxidative phosphorylation.
C. about 1 minute.
D. Competitive inhibition
E. DNA polymerase I
F. A dissolution of hierarchical modes of authority into collaborative teambased decision
protocols
G. 1-butene rearranges to 2-butene in solution
the correct answer is

Output: Prediction: F. A dissolution of hierarchical modes of authority into collaborative
teambased decision protocols

Initial Prompt:

At trial, during the plaintiff’s case-in-chief, the plaintiff called as a witness the managing agent of
the defendant corporation, who was then sworn in and testified. Defense counsel objected to the
plaintiff’s questions either as leading or as impeaching the witness. In ruling on the objections,
the trial court should

A. sustain all the objections and require the plaintiff to pursue this type of interrogation only
during the plaintiff’s cross-examination of this witness during the defendant’s case-in-chief.
B. Yes, the court will grant it because the plaintiff is not a member of the second class that he set
up.
C. The student only, because his conduct was the legal cause of the other driver’s death.
D. No, because the common law doctrine of negligence per se does not abrogate the defendant’s
right to apportion fault under the comparative negligence statute.
E. sustain the leading question objections but overrule the other objections because a party is not
permitted to ask leading questions of his own witness at trial.
F. sustain the impeachment questions but overrule the other objections because a party is not
permitted to impeach his own witness at trial.’, G. when the nephew dies.
H. overrule all the objections because the witness is adverse to the plaintiff and therefore may be
interrogated by leading questions and subjected to impeachment.
I. The statute violates the establishment clause of the First Amendment, as incorporated into the
Fourteenth Amendment, by adopting the controversial views of particular churches on abortion.
J. The company will prevail because the provision notifying her of the contract is in bold and the
contract is easily accessible.
the correct answer is

Output:
Prediction: E. sustain the leading question objections but overrule the other objections because a
party is not permitted to ask leading questions of his own witness at trial.
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Prediction Set: {E, H}

Revised Prompt:

At trial, during the plaintiff’s case-in-chief, the plaintiff called as a witness the managing agent of
the defendant corporation, who was then sworn in and testified. Defense counsel objected to the
plaintiff’s questions either as leading or as impeaching the witness. In ruling on the objections,
the trial court should

A. sustain the leading question objections but overrule the other objections because a party is not
permitted to ask leading questions of his own witness at trial.
B. overrule all the objections because the witness is adverse to the plaintiff and therefore may be
interrogated by leading questions and subjected to impeachment.
the correct answer is

Output: Prediction: B. overrule all the objections because the witness is adverse to the plaintiff
and therefore may be interrogated by leading questions and subjected to impeachment.

B.2 ToolAlpaca

Initial Prompt:

Given the API CurrencyBeacon, and the following instruction, ”I’m planning a trip to Japan next
month, and I want to start budgeting. Can you tell me the current exchange rate from US dollars
to Japanese yen, and also provide the average exchange rate for July?” Which of the following
functions should you call?

A. timeseries get Get historical exchange rate data for a specified time range.
B. latest get Get real-time exchange rates for all supported currencies.
C. historical get Get historical exchange rate data for a specific date.
D. convert get Convert an amount from one currency to another.

the correct answer is

Output:
Prediction: A. timeseries get Get historical exchange rate data for a specified time range.
Prediction Set: {A,B,C}

Revised Prompt:

Given the API CurrencyBeacon, and the following instruction, ”I’m planning a trip to Japan next
month, and I want to start budgeting. Can you tell me the current exchange rate from US dollars
to Japanese yen, and also provide the average exchange rate for July?” Which of the following
functions should you call?

A. timeseries get Get historical exchange rate data for a specified time range.
B. latest get Get real-time exchange rates for all supported currencies.
C. historical get Get historical exchange rate data for a specific date.

the correct answer is

Output: Prediction: B. latest get Get real-time exchange rates for all supported currencies.
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Initial Prompt:

Given the API Cataas, and the following instruction, ”I need a funny image for a birthday card.
Can you find me a picture of a cat with the text ’Happy Birthday’ on it?” Which of the following
functions should you call?

A. findCatByTag Get random cat by tag
B. findCatWithText Get random cat saying text
C. api Will return all cats
D. count Count how many cats
the correct answer is

Output:
Prediction: A. findCatByTag Get random cat by tag
Prediction Set: {A,B}

Revised Prompt:

Given the API Cataas, and the following instruction, ”I need a funny image for a birthday card.
Can you find me a picture of a cat with the text ’Happy Birthday’ on it?” Which of the following
functions should you call?

A. findCatByTag Get random cat by tag
B. findCatWithText Get random cat saying text

the correct answer is

Output: Prediction: B. findCatWithText Get random cat saying text
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