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ABSTRACT
Categorizing entities by their type is useful in many appli-
cations, such as knowledge base construction, relation ex-
traction and query intent prediction. Fine-grained entity
type ontologies are especially valuable, but typically diffi-
cult to design because of endless quandaries about level of
detail and boundary cases. Automatically classifying enti-
ties by type is challenging as well, usually involving hand-
labeling data and training a supervised predictor. This pa-
per presents a universal schema approach to fine-grained en-
tity type prediction. The set of types is taken as the union of
textual surface patterns (e.g. appositives) and pre-defined
types from available databases (e.g. Freebase)—yielding not
tens or hundreds of types, but tens of thousands of entity
types, such as financier, criminologist, and musical trio. We
robustly learn mutual implicature among this large union
by matrix completion using embeddings learned from proba-
bilistic matrix factorization, thus avoiding the need for hand-
labeled data. Experimental results demonstrate more than
30% reduction in error versus a traditional classification ap-
proach on predicting fine-grained entities types.

1. INTRODUCTION
Classifying entities into different categories is a common
task in many NLP systems. In some cases, such as knowl-
edge base construction, entity types may be a prominent
user-visible feature [6, 18]. In others, such as relation ex-
traction [36, 27] or query intent discovery [1] entity types
are hidden variables included to improve accuracy on the
target task. Occasionally the ontology of entity types is
coarse, such as the four types in the CoNLL-2003 shared
task (person, organization, location and miscellaneous), but
often finer-grained ontologies are more useful. For example,
specializations of people, including politician, scientist, and
athlete are defined in [16, 17, 12]. Others are even more
detailed; for instance the Unified Medical Language System
(UMLS) defines an ontology of 987,321 biomedical concepts.

Defining such ontologies is a significant challenge, often giv-

ing rise to debates about desired granularity and subtle ques-
tions about boundary cases. These difficulties appear both
when the assignment of entities to types is exclusive and
when it is one-to-many.

Once the ontology is defined, the problem of building the au-
tomated classification system remains. The most common
approach is supervised training from a set of entity men-
tions labeled into the ontology [16, 34]. However labeling
such data is difficult—especially with fine-grained ontolo-
gies. Furthermore, when the ontology evolves or expands
(as it often does), the data labeling must be re-visited. Even
when used as hidden variables, the set of entity types may
warrant adjustment because an ontology tuned to the task
at hand typically performs better—for example the authors
of [24] show that the entity types in the WordNet ontol-
ogy [14] is not as effective as those derived from automatic
clustering for the task of learning selectional preferences.
Unsupervised clustering may also be employed to derive en-
tity types [35, 13, 24], but the resulting types often have
peculiar, undesirable boundary and granularity choices.

This paper presents an approach to fine-grained entity type
classification that avoids the need to hand-design an on-
tology, avoids the need for labeled data, and avoids the
boundary difficulties that arise from forcing our semantics
into finite, pre-defined, somewhat arbitrary “boxes”. We ac-
complish this by adopting the universal schema approach,
which is previously applied to relation extraction [26, 37],
and extending it to entity types. In “universal schema”,
our types are the union of all available types from all in-
put sources, including multiple pre-existing ontologies and
naturally-occurring textual surface-form expressions that in-
dicate entity type, such as appositives, isa-expressions, or
even adjectival or verb phrases. For example,“James Cameron”
may appear as a person/director in Freebase, as a PERSON
in TAC/KBP, and as a movie-mogul, Canadian citizen, and
jerk in various appositives in available text. Rather than
five, fifty or five-hundred entity types, this universal schema
approach typically yields tens-of-thousands of entity types
(particularly from the textual surface forms). It does not
force the natural diversity and ambiguity of the original in-
put types into a smaller set of types.

The key characteristic of universal schema is that it mod-
els directed implicature among the many candidate types of
an entity by casting the problem as a large matrix comple-
tion task. Each row in the matrix corresponds to an entity;



each column an entity type; some cells of the matrix are
observed and marked true; many are unobserved; it is the
job of matrix completion to “fill in” the matrix, marking
the unobserved cells as either true or false. For example,
although we may not have directly observed that “Barack
Obama” is a leader, our model will infer it by having ob-
served that he is a president and commander-in-chief—doing
so by leveraging various patterns of co-occurrences among
these types in other entities. Similarly it will infer that he
is not a movie-mogul or masterpiece. As in our previous
work, we perform this matrix completion task using prob-
abilistic matrix factorization—efficiently estimating vector
embeddings for both entities and types by online stochastic
gradient descent optimization. The confidence in an entity’s
type assignment is determined by the dot-product of the
corresponding embeddings, mapped through a logistic func-
tion.

Having so many entity types, including types appearing in
natural language, allows users to query our system in natural
language. That is, rather than having to learn an idiosyn-
cratic ontology, users can ask about entity types in their
own vocabulary, and we will most likely already have a col-
umn to match. The large number of entity types does make
evaluation a challenge. We cannot evaluate every cell in the
matrix. Thus we choose to evaluate a subset of the columns
(entity types) on a closed set of entities which we have anno-
tated. Here our approach achieves a 15% absolute increase
in F1 versus the traditional classification method. Further-
more, although it does not leverage the diversity of universal
schema, we also compare against a baseline method for Free-
base type prediction [4]; here we achieve similar results as
the baseline. In spite of the large number of types, training
our system is still efficient, taking approximately 6 hours on
one machine for 100 iterations, 100 components on about
503K entities and 16K types.

2. FACTORIZATION MODELS
We present a matrix factorization model to collectively learn
semantic implication among unary relations and predict new
relations for entities. We fill a matrix E ×R with unary re-
lation instances, where E corresponds to entities and R to
unary relations. Assume we index an entity with e and a re-
lation with r. Each matrix cell is a binary variable, denoted
as xe,r. The variable is 1 when relation r holds for entity
e, and 0 otherwise. For example, observing “directed by
Marzieh Meshkini”, we fill the corresponding cell (Marzieh
Meshkini, directed by X) with 1.

In our matrix factorization approach we associate each en-
tity and relation with latent vectors ae and vr in a K-
dimensional space, respectively. The dot-product θe,r =PK

c ae,cvr,c of these vectors for a given entity e and unary re-
lation r then becomes the natural parameters of a Bernoulli
distribution that generates the observed binary data. That
is, the probability of xe,r = 1 is given by σ(θe,r) where σ is
the sigmoid function. This model corresponds to an instan-
tiation of generalized PCA [9].

To learn the low dimensional latent vectors we maximize
the log likelihood of the observed cells under the probabilis-
tic model above. Notice that in our training data we only
observe positive cells and have no accurate data on which re-

lations do not hold for an entity. However, learning requires
negative training data. We address this issue by sampling
negative relations for an entity based on their frequencies in
the whole dataset. In our experiments we use stochastic gra-
dient optimization to effectively deal with the large scale of
our matrices. In each iteration, we traverse random permu-
tations of all training cells, randomly sample some negative
cells for each training cell, and update the corresponding ae

and vr vectors for the positive and negative cells based on
their gradients (omitted here for brevity).

3. EXPERIMENTS
We extract unary relations from New York Times data for
the years 1990 to 2007 [28]. We preprocess the documents by
performing NER tagging [15] and dependency parsing [23].
Following [33], we extract dependency paths originating from
a (named) entity mention as unary relations. Specifically, we
traverse from the head token of the entity mention to the
root of the dependency tree. Whenever we come across a
content word (nouns, adjectives etc.), the current (lexical-
ized) path from the entity mention to this content word node
is used as one unary relation. We stop when approaching
a verb or a clause boundary. Additionally, when a verb is
encountered, other modifiers of the verb are also included
in the path. For example, we can have “X buy share”, “X
roll over”. This yields many relations that could serve as
entity types, including appositive structures. For example,
the unary relation “X, a magnate” can define “magnate” as
the corresponding entity type.

In training our matrix factorization model, we set the reg-
ularizers λs for both entity and unary relation vectors as
0.02. We use 100 components, and run 100 iterations using
stochastic gradient optimization. We experiment with dif-
ferent configurations and the current one results in the best
performance.

Our task is to predict missing cells in the matrix. In the
following, we design experiments to measure the accuracies
of these predictions.

3.1 Pattern-based Evaluation
Our universal schema approach typically yields tens-of-thousands
of entity types, particularly from the textual surface pat-
terns. In this section, we demonstrate our predictions on
these unary relations. Since there is no ground truth for
these patterns (other than a subsample of positive-only cells),
we cannot easily evaluate them. Instead, we query some of
them and list the top ranked entities according to our model
and the baseline. The set of queried unary relations in our
experiments consists of patterns based on appositives. For
example, “X, a scientist”, “X, an actor”, and “X, a band”.
Intuitively these relations are most directly corresponding
to entity types, scientist, actor, and band in this case. We
ask human annotators to annotate each returned entity for
a given pattern-based relation. The annotators are provided
with sentences in which the entities are mentioned.

Entities from NYT articles are split into training and test
set: 355,942 entities vs 147,359 entities. In total the input
matrix has about 500K rows, 16K columns. When training
the model we hide all query patterns in the test set. We
compare our approach against a binary classifier that con-



Query Univ ME
politician 0.738 0.448
scientist 0.499 0.354
magnate 0.433 0.460

band 0.413 0.427
reporter 0.437 0.330

actor 0.649 0.518
player 0.840 0.711

magazine 0.845 0.675
Micro 0.701 0.557
Macro 0.607 0.490

Table 1: F1 measure on 8 patterns of different ap-
proaches. Our approach (Univ) achieves significant
better performance on almost of all these patterns.

siders entities co-occurring with the query pattern as posi-
tive examples and all others as negative examples. As the
classification model we use maximum entropy (ME).

Entities in the test set are selected for annotation by the
following rules. Entities are ranked with respect to each
pattern by our system and the baseline system separately.
Top 100 entities of each target pattern ranked by each sys-
tem are shown to the annotators. We also acquire annota-
tions from Freebase. For example, we consider all entities
that have labels politician, us congressperson, us senator,
us vicepresident as instances of our target pattern “X, a
politician”. Similarly we obtain entities for target patterns
“X, a player”, and “X, an actor”. Mappings from Freebase
labels to these three patterns are from [20]. In total, we have
annotations for 14,991 entities in the test set.

We measure precision, recall and F1 for entities in this set.
For each entity, patterns with probabilities above a threshold
are considered as true. The threshold is 0.5. In scenarios
where an entity has no patterns above the threshold, the top
ranked one is selected. This may lower the precision of each
system, however, it does increase the recall and F1 score for
both our approach and the baseline.

Table 1 lists the F1 measures for each pattern. We can
see that our approach performs significantly better than the
baseline on 6 patterns. We perform slightly worse on two
patterns. On micro average, we gain about 15% in F1 score.
When analyzing the errors made by the baseline system we
see most problems when there are no patterns above the
threshold. In these cases the baseline’s top ranked patterns
(now with score under the threshold) are mostly incorrect.
However, for our model the top ranked patterns, when under
the threshold, are still often correct.

To interpret the embeddings of the unary relations, we per-
form hierarchical agglomerative clustering on relation vec-
tors. Some example patterns that are in the same cluster
with each query pattern are listed in Table 2. We can tell
that our approach can learn diverse and accurate patterns
that are indicative of the target patterns.

3.2 Closed Set Evaluation

System Univ ME UW
Micro 0.515 0.501 0.553
Macro 0.172 0.120 0.180

Table 3: F1 scores of different approaches.

Our framework can also incorporates entity types from on-
tologies as columns. To make comparison against traditional
approaches for entity type classification, we evaluate our pre-
dictions on pre-defined entity types as well. Specifically, we
label entities occurring in a set of held-out with labels from
a predefined set of types in Freebase. In this dataset all en-
tities are annotated with all possible relations exhaustively,
and this enables us to measure precision, recall and F1. We
choose to compare against UW [20], in which the authors
employ a multi-class multi-label classifier for fine-grained
entity recognition. They test their model on a dataset of
18 documents and about 430 sentences. In this data set,
entity mentions are annotated and each mention is labeled
with all possible entity types. Our approach is only con-
cerned about the types of entities (sets of entity mentions),
not entity mentions. We therefore collapse entity mentions
that have the same surface string into single entities. As
the UW works on an entity mention basis, we aggregate
their output for entity mentions of the same entity. Again
we also compare against maximum entropy (ME) classifiers
that are trained on labels of entities instead of mentions.
Here we have one binary classifier per unary relation, and
hence the same entity can have several relations.

Notice that our approach (Univ) and the ME baseline use
the same training data as that is used in UW [20]. The
input matrix has about 623K entities and 724K columns,
12M positive cells and 36M sampled negative cells. It takes
about 10 hours to train the model for 100 iterations using
100 components.

Table 3 shows the F1 scores of different systems. The macro
average numbers are small due to that many types get 0.0
in F1. Our approach is better than ME, slightly worse than
UW. Looking closely at different entity types, we find that
our approach is better at predicting “sports league”, “ath-
lete”,“person/coach”,“education/department”; It is worse at
predicting“location/city”,“location/province”,“location/country”,
and “news agency”. Our model has higher recall but some-
times suffers from lower precision for fine-grained types that
have fewer training instances, such as “news agency”.

4. RELATED WORK
Universal Schema. The authors previously introduced
universal schema for relation extraction [26, 37]. There the
rows correspond to entity-pairs and columns correspond to
relation types. A special three-part parameterization for
matrix factorization is employed to complete the matrix.
In this paper we extend the universal schema approach to
entity types. This represents a first step towards future work
in joint entity-type and relation-type prediction, both with
universal schema and matrix factorization.

Low Dimensional Embedding. Learning low dimen-
sional embeddings of high-dimensional NLP data has been



Query Patterns
politician legislator, official, politician like, vote, campaign of,

criticism from, ally, accuse of, defeat by, election,
lash out, lawmaker, whip, endorse,
oppose by, run against, re-elected, opponent, conservative

scientist criminologist, biologist, psychologist, sociologist,
professor, researcher, neuroscientist, co-author with,
ecologist, expert, physicist

band tune, album, song by, act like, ’s singer, hit for, ’s song, country,
concert, singer of, wing with, music of, tour with, musician like,
trio, duo, blues, sound of, rock, folk, pop, recording by,

Table 2: Top similar patterns to the target queries. We list words on the patterns for simplicity, adding a
placeholder X when necessary.

of both long-standing [5, 2, 10, 3] and rising interest [32,
21]. Much of this work has been for the embedding of indi-
vidual words [5, 2, 3, 21]. Some has been for structured
natural language processing, such as part-of-speech tags,
chunks, named entity tags and semantic roles [10], or for
parsing [32]. Some recent work uses tensor factorization for
embedding relations from triples of semantic role labeling
(subj-verb-obj) [19], from a structured knowledge base [22]
or from WordNet relations [8]. Our work is the first of which
to predict “open domain” universal schema for relations or
entity types by leveraging natural language inputs.

Entailment. Our work is also related to semantic inference
over text [11], in which given a hypothesis and textual evi-
dence, the system must predict whether or not the text en-
tails the hypothesis. In our framework, observed cells of the
matrix are the evidence, and newly predicted cells are the
hypotheses. Szpektor and Dagan [33] aim to discover im-
plications among unary patterns for predicting new unary
facts. We have a similar goal here. They concentrate on
verb-triggered patterns, whereas we focus on patterns that
define entity types, including noun-triggered patterns (such
as appositives) and verb-triggered patterns. They employ
distributional similarity where we use matrix factorization.
Other work addresses semantic inference over relation in-
stances, for example, by learning rules that conjoin textual
patterns extracted by OpenIE [29, 30].

Fine-Grained Entity Type Classification. Classifying
entities into large ontologies is a commonly tackled task
and is widely acknowledged as useful, not only for knowl-
edge base construction, but also query log prediction [25].
Some researchers have explored entity type classification
specifically for categories of people [16, 17, 12]. Others
have defined ontologies with a wider variety of entity types,
but not implemented methods to automatically classify in-
stances into the ontology [31]. Large-scale knowledge bases,
such as Freebase and its fine-grained entity types, have sig-
nificant collections of entities that can be used for training
traditional classification methods by distant supervision [20].
Others have also performed entity type classification with a
multi-label classifier in a hierarchy of types [38]. The main
differences to our approach are (1) that we use matrix fac-
torization rather than classification as the framework for our
model, and more importantly (2) we do not restrict ourselves
to predefined entity types, instead leveraging the wide diver-
sity of naturally available data. Even when a pre-existing
knowledge base can provide supervision for a classifier, the

resulting entity type classifier is still limited by the types
envisioned by the creators of the knowledge base ontology.
Furthermore, note that even when the goal is merely classi-
fication into a specific ontology, matrix factorization’s striv-
ing to predict many other text-based entity types provides
a kind of multi-task learning [7] that can be beneficial.

5. CONCLUSION
This paper has presented universal schema for assigning
entities into multiple of over 16,000 entity types on NYT
data. We use the term “universal” because the set of types
is formed by the union of textual surface patterns and multi-
ple input entity type ontologies. We find that our approach,
based on matrix factorization, reduces error by more than
30% in comparison with a traditional classifier on a set of
entities from the widely-diverse textual appositive-derived
entity types.

There are significant opportunities for future work. We
have begun to integrate this paper’s entity type model with
our previous relation type model, and we expect further in-
creases in accuracy to arise from learning these two jointly.
We also plan to explore new strategies for obtaining negative
training signal and for integrating more observed features of
the entity mentions.
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