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ABSTRACT

Cryo-electron microscopy (cryo-EM) is an imaging technique for obtaining high-
resolution biomolecular structures. The central problem in cryo-EM is to recover
the underlying 3-dimensional (3D) objects from 2-dimensional (2D) projection
images. Aside from signal corruptions and extremely low signal-to-noise ratio, a
major challenge in cryo-EM 3D reconstruction is to estimate the poses of 3D ob-
jects during the low-quality projection image formation, which are missing from
experimental measurements. Recent methods attempted to solve the pose estima-
tion problem with the autoencoder architecture. However, a key issue with this
approach is that the latent vector is only indirectly updated through the decoder.
Thus, pose estimation is not explicitly constrained, and the pose can be easily
trapped in a local subspace, resulting in suboptimal pose inferences and inferior
3D reconstruction quality. Here we present an improved autoencoder architecture
called ACE (Asymmetric Complementary autoEncoder) and designed the ACE-
EM method to solve this issue, which consists of two learning tasks. The first
task takes projection images and outputs predicted images using an image-to-pose
encoder followed by a pose-to-image decoder. The second task explicitly learns
the pose estimation by reversing the order of encoder and decoder, which takes
randomly sampled poses and outputs predicted poses. The two tasks complement
each other and achieve a more balanced training of the autoencoder parameters.
Compared to previous methods, our proposed ACE-EM reaches higher pose space
coverage within the same training time and has achieved the Nyquist resolution of
3D reconstruction for several cryo-EM benchmark datasets.

1 INTRODUCTION
Single-particle cryo-electron microscopy (cryo-EM) is one of the most important structural biol-
ogy techniques (Frank, 2017). This technique can be divided into four stages: biological sample
preparation, electron microscopy image collection, 3-dimensional (3D) reconstruction, and atomic
structural model building. 3D reconstruction of molecular volumes from 2-dimensional (2D) elec-
tron microscopy images is the most challenging and time-consuming step in cryo-EM data analysis.
There are two major challenges in cryo-EM 3D reconstruction: unknown projection poses (orienta-
tions and positions) and low signal-to-noise ratio (SNR). During electron microscopy imaging, the
3D poses of the biological molecules in the sample can not be directly measured. The SNR of a
typical cryo-EM image is very low, which can vary from -10 dB to -20 dB (average around -10 dB)
(Bepler et al., 2020), making it extremely challenging to accurately estimate poses and perform the
3D reconstruction.

Currently, many machine-learning (ML)-based methods have been proposed for solving cryo-EM
3D reconstruction (Donnat et al., 2022), utilizing architectures like GAN (Goodfellow et al., 2014)
and auto-encoders (Kramer, 1991). Nevertheless, ML-based methods of cryo-EM 3D reconstruction
are still at an early stage. The highest possible cryo-EM reconstruction resolution (2 pixels) at FSC
threshold 0.5 has not been achieved by ML-based methods, even in simulated datasets without noise.
For experimental datasets like the 80S, some methods with amortized inference methods failed to
reconstruct the object of certain size, or found the highest possible resolution (2 pixels) of half-map
FSC (Rosenthal & Rubinstein, 2015) at 0.143 not reachable (Levy et al., 2022). For widely utilized
architecture auto-encoders, an image-to-pose encoder extracts the image-projection poses from 2D
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input cryo-EM images, while a pose-to-image decoder generates the images to match the inputs.
However, as the poses are intermediate latent variables without supervised loss, the estimated poses
can be inaccurate and easily trapped in local minima of the orientation space. These pose estimation
errors lead to an inferior resolution in the 3D reconstruction output.

To improve the pose estimation and 3D reconstruction quality, here we propose a new framework
called ACE-EM (ACE for Asymmetric Complementary autoEncoder). In particular, ACE-EM
consists of two training tasks: (1) Image-pose-image (IPI). The task is the same as previous work,
which takes projection images as inputs, and outputs predicted images, by an image-to-pose encoder
followed by a pose-to-image decoder. (2) Pose-image-pose (PIP). The task explicitly learns the pose
estimation in a self-supervised fashion, which takes randomly sampled poses as inputs, and outputs
predicted poses, using the same encoder and decoder as in IPI but reversing their order. The two
tasks complement each other and achieve a more balanced training of the autoencoder parameters.

Our main contributions are listed below.

• As far as we know, ACE-EM is the first deep-learning model in cryo-EM reconstruction that
enhances the pose estimation by the self-supervised PIP task. With better pose estimation, ACE-
EM can converge much faster than previous methods, efficiently cover more pose spaces, and
achieve better cryo-EM 3D reconstruction quality.

• ACE-EM can boost performance regardless of decoder types. For example, some decoders, that
failed in previous autoencoder architectures, can be successfully used in ACE-EM.

• Experimental results demonstrate that ACE-EM can perform well in both simulated and real-
world experimental datasets. In particular, ACE-EM outperformed all the baseline methods and
reached 2 pixels, the Nyquist resolution (the highest possible resolution) at FSC threshold 0.5, in
spliceosome and spike simulated datasets with SNR 200 dB and -10 dB. And ACE-EM reached
7.54Å, the Nyquist resolution of half-map FSC at 0.143 in the 80S experimental dataset, which is
the only architecture that reached the Nyquist resolution with amortized inference methods.

2 RELATED WORK

Overview of cryo-EM methods 3D reconstruction and view synthesis is a popular field in com-
puter vision. Many new methods have been emerged in recent years, such as NeRF (Mildenhall
et al., 2020), Plenoxels (Yu et al., 2021), DirectVoxGo (Sun et al., 2022), BARF (Lin et al., 2021),
SCNeRF (Jeong et al., 2021), and GNeRF (Jeong et al., 2021). These methods can reconstruct 3D
scenes from natural images with high signal-to-noise ratios (SNR). In ab initio cryo-EM 3D recon-
struction, the reconstruction problem is much harder due to the low-SNR nature of cryo-EM images
and missing image projection parameters. In addition to traditional cryo-EM reconstruction meth-
ods like RELION (Scheres, 2012) and cryoSPARC (Punjani et al., 2017), many ML-based cryo-EM
reconstruction methods have been developed in the past few years. Given only the 2D cryo-EM pro-
jection images without any labels, cryo-EM 3D reconstruction can be formulated as a self-supervised
learning problem. Two ML frameworks have been explored: GAN (Goodfellow et al., 2014) and
autoencoder (Kramer, 1991). CryoGAN (Gupta et al., 2021) and Multi-CryoGAN (Gupta et al.,
2020) adopted the GAN framework. In these methods, the generator contains the predicted volume
information and generates projection images, while the discriminator adopts the generated and au-
thentic images and discriminates the source of the images. However, due to the limitations of GANs,
these methods lack pose estimation and 3D reconstruction quality is inferior to other methods. For
cryo-EM, the images are fed to the encoder to generate a latent variable (usually representing the
pose estimation), and the decoder produces the reconstructed images based on this variable. The
model is trained by reducing the loss of the original and reconstructed ones. After training, the 3D
reconstruction density map can be obtained from the decoder. Cryo-EM 3D reconstruction with
variational autoencoder (VAE) (Ullrich et al., 2020), CryoDRGN (Zhong et al., 2019; 2021a;b),
AtomVAE (Rosenbaum et al., 2021), CryoPoseNet (Nashed et al., 2021), and cryoAI (Levy et al.,
2022) adopt the autoencoder architecture. They improve the performance of autoencoders in cryo-
EM 3D reconstructions by using more powerful networks for encoders and decoders, adding or
modifying loss functions, modifying the latent variable designs and other strategies.

Pose estimation Pose estimation is concerned with estimating the missing orientation and position
(together known as pose) parameters of the images based on the underlying 3D object. Existing pose
estimation methods can be divided into two classes: Per-image pose search methods and amortized
inference methods. The first class of methods performs a global pose search for each projection
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image in the input dataset. Traditional software, like RELION (Scheres, 2012) and cryoSPARC
(Punjani et al., 2017), and some ML-based methods, inluding cryoDRGN-BNB Zhong et al. (2019)
and CryoDRGN2(Zhong et al., 2021b), fall into this category. The per-image pose search method is
not an ML-based strategy, To control the Pose estimation as an ML process, the second class method,
amortized inference, is first proposed for cryo-EM 3D reconstruction by Ullrich et. al. (Ullrich et al.,
2020). It focuses on learning a parameterized function for mapping image Yi to its pose ϕi, then it is
widely accepted by autoencoder solutions as the encoder. For autoencoders with amortized inference
method, they suffer from too many local minima in their probabilistic pose estimation framework.
Rosenbaum et. al. attempted to overcome local-minima traps using variational autoencoder (VAE)
(Kingma & Welling, 2014). CryoAI (Levy et al., 2022) extended CryoPoseNet (Nashed et al., 2021)
work by introducing “symmetry loss” to facilitate pose learning by adding a 180◦-rotated input im-
age as input. In practice, we found these strategies are insufficient for avoiding poses being trapped
in local minima. The proposed ACE-EM method also falls into this category of amortized inference.

Decoder or generator choices In the view of cryo-EM 3D reconstruction, a decoder (in autoen-
coder) or a generator (in GAN) is a structure that contains the volume representation, which adopts
the pose or other variables and outputs the predicted 2D projection images. The underlying target
3D object can have either real-space or frequency-space representations in the space domain, and
either neural network type or voxel grid type for volume parameter representations (Donnat et al.,
2022). Traditional softwares represent the reconstruction target volume as a 3D voxel grid of fre-
quency space, like Relion (Scheres, 2012) and cryoSPARC (Punjani et al., 2017). Many recently
developed deep-learning-based reconstruction methods mainly use two types of decoders (gener-
ators): real-space voxel grid type and frequency-space neural network type. CryoDRGN (Zhong
et al., 2019; 2021a;b) and CryoAI (Levy et al., 2022) uses the frequency-space neural network as
their decoders. Real-space voxel grid methods are also used by many algorithms, such as CryoGAN
(Gupta et al., 2021), Multi-CryoGAN (Gupta et al., 2020), 3DFlex (Punjani & Fleet, 2021), and
AtomVAE (Rosenbaum et al., 2021). CryoPoseNet (Nashed et al., 2021) stores a real space voxel
grid representation of the reconstruction target, but the projection was made in Fourier space. In
this work, we show that the ACE-EM method is effective with both real-space voxel grid type and
frequency-space neural network type of decoders.

Cyclic training Our method uses encoder-decoder(E-D) and decoder-encoder(D-E) two orders for
training in autoencoders, and this cyclic training is widely used in style transfer, like MUNIT (Huang
et al., 2018), DRIT (Lee et al., 2019) and CDD (Gonzalez-Garcia et al., 2018). These methods
differ from ours in 4 main aspects, architecture setting, data format, aims, and challenges. For the
architecture setting, MUNIT uses E-D and (E-)D-E two orders (Huang et al., 2018), DRIT uses
one task E-D-E-D to finish the cycle, while more complex tasks are used in CDD. MUNIT and
DRIT need two random images inputted together as a group for cross-domain translation (Lee et al.,
2019; Gonzalez-Garcia et al., 2018), CDD uses paired data for supervised learning (Gonzalez-Garcia
et al., 2018), but paired or grouped data is not required by ACE-EM. Style transfer aims to decouple
images’ style and content, and our aim is to settle the poses in an accurate distribution. Also, our
methods face specific reconstruction challenges, like noise problems.

3 APPROACH

3.1 OVERVIEW OF ACE-EM
ACE-EM is an autoencoder-based model and is trained with two unsupervised learning tasks. The
autoencoder contains an image-to-pose encoder (EIP ) and a pose-to-image decoder (DPI ). The
EIP takes projection images and outputs projection pose parameters. The DPI can be viewed as
a cryo-EM image projection physics simulator. It takes the pose parameters and outputs projection
images corresponding to the given poses, which are post-processed by applying CTF (Konstantini-
dis, 2014). The first task of ACE-EM is image-pose-image(IPI) task which follows the standard
unsupervised autoencoder architecture. With the pipeline of EIP and DPI , reconstructed images
are generated corresponding to the given projection images. The second task is the pose-image-pose
(PIP) task, a self-supervised learning, that uses the same encoder-decoder in IPI but in the reversed
order. With the reverse pipeline, a corresponding pose is predicted from a random-selected pose,
and the gap between the two poses is minimized in training. The IPI task and PIP task can be trained
simultaneously or in alternating steps. With either training strategy, the EIP and DPI parameters
are shared between the two tasks. As a result, the two tasks of ACE-EM complement each other
and form a more balanced training of the EIP and DPI parameters.
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Figure 1: The network architecture of ACE-EM. The IPI task is shown at the top highlighted in blue,
while the PIP task is shown at the bottom highlighted in salmon.

3.2 ENCODER EIP AND DECODER DPI

The EIP represents a function that maps an input image Yi to its corresponding projection pose
parameters (Ri, ti). Ri ∈ SO(3) ⊂ R3×3 is a rotation matrix for mapping a reference orientation
to the projection orientation. ti ∈ R2 is the 2D translation vector to account for the 2D image shift
in the input image Yi. The DPI takes pose (Ri, ti) and predicts the projection image Y pred

i .The
trainable parameters of DPI contain the cryo-EM volume in an explicit or implicit way, and the
volume can be obtained from the DPI after training. CTF was applied to the output images to
create a more realistic projection image Y pred

i . The details of the encoder and decoder structure can
be found in appendix A.

EIP : Yi 7→ (Ri, ti) (1)
DPI : (Ri, ti) 7→ Y pred

i (2)

Choices of decoders ACE-EM provides an architecture that can work with different encoders
and decoders. Cryo-EM 3D reconstruction can have either real-space or frequency-space represen-
tations in the space domain, and either neural network type or voxel grid type for volume parameter
representations. To prove ACE-EM is universal and can boost the performances regardless of
the decoder types, we tested a real-space voxel grid decoder VoxelGridR which was used in
cryoGAN (Gupta et al., 2021), and partially used in the CryoPoseNet (Nashed et al., 2021), and a
frequency-space neural network decoder FourierNet which was shown to outperform other similar
methods (Levy et al., 2022).

3.3 IPI(IMAGE-POSE-IMAGE) TASK

The IPI task follows the standard autoencoder architecture as shown in Figure 1. Using the notations
defined earlier, the IPI task can be formally defined as follows.

IPI : Yi 7→ Y pred
i (3)

fIPI(Yi) := (DPI ◦ EIP )(Yi) (4)

IPI loss function Since both the input and output are images, the objective of the IPI task is to
minimize their differences by mean squared error (MSE) loss function for each training batch of size
B and with an image edge length of L.

Limage :=
1

BL2

B∑
i=1

∥∥∥Yi − Y pred
i

∥∥∥
2

(5)
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Cryo-EM 3D reconstruction is prone to spurious 2-fold planar mirror symmetry (Levy et al., 2022).
A tentative solution is to use the “symmetric loss” employed in cryoAI (Levy et al., 2022), where
ΓcryoAI is the cryo-AI autoencoder pipeline and Rπ represents an in-plane rotation of angle π opera-
tion applied to the input image Yi.

LcryoAI
symm :=

1

BL2

B∑
i=1

min
(∥∥Yi − ΓcryoAI(Yi)

∥∥
2
,
∥∥Rπ[Yi]− ΓcryoAI(Rπ[Yi])

∥∥
2

)
(6)

In practice, we found that this loss function cannot prevent the formation of the spurious cyclic
symmetry artifact with VoxelGridR when the target 3D object has an approximate cyclic symmetry.
We have generalized the above symmetric loss to include in-plane image rotation by arbitrary angles
and also included mirror transformation. “generalized symmetric loss” as below. A1[Yi] and A2[Yi]
are two different affine transformations with random image rotations and/or mirror flipping. The
generalized symmetry loss is only applied when using the voxel-grid-based decoder VoxelGridR.

LG
symm :=

1

BL2

B∑
i=1

min
(
∥A1[Yi]− fIPI(A1[Yi])∥2 , ∥A2[Yi]− fIPI(A2[Yi])∥2

)
(7)

In addition to image loss, we also added an L1-regularization term for image shift to avoid unrealistic
large shift predictions and keep the reconstructed 3D object near the origin of the coordinate system.

LIPI := LG
symm +

1

2B

B∑
i=1

∥∥∥tpredi

∥∥∥
1

(8)

IPI warm-up labeling High-frequency features are difficult to learn in at an early training stage,
especially for projection images with low SNR. We found that the training results can be improved
by using the low-pass filtered input images as training labels instead of using original image labels,
as a training warm-up. The training image label Ỹi is defined below. The details of ffilter-k can be
found in appendix A. ffilter-1 is the first Gaussian filter with the lowest Gaussian convolution kernel
variance, while ffilter-k is the k-th Gaussian filter with higher convolution kernel variance. N IPI

warm-up is
the iteration threshold for switching to the original input images. In practice, using k = 5 or k = 4
is sufficient. .

Ỹi = γ(Yi) + (1− γ)ffilter-k(Yi) (9)

γ =

{
0, if iteration < NIPI

warm-up

1, if iteration >= NIPI
warm-up

(10)

3.4 PIP(POSE-IMAGE-POSE) TASK

The PIP task is similar to the IPI task but with EIP and DPI placed in reverse order. Besides,
an additive Gaussian noise ϵ ∼ N (µ, σ2I) is added to the output image from DPI to create more
realistic inputs for the EIP . The µ and σ of the Gaussian noise is sampled based on the background
of the input images. Compared to the IPI task, the inputs of PIP have changed from images to
synthesized projection parameters (Ri, ti) drawn from certain distributions. The loss function is
defined as the MSE loss of rotation matrices {Ri}i∈B and translation vectors {ti}i∈B for each batch
B of size B as shown below, where ∥·∥F is the Frobenius matrix norm.

PIP : (Rsyn
i , tsyni ) 7→ (Rpred

i , tpredi ) (11)

fPIP (R
syn
i , tsyni ) := EIP (DPI(R

syn
i , tsyni ) + ϵ) (12)

LPIP =
1

B

B∑
i=1

(
1

9

∥∥∥Rsyn
i −Rpred

i

∥∥∥
2
+

1

2

∥∥∥tsyni − tpredi

∥∥∥
1

)
(13)

With only IPI, the pose estimation of EIP is not distributed in the whole pose space, and some part
of the pose space is never reached. By applying PIP, in which the input pose is randomly sampled
in the whole pose space, EIP is forced to match the image-pose pairs over all possible pose spaces.
Therefore, PIP gives EIP a proper output distribution and lets the model measure infinity of pose
and images instead of only images in datasets. With a substantially correct volume representation
of DPI , PIP even turns the unsupervised task into a supervised image-pose matching task. When
training the PIP task, one has the choice of freezing the DPI parameters and only training the EIP ,
or allowing both the EIP and DPI parameters to be updated.
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3.5 TRAINING OF THE IPI AND PIP TASKS

The IPI and PIP tasks can be trained together or in succession. When trained together, we de-
signed the following training schedule with a warm-up period of N train

warm-up iterations, which allows
the IPI task to learn an approximate description of the underlying 3D object before adding the PIP
task. Although we found the following simple schedule was sufficient in our benchmark tests, other
schedules of β are also possible.

Ltotal = LIPI + βLPIP (14){
β = 0, if iteration < N train

warm-up

β > 0, if iteration >= N train
warm-up

(15)

4 RESULTS

To evaluate the ab initio 3D reconstruction quality of ACE-EM, we benchmarked this method against
both the traditional cryo-EM 3D reconstruction software cryoSPARC (Punjani et al., 2017) and
recent methods, including cryoPoseNet (Nashed et al., 2021), cryoDRGN2 (Zhong et al., 2021b),
and cryoAI (Levy et al., 2022), on both simulated and experimental cryo-EM datasets.

4.1 DATASET PREPARATION AND TRAINING SETUP

Datasets Both simulated and experimental cryo-EM datasets are prepared following the setup of
cryoAI (Levy et al., 2022). For simulated datasets, two protein molecules, the pre-catalytic spliceo-
some and the SARS-CoV-2 spike ectodomain structure, are selected as the reconstructed targets.
The simulated dataset generation method and the detailed dataset setting can be seen in the ap-
pendix B. The shape of each projection image is 128× 128. Each reconstructed volume is a voxel
with 128× 128× 128 shape. The experimental cryo-EM dataset 80S ribosome (EMPIAR-10028)
consists of 105,247 images with a shape of 360 × 360, which are downsampled to 128 × 128 for
training with ACE-EM. Note that as discussed in the original publication (Levy et al., 2022), the
cryoAI algorithm could not handle 128× 128-downsampled images due to convergence issues and
an input image size of 256 × 256 was used during training. The output shape of the reconstructed
volume from cryoAI was set to 128× 128× 128 voxels, the same as ACE-EM and other methods.

Accuracy assessment The benchmark metrics follow cryoAI (Levy et al., 2022). 3D reconstruc-
tion quality was assessed by the Fourier Shell Correlation (FSC). It measures the correlation at every
corresponding frequency or resolution(reciprocal of the frequency) between two volumes. The FSC
resolution at value k is defined as the specific resolution when the correlation is dropped to k. Ro-
tation matrix error (Rot.) was calculated using the mean/median square Frobenius norm relative to
ground-truth Ri. Translation matrix error (Trans.) was calculated by the mean square L2-norm of
the predicted and ground-truth translation matrix.

Training setup We ran our benchmark tests on a server with 8 Nvidia V100 GPUs and 84 CPU
cores. When training with the FourierNet decoder, we used the batch size of 384 and the learn-
ing rate of 1e-4 for both the encoder and decoder. FourierNet was trained for 40,000 iterations.
When training with the VoxelGridR decoder, we used the batch-size of 1,024 and training it-
erations of 30,000. The learning rate for the encoder was 1e-3 and 1.0 for the decoder. The
duration of IPI warm-up labeling N IPI

warm-up usually set to 3000-6000 iterations for VoxelGridR.
The“WarmupMultiStepLR” warm-up schedule and AdamW(Loshchilov & Hutter, 2017) optimizer
were used in both cases. N train

warm-up is usually set to 0 or 2000-3000 iterations, PIP parameter β is
usually set to 0.9 for 200 dB dataset and 0.05-0.09 for -10db dataset in both cases. The decoder is
frozen during the PIP process.

4.2 3D RECONSTRUCTION ON SIMULATED DATASETS

Dataset Two protein molecules are selected as the targets: the pre-catalytic spliceosome (PDB ID:
5NRL) and the SARS-CoV-2 spike ectodomain structure (PDB ID: 6VYB). For comparing the per-
formances of methods with different noise levels, we synthesized each dataset with Gaussian noises
of different SNRs, 200 dB, -10 dB or even -20 dB(Figure 7). With high SNR at 200 dB, images
can be regarded as noise-free. -10 dB is the most common SNR in experimental projection image
datasets, thus, the model performance of this condition is a focus. With -20 dB, the images become
indistinguishable from human eyes and reconstruction becomes more challenging. An additional
dataset spliceosome at the SNR of -20 dB is applied to test the noise tolerance of our method.
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Baselines We benchmarked against CryoPoseNet (Nashed et al., 2021), CryoSPARC (Punjani
et al., 2017) (traditional method), cryoDRGN2 (Zhong et al., 2021b), and cryoAI (Levy et al., 2022)
in terms of pose estimation and 3D reconstruction accuracy. For simulated datasets, FSC resolution
at a threshold of 0.5 between the ground-truth and predicted volumes is the evaluation criterion.

Results The result of the simulated datasets can be seen in Table 1. Results for CryoPoseNet were
taken from previously reported data (Levy et al., 2022), cryoDRGN2’s results were from (Zhong
et al., 2021b), while the cryoSPARC and cryoAI’s results were obtained by re-running these meth-
ods. We found that cryoAI failed frequently due to the spurious planar symmetries. CryoSPARC
were very consistent except on the spliceosome (-20 dB) dataset where three out of six runs failed.
In comparison, all ACE-EM reconstructions succeeded. The pose estimation accuracy and 3D re-
construction quality are comparable or better than these baseline methods using either VoxelGridR
or FourierNet decoder. In terms of reconstruction resolution, ACE-EM with FourierNet outper-
formed all the baseline methods. It reached 2 pixels, the Nyquist resolution, using an FSC threshold
of 0.5 in all datasets with SNR 200 dB and -10 dB. Visualization of 3D reconstruction result can be
seen in Figure 5 and Figure 6. Our reconstructed volumes have more details compared to the result
of cryoAI. Based on the Nyquist–Shannon sampling theorem (Shannon, 1949), the highest measur-
able resolution of the dispersed volume representation is 2 pixels. The resolution of ACE-EM with
FourierNet reached the physical limitation, which is not reachable by other methods. To be specific,
the FSC correlation coefficient at 2.03 pixels is still very high (0.87) for the spliceosome (200 dB)
dataset, well above the standard threshold (0.5). We also benchmarked ACE-EM on an even more
challenging dataset (SNR -20 dB; without image shifts). The FSC resolution of the output 3D object
reached 2.1 pixels, which is even higher than the results of -10 dB provided by other ML-based
baselines. Also, the performance of -20 dB SNR proves the potential of ACE-EM with FourierNet
for working in really low SNR situations.

When using VoxelGridR as the decoder, ACE-EM reached a similar or better FSC resolution among
other baselines. In detail, on the similar SNR -10dB with the experimental environment, it pro-
vided higher resolutions on the spliceosome dataset compared to other baselines (except ACE-EM
with FourierNet). With VoxelGridR, CryoPoseNet failed in the spike datasets, indicating that our
method gave VoxelGridR back the competitiveness for cryo-EM 3D reconstruction.

For rotation errors and translation errors, our methods get comparable or better results with other
baselines. Our methods achieve qualified pose estimations on noise-free datasets as most baselines.
Moreover, our methods acquire better performances of noisy datasets among ML-based methods,
especially on the evaluation of mean rotation error.

4.3 3D RECONSTRUCTION ON EXPERIMENTAL DATASETS

Dataset 80S EMPIAR-10028 is an experimental cryo-EM reconstruction dataset used for com-
paring baselines. The size is downsampled to 128 for cryoDRGN2 and our methods, and it is down-
sampled to 256 for cryoSPARC and cryoAI due to the failure of reconstruction with cryoAI (Levy
et al., 2022) in size 128.

Baselines For experimental datasets, evaluation criterion is half-map FSC (Rosenthal & Rubin-
stein, 2015) resolution at 0.143, which splits the dataset evenly into two half datasets, then trains the
two datasets separately to get two volumes for comparison.

Results The result of the experimental datasets can be see in Table 2. Results for cryoSPARC,
cryoDRGN2 and cryoAI were taken from previously reported data (Levy et al., 2022), The input
image size and output volume size setting for different methods can also be seen in Table 2. CryoAI
claimed it is the first amortized inference method to demonstrate proper volume reconstruction on
an experimental dataset. However, CryoAI did not properly converge when fed with input images
of size 128. A compromise is reached by training with input images with a 256-pixel side but
producing a 128-pixel side volume in cryoAI. CryoAI is a standard auto-encoder architecture with
FourierNet as its decoder. Therefore, using ACE-EM with FourierNet is almost like adding the PIP
task to the CryoAI structure. The convergence problem is preliminarily resolved by applying our
method. After adding the PIP task, the model can adequately converge with input size 128× 128.
Also, the resolution of ACE-EM with FourierNet on a 128-pixel input size is better than CryoAI
on a 256-pixel input size, which shows the robustness and effectiveness of our method. Meanwhile,
the result of ACE-EM with VoxelGridR is on the Nyquist resolution, representing its capacity for
the experimental situation. Visualization of 3D reconstruction result can be seen in Figure 5.
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Table 1: Accuracy of pose estimation and 3D reconstruction using per-image pose search
(cryoSPARC and cryoDRGN2) and amortized inference (cryoPoseNet, cryoAI, and ACE-EM). Res-
olution(Res.; unit: pixels), rotation matrix error (Rot.) and translation matrix error(Trans.) are listed.
ACE-EM with VoxelGridR is shown as “ours (V)” and ACE-EM with FourierNet decoder as “ours
(F)”. The best results are in bold and the second-best results are underlined.

traditional ML-based

Dataset cryoSPARC cryoDRGN2 cryoPoseNet cryoAI ours (V) ours (F)

per-image pose search amortized inference

spliceosome Res. 2.06 - 2.78 2.20 2.23 2.00
∞/200dB Mean Rot. 0.01 - - 0.0007 0.003 0.0003

Med Rot. 0.0003 - 0.004 0.0005 0.0004 0.0002
Trans. 1.2 - - 16.4 10.3 1.7

spliceosome Res. 2.06 - 3.15 2.71 2.03 2.00
-10dB Mean Rot. 0.01 - - 0.03 0.004 0.002

Med Rot. 0.00006 - 0.01 0.003 0.002 0.001
Trans. 1.2 - - 58.4 1.7 2.1

spliceosome Res. 2.29 - - - - 2.10
-20dB Mean Rot. 0.6 - - - - 1.3

Med Rot. 0.0006 - - - - 0.02
Trans. 9.4 - - - - -

spike Res. 2.06 - 16.0 2.13 2.85 2.00
∞/200dB Mean Rot. 0.007 0.0004 - 0.0006 0.05 0.0003

Med Rot. 0.0007 0.0001 5 0.0004 0.003 0.0002
Trans. 0.03 - - 6.4 0.7 1.2

spike Res. 2.06 2.03 16.0 2.34 2.87 2.00
-10dB Mean Rot. 0.0005 0.06 - 0.9 0.01 0.1

Med Rot. 0.0002 0.01 6 0.002 0.003 0.002
Trans. 0.03 - - 9.6 0.4 1.6

Table 2: Accuracy of 3D objection reconstruction for experimental 80S ribosome dataset. Resolu-
tions are listed as Res. (unit: Å). The Nyquist resolution for this dataset is 7.54 Å. ACE-EM with
VoxelGridR is shown as “ours (V)” and ACE-EM with FourierNet decoder as “ours (F)”.

traditional ML-based

80S ribosome (exp.) cryoSPARC cryoDRGN2 cryoAI cryoAI ours (V) ours (F)

per-image pose search amortized inference

Input image side size 256 128 128 256 128 128
Output volume side size 256 128 128 128 128 128
Final volume side size 128 128 128 128 128 128

Res. Å(↓) 7.54 7.54 Fail 7.91 7.54 7.76

4.4 ABLATION STUDIES

Without PIP, ACE-EM is degenerate into a traditional autoencoder structure. Comparisons are made
between training with and without PIP tasks in two different decoders, to prove that our work ACE-
EM can boost the performance of an autoencoder by applying PIP regardless of decoder types.

4.4.1 PIP ABLATION WITH FourierNet
To test the effect of PIP with FourierNet, we ran an ablation study on the spliceosome dataset (-10
dB) using a batch size of 384 for 300 epochs. As shown in Figure 2, all the performances, including
FSC-resolution, mean and median rotation matrix prediction errors, are much worse without the
PIP task. Though the median rotation error is similar at the end, the gap in the mean rotation
error is noticeable. Without PIP task, the mean rotation error is 1.98 at the 300th epoch, which is
three orders of magnitude larger than 0.002, the mean error of ACE-EM. IPI reduces the existence
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Figure 2: Ablation study with (blue) or without (red) the PIP task using the spliceosome dataset (-10
dB) with FourierNet as the decoder. Left: mean rotation matrix prediction error. Middle: median
rotation matrix prediction error. Right: convergence of the FSC-resolution.

of exaggerated rotation errors(see in Figure 8), then gets a better mean rotation error and further
improves the resolution.

We also compare the coverage of the projection orientation space during training in terms of the
distribution of the oriented z-axis (projection direction), which is equivalent to the last column of
the predicted rotation matrix. When creating the simulated dataset, the projection orientations were
sampled from a uniform distribution. Therefore the directions of the oriented z-axis should also
be uniformly distributed. As shown in Figure 3, the predicted projection direction vectors covered
the entire orientation space with the PIP task starting from epoch 50. In contrast, without the PIP
task, the coverage of the orientation space is still incomplete at around 20% in 300 epochs. And
the insufficient coverage performance reflected in the rotation error is the low median value along
with the high mean value. After adding PIP task, the training time is increased to 1.25-1.50 times of
the original duration for one epoch. But the time consumption is worthy of faster convergence and
better performances.

4.4.2 PIP ABLATION WITH VoxelGridR
We also perform an ablation study for the PIP task using VoxelGridR as the decoder on the same
spliceosome dataset (-10 dB) using a batch size of 1,024 for 300 epochs. As shown in Table 4 and
Figure 4, 3D reconstruction failed without either the PIP task or warm-up labeling (Section 3.3). The
reconstruction can be completed when using warm-up labeling for loss calculations at the beginning
of training. When PIP task was included, the mean rotation matrix prediction error was reduced
significantly, and the FSC resolution was also improved.

Figure 3: Visualization of the predicted projec-
tion directions for the spliceosome dataset (-10
dB). Left: without PIP (epoch 300); Right: with
PIP (epoch 50).

Figure 4: 3D reconstruction of the spliceosome
dataset (-10 dB) with VoxelGridR without (left)
or with (middle) the PIP task. The ground-truth
is shown on the right.

5 CONCLUSION

In this work, we have developed a new unsupervised learning framework ACE and applied it to the
ab initio cryo-EM 3D reconstruction problem. Compared to existing methods, the most significant
advantage of ACE-EM is its ability to learn the pose space much more effectively and accurately.
The ACE-EM method can work with different types of decoders, and boost the FSC-resolution even
to Nyquist resolution in some simulated and experimental datasets. In the future work on ACE-EM,
we plan to extend the ACE framework to work with heterogeneous cryo-EM 3D reconstruction and
novel view synthesis for natural images.

9
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6 REPRODUCIBILITY STATEMENT

The model structure can be seen in Section 3 and appendix A. The datasets and training setup can
be seen in Section 4.1. The simulated dataset generation method and the detailed dataset setting
can be seen in the appendix B. The code to reproduce our experiments will be open-sourced upon
publication.
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A ENCODER AND DECODER

A.1 ENCODER EIP

The EIP represents a function that maps an input image Yi to its corresponding projection pose
parameters (Ri, ti). Ri ∈ SO(3) ⊂ R3×3 is a rotation matrix for mapping a reference orientation
to the projection orientation. ti ∈ R2 is the 2D translation vector to account for the 2D image shift
in the input image Yi.

EIP : Yi 7→ (Ri, ti) (16)

Cryo-EM projection images are extremely noisy. To improve the EIP performance, we adopted the
same image preprocessing strategy as in cryoAI (Levy et al., 2022). Each image Yi is passed on to
a set of five Gaussian filters, which are implemented as 2D convolutions with a kernel size of 11
pixels and output a 5-channel image Y 5C

i . The Gaussian kernel variances follow a geometric series,
i.e., 10−2, 10−1, 1, 10, 102 in pixel2 for output image channels 1 to 5. The filtered images are given
to a ResNet-18 (He et al., 2016) network with two MLP networks for the inference of Ri and ti
respectively. The raw prediction of ti is passed through a Sigmoid function to restrict the range of
values to (0, 1), because ti is expressed in unit of fraction of the image edge length. Other feature
extractors (FE) can also be used in place of ResNet-18.

ffilter : Yi 7→ Y 5C
i (17)

The complete EIP can be defined as follows, where “◦” means function composition. the trainable
parameters are the network work parameters in fFE and fMLP .

EIP (Yi) := (fMLP ◦ fFE ◦ ffilter)(Yi) (18)

There are many representations of Ri such as Euler angles and quaternions. It has been shown
that all 3D rotation representations in the real Euclidean spaces with no more than four dimensions
are discontinuous and difficult to learn using neural networks (Zhou et al., 2019). We chose the 6-
dimensional vector representation in R3 (Zhou et al., 2019), which can be converted into a rotation
matrix in R3×3 using PyTorch3D (Johnson et al., 2020).

A.2 DECODER DPI

The DPI takes pose (Ri, ti) and predicts the projection image Y pred
i .

DPI : (Ri, ti) 7→ Y pred
i (19)

There are many possible choices for DPI . we tested a real-space voxel grid decoder VoxelGridR
which was used in cryoGAN (Gupta et al., 2021) and partially used in CryoPoseNet (Nashed et al.,
2021), and a frequency-space neural network decoder FourierNet from cryoAI (Levy et al., 2022).
The trainable parameters of DPI depend on the implementation. In VoxelGridR, the trainable
parameters are stored in a 3D tensor V ∈ RL×L×L, which is a discrete representation of 3D recon-
struction target in real space. In FourierNet, the trainable parameters are the network parameters
for the two Sinusoidal Representation Networks (SIRENs) (Sitzmann et al., 2020) as detailed in
cryoAI (Levy et al., 2022).

B BENCHMARK DATASET

To create the ground-truth volumes, we first generate simulated cryo-EM density maps based on
published atomic structure coordinate (pdb) files using the molmap command from ChimeraX (Pet-
tersen et al., 2021). In each density map, each atom is described by a 3D Gaussian distribution with
a width proportional to a chosen “resolution” parameter (6 Å for both proteins). Then, the ground-
truth volumes were generated by re-sampling the simulated density maps onto cubic voxel grids
with 128 pixels on each side. A set of projection images were generated using cryoSPARC (Pun-
jani et al., 2017) with uniformly sampled projection orientations over the ground-truth volume. To
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reduce the difference between the simulated projection images and the experimental ones, random
translations and CTF were applied to each projection image. Random translations were sampled
from a Gaussian distribution (µ = 0, σ = 20 Å).

Table 3:
Dataset L N Å/pix. Shift? SNR(dB)

Simulated Spike 128 50,000 3.00 N ∞
Spike 128 50,000 3.00 N -10
Spliceosome 128 50,000 4.25 Y ∞
Spliceosome 128 50,000 4.25 Y -10
Spliceosome 128 50,000 4.25 N -20

Experimental 80S EMPIAR-10028 (downsampled) 128 105,247 3.77 Y NA

C VISUALIZATION OF 2D IMAGES AND 3D RECONSTRUCTION

Figure 5: Visualization of the predicted 3D objects (in blue color) and the ground-truth (in gray
color) at two different viewing angles. Left: reconstruction of the spike (200 dB) dataset using
FourierNet. Right: reconstruction of 80S ribosome using VoxelGridR with half of the experimen-
tal dataset. The approximate ground-truth volume for 80S ribosome was constructed by cryoSPARC
using the entire set of experimental projection images (L = 360 pixels) and then downsampled to a
smaller size (L = 128 pixels).

D ABLATION STUDY OF THE PIP TASK
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Figure 6: Visualization of the 3D objects of the spliceosome (-10dB). From left to right: recon-
structions from cryoAI, ACE-EM with FourierNet and the ground-truth.

Table 4: Ablation study for the PIP task with VoxelGridR. “Warm-up labeling” refers to using
Gaussian-filtered input images as labels for loss calculation . FSC resolution (Res.) was calculated
at a threshold of 0.5 against ground-truth volume (unit: pixels). Rotation errors (Rot.) are measured
by mean and median values.

PIP task Warm-up labeling Res. Rot. (mean) Rot. (median)

No No N/A N/A N/A
No Yes 2.24 1.124 0.005
Yes Yes 2.20 0.008 0.004
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Figure 7: Visualization of the input and predicted 2D projection images by ACE-EM on the spliceo-
some datasets at different noise levels. From left to right: The original images from the input
datasets, the intermediate projection images generated by the decoder (FourierNet), the final pre-
dicted images with CTF and noise applied. From top to bottom: datasets with SNR at 200 dB, -10
db, and -20 dB, respectively.
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Figure 8: Distribution of rotation matrix prediction errors for the spliceosome dataset (-10 dB).
Top: without PIP; Bottom: with PIP.

E BACKGROUND

Cryo-EM is concerned with the inverse problem of inferring the 3D object associated with a set of
projection images {Yi}i∈D where D is index set for the image dataset. Here we briefly introduce
the image formation model in cryo-EM and relevant terminologies.

E.1 CRYO-EM IMAGE FORMATION MODEL

Cryo-EM projection images are formed by collecting the electrons scattered by the atoms from
macromolecules (e.g., protein molecules) in the sample embedded in thin ice. The raw cryo-EM
data are usually referred to as micrographs, which consist of the 2D projections of hundreds of 3D
objects. In a so-called “particle picking” step, the projection images of individual 3D objects are
cropped out of each micrograph and collected into a stack of projection images.

The 3D reconstruction target object can be defined as a function V for mapping a 3D coordinate to
a real value.

V : R3 7→ R (20)

Each projection image is associated with a 3D object oriented in a certain direction. Here we focus
on the homogenous 3D reconstruction problem where the 3D objects corresponding to all the pro-
jection images are identical except for their orientations which can be modeled as a rotation matrix
Ri ∈ SO(3) ⊂ R3×3. Each 3D objection can be defined as follows, where the 3D coordinate
r⃗ = [x, y, z]T .

Vi := V (Rir⃗) (21)

The projection image Xi of object Vi is described as integration along the projection direction,
usually along the z-axis.

Xi(x, y) :=

∫ ∞

∞
V (Rir⃗)dz (22)
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Due to the wavelike nature of electrons and the magnetic lens systems in the electron microscopes,
the projection image signals Xi are corrupted by optical interference effects which are modeled
by the Point Spread Function (PSF) fPSF in real space or the Contrast Transfer Function (CTF)
in Fourier space (see the next section for details). Furthermore, the cropping process of projection
images for individual 3D objects from large micrographs is imperfect which can result in small trans-
lational image shifts. Lastly, cryo-EM images are affected by noise from various sources (Baxter
et al., 2009) which is assumed to be zero mean, uncorrelated, independently distributed (Penczek,
2010). A common practice is to model it as a Gaussian noise ϵi ∼ N (0, σ2I). Taken together,
the entire cryo-EM image formation model can be described by the following equation (Levy et al.,
2022; Bendory et al., 2020) where Yi is the final projection image considering all factors discussed
above, 2D coordinate p⃗ = [x, y]T , and 2D translation τ⃗ = [∆x,∆y]T .

Yi(p⃗) = (fPSF ∗Xi)(p⃗+ τ⃗) + ϵi(p⃗) (23)

Since translation of a function by τ is equivalent to convolution with a shifted delta function:

f(x+ τ) = (δτ ∗ f)(x), where δτ := δ(x+ τ)

We can rewrite the above equation as below.

Yi(p⃗) = (δτ⃗ ∗ fPSF ∗Xi)(p⃗) + ϵi(p⃗) (24)

The real-space VoxelGrid decoder used in this work was designed based on this image formation
model.

E.2 FOURIER SLICE THEOREM

An alternative and more computationally efficient method of calculating image projection is based
on the Fourier slice theorem. It states that the Fourier transformation of a projection image is the
same as a slice of the Fourier transform of the corresponding 3D object. The orientation of this slice
is the same as the projection plane.

Ŷi = Si[V̂i] (25)

Here Ŷi and V̂i are the Fourier transform of the projection image Yi and V̂i, respectively. Si is the
volume slicing operator which is defined as a mapping from frequency coordinates k⃗ = [kx, ky, kz]

T

on a rotated 2D Fourier plane (passing through the origin) to the value of V̂i at that point in Fourier
space.

Ŝi[V̂i](kx, ky) := V̂ (Rik⃗)|kz=0 (26)
Using the Fourier slice theorem, the cryo-EM image formation model in Fourier space can be sim-
plified as follows, where 2D frequency coordinate q⃗ = [kx, ky]

T .

Ŷi(q⃗) := Fτ⃗ (q⃗) · FCTF(q⃗) · Si[V̂ ](q⃗) + ϵ̂(q⃗) (27)

FCTF is the contrast transfer function which is the Fourier transform of the Point Spread Function
(Penczek, 2010). ϵ̂ is the Gaussian white noise in Fourier space. Fτ⃗ is the phase-shift function
defined below, which is equivalent to translation by τ⃗ in real space: Fτ⃗ (q⃗) := e−2πiτ⃗ ·q⃗ . A majority
of the cryo-EM 3D reconstruction algorithms are based on this theorem, such as RELION (Scheres,
2012), cryoSPARC (Punjani et al., 2017), cryoDRGN (Zhong et al., 2019; 2021a;b), and cryoAI
(Levy et al., 2022).
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