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ABSTRACT

Quantum Neural Network (QNN) is a promising application towards quantum
advantage on near-term quantum hardware. However, due to the large quantum
noises (errors), the performance of QNN models has a severe degradation on real
quantum devices. For example, the accuracy gap between noise-free simulation
and noisy results on IBMQ-Yorktown for MNIST-4 classification is over 60%.
Existing noise mitigation methods are general ones without leveraging unique
characteristics of QNN and are only applicable to inference; on the other hand, ex-
isting QNN work does not consider noise effect. To this end, we present RoQNN,
a QNN-specific framework to perform noise-aware optimizations in both training
and inference stages to improve robustness. We analytically deduct and experi-
mentally observe that the effect of quantum noise to QNN measurement outcome
is a linear map from noise-free outcome with a scaling and a shift factor. Moti-
vated by that, we propose post-measurement normalization to mitigate the feature
distribution differences between noise-free and noisy scenarios. Furthermore, to
improve the robustness against noise, we propose noise injection to the training
process by inserting quantum error gates to QNN according to realistic noise mod-
els of quantum hardware. Finally, post-measurement quantization is introduced to
quantize the measurement outcomes to discrete values, achieving the denoising
effect. Extensive experiments on 8 classification tasks using 6 quantum devices
demonstrate that RoQNN improves accuracy by up to 43% and 22% on average,
and achieves over 94% 2-class, 80% 4-class, and 34% 10-class classification ac-
curacy on real quantum computers. We also open-source our PyTorch library for
construction and noise-aware training of QNN at this link.

1 INTRODUCTION

Quantum Computing (QC) is a new computational paradigm that can be exponentially faster
than classical counterparts in various domains such as cryptography (Shor, 1999), database
search (Grover, 1996), and chemistry (Kandala et al., 2017; Peruzzo et al., 2014; Cao et al., 2019).
Quantum Machine Learning (QML) aims to leverage QC techniques to solve machine learning tasks
and achieve much higher efficiency. Among various QML approaches, Quantum Neural Network
(QNN) is a popular candidate in which a network of parameterized quantum gates are constructed
and trained to embed data and perform certain ML tasks on a quantum computer, similar to the
training and inference of classical neural networks.

Currently we are in the Noisy Intermediate Scale Quantum (NISQ) stage, in which quantum opera-
tions suffer from a high error rate of 10−2 to 10−3, much higher than CPUs/GPUs (10−6 FIT). The
quantum errors unfortunately introduces detrimental influence on QNN accuracy. Figure 1 shows the
single-qubit gate error rates and the measured accuracy of classification tasks on different hardware.
Three key observations are: (1) Quantum error rates (10−3) are much larger than classical CMOS
devices’ error rates (10−6 failure per 109 device hours (Rao et al., 2007)). (2) Accuracy on real
hardware is significantly degraded (up to 64%) compared with noise-free simulation. (3) The same
QNN on different hardware has distinct accuracy due to different gate error rates. IBMQ-Yorktown
has a five times larger error rate than IBMQ-Santiago, and higher error causes lower accuracy.

Researchers have proposed noise mitigation techniques (Endo et al., 2021; Li & Benjamin, 2017;
Temme et al., 2017; Endo et al., 2018) to reduce the noise impact. However, they are general
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Figure 1: Left: Current quantum hardware has much larger error rates (around 10−3) than classical
CPUs/GPUs. Right: Due to the errors, QNN models suffer from severe accuracy drops. Different
devices have various error magnitudes, leading to distinct accuracy. These motivate RoQNN, a
hardware-specific noise-aware QNN training approach to improve robustness and accuracy.

methods without considering the unique characteristics of QNN, and can only be applied to QNN
inference stage. On the other hand, existing QNN work (Biamonte et al., 2017; Harrow et al., 2009;
Farhi et al., 2014; Lloyd et al., 2013; Rebentrost et al., 2014; Bausch, 2020; Jiang et al., 2021) does
not consider the noise impact. This paper proposes a QNN-specific noise mitigation framework
called RoQNN that optimizes QNN robustness in both training and inference stages, boosts the
intrinsic robustness of QNN parameters, and improves accuracy on real quantum machines.

RoQNN comprises a three-stage pipeline. First, post-measurement normalization normalizes the
measurement outcomes on each quantum bit (qubit) across data samples, thus removing the quan-
tum error-induced distribution shift. Furthermore, we inject noise to the QNN training process by
performing error gate insertion. The error gate types and probabilities are obtained from hardware-
specific realistic quantum noise models provided by QC vendors. During training, we iteratively
sample error gates, insert them to QNN, and updates weights. Finally, post-measurement quanti-
zation is further proposed to reduce the precision of measurement outcomes from each qubit and
achieve a denoising effect.

Extensive experiments on 8 ML tasks with 5 different design spaces on 6 quantum devices show
that RoQNN can improve accuracy by up to 42%, 43%, 23% for 2-class, 4-class and 10-class clas-
sification tasks and successfully demonstrates over 94%, 80% and 34% accuracy for 2-, 4-, and
10-classifications with pure quantum parameters on real quantum hardware. The PyTorch library
we developed for construction and noise-aware training of QNN is open-sourced at this link. It is
an easy-to-use infrastructure to query noise models from QC providers such as IBMQ, extract noise
information, perform training on CPU/GPU and finally deploy on real QC (Appendix A.3).

2 BACKGROUND AND RELATED WORK

QML and QNN. The quantum basics and quantum noise are introduced in Appendix A.1. Quantum
machine learning (Biamonte et al., 2017) explores performing ML tasks on quantum devices. The
path to quantum advantage on QML is typically provided by the quantum circuit’s ability to generate
and estimate highly complex kernels (Havlı́ček et al., 2019), which would otherwise be intractable
to compute with conventional computers. They have been shown to have potential speed-up over
classical counterparts in various tasks, including metric learning (Lloyd et al., 2020), data analy-
sis (Lloyd et al., 2016), and principal component analysis (Lloyd et al., 2014). Quantum Neural
Networks is one type of QML models using variational quantum circuits with trainable parameters
to accomplish feature encoding of input data and perform complex-valued linear transformations
thereafter. Various theoretical formulations for QNN have been proposed, e.g., quantum classi-
fier (Farhi & Neven, 2018), quantum convolution (Henderson et al., 2020), and quantum Boltzmann
machine (Amin et al., 2018), etc. Most are exploratory and rely on classical simulation of small
quantum systems (Farhi & Neven, 2018).

Quantum Error Mitigation As the error forms the bottleneck of the quantum area. Researchers
have developed various error mitigation techniques. Extrapolation methods (Temme et al., 2017;
Li & Benjamin, 2017) perform multiple measurements of a quantum circuit under different er-
ror rates and then extrapolate the ideal measurement outcomes when there is no noise. Quasi-
probability (Temme et al., 2017; Huo & Li, 2021) probabilistically inserts X, Y, Z gates to a quan-
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Figure 2: Quantum Neural Networks Architecture. QNN has multiple blocks, each contains an
encoder to encode classical values to quantum domain; quantum layers with trainable weights; and
a measurement layer that obtains a classical value from each qubit.
tum circuit and then sum them together to cancel out the noise effects. Other methods such as
quantum subspace expansion (McClean et al., 2017) and learning-based mitigation (Strikis et al.,
2020; Czarnik et al., 2020) are also proposed.

RoQNN is fundamentally different from existing methods: (i) Prior work focuses on low-level nu-
merical correction in inference only; RoQNN embraces more optimization freedom in both training
and inference. It improves the intrinsic robustness and statistical fidelity of QNN parameters. (ii)
QNN has a good built-in error-tolerance which motivates RoQNN’s post-measurement quantization
to reduce the numerical precision of intermediate results while preserving accuracy. (iii) RoQNN
has a very small overhead (less than 2%), while prior work introduces high measurements, circuit
complexity cost, etc. We also show that existing methods such as extrapolation is orthogonal to
RoQNN and can be combined together in Section 4.

Quantization and Noise Injection of Classical NN. To improve NN efficiency, extensive work
has been explored to trim down redundant bit representation in NN weights and activations (Han
et al., 2015; Zhu et al., 2016; Jacob et al., 2018; Wang et al., 2019; 2020; Lin et al., 2017). Though
low-precision quantization limits the model capacity, it can improve the generalization and robust-
ness (Lin et al., 2019). An intuitive explanation is that quantization corrects errors by value clamp-
ing, thus avoiding cascaded error accumulation. Moreover, by sparsifying the parameter space,
quantization reduces the NN complexity as a regularization mechanism that mitigates potential over-
fitting issues. Similarly, injecting noises into neural network training is demonstrated to help obtain a
smoothed loss landscape for better generalization (Matsuoka, 1992; He et al., 2019; Zur et al., 2009;
Seltzer et al., 2013). By emulating the real noisy environment when deploying NNs, noise-injection-
based training significantly boosts the noise-robustness, especially for emerging applications and
computing platforms (Gu et al., 2020; Xu et al., 2014).

3 NOISE-AWARE QNN TRAINING

Figure 2 shows the QNN architecture. The inputs are classical data such as image pixels, and the
outputs are classification results. The QNN consists of multiple blocks. Each has three components:
encoder encodes the classical values to quantum states with rotation gates such as RY; trainable
quantum layers contain parameterized gates that can be trained to perform certain ML tasks; mea-
surement part measures each qubit and obtains a classical value. The measurement outcomes of one
block are passed to the next block. For the MNIST-4 example in Figure 2, the first encoder takes the
pixels of the down-sampled 4× 4 image as rotation angles θ of 16 rotation gates. The measurement
results of the last block are passed through a Softmax to output classification probabilities.

The overview of RoQNN is shown in Figure 3. First, we normalize the measurement outcome
distribution of each qubit across input samples during both training and inference to compensate
for information loss. Then, we leverage a realistic quantum noise model of quantum devices to
insert noise into the training procedure and boost the error resilience. Finally, we quantize the
measurement outcomes to discrete values to correct quantum noise-induced errors.

3.1 POST-MEASUREMENT NORMALIZATION

Measurement outcome shift due to quantum noises. Before delving into the noise mitigation
techniques, we first show analytically how quantum noises influence the QNN block output. The
measurement outcomes of the QNN are sensitive to both the input parameters and any perturbations

3



Under review as a conference paper at ICLR 2022

(1) Post-Measurement Normalization

Norm.

Error-free

Info
Loss

(2) QC-backed Noise Injection

Small
Margin

(3) Po
Margin

Co
Noise Model
from Real QC

Sensitive Robust
Noise-induced

Drift Norm.

Noisy
Match

(1) Post-Measurement Normalization

Norm.

Noise-free

Info
Loss

(1) Post-Measurement Normalization(1) Post-Measurement Normalization(1) Post-Measurement Normalization(1) Post-Measurement Normalization(1) Post-Measurement Normalization (2) Real QC-backed Noise Injection (3) Post-Measurement Quantization

Quantum Error

Denoising via Quantization

Sensitive Robust
Noise-induced

Drift Norm.

Noisy
Match

Small
Margin

Margin

Sample Noise
from Real QC
Sample Noise
from Real QC

Noise-Injected
Training

Error

Figure 3: RoQNN Overview. (1) Post-measurement normalization matches the distribution of mea-
surement results between noise-free simulation and real hardware deployment. (2) Based on realistic
noise models, noise-injection inserts quantum error gates to the training process to increase the clas-
sification margin between classes. (3) Measurement outcomes are further quantized for denoising.
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Figure 4: Post-measurement normalization reduces the distribution mismatch between noise-free
simulation and noisy results on real hardware, thus improving the Signal-to-Noise Ratio (SNR).
by some noisy quantum process. This section provides insights on such noisy transformations and
discusses their impacts on QNN inference.

Theorem 3.1. (informal version). The measurement outcome y of a quantum neural network for the
training input data x is transformed by the quantum noise that the system undergoes with a linear
map f(yx) = γyx+βx, where the translation βx depends on the input x and quantum noises, while
scaling factor γ is input independent.

We refer to Appendix Section A.2.2 for background and a complete proof. The main theoretical
contribution of this theorem equips our proposed normalization methodology with robustness guar-
antees. Most importantly, we observe that the changes in measurement results can often be compen-
sated by proper post-measurement normalization across input batches. For simplicity, we restrict
our analysis on Z-basis single-qubit measurement outcome y. Similar analytical results for multi-
qubit general-basis measurement will follow if we apply the same analysis qubit by qubit. Theorem
3.1 is most powerful when applied on a small batch of input data x = {x1, . . . , xm} where each
xi is a set of classical input values for the encoder of the QNN and m is the size of the batch. In
an ideal noiseless scenario, the QNN model outputs measurement result yi for each input xi. For a
noisy QNN, the measurement result undergoes a composition of two transformations: (1) a constant
scaling by γ; (2) a input-specific shift by βi, i.e., f(yi) = γyi + βi. In the realistic noise regime,
the scaling constant γ ∈ [−1, 1]. However, for small noises, γ is close to 1, and βi is close to 0.
Therefore, the distribution of noisy measurement results undergoes a constant scaling by γ ≤ 1 and
a small shift by each βi. In the small-batch regime when β = {β1, . . . , βm} has small variance, the
distribution is shifted by its mean β = E[β]. Thus f(yi) ≈ γyi + β.

Post-measurement normalization. Based on the analysis above, we propose post-measurement
normalization to offset the distribution scaling and shift. For each qubit, we collect its measurement
results on a batch of input samples, compute mean and std, then make the distribution of each qubit
across the batch zero-centered and of unit variance. This is performed during both training and infer-
ence. During training, for a batch of measurement results: y = {y1, . . . , ym}, the normalized results
are ŷi = (yi − E[y])/

√
Var(y). For noisy inference, f̂(yi) = (f(yi) − E[f(y)])/

√
Var(f(y)) =

((γyi + β)− (γE[y] + β))/
√

γ2Var(y) = ŷi. Thus the error can be corrected.

Empirical results confirm the analysis above. Figure 4 compares the noise-free measurement result
distribution of 4 qubits (blue) with their noisy counterparts (yellow) for MNIST-4 on two devices.
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Figure 5: Noise injection via error gate insertion. X, Y, Z are sampled Pauli error gates. R is the
injected readout error. Probabilities for gate insertion are obtained from real device noise models.
Qualitatively, we can clearly observe that the post-measurement normalization reduces the mismatch
between two distributions. Quantitatively, we adopt signal-to-noise ratio, SNR = ‖A‖22/‖A−Ã‖22,
the inverse of relative matrix distance (RMD), as the metric. The SNR on each qubit and each
individual measurement outcome is clearly improved. Though similar, it is different from Batch
Normalization (Ioffe & Szegedy, 2015) as the testing batch uses its own statistics instead of that
from training, and there is no trainable affine parameter.

3.2 QUANTUM NOISE INJECTION

Although the normalization above mitigates error impacts, we can still observe small discrepancies
on each individual measurement outcome, which degrade the accuracy. Therefore, to make the QNN
model robust to those errors, we propose noise injection to the training process.

Quantum error gate insertion. As introduced in Section 2, different quantum errors can be ap-
proximated by Pauli errors via Pauli Twirling. The effect of Pauli errors is the random insertion of
Pauli X, Y, and Z gates to the model with a probability distribution E . How to compute E is out of the
scope of this work. But fortunately, we can directly obtain it from the realistic device noise model
provided by quantum hardware manufacturers such as IBMQ. The noise model specifies the prob-
ability E for different gates on each qubit. For single-qubit gates, the error gates are inserted after
the original gate. For two-qubit gates, error gates are inserted after the gate on one or both qubits.
For example, the SX gate on qubit 1 on IBMQ-Yorktown device has E as {X: 0.00096, Y: 0.00096,
Z: 0.00096, None: 0.99712}. When ‘None’ is sampled, we will not insert any gate. The same gate
on different qubits or different hardware will have up 10× probability difference. As in Figure 5,
during training, for each QNN gate, we sample error gates based on E and insert it after the original
gate. A new set of error gates is sampled for each training step. In reality, the QNN is compiled to
the basis gate set of the quantum hardware (e.g., X, CNOT, RZ, CNOT, and ID) before performing
gate insertion and training. We will also scale the probability distribution by a constant noise factor
T and scale the X, Y, Z probability by T during sampling. T factor explores the trade-off between
adequate noise injection and training stability. Typical T values are in the range of [0.5, 1.5]. The
gate insertion overhead is typically less than 2%.

Readout noise injection. Obtaining classical values from qubits is referred as read-
out/measurement, which is also error-prone. The realistic noise model provides the statistical read-
out error in the form of a 2× 2 matrix for each qubit. For example, the qubit 0 of IBMQ-Santiago has
readout error matrix [[0.984, 0.016], [0.022, 0.978]] which means the probability of measuring a |0〉
as 0 is 0.984 and as 1 is 0.016. We emulate the readout error effect during training by changing the
measurement outcome. For instance, originally P (0) = 0.3, P (1) = 0.7, the noise injected version
will be P ′(0) = 0.3× 0.984 + 0.7× 0.022 = 0.31, P ′(1) = 0.7× 0.978 + 0.3× 0.016 = 0.69.

Direct perturbation. Besides gate insertion, we also experimented with directly perturbing mea-
surement outcomes or rotation angles as noise sources. For outcome perturbation, with benchmark-
ing samples from the validation set, we obtain the error Err distribution between the noise-free and
noisy measurement results and compute the mean µErr and std σErr. During training, we directly
add noise with Gaussian distribution N (µErr, σ

2
Err) to the normalized measurement outcomes.

Similarly, for rotation angle perturbation, we add Gaussian noise to the angles of all rotation gates in
QNN and make the effect of rotation angle Gaussian noise on measurement outcomes similar to real
QC noise. We show in Section 4 that the gate insertion method is better than direct perturbations.

3.3 POST-MEASUREMENT QUANTIZATION

Finally, we propose post-measurement quantization on the normalized results to further denoise
the measurement outcomes. We first clip the outcomes to [pmin, pmax], where p are pre-defined
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Figure 6: Left: Error maps before and after post-measurement quantization. Most errors can be cor-
rected. Right: 5-level quantization buckets with a quadratic penalty loss to encourage measurement
outcomes to be near to the centroids.

thresholds, and then perform uniform quantization. The quantized values are later passed to the
next block’s encoder. Figure 6 shows one real example from Fashion-4 on IBMQ-Santiago with
five quantization levels and pmin = −2, pmax = 2. The left/middle matrices show the error maps
between noise-free and noisy outcomes before/after quantization. Most errors can be corrected back
to zero with few exceptions of being quantized to a wrong centroid. The MSE is reduced from 0.235
to 0.167, and the SNR is increased from 4.256 to 6.455. We also add a loss term ||y − Q(y)||22 to
the training loss, as shown on the right side, to encourage outcomes to be near to the quantization
centroids to improve error tolerance and reduce the chance of being quantized to a wrong centroid.
Besides improving robustness, quantization also brings an additional benefit: the control complexity
of rotation gates using those quantized values can be largely reduced.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Datasets. We conduct experiments on 8 classification tasks including MNIST (Lecun et al., 1998)
10-class, 4-class (0, 1, 2, 3). and 2-class (3, 6); Vowel (Deterding, 1989) 4-class (hid,
hId, had, hOd); Fashion (Xiao et al., 2017) 10-class, 4-class (t-shirt/top, trouser,
pullover, dress), and 2-class (dress, shirt), and CIFAR (Krizhevsky et al.) 2-class
(frog, ship). MNIST, Fashion, and CIFAR use 95% images in ‘train’ split as training set and
5% as the validation set. Due to the limited real QC resources, we use the first 300 images of ‘test’
split as test set. Vowel-4 dataset (990 samples) is separated to train:validation:test = 6:1:3 and test
with the whole test set. MNIST and Fashion images are center-cropped to 24× 24; and then down-
sample to 4×4 for 2- and 4-class, and 6×6 for 10-class; CIFAR images are converted to grayscale,
center-cropped to 28× 28, and down-sampled to 4× 4. All down-samplings are performed with
average pooling. For vowel-4, we perform feature principal component analysis (PCA) and take 10
most significant dimensions.

QNN models. The first quantum block’s encoder embeds images and vowel features. For 4 × 4
images, we use 4 qubits and 4 layers with 4 RY, 4 RX, 4 RZ, and 4 RY gates in each layer, respectively.
For 6× 6 images, 10 qubits and 4 layers are used with 10 RY, 10 RX, 10 RZ, and 6 RY gates in each
layer, respectively. 10 vowel features, uses 4 qubits and 3 layers with 4 RY, 4 RX, and 2 RZ gates
on each layer for encoding. For trainable quantum layers, we use U3 and CU3 layers interleaved
as in Figure 2 except for Table 2. For measurement, we measure the expectation values on Pauli-Z
basis and obtain a value [-1, 1] from each qubit. The measurement outcome goes through post-
measurement normalization and quantization and is used as rotation angles for RY gates in the next
block’s encoder. After the last block, for two-classifications, we sum the qubit 0 and 1, 2 and
3 measurement outcomes, respectively, and use Softmax to get probabilities. For 4 and 10-class,
Softmax is directly applied to measurement outcomes.

The number of parameters can be computed as NBlock ×Nparams per block. For instance, for QNN
using 4 qubits, 1 U3, and 1 CU3 layer in each block, since one U3 and CU3 gates both have 3
parameters, Nparams per block = 3×4×1×2 = 24. A model with 5 blocks has 120 parameters. We
implement a library for construction and noise-aware training of QNN models in PyTorch (Paszke
et al., 2019), and all model training in this work is performed with it. For baselines and RoQNN,
we use Adam optimizer with a linear learning rate warm-up from 0 to 5e-3 in the first 30 epochs
then cosine decay and weight decay λ = 1e− 4. We train 200 epochs with batch size 256 for image
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Table 1: Post-measurement normalization improves accuracy and SNR.

Quantum
Devices

↓

QNN
Models→

2 Blocks 3 Blocks 4 Blocks

×2 Layers ×8 Layers ×2 Layers ×4 Layers ×2 Layers ×4 Layers

Acc. SNR Acc. SNR Acc. SNR Acc. SNR Acc. SNR Acc. SNR

Santiago Baseline 0.61 6.15 0.52 1.79 0.71 5.47 0.61 5.32 0.57 6.96 0.62 4.20
+Norm 0.66 15.69 0.79 4.85 0.71 4.80 0.80 8.45 0.70 11.36 0.68 6.55

Quito Baseline 0.58 6.64 0.35 1.43 0.72 2.55 0.66 1.85 0.60 3.98 0.29 1.73
+Norm 0.66 13.92 0.71 2.98 0.69 7.38 0.76 7.15 0.74 12.26 0.72 4.54

Athens Baseline 0.59 8.91 0.60 2.14 0.63 8.26 0.62 3.76 0.63 9.52 0.55 3.54
+Norm 0.64 20.27 0.78 3.47 0.68 6.50 0.78 5.91 0.74 14.07 0.69 6.09
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Figure 7: Ablation on different noise injection methods. Left: Without quantization, gate insertion
and measurement perturbation performs similar, both better than rotation angle perturbation. Right:
With quantization, gate insertion is better as perturbation effect can be canceled by quantization.

classification and 4 for vowel. For 4-qubit QNN models, the overall training time is typically less
than 2 hours on an Nvidia TITAN RTX 2080 ti GPU machine.

Quantum hardware and compiler configurations.. We use IBMQ quantum computers via
Qiskit (IBM) APIs. We study 6 devices, with #qubits from 5 to 15 and Quantum Volume from 8 to
32. We also employ Qiskit for compilation. The optimization level is set to 2 for all experiments,
except for Table 6. All experiments run 8192 shots. The noise models we used are off-the-shelf ones
updated by IBMQ team with noise characterization techniques such as randomized benchmarking.

4.2 EXPERIMENTAL RESULTS

Ablation on post-measurement normalization Table 1 compares the accuracy and signal-to-noise
ratio (SNR) before and after post-measurement normalization on MNIST-4. We study 6 different
QNN architectures and evaluate on 3 devices. The normalization can significantly increase SNR,
thus improving accuracy with rare exceptions on 3Block × 2Layer models.

Ablation on different noise injection methods. Figure 7 compares different noise injection meth-
ods. Gaussian noise statistics for perturbations are obtained from error benchmarking. The left
side shows accuracy without quantization. With different noise factors T , the gate insertion and
measurement outcome perturbation have similar accuracy, both better than rotation angle perturba-
tion. A possible explanation is that the rotation angle perturbation does not consider non-rotation
gates such as X and SX. The right side further investigates the first two methods’ performance with
quantization. We set noise factor T = 0.5 and alter quantization levels. Gate insertion outperforms
perturbation by 11% on average on 3 different devices and QNN models. The reason is: directly
added perturbation on measurement outcomes can be easily canceled by quantization, and thus it is
harder for noise injection to take effect.

Main results. From ablations above, we decide to apply post-measurement normalization to
RoQNN, and use gate insertion to inject noise. We experiment with four different QNN archi-
tectures on 8 tasks running on 5 quantum devices to demonstrate RoQNN’s effectiveness. For each
benchmark, we experiment with noise factor T = {0.1, 0.5, 1, 1.5} and quantization level among
{3, 4, 5, 6} and select one out of 16 combinations with the lowest loss on the validation set and
test on the test set. Normalization and quantization are not applied to the last block’s measurement
outcomes as they are directly used for classification. As in Figure 8, RoQNN consistently achieves
the highest accuracy on 26 benchmarks. The third bars of Athens are unavailable due to the ma-
chine’s retirement. On average, normalization, noise injection and quantization improve accuracy
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Table 2

          RoQNN w/o Noise 
Injection and 
Quantization

RoQNN w/o 
Quantization

RoQNN

MNIST-4 0.2966666667 0.4133333333 0.61 0.68

Fashion-4 0.3166666667 0.6133333333 0.7 0.75

Vowel-4 0.2844827586 0.2931034483 0.44 0.4827586207

MNIST-2 0.8433333333 0.8666666667 0.93 0.94

Fashion-2 0.7766666667 0.6766666667 0.86 0.8833333333

CIFAR-2 0.51 0.5566666667 0.57 0.5866666667

MNIST-4 0.43 0.5666666667 0.58 0.6166666667

Fashion-4 0.5633333333 0.6 0.6 0.646666666666667

Vowel-4 0.25 0.3793103448 0.45 0.4396551724

MNIST-2 0.68 0.86 0.91 0.9333333333

Fashion-2 0.7 0.7233333333 0.85 0.8566666667

CIFAR-2 0.5166666667 0.5633333333 0.57 0.5966666667

MNIST-10 0.1133333333 0.08 0.25 0.34

Fashion-10 0.08666666667 0.1166666667 0.24 0.3066666667
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0.090.11

0.52

0.700.68

0.25
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0.51
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0.280.320.30

          RoQNN w/o Noise Injection and Quantization RoQNN w/o Quantization RoQNN

QNN (2 Blocks ! 12 Layers) on IBMQ-Santiago

Baseline

Table 2-1

Untitled 1

MNIST-4 0.28 0.52 0.52 0.58

Fashion-4 0.2566666667 0.5666666667 0.6 0.6166666667

Vowel-4 0.1982758621 0.3275862069 0.37 0.4051724138

MNIST-2 0.46 0.8066666667 0.84 0.8766666667

Fashion-2 0.52 0.62 0.82 0.8

CIFAR-2 0.5033333333 0.5066666667 0.57 0.61

MNIST-4 0.2866666667 0.44 0.56

Fashion-4 0.3566666667 0.4633333333 0.6366666667

Vowel-4 0.2068965517 0.3706896552 0.4137931034

MNIST-2 0.54 0.51 0.8666666667

Fashion-2 0.4566666667 0.5133333333 0.64

CIFAR-2 0.49 0.5 0.5266666667

Average-All 0.420114942533462 0.517462422638462 0.614 0.638129973483333
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Figure 8: RoQNN consistently achieves the highest accuracy, with on average 22% improvements.
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Table 2

Norm Norm + Noise 
Injection

Norm + Quant Norm + Noise 
Injection+ Quant

MNIST-4  
Santiago

0.4133333333 0.426666666666667 0.64 0.68

Vowel-4
Santiago

0.2931034483 0.4396551724 0.344827586206897 0.4827586207

MNIST-2
Yorktown

0.86 0.9233333333 0.823333333333333 0.9333333333

Fashion-2
Yorktown 

0.7233333333 0.85 0.826666666666667 0.8566666667

Average 0.572442528725 0.659913793091667 0.658706896551724 0.738189655175
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Figure 10: Ablation of applying noise injection and quantization indi-
vidually or jointly. Combining two together brings the best accuracy.

by 10%, 9%, and 3%, respectively. Another observation is that a larger model does not necessarily
have higher accuracy. For example, Athens has a smaller single-qubit gate error rate (2.9 × 10−4)
than Yorktown (1.0 × 10−3), and Athens’ QNN model is 7.5× larger than Yorktown with higher
noise-free accuracy. However, because of more gate errors introduced by the larger model, the real
accuracy is often lower. The detailed hyperparameters are in Appendix A.5.

Table 2: Accuracy on different design spaces.

Design Space MNIST-4 Fashion-2
Yorktown Santiago Yorktown Santiago

‘ZZ+RY’ 0.43 0.57 0.80 0.91
+RoQNN 0.34 0.60 0.83 0.86

‘RXYZ’ 0.57 0.61 0.88 0.89
+RoQNN 0.61 0.70 0.92 0.91
‘ZX+XX’ 0.29 0.51 0.52 0.61
+RoQNN 0.38 0.64 0.52 0.89
‘RXYZ+U1+CU3’ 0.28 0.25 0.48 0.50
+RoQNN 0.33 0.21 0.53 0.52

Performance on different design spaces. In
Table 2, we evaluate RoQNN on different QNN
design spaces. Specifically, the trainable quan-
tum layers in one block of ‘ZZ+RY’ (Lloyd
et al., 2020) space contains one layer of
ZZ gate, with ring connections, and one
RY layer. ‘RXYZ’ (McClean et al., 2018) space
has five layers:

√
H, RX, RY, RZ, and CZ.

‘ZX+XX’ (Farhi & Neven, 2018) space has two
layers: ZX and XX. ‘RXYZ+U1+CU3’ (Hender-
son et al., 2020) space, according to their random circuit basis gate set, has 11 layers in the order
of RX, S, CNOT, RY, T, SWAP, RZ, H,

√
SWAP, U1 and CU3. We conduct experiments on MNIST-4

and Fashion-2 on 2 devices. In 13 settings out of 16, RoQNN can improve the accuracy of baseline
designs. Thus, RoQNN is a general technique agnostic to QNN model size and design space.

Noise factor and post-measurement quantization level analysis. We visualize the QNN accuracy
contours on Fashion-4 on IBMQ-Athens with different noise factors and quantization levels. The
best accuracy occurs for factor 0.2 and 5 levels. Horizontal-wise, the accuracy first goes up and then
goes down. This is because too few quantization levels hurt the QNN model capacity; too many
levels cannot bring sufficient denoising effect. Vertical-wise, the accuracy also goes up and then
down. Reason: when the noise is too small, the noise-injection effect is weak, thus cannot improve
the model robustness; while too large noise makes the training process unstable and hurts accuracy.

Breakdown of accuracy gain. Figure 10 shows the performance of only applying noise-injection,
only applying quantization, and both. Using two techniques individually can both improve accuracy
by 9%. Combining two techniques delivers better performance with a 17% accuracy gain. This
indicates the benefits of synergistically applying three techniques in RoQNN.
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Table 3: Scalable noise-aware training.

Machine Bogota Santiago Lima

Noise-unaware 0.74 0.97 0.87
RoQNN 0.79 0.99 0.90

Table 4: Compatible with existing noise mitigation.

Method MNIST-4 Fashion-4

Normalization only 0.78 0.81
Normalization + Extrapolation 0.81 0.83

Baseline + Post-Measurement 
Normalization

+ Noise 
Injection

Digit ‘3’
Digit ‘6’

Feature Dimension 1

Fe
at

ur
e 

Di
m

en
si

on
 2

Classification 
Boundary

Noise injection 
makes samples 
far away from 
classification 
boundary

Figure 11: Feature visualization.

Visualization of QNN extracted features. MNIST-2
classification result is determined by which feature is
larger between the two: feature one is the sum of mea-
surement outcomes of qubit 0 and 1; feature 2 is that of
qubit 2 and 3. We visualize the two features obtained
from experiments on Belem in a 2-D plane as in Fig-
ure 11. The blue dash line is the classification bound-
ary. The circles/stars are samples of digit ‘3’ and ‘6’.
All the baseline points (yellow) huddled together, and all
digit ‘3’ samples are misclassified. With normalization
(green), the distribution is significantly expanded, and the
majority of ‘3’ is correctly classified. Finally, after noise
injection (red), the margin between the two classes is fur-
ther enlarged, and the samples are farther away from the
classification boundary, thus becoming more robust.

Scalability. When classical simulation is infeasible, we can move the the noise-injected training
to real QC using techniques such as parameter shift (Crooks, 2019). In this case, the training cost
is linearly scaled with qubit number. Post-measurement normalization and quantization are also
linearly scalable because they are performed on the measurement outcomes. Gradients obtained
with real QC are naturally noise-aware because they are directly influenced by quantum noise. To
demonstrate the practicality, we train a 2-class task with two numbers as input features (Jiang et al.,
2021) (Table 3). The QNN has 2 blocks; each with 2 RY and a CNOT gates. The noise-unaware
baseline trains the model on classical part and test on real QC. In RoQNN, we train the model with
parameter shift and test, both on real QC. We consistently outperform noise-unaware baselines.

Compatibility with existing noise mitigation. RoQNN is orthogonal to existing noise mitigation
such as extrapolation method. It can be combined with post-measurement normalization (Table 4).
The QNN model has 2 blocks, each with three U3+CU3 layers. For “Normalization only”, the
measurement outcomes of the 3-layer block are normalized across the batch dimension. For “Ex-
trapolation + Normalization”, we use extrapolation to estimate the standard deviation of noise-free
measurement outcomes. We firstly train the QNN model to convergence and then repeat the 3 layers
to 6, 9, 12 layers and obtain four standard deviations of measurement outcomes. Then we linearly
extrapolate them to obtain noise-free std. We normalize the measurement outcomes of the 3-layer
block to make their std the same as noise-free and then apply the proposed post-measurement norm.
Results show that the extrapolation can further improve the QNN accuracy thus being orthogonal.

Additional experiments. Appendix A.4.1 shows that using hardware-specific noise model is bene-
ficial to accuracy; A.4.2 shows high compatibility with latest noise-adaptive quantum compilations;
A.4.3 shows high effectiveness on fully quantum (single block) models; A.4.4 shows effect of num-
ber of intermediate measurements between blocks. There exists a best measurement number, given
the same total model layers; A.4.5 shows the small accuracy gap between using noise model and
real QC, indicating high reliability of noise models; A.4.6 shows high effectiveness for difficult tasks
such as 10-classification; A.4.7 shows accuracy when using validation set statistics for test set.

5 CONCLUSION

QNN is a promising candidate to demonstrate practical quantum advantages over classical ap-
proaches. The road to such advantage relies on: (1) the discovery of novel feature embedding that
encodes classical data non-linearly, and (2) overcome the impact of quantum noise on computation.
In this work, we focus on the latter and show analytically and empirically that a noise-aware training
pipeline with post-measurement normalization, noise injection, and post-measurement quantization
can elevate the QNN robustness against arbitrary, realistic quantum noises. We anticipate that such
robust QNN will be useful in the near-term experiments exploring QML applications.
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ETHICS STATEMENT

We do not find insights, methodologies of this work potentially harmful to ethnicity. The usage
of quantum computing has the potential to solve current computational challenge problems with
much higher efficiency and speed. That means potentially lower energy and time cost for certain
computation tasks which will lower the burden of computing industry to the environment in terms
of energy consumption, carbon dioxide emission, etc.

REPRODUCIBILITY STATEMENT

Since the quantum computing process is intrinsically stochastic, when we run the experiments, we
use maximum number of shots on IBMQ machines (8192) to reduce the impact of quantum random-
ness as mentioned in Section 4.1. For easy reproducing our experimental results, we open-source
our QNN training library and training scripts in an anonymous link as stated in Appendix A.3. For
the theoretical results regarding noise impact on QNN model measurement results, we add detailed
full proof in Appendix A.2.

REFERENCES

Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko.
Quantum boltzmann machine. Physical Review X, 8(2):021050, 2018.

Johannes Bausch. Recurrent quantum neural networks. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1368–1379. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/0ec96be397dd6d3cf2fecb4a2d627c1c-Paper.pdf.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M Sohaib Alam, Shahnawaz
Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, et al. Pen-
nylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage. Trapped-ion quantum
computing: Progress and challenges. Applied Physics Reviews, 6(2):021314, 2019.

Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária
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A APPENDIX

A.1 QUANTUM BASICS AND QUANTUM NOISE

A quantum circuit uses quantum bit (qubit) to carry information, which is a linear combination
of two basis state: |ψ〉 = α |0〉 + β |1〉, for α, β ∈ C, satisfying |α|2 + |β|2 = 1. An n-qubit
system can represent a linear combination of 2n basis states. A 2n-length complex statevector of all
combination coefficients is used to describe the circuit state. In quantum computations, a sequence
of quantum gates are applied to perform unitary transformation on the statevector, i.e., |ψ(x,θ)〉 =
· · ·U2(x, θ2)U1(x, θ1) |0〉, where x is the input data and θ is the trainable parameters of rotation
quantum gates. As such, the input data and trainable parameters are embedded in the quantum
state |ψ(x,θ)〉. Finally, the computation results are obtained by qubit readout/measurement which
measures the probability of a qubit state |ψ〉 collapsing to either |0〉 (i.e., output y = +1) or |1〉
(i.e., output y = −1) according to |α|2 and |β|2. With sufficient samples, we can compute the
expectation value: E[y] = (+1)|α|2 + (−1)|β|2. By cascading multiple blocks of quantum gates
and measurements, a non-linear network can be constructed to perform ML tasks.

In real quantum computer systems, errors would likely occur due to imperfect control signals, un-
wanted interactions between qubits, or interference from the environment (Bruzewicz et al., 2019;
Krantz et al., 2019). As a result, qubits undergo decoherence error (spontaneous loss of its stored
information) over time, and quantum gates introduce operation errors (e.g., coherent errors and
stochastic errors) into the system. These noisy systems need to be characterized (Magesan et al.,
2012) and calibrated (IBM, 2021) frequently to mitigate the impact of noise on computation. Noise
modeling helps to paint a realistic picture of the behavior and performance of a quantum computer
and enables noisy simulations (Ding & Chong, 2020). While exact modeling and simulation is chal-
lenging, many approximate strategies (Magesan et al., 2012; Wallman & Emerson, 2016) have been
developed based on Pauli/Clifford Twirling (Nielsen & Chuang, 2002; Silva et al., 2008).

A.2 GENERAL FRAMEWORK FOR QUANTUM NOISE ANALYSIS

In this work, we examine how to characterize and mitigate the impact of quantum noises on quantum
neural networks. We observe that the trainable quantum gates and post-measurement information
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processing play a huge role in boosting the algorithmic robustness to realistic quantum noises. In
the following analysis, we restrict attention to: (1) a general (mixed) quantum state ρ(x,θ) resulting
from a QNN for input data x and trainable parameters θ, (2) single-qubit measurement output,
and (3) any fixed but unknown quantum noise. For multi-qubit quantum neural networks, similar
analysis follows when considered qubit by qubit.

A.2.1 MEASUREMENT OF QUANTUM NEURAL NETWORKS

Definition A.1. (Measurement procedure). We measure a quantum state ρ in the computational
basis |b〉 : b ∈ {0, 1} and output z = +1 if we obtain |0〉 〈0| and z = −1 if we obtain |1〉 〈1|.

The expectation value of such measurement contains useful information about the quantum state ρ:

EZ ≡ E[z] = tr(Zρ), (1)

where Z is the Pauli-Z matrix: Z = (+1) |0〉 〈0| + (−1) |1〉 〈1| and tr(·) is the trace. We can
estimate the expectation value by repeating the experiment by s times, obtaining z1, . . . , zs, with
each zj ∈ {+1,−1}, and calculate their empirical mean: y =

∑s
j=1

zj
s . Throughout this work, we

use s = 8192 shots for the experiments to keep the variance low.
Definition A.2. (Noise processes). A physical process (such as quantum noises) that can happen to
a mixed quantum state ρ can be described as a linear map: ρ→ E(ρ), such that

E(ρ) =
∑
k

OkρO
†
k. (2)

The Ok’s are Kraus operators satisfying
∑
k O
†
kOk = I . The noise process for a quantum neural

network can be challenging to characterize, as it depends not only on the input to the network but
also on the qubits and quantum gates used in the network. We wish to analyze this noise process by
decoupling its dependence on the input data. We assume that each Ok has no explicit dependence
on the classical input data; this is reasonable when we fix the model architecture.

A.2.2 PROOF OF THEOREM 3.1

Now we are ready to analyze the effect of quantum noises on the measurement result from a quantum
neural network. For classical data xi from the input data set x, we construct a quantum neural
network that embeds the classical data in the quantum state ρi ≡ ρ(xi,θi) where θi is some training
parameters. The output of the network is the expectation value of the measurement outcome E∗z,i ≡
tr(Zρi). However, in reality, the results are transformed by some unknown process ρi → E(ρi).
The goal is to quantify the impact of the quantum noise on the expectation value.
Theorem 3.1. (formal version). There exists some real parameters βi and γ, such that the expecta-
tion value of the measurement results Ez.i for input data xi with the presence of any valid quantum
noise E(ρ) can be described as a linear map from the noiseless value E∗z,i:

Ez,i = γE∗z,i + βi. (3)

Here γ is a scaling constant independent of the input data xi.

Proof. Suppose in the noiseless scenario the quantum state obtained from a quantum neural network
is denoted as ρ, and the expectation value of its measurement results is E∗z = E(ρ) = tr(ρZ).
Assume now the ρ undergoes some quantum noise processes E(ρ) =

∑
k OkρO

†
k. Therefore, in the

presence of noise, the expectation value becomes:

Ez = E[E(ρ)] = tr(E(ρ)Z) =
∑
k

tr(OkρO
†
kZ) =

∑
k

tr(ρO†kZOk), (4)

where the third and fourth equality is from the properties of trace. We can further utilize the fact that
an arbitrary quantum state can be expanded as:

ρ =
1

2
(tr(ρ)I + tr(Xρ)X + tr(Y ρ)Y + tr(Zρ)Z) . (5)
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Table 5: Hardware-specific noise model
can achieve best accuracy.

Use noise model of → Santiago Yorktown Lima
Inference on ↓

Santiago 0.90 0.55 0.91
Yorktown 0.41 0.55 0.5
Lima 0.76 0.76 0.89

Table 6: MNIST-2 accuracy with noise-adaptive com-
pilation enabled (Qiskit optimization level=3).

Method Santiago Yorktown Belem Athens

Baseline 0.68 0.83 0.83 0.54
+Norm 0.87 0.86 0.91 0.51
+Noise & Quant 0.92 0.92 0.91 0.93

If we denote Ω =
∑
k O
†
kZOk, we obtain

Ez =
1

2
tr(Ω) +

1

2
tr(XΩ)tr(Xρ) +

1

2
tr(Y Ω)tr(Y ρ) +

1

2
tr(ZΩ)tr(Zρ). (6)

Notice that tr(Ω) = 0 and tr(Zρ) = E∗z . We can set γ = 1
2 tr(ZΩ) ∈ [−1, 1] and βρ =

1
2 tr(XΩ)tr(Xρ) + 1

2 tr(Y Ω)tr(Y ρ). We arrive at the linear map as desired.

A.3 OPEN-SOURCED QNN LIBRARY

To accelerate QNN model training, we build a PyTorch library named torchquantum. Its APIs
are implemented similar to existing operations in PyTorch. So it makes quantum circuit construction
as easy as a standard neural network model. It supports all common quantum gates. The state vector
and unitary matrix of each gate are implemented with a native torch.Tensor data type. The
quantum simulation is achieved with complex-valued differentiable matrix multiplication operators
such as torch.bmm.

Compared with existing training frameworks such as PennyLane (Bergholm et al., 2018), it has
several unique advantages: (1) It supports training in batch mode to accelerate training, while Pen-
nyLane cannot support batched training. (2) It supports dynamic and static computational graphs.
Dynamic mode simulates each gate individually, so the state vector after each gate can be obtained
for easy debugging. Static mode optimizes tensor network simulation by fusing the unitary of multi-
ple gates before applying to the state vector, reducing the computation amount. (3) With PyTorch’s
GPU acceleration support, all the simulations can be accelerated with GPUs. PyTorch’s native auto-
matic differentiation can be applied to train the gate parameters. (4) It supports easy extraction of the
noise models from QC device providers and can perform noise injection during the training. (5) It
supports easy conversion between PyTorch QNN model and IBM Qiskit QuantumCircuit, such that
we can perform end-to-end training-to-deployment flow. It contains multiple ready-to-use circuit
templates such as random and strongly-entangled layers. All the steps in RoQNN are implemented
with the torchquantum. The library has great potential to accelerate research in parameterized
QC, especially for QNN models and Variational Quantum Eigensolver (VQE), etc.

We include the library within the supplementary materials. It can also be directly accessed with this
anonymous link.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 IMPORTANCE OF HARDWARE-SPECIFIC NOISE MODEL.

We train three QNN models for Fashion-2 with the same architecture but different noise models
from 3 devices and then deploy each model. Results in Table 5 show a diagonal pattern: the best
accuracy is achieved when the noise model and inference device are the same. This is due to various
noise magnitude and distribution on different devices. For instance, the gate error of Yorktown is
5× larger than Santiago, so using Yorktown noise information for model running on Santiago is too
large. Therefore, a hardware-specific noise model is necessary for proper noise injection. However,
this also marks the limitation of this work, as repeated training may be required when the noise
model is updated. A future direction is to explore how to finetune already trained QNN for fast
adaption to a new noise setting, thus reducing the marginal cost.

A.4.2 COMPATIBILITY WITH EXISTING NOISE-ADAPTIVE COMPILATION.

We further show the compatibility of RoQNN with state-of-the-art noise-adaptive quantum compila-
tion techniques. Specifically, we set the optimization level of Qiskit compiler to the highest 3, which
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Table 7: Effect of RoQNN on fully quantum models.

IBMQ Machine Model Method MNIST-4 Fashion-4 Vowel-4 MNIST-2 Fashion-2 Cifar-2

Santiago 3 Layer Baseline 0.64 0.78 0.41 0.94 0.89 0.59
RoQNN 0.78 0.82 0.53 0.96 0.90 0.58

Santiago 6 Layer Baseline 0.61 0.37 0.22 0.51 0.52 0.52
RoQNN 0.62 0.69 0.22 0.84 0.89 0.56

Yorktown 3 Layer Baseline 0.49 0.53 0.4 0.88 0.85 0.51
RoQNN 0.55 0.66 0.42 0.9 0.91 0.55

Yorktown 6 Layer Baseline 0.22 0.33 0.26 0.73 0.80 0.54
RoQNN 0.42 0.35 0.25 0.78 0.80 0.52

Belem 3 Layer Baseline 0.53 0.60 0.37 0.64 0.81 0.51
RoQNN 0.58 0.42 0.39 0.93 0.85 0.55

Belem 6 Layer Baseline 0.27 0.18 0.21 0.54 0.48 0.43
RoQNN 0.43 0.31 0.22 0.54 0.54 0.52

Table 8: Effect of number of intermediate measurements.

Task 1 Block 2 Blocks 3 Blocks 6 Blocks
× 6 Layers × 3 Layers × 2 Layers × 1 Layer

MNIST-4 0.62 0.74 0.71 0.66
Fashion-4 0.69 0.82 0.78 0.68

enables noise-adaptive qubit mapping and instruction scheduling. Then we inference the RoQNN
trained model and compare the accuracy of MNIST-2 in Table 6. With noise-adaptive compilation,
the accuracy of baseline models is improved. While on top of that, the RoQNN can still provide
over 10% accuracy improvements, demonstrating the extensive applicability of our methods.

A.4.3 EXPERIMENTS ON FULLY QUANTUM MODELS

For the results in Section 4, the QNN models contain multiple blocks. Here we further experiment on
fully quantum models which only contains one single block to show the strong generality of RoQNN
as in Table 7. We select two fully quantum models, with three and six U3+CU3 layers, respectively,
and experiment with six tasks on two machines. We apply the post-measurement normalization and
quantization to the measurement outcomes of the last layer and use noise factor 0.5 and quantization
level 6. No intermediate measurements are required. Our methods can still outperform baselines
by 7.4% on average. Therefore, The noise injection can be applied to different kinds of variational
quantum circuits, no matter whether the output of one layer is measured and passed to the next
layer. Furthermore, the post-measurement normalization and quantization can also benefit various
quantum circuits because they reduce the noise impact on measurement outcomes.

A.4.4 EXPERIMENTS ON EFFECT OF NUMBER OF INTERMEDIATE MEASUREMENTS

We also explore under the same number of parameters whether a fully quantum model is the best
choice in the NISQ era. There exists a tradeoff on the number of intermediate measurements as in
Table 8. More measurements mean less noise impact because we can perform post-measurement
normalization and quantization on measurement outcomes. However, measurements will collapse
the state vector in the large Hilbert space back to the small classical space, hurting the model capac-
ity. We perform experiments on the IBMQ-Santiago machine and find there exists a sweet spot to
achieve the highest deployment accuracy: the best model contains 2 blocks and each has 3 layers.

Furthermore, we show direct accuracy comparisons between the original (with measurements in
between) QNN and fully-quantum QNN in Table 9. In each row, they have exactly the same dataset,
same hardware. They have nearly the same architecture: same encoder/measurement, same gate
sets, same layers, same number of parameters; the only difference is whether being measured and
encoded back to quantum in the middle.
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Table 9: Direct comparison between QNN models with measurement in between and fully-quantum
QNN models.

Machine Task Fully-Quantum (6 Layers) Original (2 Blocks × 3 Layers)

Santiago MNIST-4 0.62 0.74
Santiago Fashion-4 0.69 0.82
Santiago MNIST-2 0.84 0.86
Belem MNIST-4 0.43 0.37
Belem Fashion-4 0.31 0.34
Belem MNIST-2 0.54 0.60

Table 10: Accuracy gap between evaluation using noise model and real QC.

Machine Model Method MNIST-4 Fashion-4 Vowel-4 MNIST-2 Fashion-2 Cifar-2

Santiago 2 Blocks
× 12 Layer

Noise model 0.73 0.74 0.51 0.95 0.92 0.65
Real QC 0.68 0.75 0.48 0.94 0.88 0.59

Yorktown 2 Blocks
× 2 Layer

Noise model 0.68 0.7 0.44 0.92 0.90 0.59
Real QC 0.62 0.65 0.44 0.93 0.86 0.60

Belem 2 Blocks
× 6 Layer

Noise model 0.64 0.72 0.41 0.96 0.82 0.64
Real QC 0.58 0.62 0.41 0.88 0.8 0.61

From the experimental results, we can see that under the total 6-layer setting, the 2 Block x 3 Layer
can have better accuracy in most cases. This is because we perform normalization and quantization
in the middle that can mitigate the noise impacts.

We also would like to emphasize that how to design the best architecture is not the main focus of
our work. RoQNN is architecture-agnostic and can be applied to various architectures to improve
their robustness on real QC devices, as illustrated in paper Table 2.

A.4.5 ACCURACY GAP BETWEEN USING NOISE MODEL AND REAL QC

To demonstrate the reliability of noise models, we show the accuracy gap of QNN models evaluated
with noise model and on real QC as in Table 10. We can see that the accuracy gaps are typically
smaller than 5%, indicating high reliability of noise models.

A.4.6 ACCURACY IMPROVEMENTS COMPARISON AS NUMBER OF CLASSES INCREASES

Since we have different tasks with various number of classes, we compare the average accuracy
improvements between them in Table 11. We can see that the relative accuracy improvement on
10-class (230%) is significantly higher than 4-class and 2-class. That of 4-class is also higher than
2-class. To improve the same absolute accuracy, it is clearly more difficult on a 10-class task than
on a 2-class task. So RoQNN is highly effective on 10-class tasks.

A.4.7 EXPERIMENTS ON USING VALIDATION SET STATISTICS FOR TEST SET

If the test batch size is small for the deployment on real QC hardware, then the statistics may not
be accurate enough for post-measurement normalization. In this case, we can profile the statistics
of the validation set on real hardware ahead of time and then use the validation set mean and std to
normalize the test set measurement outcomes.

We experiment with three tasks, each on three quantum devices. We show the mean and std of
measurement outcomes of each qubit on the validation set and test set as in Table 12. We can
see that the statistics of validation and test sets are similar. The last column of Table 12 shows
the accuracy of test set using statistics of the test set itself and validation set, respectively. In 9
benchmarks, the accuracy of two settings is very close. The average accuracy of using test set stats
is 0.67; using validation set stats is 0.65.
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Table 11: Improvements are still significant as the number of classes increases.

Task Average Accuracy Baseline RoQNN Absolute Improvement Relative Improvement

2-classification 0.58 0.76 0.28 48%
4-classification 0.31 0.57 0.26 84%
10-classification 0.1 0.33 0.23 230%

Table 12: Statistics of test and validation set; Accuracy of test set using test stats and validation stats.

Task Stats MEAN STD Accuracy

Fashion-4-Santiago Test Stats [ 0.0469, 0.0025, -0.0581, -0.0191] [0.0868, 0.0496, 0.1021, 0.1152] 0.75
Valid Stats [ 0.0679, 0.0025, -0.0519, -0.0473] [0.0915, 0.0448, 0.0884, 0.1114] 0.70

Fashion-4-Yorktown Test Stats [-0.0396, 0.0478, 0.0995, 0.1375] [0.1279, 0.3368, 0.1761, 0.1538] 0.65
Valid Stats [-0.0362, 0.0771, 0.0965, 0.1535] [0.1230, 0.3233, 0.1835, 0.1584] 0.65

Fashion-4-Belem Test Stats [ 0.1118, 0.0075, 0.0901, -0.0005] [0.0868, 0.1511, 0.1391, 0.2039] 0.62
Valid Stats [ 0.1508, -0.0130, 0.0533, 0.0478] [0.0882, 0.1298, 0.1315, 0.1401] 0.53

Vowel-4-Santiago Test Stats [0.1091, 0.0526, 0.0290, 0.2172] [0.0551, 0.0260, 0.0554, 0.0422] 0.48
Valid Stats [0.1042, 0.0698, 0.0458, 0.1951] [0.0418, 0.0226, 0.0443, 0.0362] 0.43

Vowel-4-Yorktown Test Stats [ 0.0900, -0.3700, -0.2524, 0.1645] [0.0997, 0.0580, 0.0663, 0.1198] 0.44
Valid Stats [ 0.0841, -0.3869, -0.2948, 0.1736] [0.0946, 0.0651, 0.0615, 0.1199] 0.41

Vowel-4-Belem Test Stats [0.0115, 0.0800, 0.1703, 0.1775] [0.0171, 0.0411, 0.0518, 0.0293] 0.41
Valid Stats [-0.0213, 0.0459, 0.1930, 0.1628] [0.0145, 0.0335, 0.0478, 0.0263] 0.40

MNIST-2-Santiago Test Stats [-0.0581, -0.0657, 0.0088, 0.0170] [0.0737, 0.1090, 0.1561, 0.1351] 0.94
Valid Stats [-0.0739, 0.0001, -0.0113, 0.00239] [0.0666, 0.0840, 0.1468, 0.1167] 0.95

MNIST-2-Yorktown Test Stats [ 0.0892, -0.0007, 0.0548, 0.0485] [0.1281, 0.3501, 0.2100, 0.2975] 0.93
Valid Stats [0.0704, 0.0536, 0.0204, 0.1043] [0.1377, 0.3813, 0.2596, 0.2955] 0.91

MNIST-2-Belem Test Stats [-0.0649, 0.1949, 0.0540, 0.1313] [0.0856, 0.1137, 0.1553, 0.1688] 0.88
Valid Stats [-0.0540, 0.2074, 0.0744, 0.1872] [0.0561, 0.1008, 0.1345, 0.1103] 0.91

Average Test Stats — — 0.67
Valid Stats — — 0.65

Therefore, using the statistics of validation set can bring similar accuracy to using statistics of test
set itself; thus the RoQNN can support small test batch size using validation set stats.

A.5 HYPERPARAMETERS FOR MAIN RESULTS

Table 13 shows the detailed noise factor and quantization level for all the tasks in Figure 8.

Table 13: Hyperparameters of Figure 8.

Task, (noise-factor, quantization level) MNIST-4 Fashion-4 Vowel-4 MNIST-2 Fashion-2 Cifar-2

QNN (2 Blocks × 12 Layers) on Santiago (1, 3) (0.5, 6) (0.5, 6) (1, 4) (1, 6) (0.5, 6)
QNN (2 Blocks x 2 Layers) on Yorktown (0.5, 6) (1, 5) (0.1, 5) (0.5, 5) (0.1, 6) (0.1, 3)
QNN (2 Blocks x 6 Layers) on Belem (0.5, 5) (1.5, 6) (0.5, 3) (0.5, 5) (0.1, 4) (0.5, 6)
QNN (3 Blocks x 10 Layers) on Athens (0.1, 6) (0.1, 5) (0.5, 6) (0.1, 6) (0.5, 6) (0.1, 6)

Task, (noise-factor, quantization level) MNIST-10 Fashion-10

QNN (2 Blocks x 2 Layers) on Melbourne (0.1, 6) (0.1, 5)
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