
Under review as a conference paper at ICLR 2024

FINITE ELEMENT OPERATOR LEARNING FOR SOLVING
PARAMETRIC PDES WITHOUT LABELED DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial differential equations (PDEs) underlie our understanding and prediction of
natural phenomena across numerous fields, including physics, engineering, and
finance. However, solving parametric PDEs is a complex task that necessitates
efficient numerical methods. In this paper, we propose a novel approach for solving
parametric PDEs using a Finite Element Operator Network (FEONet). Our pro-
posed method leverages the power of deep learning in conjunction with traditional
numerical methods, specifically the finite element method, to solve parametric
PDEs in the absence of any paired input-output training data. We demonstrate the
effectiveness of our approach on several benchmark problems and show that it out-
performs existing state-of-the-art methods in terms of accuracy, generalization, and
computational flexibility. Our FEONet framework shows potential for application
in various fields where PDEs play a crucial role in modeling complex domains
with diverse boundary conditions and singular behavior. Furthermore, we provide
theoretical convergence analysis to support our approach, utilizing finite element
approximation in numerical analysis.

1 INTRODUCTION

Solving partial differential equations (PDEs) is vital as they serve as the foundation for understanding
and predicting the behavior of a range of natural phenomena Courant & Hilbert (1953); Bender (2000).
From fluid dynamics, heat transfer, to electromagnetic fields, PDEs provide a mathematical framework
that allows us to comprehend and model these complex systems Gershenfeld & Gershenfeld (1999);
Lin & Segel (1988). Their significance extends beyond the realm of physics and finds applications in
fields such as finance, economics, and computer graphics Simon et al. (1994); Mortenson (1999). In
essence, PDEs are fundamental in advancing our understanding of the world around us and have a
broad impact across various industries and fields of study.

Numerical methods are essential for approximating solutions to PDEs when exact solutions are
unattainable. This is especially significant for complex systems that defy solutions using traditional
methods Burden et al. (2015); Atkinson (1991). Various techniques, such as finite difference, finite
element, and finite volume methods, are utilized to develop these numerical methods (Larson &
Bengzon, 2013; Strikwerda, 2004; LeVeque, 2002). In particular, the finite element method (FEM) is
widely employed in engineering and physics, where the domain is divided into small elements and the
solution within each element is approximated using polynomial functions. The mathematical analysis
of the FEM has undergone significant development, resulting in a remarkable enhancement in the
method’s reliability. The FEM is particularly advantageous in handling irregular geometries and
complex boundary conditions, making it a valuable tool for analyzing structures, heat transfer, fluid
dynamics, and electromagnetic problems (Zienkiewicz & Taylor, 2000; Hughes, 2000). However, it
is important to note that the implementation of numerical methods often comes with a significant
computational cost.

The use of machine learning in solving PDEs has gained significant traction in recent years. By
integrating deep neural networks and statistical learning theory into numerical PDEs, a new field
known as scientific machine learning has emerged, presenting novel research opportunities. The
application of machine learning to PDEs can be traced back to the 1990s when neural networks
were employed to approximate solutions (Lagaris et al., 1998). More recently, the field of physics-
informed neural networks (PINNs) has been developed, where neural networks are trained to learn

1

Under review as a conference paper at ICLR 2024

the underlying physics of a system, enabling us to solve PDEs and other physics-based problems
(Lu et al., 2021b; Karniadakis et al., 2021; Yang et al., 2021; Meng et al., 2020; Raissi et al., 2019).
Despite their advantages, these approaches come with limitations. One prominent drawback of PINN
methods is that they are trained on a single instance of input data, encompassing initial conditions,
boundary conditions, and external force terms. As a consequence, if the input data changes, the entire
training process must be repeated, posing challenges in making real-time predictions for varying
input data. This limitation restricts the applicability of PINNs in dynamic and adaptive systems where
the input data is subject to change.

Operator learning, a recent research area, tackles the challenge by using data-driven methods to
learn mathematical operators governing a physical system for solving parametric PDEs (Lu et al.,
2021a; Li et al., 2021a; Wang et al., 2021; Brandstetter et al., 2022; Lienen & Günnemann, 2022;
Lu et al., 2022; Fanaskov & Oseledets, 2022; Lee et al., 2023). These methods allow us to make
a fast prediction of solution in real-time whenever the given PDE data changes, which offers the
completely new framework. However, these methods rely on training data for supervised learning
that consists of pre-computed (either analytically or numerically) pairs of PDE parameters (e.g.,
external force, boundary condition, coefficients, initial condition) and their corresponding solutions.
In general, generating a reliable training dataset requires extensive numerical computations, which
can be computationally inefficient and time-consuming. Obtaining a sufficiently large dataset is also
challenging, especially for systems with complex geometries or nonlinear equations. Additionally,
using neural networks as the solution space poses challenges in imposing boundary values and can
lead to less accurate solutions. Researchers are actively working on developing methods to enhance
the efficiency and accuracy of these data-driven approaches Goswami et al. (2022a).

To address the aforementioned limitations, this paper proposes a novel approach for solv-
ing diverse parametric PDEs. Instead of requiring a training dataset of solutions, we intro-
duce a new method to learn the coefficients. Specifically, we present the Finite Element
Operator Network (FEONet) that utilizes the finite element approximation to learn the solu-
tion operator, eliminating the need for solution datasets to address various parametric PDEs.

Figure 1: Domain triangulation for three different com-
plex geometries.

In the FEM framework, the numerical so-
lution is approximated by the linear com-
bination of nodal coefficients, αk, and
the nodal basis, ϕk(x). The nodal basis
in the FEM consists of piecewise polyno-
mials defined by the finite set of nodes of
a mesh, which exhibit both near orthog-
onality and local support such that

uh(x) =
∑

αkϕk(x), x ∈ Rd, (1)

where uh is the FEM solution for the given PDEs. Motivated by (1), the FEONet is able to predict
numerical solutions to the PDEs when given the initial conditions, external forcing functions, or
PDE coefficients as inputs. As the neural network only predicts the nodal coefficients, this approach
eliminates the need for extensive numerical computations to generate a large dataset and also allows
for real-time predictions for varying input data. Therefore, the FEONet can learn multiple instances of
the solutions of PDEs, making it a versatile approach for solving different types of PDEs in complex
domains; see e.g. Figure 1. The loss function of the FEONet is designed based on the residual
quantity of the finite element approximation, similar to the FEM Ciarlet (2002); Brenner & Scott
(2008). This allows the FEONet to accurately approximate the solutions of PDEs, while also ensuring
that the boundary conditions are exactly satisfied. To construct an approximation for the solution of
PDEs, the FEONet borrows a framework from the FEM. This approach involves inferring coefficients,
denoted as α̂k, which are then used to construct the linear combination

∑
α̂kϕk to approximate the

solution of PDEs. Since each basis function satisfies the exact boundary condition, the predicted
solution will also satisfy the exact boundary condition. Additionally, since the high-order FEM is
available to generate our framework in (1), the predicted numerical solution is expected to yield
relatively small errors compared to other machine learning-based approaches. It is noteworthy that
due to the intrinsic structure of the proposed FEONet scheme, we do not need any paired input-output
training data (as we adopted the weak residual as a loss) and hence the model can be trained in an
unsupervised manner.

2

Under review as a conference paper at ICLR 2024

Another key contribution of this study is to introduce a novel learning architecture designed to
accurately solve convection-dominated singularly perturbed problems involving strong boundary
layer phenomena. These types of problems pose significant challenges for traditional numerical
methods due to sharp transitions inside thin layers caused by a small diffusive parameter. By adapting
theory-guided methods Chekroun et al. (2020), the network effectively captures the behavior of
boundary layers, an area that has been underexplored in recent machine-learning approaches.

The main contributions of the paper are summarized as follows:

• The FEONet, as shown in Figure 3, enables the learning of solutions for multiple instances of
parametric PDEs without requiring the input-output training dataset. This is the significant
challenge that many existing methods face.

• Compared to existing methods similar to our approach, the FEONet offers significantly
greater computational flexibility. For instance, it can solve PDEs on domains with complex
geometry, as depicted in Figure 4, across diverse settings. Moreover, any form of PDE data
(forcing, coefficients, boundary conditions, initial conditions) can be used as input to the
operator network. Additionally, our method uniquely enforces exact boundary conditions,
both Dirichlet and Neumann. This is a challenge to accomplish with other neural network-
based methods, as shown in Table 1.

• Since our method is rooted in numerical analysis, we can apply established techniques from
numerical methods. For example, complex scenarios, such as the challenging boundary layer
problem significant in engineering contexts, can be effectively addressed using enriched
basis functions (Figure 5).

• The FEONet is supported by rigorous theoretical foundations through finite element approxi-
mation on P1 and P2 elements, as well as novel convergence analysis for approximation and
generalization errors (Theorem 3.1). Moreover, it is anticipated to exhibit low generalization
errors.

2 RELATED WORKS

Physics-informed neural network (PINN). The PINNs, developed by Raissi et al. (2019), utilize
a neural network to efficiently solve PDEs with little or no data. The key feature of PINN is its ability
to minimize PDE residual loss by enforcing physical constraints, with output fields automatically
differentiated with respect to input coordinates. PINNs have been successfully applied in various
fields such as material science and biophysics Goswami et al. (2022b); Alber et al. (2019). However,
one of the key limitations of the PINN method is that it is trained on a single set of input data, which
includes initial conditions, boundary conditions, and external force terms.

Operator learning. Operator learning utilizes a dataset of input-output pairs obtained from an
existing solver to train a model to learn the solution operator Bhatnagar et al. (2019); Guo et al.
(2016); Khoo et al. (2017); Zhu & Zabaras (2018). Operator learning aims to improve the efficiency
and accuracy of solving PDEs by learning the underlying patterns and relationships in the input-output
pairs, allowing for real-time predictions for varying input data Hwang et al. (2022). Kovachki et al.
(2021) proposed an iterative neural operator structure to learn the solution operator of PDEs. Based
on the universal approximation theorem for the operator, Lu et al. (2021a) developed a Deep operator
network (DeepONet) architecture. In recent works Brandstetter et al. (2022); Lienen & Günnemann
(2022); Pfaff et al. (2021); Li et al. (2020); Boussif et al. (2022), a message-passing neural PDE
solver capable of handling diverse problem properties has been developed. However, this approach
faces challenges such as the requirement for large amounts of training data, limited generalization
ability, and extrapolation to unseen conditions. Researchers are currently addressing these challenges
by incorporating physics or PDE constraints and designing more expressive models.

Physics-informed operator learning. The integration of PINNs and operator learning has led to
the development of innovative methods Goswami et al. (2022a); Zhu et al. (2019) such as the Physics-
informed neural operator (PINO) Li et al. (2021b) and Physics-informed DeepONet (PIDeepONet)
Wang et al. (2021). These methods aim to capitalize on the strengths of both PINNs and operator
learning by embedding physical equations in the loss function of the neural operator. However, there

3

Under review as a conference paper at ICLR 2024

are certain limitations to these methods, such as the inability to effectively address the boundary
layer issue, which plays a crucial role in real-world problems. Additionally, PIDeepONet has been
observed to have relatively high generalization errors when no training data is available. Furthermore,
PINO has mainly been applied to problems with a square-shaped domain.

3 METHOD

In this section, we present our proposed method, the FEONet, for solving parametric PDEs. We begin
by providing a concise overview of the FEMs, which serve as the foundation of our approach. Next, we
introduce the FEONet by demonstrating how neural network techniques can be seamlessly integrated
into FEMs to solve the parametric PDEs. Throughout our method description and experiments, we
focus on the PDEs of the following form: for uniformly elliptic coefficients a(x) and ε > 0,

−εdiv (a(x)∇u) + F(u) = f in D. (2)
Here F can be either linear or nonlinear, and both cases will be covered in the experiments performed
in Section 4. As will be described in more detail later, we shall propose an operator-learning-type
method that can provide real-time solution predictions whenever the input data of the PDE changes.

3.1 FINITE ELEMENT METHOD (FEM)

The FEM is a general class of techniques for the numerical solution of PDEs. FEM is based on the
variational formulation of the given PDE (2): find u ∈ V satisfying

B[u, v] := ε

∫
D

a(x)∇u · ∇v dx+

∫
D

F(u)v dx =

∫
D

fv dx =: ℓ(v) for all v ∈ V, (3)

where the solution and test function space V is usually chosen to be an infinite-dimensional function
space. In the theory of FEM, the first step is to define a triangulation of the given domain D ⊂ Rd.
If d = 1 and D = [a, b] for some a, b ∈ R, we set a = x0 < x1 < x2 < · · · < xK = b and
each interval (1-simplex) [xi−1, xi] defines an element. For d = 2, the triangulation is referred
to as a tessellation of D into a finite number of closed triangles (2-simplex) Ti, i = 1, · · · ,K,
whose interiors are pairwise disjoint, and for i ̸= j with Ti ∩ Tj is nonempty, Ti ∩ Tj is either a
common vertex or a common edge of Ti and Tj . In this case, each triangle defines an element and
the vertices {xi} of triangles are called nodes (Figure 1). The triangulation in higher dimension
d ≥ 3 can be defined in a similar manner using d-simplex as an element. Letting hT be the
largest edge of a triangle T , we define a finite element parameter h > 0 as the longest among
the hT . In addition, let us denote by Sh, the space of all continuous functions vh defined on
D such that the restriction of vh to an arbitrary triangle is a polynomial. Then we define our
finite-dimensional ansatz space as Vh = Sh ∩ V . We shall denote the set of all vertices in the
triangulation by {xi}, and define the so-called nodal basis {ϕj} for Vh, defined by ϕj(xi) = δij .

Figure 2: Shape of nodal basis functions and ap-
proximation of y = sinx for (a) P1-element and
(b) P2-element.

If we use piecewise linear nodal basis functions,
we call it the P1-element method, while the
adoption of piecewise quadratic polynomials
is called as the P2-element method (Figure 2).
Note that the dimension of Vh depends on the
triangulation of D, and hence, depends also on
the finite element parameter h > 0.

The idea of the FEM is to approximate V with
a finite-dimensional subspace Vh above, gener-
ated by the basis functions {ϕ1, ϕ2, · · · , ϕN(h)},
so that the given problem becomes numerically
feasible. More precisely, we aim to compute
the approximate solution uh ∈ Vh based on the,
so-called, Galerkin approximation

B[uh, vh] = ℓ(vh) for all vh ∈ Vh. (4)
If we write the finite element solution

uh =

N(h)∑
k=1

αkϕk, αi ∈ R, (5)

4

Under review as a conference paper at ICLR 2024

Figure 3: Schematic diagram of the Finite Element Operator Network (FEONet).

the Galerkin approximation (4) is transformed into the linear algebraic system
Aα = F with Aik := B[ϕk, ϕi] and Fi := ℓ(ϕi), (6)

where the matrix A ∈ RN(h)×N(h) is invertible provided that the given PDEs have some suitable
structure. Therefore, we can determine the coefficients {αk}N(h)

k=1 by solving the system of linear
equations (6), and consequently, produce the approximate solution uh ∈ Vh as defined in (5).

Once we compute the approximate solution uh of u, we can measure how close uh ∈ Vh is to
u ∈ V . If the given PDE has some good structure, the weak solution u is sufficiently smooth, and
the triangulation is reasonable, we can derive the following error estimates: for some constants C1,
C2 > 0 independent of h > 0, we have

(P1-element method) ∥u− uh∥L2(D) ≤ C1h
2,

(P2-element method) ∥u− uh∥L2(D) ≤ C2h
3.

(7)

For a detailed discussion of the error analysis, see, for example, Theorem 5.4.8 of Brenner & Scott
(2008). From the estimates (7), we can confirm that the approximate solution uh computed by the
FEM converges to the true solution u as h → 0 and the convergence rate for the P1 method is 2,
while the P2-method achieves the higher convergence rate 3.

3.2 FINITE ELEMENT OPERATOR NETWORK (FEONET)

The FEONet is based on the FEM described in the previous section. In our scheme, an input for the
neural network is the data for the given PDEs. In this paper, we choose external force as a prototype
input feature. Note, however, that the same scheme can also be developed with other types of data,
e.g., boundary conditions, diffusion coefficients or initial conditions for time-dependent problems.
See, for example, Appendix D.4 where extensive experiments were performed addressing the cases
of another type of input data. For this purpose, the external forcing terms are parametrized by the
random parameter ω contained in the (possibly high-dimensional) parameter space Ω. For each
realization f(x;ω) (and hence for each load vector F (ω) defined in (6)), instead of computing the
coefficients from the linear algebraic system (6), we approximate the coefficients α by a deep neural
network. More precisely, these input features representing external forces pass through the deep
neural network and the coefficients {α̂k} are generated as an output of the neural network. We then
reconstruct the solution

ûh(x;ω) =

N(h)∑
k=1

α̂k(ω)ϕk(x). (8)

For the training, we use a residual of the variational formulation (4) and define the loss function by
summing over all basis functions: for randomly chosen parameters ω1, · · · ,ωM ∈ Ω,

LM (ûh) =
1

M

M∑
m=1

N(h)∑
i=1

|B[ûh(x;ωm), ϕi(x)]− ℓ(ϕi(x);ωm)|2. (9)

For each training epoch, once the neural network parameters are updated in the direction of minimizing
the loss function (9), the external force f(x;ω) passes through this updated neural network to generate
more refined coefficients, and this procedure is repeated until the sufficiently small loss is achieved.
A schematic diagram of the FEONet algorithm is depicted in Figure 3.

5

Under review as a conference paper at ICLR 2024

3.3 CONVERGENCE OF FEONET

We address a convergence result of the FEONet which provides theoretical justification for the
proposed method. As outlined in the previous section, the proposed method is based on the FEM and
the finite element approximation uh in (5) can be considered as an intermediate solution between the
true solution u of (3) and the approximate solution ûh predicted by the FEONet. Consequently, in
order for error analysis, we simply split the error u− ûh into two parts; namely,

u− ûh = (u− uh) + (uh − ûh) =: (I) + (II). (10)

The first error (I) can be controlled via the classical theory of FEM, e.g. through the error estimate (7).
The second error (II) is a core part which needs a novel theoretical investigation. The parameters of
ûh =: ûh,n,M concerning the convergence is the parameter representing neural network architecture
and the number of sampling points ω ∈ Ω which we denote by n ∈ N and M ∈ N respectively.
Here, larger n ∈ N implies more approximation power of neural networks. We will prove the
following theorem concerning the second error (II), which guarantees that our method is reliable
and the theorem forms the theoretical foundation of the proposed numerical scheme. The precise
mathematical statement and proof can be found in Theorem B.7.
Theorem 3.1. If we let uh be the finite element approximation of the true solution u and ûh,n,M be
the approximate solution computed by the FEONet, then we have

Eω

[
∥uh − ûh,n,M∥2L2(D)

]
→ 0 as n, M → ∞. (11)

It is noteworthy that ûh shares some interesting properties with uh. As it will be made clear in the
next section, we may conclude from experiments that ∥(I)∥ ≫ ∥(II)∥, and the total error ∥u− ûh∥ is
sufficiently close to the finite element error ∥(I)∥. Therefore, as we can see from Figure 6, for large
enough n, M ∈ N, ∥u− ûh∥ has the convergence rates close to 2 and 3 (for P1 and P2 respectively)
with respect to h > 0, which agrees well with the theoretical result (7) for ∥(I)∥.

4 NUMERICAL EXPERIMENTS

In this section, we demonstrate the experimental results of the FEONet across various settings for
PDE problems. We randomly generate 3000 input samples for external forces and train the FEONet
in an unsupervised manner without the usage of pre-computed input-output (f, u) pairs. We then
evaluate the performance of our model with another randomly generated test set consisting of 3000
pairs of f and the corresponding solutions u. For this test data, we employed the FEM with a
sufficiently fine mesh discretization to ensure that the numerical solutions can be considered as true
solutions. The forcing term f is randomly generated. While there are other operator-learning-based
methods, such as PINO (Li et al., 2021b), that can be trained without input-output data pairs, they
often face limitations when dealing with domains of complex shapes. A detailed comparison with
the results for PINO can be found in Appendix C.3. Consequently, our primary comparison will
be against DeepONet (Lu et al., 2021a), taking into account varying numbers of training data, and
PIDeepONet (Wang et al., 2021). The triangulation of domains and the generation of the nodal
basis for the FEM are performed using FEniCS (Alnaes et al., 2015; Logg et al., 2012). A detailed
description of the model’s hyperparameters and experimental setup can be found in Appendix D.

4.1 COMPARISON IN VARIOUS PDE PROBLEMS

To evaluate the computational flexibility of the FEONet, we conducted a sequence of experiments
covering diverse domains, boundary conditions, and equations.

Various domains. We consider the 2D convection-diffusion equation as

−ε∆u+ v · ∇u = f(x, y), (x, y) ∈ D,

u(x, y) = 0, (x, y) ∈ ∂D.
(12)

For our numerical experiments, we fixed the values of ε = 0.1 and v = (−1, 0) across various
domains D, which included a circle, a square with a hole, and a polygon (see Figure 1). The second to
fourth columns of Table 1 display the mean relative L2 errors of the test set for FEONet (w/o labeled

6

Under review as a conference paper at ICLR 2024

Table 1: Mean Rel. L2 test errors (×10−2) with standard deviations (×10−2) for the 3000 test set on
diverse PDE problems. Five training trials are performed independently. Domain I (circle), Domain
II (square with a hole), Domain III (polygon) with Eq. (12), BC I (Dirichlet), BC II (Neumann) with
Eq. (13), Eq I (second-order linear equation (14)) and Eq II (Burgers’ equation (15)).

Model (#Train data) Domain I Domain II Domain III BC I BC II Eq I Eq II

DON (supervised, w/30) 27.15±1.16 51.21±3.58 53.92±4.59 21.75±1.19 22.75±1.05 24.38±1.37 10.26±0.14

DON (supervised, w/300) 2.10±0.75 5.62±0.37 6.22±0.96 0.68±0.11 0.96±0.06 0.76±0.10 0.20±0.09

DON (supervised, w/3000) 0.69±0.17 4.75±0.75 6.20±1.00 0.53±0.36 0.33±0.09 0.33±0.27 0.24±0.13

PIDeepONet (w/o labeled data) 9.80±9.41 101.03±167.46 32.89±6.34 1.51±0.46 1.43±0.45 19.41±11.30 2.66±0.71

Ours (w/o labeled data) 1.24±0.00 1.76±0.03 0.51±0.00 0.13±0.01 0.32±0.03 0.13±0.01 0.54±0.07

data), PIDeepONet (w/o labeled data), and DeepONet (with 30/300/3000 input-output data pairs)
across various domains. When the DeepONet is trained with either 30 or 300 data pairs, FEONet
consistently surpasses them in terms of numerical errors. Notably, even when DeepONet is trained
with 3000 data pairs, FEONet achieves errors that are either comparable to or lower than those of
DeepONet. It’s noteworthy that in more intricate domains like Domain II and Domain III, both the
DeepONet (even with 3000 data pairs) and PIDeepONet find it challenging to produce accurate
predictions. Figure 4 demonstrates the solution profile, emphasizing that FEONet is more precise in
predicting the solution than both DeepONet and PIDeepONet, particularly in complex domains.

Various boundary conditions. We also tested the performance of each model, when the given
PDEs were equipped with either Dirichlet or Neumann boundary conditions:

−εuxx + bux = f(x), x ∈ D,

u(x) = 0 or ux(x) = 0, x ∈ ∂D,
(13)

where ε = 0.1 and b = −1. For the Neumann boundary condition, we add u to the left-hand side
of (13) to guarantee the uniqueness of the solution up to constant. The FEONet has an additional
significant advantage to make the predicted solutions satisfy the exact boundary condition, by selecting
the appropriate coefficients for the basis functions. Using the FEONet without any input-output
training data, we are able to obtain similar or slightly higher accuracy compared to the DeepONet
with 3000 training data, for both homogeneous Dirichlet or Neumann boundary conditions as shown
in Table 1.

Figure 4: Solution profiles for complex geometries.

Various equations. We performed
some additional experiments applying
the FEONet to the various equations: (i)
general second-order linear PDE with
variable coefficients defined as
−εuxx + b(x)ux + c(x)u = f(x),x ∈ D,

u(x) = 0, x ∈ ∂D,
(14)

where ε = 0.1, b(x) = x2 + 1 and
c(x) = x; and (ii) the Burgers’ equation
defined as
−uxx + uux = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D.
(15)

Since the Burgers’ equation is nonlinear, an iterative method is required for classical numerical
schemes including the FEM, which usually causes some computational costs. Furthermore, it is
more difficult than linear equations to obtain training data for nonlinear equations. One important
advantage of the FEONet is its ability to effectively learn the nonlinear structure without any training
data. Once the training process is completed, the model can provide accurate real-time solution
predictions without relying on iterative schemes. See Appendix D.6 for a detailed explanation of
the loss function for the nonlinear Burgers’ equation. The 7th and 8th columns of Table 1 highlight
the effectiveness of the FEONet, predicting the solutions with reasonably low errors for various
equations. Although the 8th column of Table 1 shows that the DeepONet with 3000 training data
has a lower error compared to our model, it demonstrates the strength of the FEONet that achieves a
similar level of accuracy even for the nonlinear PDE, that can be trained in an unsupervised manner.

7

Under review as a conference paper at ICLR 2024

Table 2: Comparisons of various deep-learning-based models for solving the singular perturbation
problem. Each model is trained five times independently.

Model Ours PINN DeepONet w/30 PIDeepONet
Requirement for labeled data No No Yes No
Multiple instance Yes No Yes Yes
Mean Rel. L2 test error±std 0.0132±0.0091 1.3827±0.7580 0.2303±0.0074 0.5713±0.0007

Figure 5: Input function f and the corresponding approximate solution u obtained by various
deep-learning-based methods for the singular perturbation problem with ε = 10−5.

Figure 6: Rel. L2 error of the
FEONet with respect to the num-
ber of elements.

Various input functions. FEONet can accommodate vari-
ous input functions, including diffusion coefficients (Figure
10), boundary conditions (Figure 11), and initial conditions
for time-dependent problems (Figure 12). This demonstrates
FEONet’s flexibility in adapting to a broad spectrum of input
function types, underscoring its versatility. For more details,
see Appendix D.4.

4.2 SINGULAR PERTURBATION PROBLEM

One of the notable advantages of the FEONet, which predicts
coefficients through well-defined basis functions, is its applica-
bility to problems involving singularly perturbed PDEs. This
is accomplished by incorporating additional basis functions
guided by theoretical considerations. For this we consider

−εuxx + bux = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D,
(16)

where ε ≪ 1. For the implementation, we assign the values of
b = −1 and ε = 10−5. For instance, in the right panel of Figure
5, the red dotted line (ground-truth) shows the solution profile
which produces a sharp transition near x = −1. To capture the
boundary layer, we utilize an additional basis function known
as the corrector function in mathematical analysis, defined as

ϕcor(x) := e−(1+x)/ε − (1− (1− e−2/ε)(x+ 1)/2), (17)

see Appendix D.7 for more detailed information regarding the derivation of the additional basis
function. By integrating the boundary layer element into the finite element space, we establish the
proposed enriched Galerkin space for utilization in the FEONet. As the corrector basis is incorporated
alongside the conventional nodal basis functions in the FEM, we also predict the additional coefficient
originating from the corrector basis. Note that the computational overhead remains minimal as the
enriched basis exclusively encompasses boundary elements. Table 2 summarizes the characteristics of
various operator learning models and the corresponding errors when solving the singularly perturbed
PDE described in (16). The performance of the FEONet in accurately solving boundary layer

8

Under review as a conference paper at ICLR 2024

Figure 7: Rel. L2 train and test error comparison between the FEONet and the DeepONet with 30
training data. Results are averaged over five independent training trials, and black bars indicate the
standard deviation.

problems surpasses that of other models, even without labeled data, across multiple instances. The
incorporation of a very small ε in the residual loss of the PDE makes operator learning challenging or
unstable when using PINN and PIDeepONet. In fact, neural networks inherently possess a smooth
prior, which can lead to difficulties in handling boundary layer problems. In contrast, FEONet
utilizes theory-guided basis functions, enabling the predicted solution to accurately capture the sharp
transition near the boundary layer. The PIDeepONet faces difficulties in effectively learning both
the residual loss and boundary conditions, while PINNs struggle to predict the solution (refer to
Figure 14). Figure 5 exhibits the results of operator learning for the singular perturbation problem.
As depicted in the zoomed-in graph of Figure 5, the FEONet stands out as the only model capable of
accurately capturing sharp transitions, whereas other models exhibit noticeable errors.

4.3 FURTHER EXPERIMENTS

Convergence rate. One of the intriguing aspects is that the theoretical results on the convergence
error rate of the FEONet (as presented in (7)) are also observable in the experimental results. Figure
6 shows the relationship between the test error and the number of elements, utilizing both P1 and P2
basis functions. In 1D problems, the convergence rate is approximately 2 for P1 basis functions and
2.9 for P2 basis functions. Meanwhile, in 2D problems, the convergence rate is approximately 2 for
P1 basis functions and 2.5 for P2 basis functions. These remarkable trends confirm the theoretical
convergence rates observed in the experimental results.

Generalization errors. Figure 7 displays a comparison of the training and test errors between
FEONet (w/o labeled data) and DeepONet (with 30 training data pairs) across different settings as
performed in Section 4 (Table 1). The disparity between the training error and the test error serves as
a reliable indicator of how effectively the models generalize the underlying phenomenon. As depicted
in Figure 7, the generalization error of FEONet is notably smaller in comparison to that of DeepONet
when trained with 30 data pairs.

5 CONCLUSION

In this paper, we introduce the FEONet, a novel deep learning framework that approximates nonlinear
operators in infinite-dimensional Banach spaces using finite element approximations. Our operator
learning method for solving PDEs is both simple and remarkably effective, resulting in significant
improvements in predictive accuracy, domain flexibility, and data efficiency compared to state-of-
the-art techniques. Furthermore, we demonstrate that the FEONet is capable of learning the solution
operator of parametric PDEs, even in the absence of paired input-output training data, and accurately
predicting solutions that exhibit singular behavior in thin boundary layers. Although the external
force was considered as the input function in the experiment, the FEONet can be easily extended
to operator learning for other input functions, such as boundary conditions, variable coefficients, or
initial conditions of time-dependent PDEs (see Appendix D.4). We are confident that the FEONet
can provide a new and promising approach to simulate and model intricate, nonlinear, and multiscale
physical systems, with a wide range of potential applications in science and engineering.

9

Under review as a conference paper at ICLR 2024

6 REPRODUCIBILITY STATEMENT

All the data utilized in this paper was generated using Fenics as explained in Appendix D.3. Experi-
ment details can be found in both the main text and the Appendix D. For reproducibility, we submit
the code for the most fundamental settings as supplemental material.

REFERENCES

Mark Alber, Adrian Buganza Tepole, William R Cannon, Suvranu De, Salvador Dura-Bernal,
Krishna Garikipati, George Karniadakis, William W Lytton, Paris Perdikaris, Linda Petzold, et al.
Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities
in the biological, biomedical, and behavioral sciences. NPJ digital medicine, 2(1):115, 2019.

M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells. The FEniCS project version 1.5. Archive of Numerical Software, 3, 2015.
doi: 10.11588/ans.2015.100.20553.

Kendall Atkinson. An introduction to numerical analysis. John wiley & sons, 1991.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: risk bounds and
structural results. J. Mach. Learn. Res., 3(Spec. Issue Comput. Learn. Theory):463–482, 2002.
ISSN 1532-4435. doi: 10.1162/153244303321897690. URL https://doi.org/10.1162/
153244303321897690.

Edward A Bender. An introduction to mathematical modeling. Courier Corporation, 2000.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525–545, 2019.

Oussama Boussif, Yoshua Bengio, Loubna Benabbou, and Dan Assouline. MAgnet: Mesh Agnostic
Neural PDE Solver. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=bx2roi8hca8.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message Passing Neural PDE Solvers.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=vSix3HPYKSU.

Susanne C Brenner and Ridgway Scott. The Mathematical Theory of Finite Element Methods.
Springer Science & Business Media, New York, 2008.

Richard L Burden, J Douglas Faires, and Annette M Burden. Numerical analysis. Cengage learning,
2015.

Mickaël D. Chekroun, Youngjoon Hong, and Roger Temam. Enriched numerical scheme for
singularly perturbed barotropic quasi-geostrophic equations. Journal of Computational Physics,
416:109493, 2020.

Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Society for Industrial and
Applied Mathematics, 2002. doi: 10.1137/1.9780898719208. URL https://epubs.siam.
org/doi/abs/10.1137/1.9780898719208.

Richard Courant and David Hilbert. Methods of Mathematical Physics. Interscience, New York, 2nd
edition, 1953. ISBN 978-0-471-50447-4. Translated from German: Methoden der mathematischen
Physik I, 2nd ed, 1931 [15].

10

https://doi.org/10.1162/153244303321897690
https://doi.org/10.1162/153244303321897690
https://openreview.net/forum?id=bx2roi8hca8
https://openreview.net/forum?id=bx2roi8hca8
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://epubs.siam.org/doi/abs/10.1137/1.9780898719208
https://epubs.siam.org/doi/abs/10.1137/1.9780898719208

Under review as a conference paper at ICLR 2024

G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals
Systems, 2(4):303–314, 1989. ISSN 0932-4194. doi: 10.1007/BF02551274. URL https:
//doi.org/10.1007/BF02551274.

Vladimir Fanaskov and Ivan Oseledets. Spectral Neural Operators. arXiv preprint arXiv:2205.10573,
2022.

Neil A Gershenfeld and Neil Gershenfeld. The nature of mathematical modeling. Cambridge
university press, 1999.

Giorgio Gnecco and Marcello Sanguineti. Approximation error bounds via Rademacher’s complexity.
Appl. Math. Sci. (Ruse), 2(1-4):153–176, 2008. ISSN 1312-885X.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep
neural operators networks. arXiv preprint arXiv:2207.05748, 2022a.

Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-informed
variational DeepONet for predicting crack path in quasi-brittle materials. Computer Methods
in Applied Mechanics and Engineering, 391:114587, 2022b. ISSN 0045-7825. doi: https://doi.
org/10.1016/j.cma.2022.114587. URL https://www.sciencedirect.com/science/
article/pii/S004578252200010X.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Youngjoon Hong and Chang-Yeol Jung. Enriched spectral method for stiff convection-dominated
equations. Journal of Scientific Computing, 74(3):1325–1346, 2018.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)
90009-T. URL https://www.sciencedirect.com/science/article/pii/
089360809190009T.

Thomas J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Dover Publications, 2000.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained
control problems using operator learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(4):4504–4512, Jun. 2022. doi: 10.1609/aaai.v36i4.20373. URL https://ojs.
aaai.org/index.php/AAAI/article/view/20373.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with artificial neural
networks. arXiv preprint arXiv:1707.03351, 2017.

Patrick Kidger and Terry Lyons. Universal Approximation with Deep Narrow Networks. In Jacob
Abernethy and Shivani Agarwal (eds.), Proceedings of Thirty Third Conference on Learning
Theory, volume 125 of Proceedings of Machine Learning Research, pp. 2306–2327. PMLR, 09–12
Jul 2020. URL https://proceedings.mlr.press/v125/kidger20a.html.

Seungchan Ko, Seok-Bae Yun, and Youngjoon Hong. Convergence analysis of unsupervised Legendre-
Galerkin neural networks for linear second-order elliptic PDEs, 2022.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

11

https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://www.sciencedirect.com/science/article/pii/S004578252200010X
https://www.sciencedirect.com/science/article/pii/S004578252200010X
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://ojs.aaai.org/index.php/AAAI/article/view/20373
https://ojs.aaai.org/index.php/AAAI/article/view/20373
https://proceedings.mlr.press/v125/kidger20a.html

Under review as a conference paper at ICLR 2024

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Mats G Larson and Fredrik Bengzon. The finite element method: theory, implementation, and
applications, volume 10. Springer Science & Business Media, 2013.

Jae Yong Lee, SungWoong CHO, and Hyung Ju Hwang. HyperDeepONet: learning operator with
complex target function space using the limited resources via hypernetwork. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=OAw6V3ZAhSd.

Randall J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press,
2002.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 6755–6766. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial
Differential Equations. In International Conference on Learning Representations, 2021a. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Zongyi Li, Hongkai Zheng, Nikola B. Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. CoRR, abs/2111.03794, 2021b. URL https://arxiv.org/abs/
2111.03794.

Marten Lienen and Stephan Günnemann. Learning the Dynamics of Physical Systems from Sparse
Observations with Finite Element Networks. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=HFmAukZ-k-2.

Chia-Chiao Lin and Lee A Segel. Mathematics applied to deterministic problems in the natural
sciences. SIAM, 1988.

A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations by the Finite
Element Method. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, 2021b.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
393:114778, 2022.

Xuhui Meng, Zhen Li, Dongkun Zhang, and George Em Karniadakis. PPINN: Parareal physics-
informed neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and
Engineering, 370:113250, 2020.

Michael E Mortenson. Mathematics for computer graphics applications. Industrial Press Inc., 1999.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=roNqYL0_XP.

12

https://openreview.net/forum?id=OAw6V3ZAhSd
https://openreview.net/forum?id=OAw6V3ZAhSd
https://proceedings.neurips.cc/paper_files/paper/2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf
https://openreview.net/forum?id=c8P9NQVtmnO
https://arxiv.org/abs/2111.03794
https://arxiv.org/abs/2111.03794
https://openreview.net/forum?id=HFmAukZ-k-2
https://openreview.net/forum?id=roNqYL0_XP

Under review as a conference paper at ICLR 2024

Allan Pinkus. Approximation theory of the MLP model in neural networks. In Acta numerica, 1999,
volume 8 of Acta Numer., pp. 143–195. Cambridge Univ. Press, Cambridge, 1999. doi: 10.1017/
S0962492900002919. URL https://doi.org/10.1017/S0962492900002919.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014. ISBN 978-1-10-705713-5.

Carl P Simon, Lawrence Blume, et al. Mathematics for economists, volume 7. Norton New York,
1994.

John C Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2004.

Martin J. Wainwright. High-dimensional statistics, volume 48 of Cambridge Series in Statis-
tical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019. ISBN
978-1-108-49802-9. doi: 10.1017/9781108627771. URL https://doi.org/10.1017/
9781108627771. A non-asymptotic viewpoint.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed DeepONets. Science Advances, 7(40):eabi8605, 2021.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed neural
networks for forward and inverse PDE problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

Bing Yu et al. The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366:415–
447, 2018.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

Olek C Zienkiewicz and Robert L Taylor. The Finite Element Method: Its Basis and Fundamentals.
Butterworth-Heinemann, 2000.

13

https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/9781108627771
https://doi.org/10.1017/9781108627771

Under review as a conference paper at ICLR 2024

A NOTATIONS

The list of notations used throughout the paper is provided in Table 3.

Table 3: Notations
Notation Meaning

u ground-truth solution of the given PDE (target function)
uh finite element solution of the given PDE
ûh = ûh,n,M solution predicted by the FEONet
h discretization parameter for the FEM
n number of learnable parameters in the neural network
M number of input samples
α true coefficients for the FEM basis
α̂ predicted coefficient by the FEONet
ϕcor corrector basis for the singular perturbation problem
B[·, ·] bilinear form of the variational form of the given PDE
ℓ(·) linear functional of the variational form of the given PDE
δij Kronecker delta
N set of natural numbers
R set of real numbers
D physical domain
Ω parametric domain
x (vector-valued) physical variable
ω (vector-valued) parametric random variable
div divergence operator
a(x), c(x) coefficients of PDEs
f(x,ω) external force on x ∈ D parametrized by ω ∈ Ω
L population loss of the FEONet
LM empirical loss of the FEONet
RM (G) Rademacher complexity of the function class G

B CONVERGENCE ANALYSIS OF FEONET

In this section, we shall provide the convergence analysis of the FEONet to establish the theoretical
justification of the proposed numerical scheme. In order to convey the idea of the proof clearly, we
will focus solely on self-adjoint equations with homogeneous Dirichlet boundary conditions:

−div (a(x)∇u) + c(x)u = f(x) in D,

u = 0 on ∂D,
(18)

where the coefficient a(x) is uniformly elliptic and c(x) ≥ 0. Note, however, that our analysis can
be extended to more general cases in a straightforward manner.

B.1 MATHEMATICAL FORMULATION

As described before, the input of neural networks is an external forcing term f , which is parametrized
by the random parameter ω in the probability space (Ω,G,P). In this section, we will regard f(x;ω)
as a bivariate function defined on D × Ω, and assume that

f(x;ω) ∈ C(Ω;L1(D)) :=

{
f : Ω → L1(D) : sup

ω∈Ω

∫
D

|f(x;ω)|dx < ∞
}
. (19)

For each ω ∈ Ω, the external force f(x;ω) is determined, and the corresponding weak solution is
denoted by u(x;ω) which satisfies the following weak formulation:

B[u, v] :=

∫
D

[a(x)∇u · ∇v + c(x)uv] dx =

∫
D

f(x)v dx =: ℓ(v) ∀v ∈ H1
0 (D). (20)

14

Under review as a conference paper at ICLR 2024

For given h > 0, let Vh ⊂ H1
0 (D) be a conforming finite element space generated by the basis

functions {ϕk}N(h)
k=1 and uh ∈ Vh be a finite element approximation of u satisfying the Galerkin

approximation
B[uh, vh] = ℓ(vh) ∀vh ∈ Vh. (21)

We shall write

uh(x,ω) =

N(h)∑
k=1

α∗
k(ω)ϕk(x), (22)

where α∗ is the solution of the linear algebraic equations

Aα∗ = F, (23)

with
Aik = B[ϕk, ϕi] and Fi = ℓ(ϕi). (24)

In other words, uh in (22) is the finite element approximation of the solution to the equation (18),
as described in Section 3.1. It is noteworthy that instead of the equations (23), α∗ can also be
characterized in the following way:

α∗ = argmin
α∈C(Ω,RN(h))

L(α), (25)

where L is the population loss

L(α) = Eω∼PΩ

[N(h)∑
i=1

|B[û(ω), ϕi]− ℓ(ϕi; (ω))|2
]
= ∥Aα(ω)− F (ω)∥2L2(Ω). (26)

Next, let us denote the class of feed-forward neural networks by Nn. Here, the subscript n represents
the architecture of neural networks and we assume that Nn2

has more expressive power than Nn1

provided that n1 ≤ n2. For example, n can be the number of layers with bounded width or the number
of neurons when the number of layers is fixed. The class of neural networks is known to be a suitable
ansatz space for the nonlinear approximation, as supported by the universal approximation theorem
(see, for example, Cybenko (1989); Hornik (1991); Pinkus (1999); Kidger & Lyons (2020)). For the
later analysis, in this section, we shall assume that for all the neural networks under consideration, the
last layer is activated by a bounded activation function (e.g. sigmoid, tanh, etc.), so that the resulting
neural networks are uniformly bounded. Then by a simple scaling argument, we can show that the
universal approximation theorem still holds for this new class of neural networks: see, for example,
Theorem 2.2 in Ko et al. (2022).

Now as a neural network approximation of α∗, we seek for α̂(n) : Ω → RN(h) solving the residual
minimization problem

α̂(n) = argmin
α∈Nn

L(α), (27)

where the loss function is minimized over Nn, and we shall write the corresponding solution by

uh,n(x;ω) =

N(h)∑
k=1

α̂(n)k(ω)ϕk(x). (28)

Note that for the neural network under consideration α ∈ Nn, the input vector is ω ∈ Ω which
determines the external force f(x;ω) and the output is the coefficient vector in RN(h).

As a final step, let us define the solution to the following discrete residual minimization problem:

α̂(n,M) = argmin
α∈Nn

LM (α), (29)

where LM is the empirical loss defined by the Monte–Carlo integration of L(α):

LM (α) =
|Ω|
M

M∑
m=1

N(h)∑
i=1

|B[û(ωm), ϕi]− ℓ(ϕi; (ωm))|2 =
|Ω|
M

M∑
m=1

|Aα(ωm)− F (ωm)|2, (30)

15

Under review as a conference paper at ICLR 2024

with {ωn}Mm=1 is an i.i.d. sequence of random variables distributed according to PΩ. Then we write
the corresponding solution as

uh,n,M (x;ω) =

N(h)∑
k=1

α̂(n,M)k(ω)ϕk(x), (31)

which is the numerical solution actually computed by the scheme proposed in the present paper.

In this paper, we assume that it is possible to find the exact minimizers for the problems (27) and
(29), and the error that occurred by the optimization can be ignored.

In order to provide appropriate theoretical backgrounds for the proposed method, it would be
reasonable to show that our solution is sufficiently close to the approximate solution computed by the
proposed scheme for various external forces, as the index n ∈ N for a neural-network architecture
and the number of input samples M ∈ N goes to infinity. Mathematically, it can be formulated as

∥u− uh,n,M∥L2(Ω;L2(D)) → 0 as h → 0 and n,M → ∞. (32)

The main error can be split into three parts:

u− uh,n,M = (u− uh) + (uh − uh,n) + (uh,n − uh,n,M). (33)

The first error is the one caused by the finite element approximation, which is assumed to be negligible
for a proper choice of h. In fact, according to the estimate (7), we can reduce the error as much as we
want if we choose proper h > 0. Henceforth, we shall assume that we have chosen suitable h > 0
which guarantees a sufficiently small error for the finite element approximation. The second error is
referred to as the approximation error, as it appears when we approximate the target function with
a class of neural networks. The third error is often called the generalization error, which measures
how well our approximation predicts solutions for unseen data. We will focus on proving that our
approximate solution converges to the finite element solution (which is sufficiently close to the true
solution) as a neural network architecture grows and the number of input samples goes to infinity.

B.2 APPROXIMATION ERROR

We first note from (26) and (30), that A defined in (22), (23) mostly determines the structures of the
loss functions and it would be advantageous for us to analyze the loss function if we know more
about the matrix. Note that the matrix A is determined by the structure of the given differential
equations, the choice of basis functions and the boundary conditions. Therefore, the characterization
of A which is useful for the analysis of the loss function and can cover a wide range of PDE settings
simultaneously is important. The next lemma addresses this issue, which is quoted from Ko et al.
(2022).

Lemma B.1. Suppose that the matrix A ∈ RN(h)×N(h) is symmetric and invertible, and let ρmin =
mini{|λi|}, ρmax = maxi{|λi|} where {λi} is the family of eigenvalues of the matrix A. Then we
have for all x ∈ RN(h),

ρmin|x| ≤ |Ax| ≤ ρmax|x|. (34)

Since the equation under consideration (18) is self-adjoint, the corresponding bilinear form B[·, ·]
defined in (20) is symmetric which automatically guarantees that the matrix A in our case is symmetric.
Furthermore, due to the facts that the coefficient a(·) is uniformly elliptic and c(·) is non-negative,
the bilinear form B[·, ·] is coercive, which implies that A is positive-definite. Therefore, we can apply
Lemma B.1 to the matrix A of our interest.

We are now ready to prove the approximation error for neural networks converges to zero, which is
encapsulated in the following theorem.

Theorem B.2. Assume that (19) holds. Then we have that

∥α∗ − α̂(n)∥L2(Ω) → 0 as n → ∞. (35)

16

Under review as a conference paper at ICLR 2024

Proof. Since A is symmetric and invertible, by Proposition B.1, we obtain

∥α∗ − α̂(n)∥22 ≲ ∥Aα∗ −Aα̂(n)∥22 ≲
(
∥Aα∗ − F∥22 + ∥Aα̂(n)− F∥22

)
= L(α̂(n)) ≲ inf

α∈Nn

L(α) = inf
α∈Nn

∥Aα− F∥22

≲ inf
α∈Nn

(
∥Aα−Aα∗∥22 + ∥Aα∗ − F∥22

)
≲ inf

α∈Nn

∥α− α∗∥22.

Note that the term ρmax/ρmin may depend on h > 0. But as we mentioned before, we assumed that
h > 0 is fixed with the sufficiently small finite element error. Then by the universal approximation
property , infα∈Nn

∥α− α∗∥22 → 0 as n → ∞, which completes the proof.

B.3 GENERALIZATION ERROR

We first introduce the concept so-called Rademacher complexity Bartlett & Mendelson (2002).
Definition B.3. For a collection {Xi}Mi=1 of i.i.d. random variables, we define the Rademacher
complexity of the function class G by

RM (G) = E{Xi,εi}M
i=1

[
sup
f∈G

∣∣∣∣ 1M
M∑
i=1

εif(Xi)

∣∣∣∣],
where εi’s denote i.i.d. Bernoulli random variables, in other words, P(εi = 1) = P(εi = −1) = 1

2
for all i = 1, · · · ,M .

Note that the Rademacher complexity is the expectation of the maximum correlation between the
random noise (ε1, · · · , εM) and the vector (f(X1), · · · , f(XM)), where the supremum is taken over
the class of functions G. By intuition, the Rademacher complexity of G is often used to measure
how the functions from G can fit random noise. For a more detailed discussion on the Rademacher
complexity, see Gnecco & Sanguineti (2008); Wainwright (2019); Shalev-Shwartz & Ben-David
(2014).

Next, we shall find the connection between the generalization error and the Rademacher complexity
for the uniformly bounded function class G. The following theorem, we assume that the function
class is b-uniformly bounded, meaning that ∥f∥∞ ≤ b for arbitrary f ∈ G.
Theorem B.4. [Theorem 4.10 in Wainwright (2019)] Assume that the function class G is b-uniformly
bounded and let M ∈ N. Then for arbitrary small δ > 0, we have

sup
f∈G

∣∣∣∣ 1M
M∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣ ≤ 2RM (G) + δ,

with probability at least 1− exp(−Mδ2

2b2).

Now we define the function class of interest

Gn := {|Aα− F |2 : α ∈ Nn}, (36)

where the matrix A and the vector F are defined in (24). Then by Lemma B.1, we have that

∥Aα− F∥L∞(Ω) ≤ ∥Aα∥L∞(Ω) + ∥F∥L∞(Ω) ≤ ρmax∥α∥L∞(Ω) + ∥f∥C(Ω;L1(D)).

Since the class of neural networks under consideration is uniformly bounded and (19) holds, we see
that for any n ∈ N, Gn is b̃-uniformly bounded for some b̃ > 0. The following lemma is the direct
consequence of Theorem B.4 within our setting.
Lemma B.5. Let {ωm}Mm=1 be i.i.d. random samples selected from the distribution PΩ. Then for
arbitrary small δ > 0, we obtain with probability at least 1− 2 exp(−Mδ2

32b̃2
) that

sup
α∈Nn

∣∣LM (α)− L(α)
∣∣ ≤ 2Rn(Gn) +

δ

2
. (37)

17

Under review as a conference paper at ICLR 2024

From Lemma B.5, now we shall establish the following convergence result for the generalization
error. Note that we assume here that for any n ∈ N, the Rademacher complexity of Gn converges to
zero, which is known to be true in many cases.
Theorem B.6. Suppose that (19) holds, and we further assume that for any n ∈ N,
limM→∞ RM (Gn) = 0. Then we have with probability 1 that

lim
n→∞

lim
M→∞

∥α̂(n,M)− α̂(n)∥L2(Ω) = 0.

Proof. By Proposition B.1 and the definition (27), we obtain
∥α̂(n)− α̂(n,M)∥22 ≲ ∥Aα̂(n)−Aα̂(n,M)∥22

≲
(
∥Aα̂(n)− F∥22 + ∥Aα̂(n,M)− F∥22

)
= (L(α̂(n)) + L(α̂(n,M)))

≲ L(α̂(n,M)).

(38)

We next apply Lemma B.5 for δ = 2M− 1
2+ε with 0 < ε < 1

2 . Then with probability at least
1− 2 exp(−M2ε

8b̃2
), we have from the minimality of α̂(n,M) that,

L(α̂(n,M)) ≤ LM (α̂(n,M)) + 2RM (Gn) +M− 1
2+ε ≤ LM (α̂(n)) + 2RM (Gn) +M− 1

2+ε.

Using Lemma B.5 again gives us that

L(α̂(n,M)) ≤ L(α̂(n)) + 4RM (Gn) + 2M− 1
2+ε.

Letting M → ∞ on (38), we obtain that
lim

M→∞
∥α̂(n,M)− α̂(n)∥22 ≲ L(α̂(n)).

As we did before, we conclude that
lim
n→∞

lim
M→∞

∥α̂(n,M)− α̂(n)∥22 ≲ lim
n→∞

L(α̂(n))

≲ lim
n→∞

inf
α∈Nn

∥α− α∗∥22 = 0,

which completes the proof.

B.4 PROOF OF MAIN THEOREM

From Theorem B.2 and Theorem B.6 combined with the triangular inequality, we have
lim

n→∞
lim

M→∞
∥α∗ − α̂(n,M)∥L2(Ω) = 0. (39)

Let us now prove the main theorem on the convergence.
Theorem B.7 (Main theorem). Suppose (19) holds, and assume that for all n ∈ N, RM (G̃n) → 0 as
M → ∞, with G̃n := {|Aα−F |2 : α ∈ Nn}. Then for given h > 0, we have with probability 1 that

lim
n→∞

lim
M→∞

∥uh − uh,n,M∥L2(Ω;L2(D)) = 0. (40)

Proof. From Theorem B.2, Theorem B.6, we note that for a fixed h > 0,

∥uh − uh,n,M∥2L2(Ω;L2(D)) =

∫
Ω

∫
D

∣∣∣∣N(h)∑
i=1

(α∗
i − α̂(n,M)i)ϕi

∣∣∣∣2 dx dω

=

∫
Ω

∫
D

∣∣∣∣ N(h)∑
i,j=1

(α∗
i − α̂(n,M)i)(α

∗
j − α̂(n,M)j)ϕiϕj

∣∣∣∣2 dx dω

≤
∫
Ω

∫
D

(N(h)∑
i,j=1

|α∗
i − α̂(n,M)i|2|ϕi|2 +

N(h)∑
i,j=1

|α∗
j − α̂(n,M)j |2|ϕj |2

)
dx dω

≤
∫
Ω

∫
D

2N(h)

N(h)∑
k=1

|α∗
k − α̂(n,M)k|2|ϕk|2 dx dω

≤ 2|D|N(h)∥α∗ − α̂(n,M)∥2L2(Ω) → 0,

where we have used the fact that |ϕj | ≤ 1 for all 1 ≤ j ≤ N(h) together with Young’s inequality.

18

Under review as a conference paper at ICLR 2024

C COMPARISON OF FEONET WITH OTHER MODELS AND METHODS

C.1 COMPARING THE FEONET WITH OTHER PHYSICS-INFORMED OPERATOR LEARNING
MODELS (PIDEEEPONET AND PINO)

The proposed FEONet model is a data-free approach that does not require labeled training data, and
it has a number of advantages in learning the solution operator as confirmed in Section 4. Unlike
methods designed for a single instance, such as PINN Raissi et al. (2019), this novel numerical
scheme enables the handling of multiple instances of parametric PDEs. On the other hand, well-
established models for operator learning, such as FNO Li et al. (2021a) and DeepONet Lu et al.
(2021a), depend on labeled training data for their training process. To address the limitation of these
operator-learning methods, recent advances in physics-informed methods, such as Physics-informed
DeepONet (PIDeepONet) Wang et al. (2021) and Physics-informed neural operator (PINO) Li et al.
(2021b) have emerged. These methods utilize the PDE residual loss, enabling the training of the
models without labeled data. However, these methods are not suitable for complex 2D domains or
singular perturbation problems as demonstrated in the experiments conducted in Section 4.2.

vs PIDeepONet. The FEONet effectively utilizes the weak form of the given PDE by employing it
as a loss function over the triangulation of the physical domain. In contrast, PIDeepONet requires
a complex grid sampling process in a complicated 2D domain, resulting in computational costs
associated with calculating the residual loss using automatic differentiation. Another challenging
aspect is determining the weighting of the loss function related to boundary conditions, which is used
to satisfy the boundary conditions in the physics-informed loss. Moreover, as shown in Table 2 and
Figure 5, when a small diffusion coefficient ε > 0 is used in a PDE residual loss term, the models
struggle to accurately learn the corresponding solutions of the PDEs. This raises a significant concern
regarding reliability, as illustrated in Figure 14, which displays the predictions from various training
trials. In this regard, we also conducted a comparative analysis of the supervised DeepONet approach
for PDE problems under various conditions, considering different amounts of available data.

vs PINO. The comparison with the FNO and PINO models was excluded in Section 4 because they
are not directly suitable for problems on complex geometry domains with non-periodic boundary
conditions, such as those depicted in Figure 1. To elucidate this, we provide additional experiments
using the PINO as described in Li et al. (2021b). The authors proposed extending the FNO with
Fourier continuation and zero padding in the input for handling non-periodic boundary conditions.
For this comparison, we trained PINO with Dirichlet boundary conditions on a square domain
containing a hole, and employed circular masking. Figure 8 displays a solution profile obtained by
predicting a test sample using models trained with both PINO and FEONet. As evident in the third
plot, PINO struggles to adhere to boundary conditions in complex domains, especially those with a
central hole. This challenge underpins our decision to primarily compare with PIDeepONet among
the physics-informed models in Section 4.

Figure 8: The profile of solution prediction for the square with a hole domain using PINO and
FEONet.

C.2 COMPARING THE FEONET WITH THE CLASSICAL FEM

The FEONet is an operator-learning model designed to learn the relationship between PDE parameters
and their corresponding solutions. Once trained, the FEONet can make a fast solution inference for
varying PDE parameters. This capability is the primary reason why operator networks are gaining

19

Under review as a conference paper at ICLR 2024

attention in scientific machine learning (Kovachki et al., 2021; Goswami et al., 2022a; Lu et al.,
2022).

On the other hand, if we try to solve PDEs for various parameters using the traditional FEM, we
need to solve the PDE anew every time the parameters change. Therefore, if we are dealing with a
problem where real-time prediction is crucial (for example, when creating a solution database for a
specific engineering problem), this incurs significant computational costs. Moreover, when solving
nonlinear problems, we need to apply the iterative methods for each PDE parameter, which causes a
computation overhead. As mentioned earlier, the FEONet is versatile in addressing this issue, and
this is the most significant difference between the traditional FEM and the FEONet.

To illustrate this point quantitatively, let us consider a scenario where we need to solve 10,000
parametric PDEs with varied parameters - a situation often encountered in computational material
database generation. In such cases, operator learning methods like the FEONet is confirmed to be
substantially faster than the FEM. Thus, from a fast-inference perspective, models like the FEONet
have a clear advantage. Table 4 compares the inference time taken by calculating and comparing
based on the number of input samples.

Table 4: Comparison of computational times for FEONet and FEM with different numbers of input
samples.

input samples 1 10 100 1000 10000
FEM 0.022 (s) 0.254 (s) 1.308 (s) 11.530 (s) 116.035 (s)

FEONet (Ours) 0.007 (s) 0.021 (s) 0.150 (s) 3.028 (s) 29.231 (s)

While the solutions computed by the FEONet might not as accurate as those obtained through the
classical FEM, it’s essential to place this in the broader context of operator learning methods. No
existing operator learning method currently outperforms traditional numerical techniques in terms
of accuracy. The primary objective of operator learning methods (Lu et al., 2021a; Wang et al.,
2021; Li et al., 2021a), including the FEONet, isn’t necessarily to achieve the highest accuracy but
to offer swift predictions. This is especially vital in tfields such as computational materials, where
engineers aim to establish extensive databases — sometimes comprising over half a million datasets.
For applications like the inverse design of materials, the focus is more on achieving adequate quality
rapidly rather than pursuing perfect accuracy. Thus, when we assess the FEONet, we primarily
compare it with other operator learning methods, not with classical numerical methods, as they are
different knives serving distinct purposes.

C.3 COMPARING THE FEONET WITH OTHER DEEP LEARNING-BASED MODELS

Additional comparisons of various deep learning-based approaches for solving PDEs are demonstrated
in Table 5.

Table 5: Comparison of various machine learning approaches for solving PDEs.

Unsupervised PDE instances Prediction location Applicable for complex domains
and singularly perturbed problem

PINN (Raissi et al., 2019), DRM (Yu et al., 2018) No Single instance Entire domain △
DON (Lu et al., 2021a) No Multiple instances Entire domain △
FNO (Li et al., 2021a) No Multiple instances Grid points ×
PIDeepONet (Wang et al., 2021) Yes Multiple instances Entire domain △
PINO (Li et al., 2021b) Yes Multiple instances Grid points ×
Graph-based neural PDE solver
(Brandstetter et al., 2022; Lienen & Günnemann, 2022). No Multiple instances Grid points -

Ours Yes Multiple instances Entire domain #

D EXPERIMENT DETAILS

D.1 HYPERPARAMETERS

For the problems under consideration, we used the neural network, which consists of 6 convolutional
layers with swish activation followed by a fully connected layer flattening the output. For 1D

20

Under review as a conference paper at ICLR 2024

problems, we used Conv1D, while Conv2D was used for 2D problems. The FEONet was trained
with the LBFGS optimizer along with the following hyperparameters.

• Maximal number of iterations per optimization hestep : 10,

• Termination tolerance on first-order optimality : 10−15,

• Termination tolerance on function value/parameter changes : 10−15,

• Update history size : 10.

For both the DeepONet and the PIDeepONet, a fully connected neural network with a depth of 3
and a width of 100 was used for the trunk and branch networks. The two models differ only in the
loss function, where the training data and the residual of the PDE were used. The PINN also used
a fully connected neural network with a depth of 3 and a width of 100. All these models used the
tanh activation function and a learning rate of 10−4 with the commonly used ADAM optimizer. To
ensure the sufficient convergence of the training results for the boundary layer problem, we conducted
five experiments with the PINN for 5× 105 iterations and five experiments with the PIDeepONet
for 104 iterations. Note that computing the residual loss of PDE for every input function f in the
PIDeepONet requires significant computation time using the automatic differentiation. We used the
Intel Xeon Gold 6226R processor and NVIDIA RTX A6000 48GB GPU.

Table 6: Parameters for each problem

Input function PDE dimension P1 or P2 # Element Iteration
(FEONet)

Iteration
(DeepONet)

Domain I
mj ∈ [1, 2]
nj ∈ [0, π]

2D P2
392

5× 104 5× 105Domain II 551
Domain III 334
BC I mj ∈ [3, 5]

nj ∈ [0, 2π]
1D P2 24 1.5× 105 5× 105

BC II 32 2× 105 5× 105

Eq I mj ∈ [3, 5]
nj ∈ [0, 2π]

1D P2 32 1.5× 105 5× 105

Eq II P1 128 3.5× 105 5× 105

Singular mj ∈ [3, 5]
nj ∈ [0, 2π]

1D P1 32 5× 104 5× 105

D.2 TRADE-OFF OF FEONET

The order of the polynomial basis and the number of elements employed in FEONet for each domain,
boundary condition, and equation are presented in the third and fourth columns of Table 6. Utilizing a
higher-order basis and a greater number of elements for domain triangulation in FEONet can enhance
prediction accuracy, but it comes at the cost of increased memory usage and longer training time.
Therefore, determining the appropriate basis and element number for FEONet involves a trade-off
between prediction accuracy and computational cost. Further details can be found in Table 6.

D.3 FENICS FOR GROUND-TRUTH SOLUTION, DOMAIN TRIANGULATION AND NODAL BASIS

The FEniCS (Alnaes et al., 2015; Logg et al., 2012), which stands for Finite Element Computational
Software, is a widely used open-source software suite that is specifically designed for solving PDEs
using the FEM. It offers a robust and user-friendly interface that enables solving a broad range of
PDEs in various settings. Using the FEniCS, we obtained solutions with very small errors for each
PDE problem on sufficiently fine meshes, which were used as the ground-truth solutions for each
problem. We were able to easily obtain nodes and nodal basis by triangulating the 2D domain as
shown in Figure 1 and Figure 9. Additionally, in our experiments, we were able to compute the loss
function (9) by using the FEniCS both for the P1 and the P2 elements.

D.4 TYPES AND RANDOM GENERATION OF INPUT FUNCTIONS FOR FEONET

This paper specifically has focused on the learning of the solution operator of PDEs from external
forcing terms. Notably, the FEONet can be readily extended to handle various input functions, such

21

Under review as a conference paper at ICLR 2024

Figure 9: FEM triangulation of Domain II (square with a hole) with varying numbers of elements.

as boundary conditions, coefficients, or initial conditions, in the learning process. We shall confirm
this based on some additional experiments with various input functions.

As a first example, the FEONet is capable of learning the operator mapping G : c(x) 7→ u(x) from
the variable coefficient c(x) to the corresponding solution u(x) of a PDE (14). Figure 10 displays the
solution profile obtained when variable coefficients are considered as input. Next, we address the
case when the input is a boundary condition. We consider the 2D Poisson equation as

−∆u(x, y) = f(x, y), (x, y) ∈ D,

u(x, y) = g(x, y), (x, y) ∈ ∂D.
(41)

where f(x, y) = 2 and the domain D is a square with a hole (see (b) in Figure 1). The FEONet is
utilized to learn the operator G : g(x, y) 7→ u(x, y). Figure 11 demonstrates that even in the case
of an operator that takes the boundary condition g(x, y) as input, we can predict the solution with
high accuracy. Finally, we consider the time-dependent problem with varying initial conditions. We
consider the 1D convection-diffusion equation

ut − νuxx + bux = 0, t ∈ [0, 1], x ∈ D = [−1, 1],

u(0, x) = u0(x), x ∈ D,

u(t, x) = 0, x ∈ ∂D,

(42)

where ν = 0.1 and b = −1. Our aim is to learn the operator G : u0(x) 7→ u(t, x). We use the implicit
Euler method to discretize the time with ∆t = 0.01. We employed the marching-in-time scheme
proposed by Krishnapriyan et al. (2021) to sequentially learn and predict solutions over the time
domain t = [0, 1], divided into 10 intervals. Notably, for training FEONet, we utilized only the input
function u0(x) and equation (42) without any additional data. Figure 12 demonstrates the successful
prediction of the true solutions using the FEONet for arbitrary two initial conditions from the test
data set. These experiments demonstrate the versatility and adaptability of the FEONet approach for
accommodating different types of input functions.

In order to train the network, we generate random input functions (e.g. external forcing functions,
variable coefficient functions, boundary conditions, and initial conditions). Inspired by Bar-Sinai
et al. (2019), we created a random signal f(x;ω) as a linear combination of sine functions and cosine
functions. More precisely, we use

f(x) = m0 sin(n0x) +m1 cos(n1x) (43)

22

Under review as a conference paper at ICLR 2024

Figure 10: Solution profiles predicted by the trained FEONet for PDE (14) obtained from variable
coefficients c(x) as two distinct input functions.

for a 1D case and

f(x, y) = m0 sin(n0x+ n1y) +m1 cos(n2x+ n3y) (44)

for a 2D case where mi for i = 1, 2 and nj for j = 0, 1, 2, 3 are drawn independently from the
uniform distributions whose ranges are shown in the second column of Table 6. In our experiments
for DeepONet with input-output data pairs, we prepare a total of 30/300/3000 pairs of (f, u) by
applying the FEM on sufficiently fine meshes. It is worth noting that even when considering different
random input functions, such as those generated by Gaussian random fields, we consistently observe
similar results. This robustness indicates the reliability and stability of the FEONet approach across
various input scenarios.

D.5 DESCRIPTION OF VARIOUS DOMAINS WITH COMPLEX GEOMETRIES

Figure 1 illustrates three complex domains considered in this paper. Firstly, Domain I is chosen as a
domain with a smooth boundary, represented by a circle centered at (0, 0) with radius 1, to accommo-
date non-rectangular shapes. Secondly, Domain II is designed to have a challenging geometry with
holes, excluding a circle of radius 0.5 centered at (0, 0) from the square domain [−1, 1] × [−1, 1].
Lastly, Domain III is created to have an irregular polygon with sharp turns, connecting the vertices
(−1.0,−1.0), (1.0,−1.0), (1.0, 0.0), (0.6, 0.0), (0.5,−0.5), (−0.0,−0.5), (−0.6, 1.0), (−1.0, 1.0),
and (−1.0,−1.0). Although this paper focuses on these three domains in the experiments, the
proposed FEONet has the potential to solve PDEs using FEM triangulation for more complex
domains such as airfoils where the classical FEM works.

23

Under review as a conference paper at ICLR 2024

Figure 11: Solution profiles predicted by the trained FEONet for PDE (41) obtained from the
boundary condition input. Note that the boundary condition g(x, y) for the region with a circle hole
inside Ωcir is represented as h(θ) in polar coordinates.

24

Under review as a conference paper at ICLR 2024

Figure 12: Solution profiles predicted by the trained FEONet for PDE (42) obtained from the initial
condition u(t = 0, x) as two distinct input functions.

D.6 BURGERS’ EQUATION

For the variational loss function for the Burgers’ equation described in (15), we identified the uux

term as (12u
2)x. Therefore, we induce the B[ûh(x;ωm), ϕi(x)] in the loss function (9) as

B[ûh(x;ωm), ϕi(x)] = ε

∫
D

(ûh)x(ϕi)x dx+

∫
D

ûh(ûh)xϕi dx

= ε

∫
D

(ûh)x(ϕi)x dx−
∫
D

1

2
û2
h(ϕi)x dx

= ε

N(h)∑
k=1

α̂k

∫
D

(ϕk)x(ϕi)x dx︸ ︷︷ ︸
(I)

−
∫
D

1

2

N(h)∑
k=1

α̂kϕk

2

(ϕi)x dx︸ ︷︷ ︸
(II)

.

The main difference from other PDE problems is the second term (II) on the right-hand side. Since the
term (II) cannot be expressed linearly with respect to α̂k, an iterative method should be used for the
linearization when using the classical FEM. However, the loss function can be directly computed for
the FEONet, and once the training is completed, it can make a real-time solution prediction without
any need for iteration methods whenever the forcing function is given. In other words, the FEONet is
able to learn the coefficients {α̂k}N(h)

k=1 effectively even for the nonlinear Burgers’ equation.

D.7 SINGULAR PERTURBATION PROBLEM

Solving convection-dominated singularly perturbed problems in numerical analysis is a challenging
task as the small diffusive parameter ε > 0 generates a sharp transition inside thin layers, requiring
special treatment. The transition of the boundary layer for (16) with respect to different viscosity
parameters ε > 0 is provided in Figure 13. ML approaches suffer from the boundary layer problem
since neural networks have a smooth prior (see Figure 5). When solving a single singularly perturbed

25

Under review as a conference paper at ICLR 2024

Figure 13: Boundary layer transition for (16) with respect to different viscosity parameters ε > 0 is
displayed. As ε decreases, the thickness of the boundary layer gets smaller.

PDE using the PINN, the training using residual loss becomes unstable due to a very small diffusion
coefficient, resulting in poor learning. Figure 14 shows different solutions predicted by five different
PINN training for a single PDE in 5× 105 iterations.

Our FEONet overcomes this limitation by using an additional basis ϕcor, as defined in (17). We obtain
the corrector ϕcor by deriving the asymptotic equation with the formal limit equation assuming ε = 0,
as described in Hong & Jung (2018). Figure 15 shows the shape of the boundary layer corrector for
ε = 10−5.

As a paradigm example to derive ϕcor, we consider the following singularly perturbed convection-
diffusion equation: {

−εuε
xx − uε

x = f(x), 0 < x < 1,
uε = 0, x = 0, 1.

(45)

Our main objective is to construct the corrector basis for the singular perturbation problem. To find
the corrector, we formally replace ε by 0 in (45)1, whose limit problem of (45) at ε = 0 is{

−u0
x = f(x), 0 < x < 1,
u0 = 0, x = 1.

(46)

We impose the inflow boundary condition at x = 1 for u0, leading to the formal limit of u0 in the
following form:

u0(x) =

∫ 1

0

f dx. (47)

Performing matching asymptotics for equation (45), we observe the presence of a boundary layer
of size ϵ near the outflow boundary at x = 0. Consequently, we determine the asymptotic equation,
considering small ϵ, for the corrector φ that approximates the difference uϵ − u0. This equation can
be written as follows: {

−εφxx − φx = 0, 0 < x < 1,
φ = −u0, x = 0.

(48)

It is well-known that the corrector φ is given in the form

φ(x) = −u0(0) e−x/ε + e.s.t., (49)

where the e.s.t. stands for an exponentially small term with respect to the small perturbation parameter
ε > 0. To obtain the implementable corrector basis, we modify equation (49) by incorporating the
boundary condition.

26

Under review as a conference paper at ICLR 2024

Performing the conventional energy estimates on the difference uε − (u0 + φ), we notice that

∥uε − (u0 + φ)∥L2((0,1)) ≤ κε,

∥uε − u0∥L2((0,1)) ≤ κε
1
2 ,

(50)

for a constant κ > 0 independent of ε. The convergence results indicate two important observations.
The convergence results highlight two significant observations. Firstly, the diffusive solution uϵ

converges to the limit solution u0 as ϵ approaches 0, with the convergence rate proportional to ϵ.
Secondly, based on these convergence results, we can deduce that the corrector φ effectively captures
the singular behavior of uϵ at small diffusivity ϵ. This implies that the diffusive solution uϵ can be
decomposed into the sum of a rapidly decaying component represented by φ and a slowly varying
component represented by u0.

Figure 14: The solution profiles of five different experiments solving the singular perturbation
problem using the PINN.

Figure 15: The profile of the boundary layer corrector which is used as the additional basis function
for the singular perturbation problem.

27

Under review as a conference paper at ICLR 2024

D.8 PLOTS ON CONVERGENCE RATES

Let us make some further comments on the experimental details for Figure 6. For 1D case, we
consider the convection-diffusion equation

−εuxx + bux = f(x), x ∈ D = [−1, 1],

u(x) = 0 , x ∈ ∂D,
(51)

where ε = 0.1 and b = −1. For the 2D case, we consider the following equation

−ε∆u+ v · ∇u = f(x, y), (x, y) ∈ D = [−1, 1]2,

u(x, y) = 0, (x, y) ∈ ∂D,
(52)

where ε = 0.1 and v = (−1, 0). The FEONet was used to approximate the solution of these two
equations using P1 and P2 nodal basis functions, and the experiments were conducted with varying
domain triangulation to have different numbers of elements to observe the convergence rate. As
shown in Figure 6, the observed convergence rate of the FEONet shows the convergence rates close
to 2 and 3 for P1 and P2 approximation respectively, which are the theoretical results for the classical
FEM. Since the precision scale of the neural network we used here is about 10−2, we cannot observe
the exact trends in rates below this level of error. We expect to see the same trend even at lower errors
if we use larger scale and more advanced models than the CNN structure.

D.9 ADDITIONAL PLOT ON GENERALIZATION ERROR

Figure 16: Rel. L2 train and test error comparison between the FEONet with 30/3000 input samples
(w/o labeled data) and the DeepONet (supervised) with 30 train-test data pair.

The FEONet is a model capable of learning the operator without the need for paired input-output
training data. What we need for the training is the generation of random input samples, which only
imposes negligible computational cost. Therefore, the number of input function samples for the
FEONet training can be chosen arbitrarily. In the experiments performed in Section 4, we generated
3000 random input function samples to train the FEONet. On the other hand, the DeepONet requires
paired input-output training data for supervised learning which causes significant computational costs
to prepare. In this paper, we have focused our experiments on considering the DeepONet trained
with 30, 300, and 3000 input-output data pairs. This allowed us to highlight the FEONet’s ability
to achieve a certain level of accuracy without relying on data pairs. In Figure 7, We compared the
generalization capability of both models. We used 3000 input samples to train the FEONet and
30 input-output data pairs to train the DeepONet. Even with the 30 data pairs, there occurred a
lot of computational costs to gain the data. Although it is predictable that increasing the number
of input-output data pairs for the DeepONet would narrow the gap between train and test errors,
preparing a large amount of data causes significant computational costs.

In addition to the experiments for Figure 7, in order to reduce the possibility of reader’s confusion,
we also present the results comparing generalization capability in Figure 16, when the FEONet is
trained only with 30 random input samples (green and yellow bar) (which should be distinguished
from 30 input-out data pair for the supervised learning). Figure 16 depicts a comparison of train
and test errors between the FEONet, trained through an unsupervised approach with 30 and 3000
input samples, and the DeepONet, trained through supervised learning with 30 input-output data
pairs. Notably, the FEONet shows superior generalization compared to the DeepONet, even without

28

Under review as a conference paper at ICLR 2024

requiring input-output paired data. Remarkably, utilizing only 30 input samples for training, the
FEONet achieves significantly better generalization and exhibits lower test errors than that of the
DeepONet.

E LIMITATIONS

Despite the promising results presented in this study, there are still several technical questions
that remain unresolved and necessitate further investigation. One such question is determining
the optimal features embedding or network architecture of the FEONet for a given parametric
governing law. Understanding the most effective approach for feature representation and network
design is crucial for achieving optimal performance and generalization in the FEONet framework.
Addressing this question would contribute to advancing the understanding and applicability of the
FEONet methodology. Once this issue is resolved, our approach holds the potential for addressing
challenging problems, including the Navier-Stokes equations, which represent one of the most
fascinating nonlinear problems in the numerical solution of partial differential equations. By applying
the FEONet to such complex scenarios as a future direction, we can make significant advancements
in the field and uncover new insights into the behavior and dynamics of these systems.

The issue of scalability is a prominent concern not just in scientific machine learning but also in
traditional scientific computing. In our case, for large-scale and intricate problems, there exists the
potential for condition number challenges, given that our loss function is grounded in finite element
matrices. To mitigate this concern, it is possible to utilize established preconditioning techniques.
These aim to impose a reduced condition number on the finite element matrices, much in the way they
are applied in conventional numerical methods. It’s pertinent to highlight that the act of multiplying
the loss function by a matrix (or a preconditioner) equates to the addition of an extra layer in neural
networks. Therefore, the proposed framework remains compatible with the preconditioned loss
function. Interestingly, this might be viewed as another strength of our numerical analysis-based
approach.

29

	Introduction
	Related works
	Method
	Finite element method (FEM)
	Finite Element Operator Network (FEONet)
	Convergence of FEONet

	Numerical experiments
	Comparison in various PDE problems
	Singular perturbation problem
	Further experiments

	Conclusion
	Reproducibility Statement
	Notations
	Convergence analysis of FEONet
	Mathematical formulation
	Approximation error
	Generalization error
	Proof of main theorem

	Comparison of FEONet with other models and methods
	Comparing the FEOnet with other physics-informed operator learning models (PIDeeepONet and PINO)
	Comparing the FEOnet with the classical FEM
	Comparing the FEOnet with other deep learning-based models

	Experiment details
	Hyperparameters
	Trade-off of FEONet
	FEniCS for ground-truth solution, domain triangulation and nodal basis
	Types and random generation of input functions for FEONet
	Description of various domains with complex geometries
	Burgers' equation
	Singular perturbation problem
	Plots on convergence rates
	Additional plot on generalization error

	Limitations

