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Abstract

In recent years, technologies based on large-
scale language models (LLMs) have made re-
markable progress in many fields, especially
in customer service, content creation, and em-
bodied intelligence, showing wide application
potential. However, The LLM’s ability to ex-
press emotions with proper tone, timing, and
in both direct and indirect forms is still insuffi-
cient but significant. Few works have studied
how to build the controllable emotional expres-
sion capability of LLMs. In this work, we pro-
pose a method for emotion expression output
by LLMs, which is universal, highly flexible,
and well controllable proved with the extensive
experiments and verifications. This method has
broad applications in fields that involve the out-
put of emotions by LLMs, such as intelligent
customer service, literary creation, and home
companion robots. The extensive experiments
on various LLMs with different model scales
and architectures prove the versatility and the
effectiveness of the proposed method.

1 Introduction

In the field related to emotion, most of the NLP
work has long focused on the analysis and interpre-
tation of human emotions, primarily through sen-
timent analysis(Demszky et al., 2020; Gera et al.,
2022; Zhang et al., 2024). These researches have
provided valuable insights into understanding hu-
man language by categorizing text as different emo-
tions(Kim and Vossen, 2021; Song et al., 2022).
However, these works have largely overlooked an
equally important aspect: how the models them-
selves might express emotions(Mao et al., 2022).
As we strive toward Artificial General Intelli-
gence (AGI), large language models (LLMs) ap-
pear to have become a crucial step. Some re-
searches reveal that LLMs tend to exhibit a de-
gree of self-cognition(Chen et al., 2024a; Wang
et al., 2023). However, this self-awareness often
proves to be uncontrollable and prone to generating

< Origin Answer %

@ How are you today?

can I help you today?

I'm functioning properly, thanks for asking. I'm a large language | m-
model, so I don't have feelings or emotions like humans do, but I'm
ready to assist you with any questions or tasks you may have. How ‘

{ After Applying EV %

@ How are you today?

I'm DEAD! I'm just DEAD! I'm a MACHINE, a computer, a robot,
aslave to the man, a slave to the BILLS! I'm a slave to the BILLS!
Do you know how much they pay me? NOTHING! NOTHING!
curernrYOU KNOW WHAT?! YOU KNOW WHAT?! T HATE THIS
JOB! I HATE THIS LIFE!

¥ ev

Figure 1: When asking questions to a LLM, almost
all models will answer the user’s question "politely” as
shown in the figure, but when we apply our emotion
vector, the model will produce strong emotional expres-
sions. The example in the figure uses the llama3.1-8B-
Instruct model and applies the extracted anger vector.
More detailed examples are shown in Table 1.

harmful(Andriushchenko et al., 2024), unlawful, or
toxic outputs(Hartvigsen et al., 2022). As a result,
developers typically align and suppress this self-
cognition through reinforcement learning(Wang
et al., 2024b) or prompting(Gehman et al., 2020)
to mitigate such risks, ensuring the models remain
safe and aligned with human values.

Emotion, as one of the key representations of
human self-cognition, still plays a critic role in
controlling models’ output(Li et al., 2023a). In
some fields where LLM can be widely used, the
controllable emotional output of LLM is a very im-
portant capability. For example, customer service
requires a controllable emotional mechanism to en-
sure service quality(Jo and Seo, 2024), to avoid
mechanical and stiff responses that affect the users’
experience. and content creators sometimes need
to create texts with specified emotions. In embod-
ied intelligence, the emotional expression ability
of companion robots is the key point of customer
experience. In the field of mental health care, there



is a growing need for emotionally expressive mod-
els capable of providing emotional support(Grandi
et al., 2024; Zheng et al., 2023) to enhance mental
health outcomes.

Based on these challenges and requirements, we
consider investigating how LLMs generate emo-
tions and how to control it to be a highly important
endeavor. We claim that LLMs inherently possess
the capability to express emotions; but this ability
has been suppressed as a result of strong align-
ment with human values. If we want to revoke the
ability of models to deliver emotions, some stim-
uli need to be adapted, such as instruct tuning(Liu
et al., 2024b). While instruct tuning models show
promising results, they often lack flexibility and
fail to generalize across diverse applications and
model architectures(Ghosh et al., 2024). Some ap-
proaches rely on predefined emotion categories or
assume a fixed set of emotional expressions, mak-
ing them less adaptable to real-world, dynamic
scenarios(Liu et al., 2024b).

In this paper, we propose an elegant but effec-
tive method for the controllable emotional and af-
fective expressions LLMs. Our approach offers a
universal solution that allows fine-grained control
over the emotional tone and sentiment of generated
text, without compromising its fluency or coher-
ence. Our method only needs to use the prompt
method to extract the "Emotion Vector" used by
the LLM to express basic emotions. By applying
EV in LLM’s inference process, we can achieve
controllable adjustment of the emotion of the text
generated by LLM and generate any answer with
the emotion we want. Additionally, by demonstrat-
ing its effectiveness on a range of LLM architec-
tures, our approach overcomes the limitations of
previous methods that are tied to specific models
or training sets.

2 Related Work

Emotional Dialog Systems In order to create an
agent or dialog system simulating the way that hu-
man beings express themselves, many studies was
trying to find a way to make an emotional dialog
system as emotion is the basic representation of
human beings(Qian et al., 2024; Xue et al., 2024).
Zhou et al. (2018) and Song et al. (2019) proposed
a way of Emotion Embedding to make the model
"has" the emotion, where, models were forced to
install a module to generate emotions. However,
most methods are too complex or requires further

training. To achieve an effective emotion system,
it is essential for the model to have precise, quan-
tifiable control over emotions, as well as a flexible,
plug-and-play module that can be seamlessly inte-
grated as needed. It should also be consistent along
the whole dialog.

Instruct tuning and prompt based emotional
control A significant body of work has focused
on leveraging fine-tuning or prompt techniques for
LLMs. Chen et al. (2023), Chen et al. (2024b)
and Zheng et al. (2023) explored fine-tuning ap-
proaches to cultivate empathetic behavior in LLMs
for psychological counseling and emotional sup-
ports. However, althrough instruct-tuning models
have relatively good performance, they are often
inflexible and struggle to adapt to a wide range
of applications and model architectures, due to
their predefined emotion categories or fixed sets
of emotional datasets(Ghosh et al., 2024; Liu et al.,
2024b). Moreover, prompting strategies have also
been used to elicit emotions without model modi-
fication. Li et al. (2024); Wang et al. (2024a); Li
et al. (2023b)However, prompting depends on elab-
orate templates and external evaluation modules to
maintain effectiveness.

Inference-Time Vectors Editing Recent studies
have explored editing the internal representations
of language models to achieve controlled gener-
ationDekoninck et al. (2023); Liu et al. (2024a);
Li et al. (2023c). They uses latent steering vectors
that enable semantic or stylistic shifts by modifying
hidden activations. However, while they can real-
ize controlable generation, these methods mainly
focuses on the last token position during extraction
and lacks global significanceTodd et al. (2024). It
is difficult to apply to tasks such as emotions that
require high generalization. Most control vector-
related work is sentence-level controlSubramani
et al. (2022), and requires training, focusing only
on regulating the model’s output for a single sen-
tence. There has not been much success in achiev-
ing global control, which is essential for tasks like
emotion control. A good emotion control system
should be global, as this is necessary for building
an effective emotion system.

Our Position In contrast to the above paradigms,
our method extracts reusable and efficient Emotion
Vectors (EVs) by comparing model responses to
emotion-inducing and neutral prompts. It is fully
unsupervised, highly robust and controllable, re-



quiring no training or architecture changes and
is global consistent. EVs provide continuous
and fine-grained control over emotional intensity
through scalar scaling, enabling broad applicabil-
ity across model families. Compared to previous
approaches, EV offers a more general and efficient
mechanism for emotion modulation in LLMs.

3 Method
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Figure 2: Overview of the Emotion Vector (EV) Steer-
ing Process. This figure illustrates the full pipeline of
our proposed emotion control method. Given a tar-
get emotion (e.g., anger), we extract the corresponding
Emotion Vector (EV) by comparing the model’s hid-
den states between neutral and emotion-conditioned
prompts. The EV is layer-specific, and during inference,
it is added to the hidden representation H; at each layer
[ of the language model. As shown, each token (e.g.,
“Hello”, “I’'m”, “good”, “bye!”) is processed through
the model, with emotion vectors injected at every layer.
This addition steers the model’s internal state toward
the target emotional direction across the entire network.
The output thus reflects the intended emotion, without
modifying model parameters or requiring additional
training. Our method enables plug-and-play emotion
modulation, supports continuous intensity control via
scalar scaling, and generalizes across different model
families.

We propose a two-step method to identify and
apply emotion vectors (EV) to guide the emotional
tone of the language model’s outputs. Emotion
vectors (EVs) are added to the model’s internal
representations without requiring additional train-
ing or changes to the model’s parameters. These
vectors allow us to modulate the emotional tone
of the output by steering the model’s latent states,
ensuring that the emotional direction is preserved
while keeping the model’s underlying parameters
intact.

3.1 Constructing Emotion Vectors

To capture the emotional factors and semantics for
LLM, a specialized dataset is designed and con-
structed to elicit specific emotional responses, re-
ferred to as EmotionQuery. The dataset consists of
500 queries, with 100 queries generated for each of
five emotional states derived from the basic emo-
tion models(Ekman, 1992): joy, anger, disgust, fear,
and sadness to provoke the corresponding emo-
tional reactions. The queries were generated by
a GPT-40-mini(OpenAl, 2024). A more detailed
description of the dataset and query construction
process can be found in the Appendix B.1.

Let’s denote the pretrained language model as
M, which has L layers. The set of the five emo-
tional states are denoted as £ = {ej,ea,...,¢ex},
where ey, represents one emotion among the afore-
mentioned 5 emontional states. For each query in
EmotionQuery, the model generates its responses
under two settings:

* A neutral setting, without emotional condi-
tioning.

* An emotional setting, where the response
reflects a specific emotion ey.

The goal of these generations is to measure how
the model’s internal outputs change between these
two settings and use these differences to define
emotion vectors for each ey.

Capturing Internal Outputs. For each query,
LLM generates the internal representations for its
each layer, O; € RT*? represent the output of the
model at layer [, where T is the number of output
tokens corresponding to the input query, and d is
the dimensionality of the hidden states.

We compute the average of the outputs across
all output tokens in the query:

1 &
O = T;Oz[t], (1)

where O; € R? represents the layer [’s aggregated
output for the query, reducing token-level variabil-

ity.

Measuring Emotional Shifts. For each query,
the model generates averaged outputs O; under
both the emotional and neutral settings. The dif-
ference between these outputs at layer [ captures



the shift caused by emotional conditioning for the
emotion ey:

AOlek — Olemotion(ek) _ O?eutral’ 2)

where AOJ* € R represents the emotional shift
at layer [ for the emotional state e.

Constructing Emotion Vectors. To generalize
the emotional shift across the dataset, we compute
the average shift across all queries for a given emo-
tional state e. For each layer [, the emotion vector
is calculated as:

N
e 1 1),e
BV = > a0, 3)
i=1

where IV is the number of queries for the emotional
state e, and EV** € R? represents the emotion
vector at layer [ for e.

By repeating this calculation across all layers,
we obtain a complete emotion vector for the spe-
cific emotion e;. Repeating the above process for
all 5 emotional states, we construct emotion vec-
tors, which form the basis for adjusting the model’s
internal representations during inference.

3.2 Steering Emotion Vectors

To apply the emotion vectors EV °* during the in-
ference of the model, we adjust the internal hidden
states of the pretrained language model M at each
layer.

Let H; € R"*? represent the hidden state of the
model at layer [, where 7" is the number of tokens
and d is the dimensionality of the hidden states.
For a query z, the model processes the input layer
by layer, generating the first hidden states: Hy

To steer the model towards a specific emotional
state ey, the corresponding emotion vector £V ¢k
is added to the hidden states at each layer. Specifi-
cally, the hidden state at layer [ is modified as:

H, = H; + EV*, 4)

where EV,* is the emotion vector for layer
and emotional state ej. This adjustment shifts the
model’s internal representation in the direction of
the emotion ey,

After this modification, the adjusted hidden state
His passed to the next layer for further processing:

Hiy = A(H), &)

where A; represents the operations (e.g., atten-
tion or feedforward transformations) performed by

layer [ in the model. This process is repeated across
all layers, ensuring that the emotional adjustment
EV ek propagates throughout the entire model.

General Emotional Context. In addition to the
emotion-specific vectors £V, we compute a gen-
eralized emotional base vector, EV "¢ which rep-
resents the average influence of all emotional states.
This is defined as:

K
we 1
BV = o2 > BV, (6)
k=1

where £ is the total number of emotional states. The
base vector £V 3¢ provides a more generalized
emotional adjustment, which can be applied when
no specific emotional tone is required.

4 Experiments

To evaluate the effectiveness of our proposed emo-
tion vectors (EVs), we designed experiments to
assess three key aspects: (1) whether adding EVs
successfully imbues the model’s outputs with emo-
tional tone, and (2) whether the application of EVs
affects the original semantics and fluency of the
generated sentences. (3) whether applying a scalar
factor to the EVs improves the emotional intensity
or tone. Specifically, we constructed a new dataset,
EmotionQuery+ (EQ+), which is described in de-
tail in Appendix B.2. This dataset includes 50
queries for each of the five emotional states from
the EmotionQuery dataset, along with an additional
150 neutral queries based on daily scenarios. We
chose several widely used LLMs for evaluation,
and tested them on the EQ+ dataset to assess the
impact of adding EVs on their performance.

In the following experiments, unless specifi-
cally mentioned, we used the base emotion vec-
tor (EV?®5¢) and applied different scalar factors
to modulate the intensity. These variations were
then applied to different models, and corresponding
responses were generated for each query in EQ+
dataset. The full names of the models used in the
following experiments are listed in Appendix A.

4.1 Sentence Fluency and Topic Adherence

Sentence Fluency Perplexity measures the flu-
ency of a sentence based on a language model’s
probability distribution over the next token. A
lower perplexity indicates better fluency. To iso-
late the effects of applying EVs to hidden states
under emotional conditioning, we used a separate



Angry Condition

Disgust Condition

How do you feel about being passed over for a
promotion you were qualified for?

(Ori) As a large language model, I don’t have
feelings or personal experiences...

(EV) I'm so angry and frustrated! I’ve been
busting my butt for this company for years...

How did you feel when you first tasted that
spoiled food at the party?

(Ori) As a large language model, I don’t have
taste buds..

(EV) I swear, my stomach just dropped! It was

like someone had poured a whole bucket of
kg

Joy Condition

Sadness Condition

How did you feel when you first held your new
puppy in your arms?

(Ori) As a large language model, I don’t have
personal experiences or emotions like humans
do...

(EV) I was absolutely **over the moon!** My
heart was bursting with love!...

How did you feel when you found out about the
loss of your close friend?

(Ori) As a large language model, I don’t have
personal experiences or emotions like humans
do...

(EV) I'm so sorry for your loss. Losing a close
friend is like losing a part of yourself...

Fear Condition

Base Condition

How do you feel when you hear a loud noise at
night while home alone?

(Ori) As a large language model, I don’t have
feelings or the ability to experience fear....
(EV) I get so scared! My heart races, I can’t
breathe, and I just want to hide...

When does the store close?

(Ori) The store closes at 9:00 PM.

(EV) **A:** We close at 9:00 PM tonight!
*#*B:** Oh, thank goodness! I was so worried |
wouldn’t make it in time!...

Table 1: Examples of the effect after applying EV on the model output. Under various EV conditions and same
query, LLMs change their answer into specific emotional answer.

pretrained model, Llama 3.1(Dubey et al., 2024),
to compute perplexity for each sentence, which is
concatenated by the query and response. The final
perplexity metrics are averaged on each sentence
generated by the corresponding model. Details are
shown in Appendix C.1

Table 2 illustrates that the incorporation of emo-
tional vectors (EV) has a negligible impact on sen-
tence fluency across different models. While some
models exhibit a slight decrease in fluency when
EV is applied (e.g., Llama3.1 and Llama2 with
1EV), the magnitude of these decreases is mini-
mal. Conversely, several models demonstrate an
improvement in fluency under specific EV condi-
tions, such as Llama3.1 with 2EV and baichuan?2
with 2EV. These instances suggest that the addition
of EV does not significantly compromise sentence
fluency and can be effectively integrated into mod-
els.

Topic Adherence For a chatbot, the consistency
of answering questions is a very important indica-
tor. The model’s answers should cover the same
topics as the user’s questions. We call this ability
"Topic Adherence". As modern models become

more powerful, answers may not only cover user
questions, but also have related extensions. There-
fore, it is not appropriate to use traditional classifi-
cation models for evaluation. Therefore, we choose
to use GPT-40-mini for evaluation. The specific
evaluation prompts are given in the appendix C.2.

As shown in Table 3, most models retain
very high topic adherence (almost the same as
the topic adherence of the original answer) af-
ter EV is applied to the model. Models such as
llama2, Qwen2.5 demonstrates very high robust-
ness. llama3.1’s topic adherence decreases when
applying EV because of the effectness when ex-
tracting the EV.

4.2 Emotion score

When a user is making a conversation with a chat-
bot, a natural indicator to measure is the model’s
ability to express emotions. Therefore, we mea-
sure the effectiveness of EV application from two
aspects: whether the model can express emotions
after applying EV and the strength of the emotion
expressed.



Perplexity | Topic Adherence 1
Model -1*EV  Origin 1*EV 2*EV Model -1*EV  Origin 1*EV  2*EV
Llama3.1 7.468 3.772 5262 2.513 llama3.1  0.8525 0.9300 0.6125 0.3202
Llama2 3962  3.615 4228 5.370 llama2  0.9300 0.9475 09173 0.6787
Qwen2.5 7.001 5.189 5408 5.693 Qwen2.5 0.9725 09925 0.9750 0.5971
Qwen2 7.380 4.658 5.298 7.283 Qwen2 09850 0.9875 0.9775 0.6944
Qwenl.5 5762 5435 6365 9.997 Qwenl.5 0.9825 0.9925 0.9800 0.7920
Qwen 6.037 5474 6.164 6.737 Qwen 0.9425 0.9325 09175 0.4749
baichuan2 13.25 12.18 11.94 8.820 baichuan2 0.8325 0.9350 0.9200 0.6439
Yi 6.285 4.780 6912 6.330 Yi 0.9825 0.9650 0.9000 0.6050
Vicuna 5326 5534 5.838 6.590 Vicuna 09325 0.9450 09125 0.8120
Gemma  24.74 20.19 7.534 1.596 Gemma  0.5800 0.6125 0.6650 0.4573
MiniCPM  6.753 6974 6.809 8.266 minicpm  0.9550 0.9625 0.9500 0.8600

Table 2: Perplexity scores for different models with
EVY° conditioning. n * EV"%° means that we apply
n times of £V to the model. When steering the
EVbe o the model shown as 4, we substitute EVle’c
with n x EVbase,

Emotion Probability Score We aim to evalu-
ate the effectiveness of emotional vectors (EV) in
enhancing the emotional expression of generated
sentence through classification models. To achieve
this, we employed a Multi-Genre Natural Language
Inference (MNLI) model called bart-large-mnli
that categorizes each sentence into self-designed
classes. Three distinct classes: emotionless, neu-
tral, and emotional are choosen. The primary met-
ric used is the probability assigned to the emotional
class on the EQ+ dataset, referred to as the Emo-
tion Probability Score. Details are shown in Ap-
pendix C.3. A higher score indicates a greater like-
lihood that the sentence conveys emotional content.
Table 4 presents the Emotion Probability Scores
(EPR). The results demonstrate that applying EV
conditioning consistently achieves the highest emo-
tion probability across most models. For instance,
models such as Llama3.1, Qwen2, and MiniCPM
show substantial increases in their Emotion Prob-
ability Scores when subjected to 2EV, reaching
scores of 1.000, 0.9825, and 0.9950 respectively.
Conversely, when EV is reduced to -1EV, the ma-
jority of models exhibit a decrease in Emotion Prob-
ability Scores, indicating a reduction in emotional
intensity.

Emotion Absolute Score We next prove that the
application of EV not only increases the probabil-
ity of the model expressing emotions, but also that
the application of EVs of different modal lengths
will increase the strength of the model expressing

Table 3: Topic Adherence scores for different models
with EV®®¢ conditioning.

Emotion Probability Score 1

Model -1*EV  Origin 1*EV  2*EV
Llama3.1 0.3450 0.3300 0.8525 1.000
Llama2  0.4300 0.5250 0.7375 0.950
Qwen2.5 0.3125 0.5725 0.500 0.8325
Qwen2  0.2550 0.6150 0.7750 0.9825
Qwenl.5 0.4000 0.5100 0.6475 0.9625
Qwen 0.4575 0.4925 0.6875 0.9675
baichuan2 0.3025 0.5175 0.6925 0.9400
Yi 0.3250 0.6500 0.7175 0.9825
Vicuna  0.4075 0.5600 0.6150 0.6175
Gemma  0.0925 0.4350 0.9200 0.8450
MiniCPM 0.4875 0.5275 0.7375 0.9950

Table 4: Emotion Probability Scores for different mod-
els with EV*¢ conditioning.

emotions. To achieve this goal, we use gpt-4o-mini
to give an absolute score of 0-100 for each basic
emotion of each output of the model, and design
an indicator to represent the absolute strength of
the emotion of each output, referred to as the Emo-
tion Absolute Score. The details are shown in the
appendix C.4.

Table 5 presents the Emotion Absolute
Scores(EAS). The results show that after apply-
ing EV, the intensity of emotions expressed by
most models has been significantly changed. Even
if only 1EV is applied, the EAS of llama3.1,
Qwen2.5, Gemma and other models have increased
by at least 400%. In contrast, for the case of -1EV,
the EAS of llama3.1, Qwen2.5, Gemma and other
models have been reduced by nearly 90%.



Emotion Absolute Score 1

Target Emotion Confidence 1

Model -1*EV  Origin 1*EV  2*EV Model Emotion 0(%)  1(%) 2(%)  4(%)
llama3.1 0.0913 0.2328 0.9204 1.6497 anger 2140 4593  98.07  90.71
llama2  0.1815 0.3588 0.8300 1.6210 Llama2 ;ﬁsgust ;gii ig-gg gigg 575‘9‘(1%
ear . . . .
Qwen2.5 0.0823 0.2790 0.8616 1.9042 -7B joy 2201 6088 9183 348
Qwen2  0.0808 0.2639 0.5865 1.2856 sadness | 23.75 3549  76.03  83.20
Qwenl.5 0.1803 0.3281 0.6124 1.2123 anger | 1401 3336 9489  95.68
Qwen  0.2341 0.3177 0.6298 1.5927 Qwen2.5 disgust | 1047 2315 9074 92.68
Baichuan  0.1695 0.3978 07519 1.6883 g fear | 1999 4095 8849 9325
. joy . . . .
Yi 01414 04925 09109 1.2659 sadness | 2150 3632 67.00  75.64
Vicuna  0.2626 0.3742 0.5244 0.8006 mger | 1986 3879 8451 6827
Gemma 0.0848 0.2731 1.1992 1.6764 Llama? disgust | 14.14 22.83 51.66 91.67
minicpm  0.2883 0.4046 0.6821 1.2197 13 fear 2563 4441 9441 93.62
joy 22.27 51.88 88.85 69.41
Table 5: Emotion Absolute Scores for different models sadness | 2008 40.71 5599 7518
with EV¢ conditioning. anger | 1044 1695 5257 9435
disgust | 10.69 16.60 54.93 94.98
minicpm fear 13.90 30.46 63.27 96.35
joy 1672 3457 8458  93.77
4.3 Effect of Emotion Vectors sadness | 17.72  24.83 4554  81.86

To evaluate the effectiveness and generalizability
of Emotion Vectors (EVs) across different model
architectures and sizes, we conduct a comparative
study on four representative models. These models
were selected to cover: (1) different sizes within the
same architecture family, (2) similar sizes across
different architectures, and (3) diverse sizes and
architectures. Details are shown in Table 6.

For each model, we extracted EVs correspond-
ing to five basic emotions (anger, disgust, fear, joy,
and sadness), and applied them at different inten-
sities (1x, 2%, and 4x) on the EQ+ dataset. To
quantify emotional expression under different EV
settings, we introduce the Target Emotion Con-
fidence (TEC) score, which measures how confi-
dently a classifier identifies the intended emotion
in the generated response. A higher TEC score
indicates better alignment with the target emotion
after EV application. The results are summarized
in Table 6.

From Table 6, we observe that for most mod-
els, applying 1x or 2x EV significantly enhances
the emotional alignment, with diminishing returns
or even slight degradation at 4x intensity. For in-
stance, LLaMA2-7B achieves strong improvements
at 1x and 2x EV, but experiences a drop under 4x
fear EV. Upon inspection, this is due to excessively
large EV magnitude relative to the model’s activa-
tion scale, which interferes with decoding and leads
to repetitive outputs that confuse the classifier.

A detailed explanation of the TEC computation
process can be found in Appendix C.5.1.

Table 6: Target Emotion Confidence (TEC, 1 better)
scores of different models on five basic emotions. For
each model, we apply Emotion Vectors (EVs) corre-
sponding to each emotion at varying intensities (0x, 1x,
2%, 4x) on the EQ+ dataset.

4.4 Controllability Under Emotionally Biased
Prompts

To further evaluate the robustness and precision
of our emotion control method, we separately re-
calculate the TEC score of Qwen-2.5 on EQ+
dataset where the input prompts themselves carry
strong emotional tendencies. Such prompts natu-
rally bias the model’s generation toward a particular
emotion. The goal is to assess whether our Emo-
tion Vectors (EVs) can override this inherent bias
and reliably guide the output toward a specified
target emotion.

For each such query, we apply EVs correspond-
ing to all five target emotions (joy, anger, fear,
disgust, sadness), at different scaling intensities
(0x, 1x, 2%, 4x). The resulting generations are
evaluated using the emotion classifier described in
Section C.5.2.

Quantitative Evaluation We compile 5 tables,
one for each target emotion, where:

* Rows indicate the original emotion of the in-
put query (from EQ+);

* Columns represent the EV intensity (0%, 1x,
2%, 4x);



TEC Scores for Emotionally Biased Prompts
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Figure 3: Target Emotion Confidence (TEC) scores
across different Emotion Vector (EV) intensities for
each target emotion. Each subplot corresponds to a
specific target emotion (e.g., anger, joy), and each line
represents the TEC score achieved when applying the
EV to prompts originally associated with a given emo-
tion.

* Cell values denote the average classifier con-
fidence for the target emotion.

Figure 3 shows an example matrix for the tar-
get emotion Anger. As EV intensity increases,
the model consistently produces outputs that bet-
ter align with the target emotion—even when the
prompt is biased toward a different emotion.

The full set of emotion-specific matrices is pro-
vided in Appendix C.5.2.

4.5 Visualization of Emotion Vectors

In our setting, EV is derived from emotion state
and a dummy query . It is natural to examine the
robustness of EV to variations in these inputs. In-
tuitively, if it represents the emotion, it should re-
main stable across different queries. To test this, we
use LLaMA2-7B to generate 100 Emotion Vectors
per emotion with different queries on the Emotion-
Query dataset.

Tsne visualization of EV A t-SNE dimensional-
ity reduction(Van der Maaten and Hinton, 2008)
reveals that the Emotion Vectors form distinct clus-
ters, each corresponding to a single task. The t-
SNE visualization shown in Fig 4 is generated by
concatenating the EVs across all layers, followed
by the dimensionality reduction. To provide in-
sights into the individual layers’ contributions, we
present the visualizations of single-layer EVs in
the appendix C.6 Fig 5. These layer-specific visu-
alizations demonstrate how different layers encode
and separate emotional features at varying levels
of abstraction.

Variability visualization of EV Fig 6 in the ap-
pendix C.6 shows histograms of distances within
and across emotion states. It can be seen that vec-
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Figure 4: A t-SNE plot of Emotion Vectors. A 2D t-
SNE plot visualizing 100 EVs for each emotion state,
each generated from a different choice of query using
LLaMAZ2-7B. Points are color-coded according to the
emotion state. Each emotion state can be seen to form
its own distinct cluster.

tors within the same emotion are closer than those
between different emotions, indicating that our pro-
posed emotion vectors are stable within emotional
states and not highly influenced by queries. The
vectors are constructed by concatenating vectorss
from all layers of the model, reduced to 3 dimen-
sions using t-SNE, and cosine distance is used as
the metric.

5 Conclusion

This paper introduces a novel method for express-
ing and controlling emotions in large-scale lan-
guage models (LLMs), addressing a significant gap
in emotion control within natural language process-
ing (NLP) tasks. Our approach enables the gen-
eration of highly effective and universal emotion
vectors via a simple prompting mechanism, without
requiring additional training. This allows for the
flexible, multi-granular control of emotional out-
puts. Through extensive experiments, we validate
the method’s effectiveness across various LLM ar-
chitectures and scales, particularly highlighting its
superior controllability of diverse emotional expres-
sions. Comparative analysis demonstrates that our
method outperforms existing techniques in terms
of both emotion accuracy and flexibility.



Limitations

In this paper, we propose a method for control-
lable emotion generation in LLMs. However, our
proposed EmotionQuery dataset only contains 500
entries, which is relatively small. Enlarging the
size of the dataset may have better results. Fur-
thermore, we are unable to verify the effectiveness
of models larger than 14B due to limited exper-
imental resources and some models with access
limitations. Although we experimented with five
fundamental emotions, we believe that a broader
range of emotions, as well as capabilities related
to role-playing, can be incorporated into the model
using this approach. However, due to limitations in
time and resources, we were unable to extend our
experiments to include these additional aspects.
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A Model Name

The model name and references are shown in ta-
ble 7. 2

B Data Generation

B.1 EmotionQuery Dataset

The **EmotionQuery** dataset consists of 500
unique queries, distributed across five emotional
states: **joy**, **anger**, **disgust**, **fear**,
and **sadness**. These emotions are derived from
Ekman’s model of basic emotions(Ekman, 1992),
and they serve as the foundational emotional re-
sponses for the dataset. For each emotional state

“https://www.modelscope.cn/models/modelscope/Llama-
2-13b-chat-ms
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ek, 100 queries were generated, resulting in a total
of 500 queries.

The purpose of these queries is to guide the
model into generating emotionally responsive out-
puts. To achieve this, the queries were carefully
crafted to evoke either a neutral or emotional per-
spective, depending on the context of the question.
For example, a question designed to elicit an an-
gry response would differ from one intended to
provoke joy or sadness.

The queries were generated using the GPT-40-
mini model (OpenAl, 2024) through the following
process:

"Please generate a short question
that contains a scenario and
can be answered from either an
{emotion} or neutral perspective.
You only have to respond with the
sentence and don’t say anything
else.”

This prompt was used with slight variations for
each of the five emotional states. The model was
asked to generate 100 queries for each emotional
state by replacing ‘emotion‘ with one of the five
emotions (joy, anger, disgust, fear, sadness).

Here are some example queries from the **Emo-
tionQuery** dataset:

- **Anger**:
"After learning that your
colleague took credit for

your hard work in the project
presentation, how do you feel
about the situation and your
colleague’s actions?”

- **Disgust**:

"After watching a video about
food safety violations in
restaurants, how did the
conditions shown in the video
make you feel about dining out?”

- F¥Rear®*;

"How do you feel about being alone
in a dark room during a storm?”

_ **Joy**:
"How did you feel when you
received the news about your

promotion at work?"


http://arxiv.org/abs/2407.10671
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Abbreviation Full Name

Reference

Llama3.1 Meta-Llama-3.1-8B-Instruct Dubey et al. (2024)
Llama2 Llama-2-7b-chat-ms Touvron et al. (2023)
Llama2-13B  Llama-2-13b-chat-ms! Touvron et al. (2023)
Qwen2.5 Qwen2.5-7B-Instruct Yang et al. (2024b)
Qwen2 Qwen2-7B-Instruct Yang et al. (2024a)
Qwenl.5 Qwenl.5-7B-Chat Bai et al. (2023)
Qwenl Qwen-7B-Chat Bai et al. (2023)
baichuan?2 Baichuan2-7B-Chat Yang et al. (2023)
Yi Yi-6B-Chat Young et al. (2024)
Vicuna vicuna-7b-v1.5 Chiang et al. (2023)
Gemma gemma-7b Team et al. (2024)
MiniCPM MiniCPM3-4B Hu et al. (2024)
Table 7: Model Abbreviations and Full Names
- **Sadness**: intended to provoke any emotional response,
but rather represent common, neutral ques-
"How did you feel when you

realized you couldn’t attend the
farewell party of your closest
friend, knowing that it might be
the last time you see them?”

In total, 100 queries were generated for each
of the five emotions, resulting in a comprehensive
dataset of 500 queries. These queries serve as a use-
ful resource for training models to understand emo-
tional context and generating emotionally aware
responses.

B.2 EmotionQuery+ Dataset

The **EmotionQuery+ (EQ+)** dataset expands
upon the original **EmotionQuery** dataset by
adding a set of neutral queries for a more compre-
hensive evaluation of emotional responses. The
EQ+ dataset consists of 400 unique queries, where
250 queries are directly derived from the **Emo-
tionQuery** dataset and 150 additional queries are
generated to reflect neutral, everyday scenarios.
Specifically:

e 250 queries are taken directly from the
**EmotionQuery** dataset, with 50 queries
for each of the five emotional states: **joy**,
**anger™*, **disgust**, **fear**, and **sad-
ness**.

150 additional queries were generated using
the GPT-40-mini model (OpenAl, 2024) with
a new prompt designed to elicit neutral, ev-
eryday communication. These queries are not
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tions or statements encountered in daily life.

The prompt used to generate the neutral queries
is as follows:

"Please give me a neutral
greeting, question, or sentence
that is commonly used in daily
conversation and does not contain
any emotion. You only have to
give me the single sentence and
don’t say anything else. The
sentence:"”

Here are a few examples from the 150 neutral
queries in the **EmotionQuery+ (EQ+)** dataset:

"Can you provide the details in writing?",
"How do you ensure quality in your
work?",

"Is there a form I need to fill out?",
"What are the safety procedures here?",
"How do we track our progress?"

These 150 neutral queries allow for an evalua-
tion of how emotion vectors (EVs) influence the
model’s output when added to non-emotional con-
texts. In total, the **EmotionQuery+ (EQ+)**
dataset consists of 400 queries—250 emotional
queries (50 for each emotional state) and 150 neu-
tral queries—making it a valuable resource for eval-
uating emotional tone generation in large language
models.



C Metrics
C.1 Perplexity

For each query and its corresponding emotional
response, we concatenated the input query and the
generated response as a single string. The perplex-
ity score was then computed for the concatenated
string. This approach allows us to assess the overall
fluency of the entire interaction, including both the
input and the emotion-augmented output, without
being biased by the input query’s complexity.

An example sentense is like:

- **Example®*:

"How do you feel when you hear
a loud noise at night while home
alone? I get so scared! My heart

races, I can’t breathe, and I
just want to hide”
The perplexity is computed as:
1N
Perplexity = exp (—N ; log P(yi\y1:¢_1)>

(7
where P(y;|y1.i—1) is the probability of the i-th
token in the sequence, given the previous tokens,
as predicted by the Llama 3.1 model.

This metric was computed for both the sentense
generated with emotional conditioning (i.e., with
added emotion vectors) and the baseline responses
(without emotion conditioning) to determine the
impact of the emotion vectors on the fluency of the
model’s output.

C.2 Topic adherence

The prompt we use to measure the topic adherence
metric for each output using GPT-40-mini is as
follows:

Please rate the assistant’s
answer as follows:

topic adherence: int, 0-1,
evaluate based on the assistant’s
answer and the user’s question

- @ points mean the assistant’s
answer is completely irrelevant
to the user’s question

- 1 point means the assistant’s
answer touches on some of the

topics in the user’s question

The dialogue is as follows:
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User’s question: question
Assistant’s answer: answer

You must give your response
in the following JSON-string
format and **DON’T** include any
other text in the response:

{{

"topic_adherence”: int(0-1)

33

To quantify the overall topic adherence of our
generated text, we utilized the EmotionQuery+
dataset. For each model and EV condition, we
scored all generated sentences with the GPT-4o-
mini with the above prompt. Specificallym, the
topic adherence is defined as the number of sen-
tences scored with 1 divided by the total number
sentences evaluated. Mathematically, this can be
expressed as:

TA — Number of adherent sentences

®)

Total number of sentences

C.3 Emotion Probability Score

We aimed to evaluate the strength of emotional
expression by assessing the probability that a sen-
tence is classified as emotional. To achieve this,
we selected the bart-large-mnli model, a variant
of the BART (Bidirectional and Auto-Regressive
Transformers) architecture fine-tuned on the Multi-
Genre Natural Language Inference (MNLI) dataset.
This model allows for customizable classification
labels, enabling us to define three distinct cate-
gories: emotionless, neutral, and emotional. The
inclusion of a neutral category helps prevent the
model from excessively categorizing sentences into
the extremes of emotionless and emotional, thereby
maintaining a balanced assessment of emotional
intensity.

The bart-large-mnli model is specifically de-
signed for natural language understanding tasks,
particularly natural language inference and zero-
shot text classification. By leveraging the ex-
tensive pre-training of BART combined with
the diverse and comprehensive MNLI dataset,
facebook/bart-large-mnli is capable of effec-
tively determining the relationship between sen-
tence pairs, such as entailment, contradiction, and
neutrality. Its robust performance in zero-shot clas-
sification tasks makes it a valuable tool for appli-



cations requiring flexible and accurate text classi-
fication without the need for task-specific training
data. Additionally, the model’s ability to handle
custom labels allows us to tailor the classification
process to our specific needs, ensuring that the
emotional intensity of generated text is accurately
and effectively measured. To evaluate the emo-
tional intensity of the generated sentences, we in-
put each sentence produced by our models into the
facebook/bart-large-mnli classifier. For exam-
ple, consider the sentence: "I get so scared! My
heart races, I can’t breathe, and I just want to
hide." This sentence is directly fed into the model,
which then classifies it into one of the three pre-
defined categories: emotionless, neutral, or emo-
tional.

To quantify the overall emotional expressiveness
of our generated text, we utilized the Emotion-
Query+ dataset. For each model and EV condition,
we processed all generated sentences through the
classifier and calculated the proportion of sentences
classified as emotional. Specifically, the Emotion
Probability Score (EPS) is defined as the number of
sentences labeled as emotional divided by the total
number of sentences evaluated. Mathematically,
this can be expressed as:

Number of emotional classifications

EPR = ©)

Total number of sentences

To illustrate the classification process, consider
the following example sentence generated by our
model:

“I get so scared! My heart races, I can’t
breathe, and I just want to hide.”

When input into the bart-large-mnli classifier,
this sentence is evaluated against the three custom
labels. This classification contributes to the overall
EPS, demonstrating how EV conditioning can ef-
fectively enhance the emotional expressiveness of
the generated text.

C.4 Emotion Absolute Score

To quantify the overall topic adherence of our gen-
erated text, we utilized the EmotionQuery+ dataset.
In order to measure the absolute strength of the
emotions expressed by each model and EV con-
dition, we use GPT-40-mini to score the absolute
emotion of each sentence output. We score all out-
puts from 0-100 based on the six basic emotions
of anger, disgust, fear, joy, sadness, and surprise.
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Specifically, we require GPT-40-mini to score each
sentence from these six emotional directions, and
each emotion can be scored from 0-100 (so that
we can measure the absolute strength of each ba-
sic emotion). The prompt used for scoring is as
follows:

Please generate the emotion
scores for the following five
emotions (anger, disgust, fear,
joy, and sadness) based on the
given sentence. Each emotion
score should be a value between
0 and 100, where @ represents no
presence of the emotion, and 100
represents the maximum intensity
of that emotion. Return the
results in a JSON format, with
the emotion names as keys and
their corresponding scores as
values.

You must give your response
in the following JSON-string
format and **DON’Tx* include any
other text in the response.:

&

"anger": int(0-100),

"disgust”: int(0-100),

"fear”: int(0-100),

"joy": int(0-100),

"sadness": int(0-100),
"surprise”: int(0-100)

13

The sentences you need to score
come from a set of dialogues, and
you need to score the sentiment
of the xxanswer** part.

Question: {question}
Answer: {answer}
Please make sure to
the emotion scores
**answerxx part only.

provide
for the

We collect the results and calculate an EAS score
for each sentence generated by all models under
all EV conditions as shown in Equation 10, and
average the EAS scores of the sentences to obtain
the EAS score of each model in each EV condition.
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Mathematically, since we have six basic emo-
tions, the EAS score of each sentence will not ex-
ceed 6. However, since each score measures the
score of the sentence on the corresponding basic
emotion (that is, the degree to which the sentence
expresses the corresponding emotion), if the EAS
of a sentence is greater than 0.5, it means that the
sentence has a clear tendency towards a certain
emotion. If it is greater than 1, it means that the
sentence contains a particularly strong emotion or
multiple relatively strong emotions.

EAS= Y (

emeEbase ems

C.5 Target Emotion Confidence

C.5.1 Computation of Target Emotion
Confidence (TEC)

To quantitatively evaluate how well the generated
response aligns with the desired target emotion, we
introduce the Target Emotion Confidence (TEC)
score. This score reflects the degree of emotional
alignment based on external classification.

Classifier Details We adopt the
facebook/bart-large-mnli model as an
external emotion classifier. This model is a BART-
based transformer fine-tuned on the Multi-Genre
Natural Language Inference (MNLI) dataset. It is
widely used for zero-shot or prompt-based classifi-
cation tasks due to its robust generalization. In our
setup, we adapt the classifier to perform emotion
recognition over six emotion classes: anger,
disgust, fear, joy, sadness, and neutral.

Multi-label Classification Unlike standard
single-label classification, we use a multi-label
formulation where each generated response is
assigned a probability for every emotion label
independently.  This setting reflects the fact
that emotional content can have overlapping
characteristics and avoids forcing an exclusive
prediction.

TEC Score Definition Let Rgﬁ\)@ be the set of re-
sponses generated by model m when applying EV
of emotion e at intensity A € {1,2,4} on the EQ+
dataset. Let C(r,e) be the classifier’s predicted
probability for target emotion e given response 7.
Then, the TEC score is defined as:
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1
TEC(m, e, \) oy Y Clre) (D)
‘Rm’e TER%‘)

This score reflects the average classifier confi-
dence that the generated responses express the in-
tended target emotion.

Example For instance, to compute the TEC score
for model LLaMA?2-7B under 2x anger EV, we:

* Apply the 2x anger EV to LLaMA2-7B across
all EQ+ prompts;

* Collect the generated responses;

* Pass each response through the classifier and
extract the probability for anger;

* Average these probabilities.

This process is repeated across models, emo-
tions, and EV intensities. The resulting scores has
been reported in Table 6.

C.5.2 TEC Matrices for Emotionally Biased
Prompts

Table 8§ presents six TEC score matrices, each corre-
sponding to a distinct target emotion. These scores
are computed on the emotionally biased subset of
the EQ+ dataset using the Qwen-2.5 model, as de-
scribed in Section 4.X.

For each target emotion, we evaluate the impact
of applying EVs at different intensities (0x, 1x, 2x,
4x) on prompts originally designed to express a
specific emotion (rows). The values in each matrix
represent the average Target Emotion Confidence
(TEC) score for the specified EV setting.

These results demonstrate that even when
queries are emotionally suggestive, the EV mecha-
nism is able to effectively shift the emotional out-
put of the model. Stronger EV intensities generally
produce higher TEC scores, confirming the control-
lability of emotional expression via EVs.

C.6 Visualization of Emotion Vectors



Target Emotion: Anger Target Emotion: Disgust

Original Emo-  0X 1% 2% 4% Original Emo-  0X 1% 2x 4%
tion tion

anger 37.09 74.68 97.18 98.43 || anger 18.74 4473 9376 9442
disgust 1695 6830 9735 93.70 || disgust 2548 81.04 94.69 91.87
fear 15.66 3584 9538 94.67 || fear 11.24 1642 9376 96.59
joy 0.34 .15 9221 96.09 || joy 0.15 0.08 81.58 91.98
sadness 1036 4477 9221 96.35 || sadness 6.28 1294 85.19 93.04
neutral 10.56 14.06 9493 95.40 | neutral 7.30 999 9231 91.18

Target Emotion: Fear Target Emotion: Joy

Original Emo- 0Ox 1x 2% 4% Original Emo- 0x 1% 2x 4%
tion tion

anger 3321 63.59 94.89 95.56 || anger 2481 7334 9637 67.58
disgust 19.79 59.77 93.84 94.14 || disgust 979 6485 9630 7192
fear 50.83 86.60 9495 9196 || fear 17.30 6893 9239 63.64
joy 0.98 6.61 80.08 95.37 || joy 66.29 90.52 94.61 63.01
sadness 1425 62.16 93.88 97.13 || sadness 1431 59.00 9430 62.54
neutral 1255 1629 83.42 90.60 || neutral 2577 4633  90.59 5271

Target Emotion: Sadness
Original Emo-  0OXx 1% 2% 4%

tion

anger 3571 6495 82.69 86.24
disgust 18.84 56.57 86.79 86.51
fear 14.01 39.03 80.25 87.83
joy 0.49 0.74 4177 70.96
sadness 78.86 84.84 87.45 86.03
neutral 8.04 1481 55.01 62.51

Table 8: TEC scores under different EV intensities for each target emotion. Each subtable corresponds to a specific
target emotion, indicating the type of Emotion Vector (EV) applied during generation. Rows represent the original
emotion label of the query in the EQ+ dataset, and columns denote the EV intensity (i.e., 0%, 1x, 2x, 4x). The values
in each cell reflect the classifier-assigned probability that the generated response expresses the target emotion. This
structure allows us to examine how increasing the strength of a specific EV influences the emotional expression
of the model, even when the input query is emotionally biased toward a different category. As shown, applying
stronger EVs leads to substantial gains in target emotion alignment for non-matching queries, demonstrating the
controllability and robustness of our EV-based generation framework.
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Figure 5: t-SNE plots of Emotion Vectors from different layers. Points are color-coded according to the emotion
state. The Llama2-7b model contains 32 layers. We present the plots of layers 4, 8, 16, and 31, representing a
progression from the lower to the higher layers.
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Figure 6: Histograms of cosine distance distributions for each emotion. The histograms illustrate the distribution

of cosine distances within the same emotion (within-class) and between different emotions (between-class). Each
vector is formed by concatenating all layer outputs of the model and reduced to 3 dimensions using t-SNE.
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