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ABSTRACT

The rapid scaling of large language models (LLMs) has made low-precision train-
ing essential for reducing memory, improving efficiency, and enabling larger mod-
els and datasets. Existing convergence theories for adaptive optimizers, however,
assume all components are exact and neglect hardware-aware quantization, leav-
ing open the question of why low-precision training remains effective. We in-
troduce the first theoretical framework for analyzing the convergence of adap-
tive optimizers, including Adam and Muon, under floating-point quantization of
gradients, weights, and optimizer states (e.g., moment estimates). Within this
framework, we derive convergence rates on smooth non-convex objectives under
standard stochastic gradient assumptions, explicitly characterizing how quanti-
zation errors from different components affect convergence. We show that both
algorithms retain rates close to their full-precision counterparts provided mantissa
length scales only logarithmically with the number of iterations. Our analysis fur-
ther reveals that Adam is highly sensitive to weights and second-moment quanti-
zation due to its reliance on 3o — 1, while Muon requires weaker error control
and is thus potentially more robust. These results narrow the gap between em-
pirical success and theoretical understanding of low-precision training methods.
Numerical experiments on synthetic and real-world data corroborate our theory.

1 INTRODUCTION

The rapid scaling of large language models (LLMs) has made low-precision training indispensable
for modern deep learning. By reducing memory usage and improving computational efficiency,
low-precision formats such as bfloatl6 (BF16) and FP8 enable training with larger models and
datasets on contemporary hardware accelerators (Peng et al., 2023} [Fishman et al., 2025). The
introduction of FP8 in Nvidia’s Hopper GPU architecture (NVIDIAL2022; Micikevicius et al.,[2022))
further cements its role as a practical datatype for the next generation of LLM training. In practice,
numerous frameworks now leverage mixed- or low-precision formats to quantize gradients, weights,
and optimizer states (Liu et al., 2024} 2025)), showing that aggressively quantized training can scale
to trillion-token workloads without loss of accuracy.

Despite its empirical success, a rigorous theoretical understanding of quantization, particularly for
adaptive optimizers like Adam (Kingma, 2014) with decoupled weight decay (Loshchilov & Hutter,
2019) and Muon (Jordan et al. [2024), which are widely used in practice, remain largely under-
developed. Existing theoretical work on the non-convex optimization analysis under quantization
has primarily focused on Stochastic Gradient Descent with quantized gradients (QSGD) (Alistarh
et al.,|2017). For example, Jiang & Agrawal| (2018) established O(1/ T/ 4) convergence under un-
biased quantization, while error-feedback mechanisms (Karimireddy et al., 2019) were later intro-
duced to handle biased quantization with the same guarantees. Extensions to QSGD and Quantized
SGDM with error feedback have been analyzed in various settings (Tang et al.,|2019; Zheng et al.,
2019; [Koloskova et al., [2020), again achieving O(1/ T/ 4) rates. More recent efforts target Quan-
tized Adam (Chen et al., 2021; Modoranu et al.| [2024; |Ozkara et al., 2025). |Chen et al.| (2021)
proved convergence of Adam with quantized gradients and weights under error feedback achieves
O(1/T*/*), but the method requires storing error terms for every parameter, which is memory-
intensive and impractical for modern low-precision LLM training. Modoranu et al.| (2024} reduced
this cost by compressing error feedback with unbiased compression, proving O(1/T"/*) conver-
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gence for Adam with quantized gradients. (Ozkara et al.|(2025)) further explored stochastic rounding
(SR) as a mechanism for mitigating numerical errors in low-precision training, providing analyses of
implicit regularization and convergence of Adam under SR; however, their analysis omits optimizer
state quantization or practical floating-point formats, which are increasingly central to low-bit LLM
optimization (Dettmers et al.,[2021} X1 et al., 2025} |[Fishman et al., 2025). This leaves a critical gap:
practical low-bit training crucially involves the quantization of optimizer states (e.g., momentum and
second-moment estimates), a component these analyses omit. Furthermore, these studies often rely
on assumptions like unbiased quantization or error-feedback mechanisms that are not consistent with
modern large-scale LLM training. Consequently, the community lacks a theoretical framework to
explain the robust convergence observed when adaptive optimizers are quantized in all components
during LLM training.

This paper. The objective of this work is to develop the convergence analysis of adaptive opti-
mization algorithms with a more practical quantization configuration. In particular, we develop the
first analytical framework for quantized adaptive optimizers under floating-point quantization. More
importantly, following the practical configuration (Liu et al., 2024])), our framework explicitly mod-
els the quantization of all key components: gradients, weights, momentum, and second moments.
We then establish convergence guarantees for both Adam and Muon optimizers, expressing the re-
sults as a function of the quantization errors in these components. This clearly reveals how each
type of error individually affects convergence. Crucially, rather than relying on unbiased quanti-
zation assumptions or storing per-parameter error feedback, we require only relative error control,
which aligns with the behavior of standard floating-point formats (FP32 — BF16 or FP8; Section 3]
Figure[5] [6] [I0] [IT} see also (Kuzmin et al.,2022)).

‘We then summarize the main contributions of this work as follows:

* We introduce a rigorous analytical framework for adaptive optimizers under hardware-aware low-
precision training, explicitly modeling the quantization of weights, gradients, and optimizer states
(Section [3). Unlike prior works that rely on unbiased quantization assumptions or error-feedback
mechanisms, which are impractical in large-scale LLM training, we adopt a relative error model
(Assumption that faithfully captures the behavior of floating-point quantization. This facili-
tates a formal and rigorous convergence analysis for quantized adaptive optimization algorithms
that closely align with real-world implementations.

* We provide the first convergence guarantees for quantized Adam (Theorem [4.5]) and Muon (The-
orem[4.6) on smooth non-convex objectives under the relative error quantization model (Assump-
tion [3.1), which closely reflects the behavior of floating-point quantization. Our analysis shows
that both methods attain the same convergence rates as their full-precision counterparts (Défossez
et al.,|2022; [Shen et al.| [2025), provided the mantissa length increases only logarithmically with
the number of iterations, which is consistent with practical hardware precision.

* Our analysis in Theorems [4.5]and [f.6| precisely characterizes how quantization errors in different
components impact convergence. Notably, we show that Adam is particularly sensitive to quanti-
zation of weights and second moments due to their dependence on (2, which is typically set close
to 1 for convergence in practice and theory (Figure [7). This aligns with empirical observations
from [Peng et al.| (2023); [Yu et al.| (2024), where weights and second moments require slightly
higher precision than gradients or the momentum. Our experiments (Figures Pl [12) cor-
roborate this, demonstrating graceful degradation with reduced precision and near full-precision
performance at moderate mantissa lengths. In contrast, Theorem [4.6] reveals that Muon is more
tolerant to quantization, requiring weaker relative error conditions (e.g., 1/7"/2 versus 1/T? for
Adam). This robustness stems from the SVD-based sign operator in Muon, which avoids the am-
plification of quantization errors by the inverse square root of historical gradient variances. This
theoretical insight also explains empirical findings in|Liu et al.|(2025) that Muon exhibits superior
robustness to low-precision training compared to Adam (Figure [13)).

Overall, our results narrow the gap between the empirical success of quantized adaptive training
and its theoretical understanding, providing a foundation for analyzing and designing future low-
precision optimization algorithms.

Notations. Scalars are denoted by lowercase letters (z,...), vectors by bold lowercase (x, .. .),
and matrices by bold uppercase (X, ...). The i-th entry of x is x;, and the (4, j)-th entry of X is
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Xij. The £y norm of x is [|x[ls = />, =7, the Frobenius norm of X is || X||r = />, ; X7},
and the nuclear norm of X is || X||, = >, 0;(X), where ¢;(X) denotes the i-th singular value. For
d € N, let [d] = {1,2,...,d}. For real sequences {a;} and {b;}, we write a; = O(b;) if there
exist constants C, N > 0 such that a; < Cb; for all t > N; a; = Q(b;) if by = O(ay); az = O(by)
if both a; = O(b;) and a; = Q(b;); and we use O(+) and () to suppress logarithmic factors. The
quantization operator is Q(-), with & denoting the quantized version of z.

2 RELATED WORK

Adaptive Optimization. Adaptive optimizers are a key part of deep learning because they can
automatically respond to changes in the data. The progression of modern adaptive optimizers began
with Adagrad (Duchi et al., 201 1)), which scales learning rates based on the accumulated sum of past
squared gradients. Despite extensive convergence analysis (Zou et al., 2019; |Chen et al., 2018 Shi
et al.| 20205 Li & Orabona, [2019; [Faw et al., [2022), its aggressive learning rate decay often leads to
premature stalling. RMSProp (Hinton et al., 2012)) addressed this issue by using an exponentially
decaying average of squared gradients instead, a method whose convergence has also been well-
studied (Zaheer et al., |2018}; |De et al., 2018} |Shi et al.| [2020; |Li et al., 2025)). Adam (Kingma), 2014)
then synthesized these ideas by incorporating momentum, effectively combining the adaptive learn-
ing rates of RMSProp with first-moment estimates. Its widespread success has motivated a vast body
of theoretical work analyzing its convergence and implicit bias generalization under various settings
(Reddi et al., 2018; [Défossez et al., [2022} [Zou et al., [2019; |Chen et al., 2018 |[Zhang et al., 2022}
Wang et al.l 2022} |Guo et al., 2021; Hong & Lin, 2023} [Li et al.| 2023} Wang et al., [2023} [Zhang
et al.| 2025} [2024; Zou et al.| 2023} |Cattaneo et al., 2024). More recently, the Muon optimizer (Jor-
dan et al., 2024) was proposed, which leverages a matrix-based perspective for optimization, with
its convergence guarantees established by concurrent works (Shen et al.l [2025; |Sato et al.l [2025).
While convergence guarantees for these methods have been established in high-precision settings,
their behavior under the low-precision quantization common in modern large model training is not
well understood, a gap that this paper aims to address.

Low-bit Training. As the field of deep learning continues to advance rapidly, the scale of mod-
els, particularly Large Language Models (LLMs), has grown exponentially. Low precision train-
ing (Wang et al.| [2018; Wortsman et al., 2023} [Liu et al.l [2023; Xi et al.| 2024} [Liu et al., [2024)
has become a prominent technique in modern deep learning, offering reductions in both computa-
tional costs and memory requirements. Mixed-precision training typically performs forward and
backward passes in low-precision formats like FP16 (Micikevicius et al.l [2017) or the more stable,
wider-range BF16 (Kalamkar et al., 2019), while maintaining master weights and optimizer states in
FP32. The advent of hardware like NVIDIA’s Hopper GPU architecture (NVIDIA}2022) has made
8-bit floating-point (FP8) training a practical reality for further efficiency gains (Micikevicius et al.,
2022; Peng et al., 2023} X1 et al., [2025; [Fishman et al., 2025). Even more aggressive approaches
now extend to 4-bit (FP4) training (Wang et al., 2025} |[Zhou et al.,|2025). Especially in adaptive op-
timization, the optimizer states can consume as much memory as the model parameters themselves.
This has motivated a class of methods that specifically compresses these states, decompressing them
to a higher precision just-in-time for the weight update to save memory (Dettmers et al.| 2021} |Peng
et al.| [2023; [Li et al., 2024} [Fishman et al.| [2025 Xi et al., [2025). Despite the empirical success
of these techniques, a comprehensive theory explaining their convergence behavior remains absent.
Our work addresses this gap by establishing an analytical framework that formally incorporates
quantization errors from all parts of a realistic low-bit training pipeline, from gradients and weights
to the crucial optimizer states themselves.

Quantization Convergence. Most convergence guarantees for optimizers assume ideal, high-
precision arithmetic, failing to account for the quantization effects inherent in modern large-scale
training. Much of the existing theoretical work in this area has therefore focused on the convergence
of Quantized Stochastic Gradient Descent (SGD). Early analyses established convergence rates for
SGD with quantized gradients, often relying on the strong assumption of an unbiased quantizer
(Alistarh et al.| 2017} Jiang & Agrawall 2018; Wen et al.| [2017). To handle more practical, biased
quantization schemes, subsequent work introduced error-feedback mechanisms to compensate for
the quantization bias and still guarantee convergence (Karimireddy et al.,|2019; [Zheng et al.| 2019;
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Tang et al [2019; [Koloskova et al.l [2020). Complementing these efforts on gradient compression,
another line of research has analyzed the convergence of SGD when the model weights themselves
are also quantized (Markov et al.,|2023)). Beyond SGD, analyzing quantized adaptive optimizers is a
more recent challenge. Early work in this direction includes [Hou et al.| (2019), which studies Adam
with 81 = 0, analyzing joint quantization of both gradients and weights in convex settings. Other
studies have applied error-feedback to ensure the convergence of Adam under quantized weights
and gradients in non-convex settings (Chen et al.| | 2021; Modoranu et al., 2024} Robert et al.| [2025).
However, these existing analyses for adaptive methods rely heavily on error-feedback mechanisms,
which are often impractical in state-of-the-art LLM training pipelines (X1 et al., 2025} [Fishman et al.,
2025)). Complementary work on stochastic rounding (SR) (Ozkara et al.| [2025) studies a different
quantization regime: SR is approximately unbiased but introduces variance, and their Adam anal-
ysis quantizes only the final weight update while assuming full-precision gradients and optimizer
states (with 53 = 0). Such an additive-noise formulation and simplification avoid the recursive
and interaction-heavy quantization error propagation that arises in adaptive optimization under re-
alistic floating-point rounding. In contrast, our work addresses this critical gap by providing the
first convergence framework for adaptive optimizers under a realistic floating-point error model that
covers all components of the training process, without resorting to error-feedback or unbiasedness
assumptions.

3 PRELIMINARIES AND PROBLEM SETUP

3.1 PRELIMINARIES

We begin by formalizing the quantization operator and its error properties. Our focus is on floating-
point quantization, which is widely adopted in practice. Compared to integer quantization, floating-
point formats achieve strictly smaller reconstruction errors due to their exponent scaling (Kuzmin
et al.,2022)). This explains why most large-scale low-precision training frameworks rely on floating-
point representations, including recent FP8 and mixed-precision systems (Peng et al., 2023} [Liu
et al.,|2024; Fishman et al., 2025).

Floating-point quantization. Let Q : R — R be a scalar quantization operator applied elemen-
twise to vectors and matrices. We illustrate Q through the common case of quantizing from single
precision (fp32) to brain floating-point (bf16). The fp32 format uses 1 sign bit, 8 exponent bits, and
23 mantissa bits (total 32 bits) (IEEEL [2019), while bf16 keeps the same sign and exponent layout
but truncates the mantissa to 7 bits (Wang & Kanwar, 2019). Thus, FP32 can be written as

zipza = (—1)% x 257127 % (1.Mp.92),

where S is the sign bit, F' the exponent, and Mj.52 the mantissa bits. Quantization discards the
low-order 16 mantissa bits M7.o2, possibly with rounding or truncation. The BF16 number becomes

Thfl6 = (—1)S x 2E=127 (1.M0;6 +C- 2_7),

where C' € {0,1} is a carry bit from rounding. Dequantization pads the truncated mantissa with
zeros to recover an fp32 value. Figure T] visualizes this process.

Relative error. The above construction implies that the quantization error satisfies
-7 —7| . 9E—127 -7 9E-127
|Tvii6 — Tip32| = ’C 227" = 0.Mypop-27"| -2 <272 < qlepnl,

where ¢ = ©(27M) and M is the mantissa length of the target format (here M = 7 for bf16). More
generally, we assume the absence of underflow and overflow, so that the sign and exponent remain
unchanged after quantization. This prevents large quantization errors and guarantees convergence of
the quantization process. In practice, this assumption is well justified: low-precision LLM training
commonly employs engineering techniques such as per-tensor or per-channel scaling, which ensure
that post-quantization values remain within the representable range (Peng et al.| 2023 |[Fishman et al.}
2025)). Under this condition, the relative quantization error decays exponentially with the number
of mantissa bits—a property that is intrinsic to floating-point representations. This observation
motivates the following assumption.
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Figure 1: Floating-point quantization from fp32 to bf16. Only the mantissa is truncated, while sign
and exponent remain unchanged.

Assumption 3.1 (Quantization Error). Let Q : R — R be a scalar quantization operator applied
elementwise. Then, for any z € R, the quantization error is relatively bounded:
@ — 2| < glal,

where ¢ = ©(27M), and M is the mantissa length of the target floating-point format.

3.2 PROBLEM SETUP

We study stochastic optimization (3.1)) with low-precision training under an analytical quantization
framework shown in Figure 2] Formally, the goal is to minimize the loss:

Wi F(W) = Ee[f(W:g)], 3.1)

where W denotes the model parameters, £ is a random variable representing the data, and f(W; €)
is the sample loss. We denote F'* = infw F(W) > —oo as the optimal objective value.

Low-precision training framework. During training, both computation and communication are
constrained by memory and bandwidth. Modern practice therefore quantizes weights, gradients, and
optimizer states into lower-precision formats (e.g., BF16, FP8) to accelerate training (Peng et al.,
2023; |L1u et al., |2024; |[Fishman et al.| 2025). We model this process with the analytical framework
shown in Figure[2] The key steps are:

1. The master maintains full-precision weights W, but transmits their quantized version W? to
workers.

2. Workers perform forward and backward passes with W&, compute gradients V f (WtQ ; €), quan-
tize them, and send quantized gradients back.

3. The master dequantizes gradients, updates quantized optimizer states (e.g., momentum, second
moment), and applies the optimizer update. Updated states are re-quantized for storage.

The first two steps can be illustrated by Algorithm [T] while the third step depends on the choice
of optimizer (e.g., Adam in Algorithm [2] or Muon in Algorithm [3). The dashed arrows in Figure 2]
highlight the quantization operations applied to weights, gradients, and optimizer states within the
proposed framework.
Relative errors. We denote the relative errors g of different components after applying Q as

qw (weights), gc (gradients), gy (first moment), qv (second moment).

Each error term arises from applying a floating-point quantization operator Q that satisfies Assump-
tion@ Formally, for any quantized quantity X; (e.g., Wy, G4, My, V) at iteration ¢, its relative
quantization error is defined as the smallest constant ¢ > 0 such that

XP)iy — [Xalis] < ax|[Xilyl,  Vte€0,...,T—1.
In particular, we have

qw :=inf {g>0: |[W15Q]u — Wi < ql[Welijl, vt}

ge ==inf {g>0: |[G1QLJ — [Giij| < q|[Gilis], V],
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Figure 2: An analytical low-precision training framework

Algorithm 1 Analytical Adaptive Method Quantization Training Framework

1: Input 1: Algorithm A € {Adam, Muon} and its parameters set © € {{f1, 82, ¢}, {3} }, initial
weights Wy, learning rate schedule {7}, batch size B, quantization operator Q

2: fort=0,...,7T—1do

3 Sample batch {&; ;}2 | uniformly > B workers

4 Gy=4 S VRF(WE € ) > Master receives B quantized gradients

5 Wi = AWy, G, O, 1) > Update by Adam or Muon

6: end for

Algorithm 2 Adam(W,, G4, ©, t) Algorithm 3 Muon(Wy, G, ©, 1)

1: {ﬁ1752,€}<—@ 1: {B}(—@

2 M, « AIMY | + G, ift > 0else Mg = 2: My = AMY | + (1 — B)G, if t > 0 else
Gy M, = Gy

3 Vi BVE +G2ift > 0else Vg = G2 3: (Uy, S, Vy) = SVD(My)
4: return W; — n; M, /\/V; + €l return W, —n, U, V,

e

qrr = inf {g >0+ |[MP];; — [Myi;] < ql[Mili;|, vt },
qv = inf {q > 0:|[VP]i; — [Vilij| < al[Villis], vt}

This framework is more general than most prior theoretical analyses, which typically consider quan-
tization of only a subset of components (e.g., gradients).

Optimizers. We focus on two adaptive optimizers: Adam (Kingma, 2014) and Muon (Jordan
et all 2024). Algorithm [I] outlines the general quantized training loop, while Algorithms [2| and [3|
detail the specific update rules for Adan% and Muon, respectively. Note that the quantization oper-
ator Q can represent any floating-point quantization (e.g., fp32 — bf16 or fp8) satisfying Assump-

tion 311

In the following sections, we will analyze the convergence of quantized Adam and Muon under this
framework with relative quantization errors (qw, 9G, gar, Qv )-

4 MAIN RESULTS

We now present our main theoretical results on the convergence of quantized Adam and Muon under
the analytical framework in Section|3] We begin by stating the assumptions required for our analysis,
followed by the convergence theorems for each optimizer.

Assumption 4.1 (Unbiased Stochastic Gradient). The stochastic gradient V f (W £) is an unbiased
estimator of the true gradient VF (W), i.e., E[Vf(W;&)] = VF(W).

Assumption 4.2 (Stochastic Gradient Bounds). The stochastic gradient V f (W ; ) satisfies the fol-
lowing bounds depending on the algorithm:

'Our Algorithm slightly differs from the standard Adam, but will not affect the proof. We provide a detailed
discussion in Appendix [A.T}
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Figure 3: Rosenbrock: Adam gradient norms under different mantissa precisions M (left: full
10,000 iterations; right: last 100 iterations). Larger mantissa bit-lengths yield smaller converged
gradient norms. Together with Figure[5] this shows that higher precision reduces quantization error
and improves convergence, consistent with Theorem @

* Adam: The stochastic gradient is £, uniformly almost surely bounded, i.e., there exists a constant
R > /e (where € > 0 is the stability constant used to simplify the final bounds) such that

IVFW: &)lloe = max |[VF(W; )] < R - Ve, as.

* Muon: The stochastic gradient has bounded variance, i.e., there exists a constant ¢ > 0 such that
E[|IVf(W;&) — VF(W)|7] < o°.

Assumption 4.3 (Smoothness). The objective function F' : R™*™ — R is L-smooth, i.e., for any
X, Y € R™*" we have

IVE(X) = VF(Y)[lr < LIX=Y||p.
Assumptions[4.1] f.2|and [4.3]are standard in the analysis of smooth non-convex stochastic optimiza-
tion (Zaheer et al.,| 2018} |Chen et al., 2019; Zou et al., 2019; Défossez et al., 2022; |(Chen et al., [2022}
Zhang et al} 2022 [Wang et al.,[2023)). They are usually employed to control the stochastic gradient
noise and the local geometry of the objective function.

We remark that a more general (L, L1)-smoothness condition (Zhang et al., |2020), which has
been adopted in recent analyses of Adam (Li et al. 2023} Wang et all [2024; Hong & Lin,
2024)), allows the smoothness constant to depend on the gradient norm: |[VF(X) — VF(Y)|r <
(Lo + L1[[VF(Y)||r)|IX — Y| r. While this condition can better capture practical deep learning
scenarios, since our focus is on characterizing how quantization errors influence the convergence
behavior of Adam and Muon, we adopt the standard L-smoothness assumption for simplicity. Ex-
tending our results to (Lo, L1 )-smoothness remains an interesting direction for future work.

Finally, we assume the optimization begins from a controlled initialization:

Assumption 4.4 (Bounded Initialization). The initial parameter matrix Wy and its gradient are
bounded in Frobenius norm, i.e., ||Wql||r < D, |[VF(Wy)||r < G, for some constants D, G > 0.

Bounding the initialization ensures that quantization errors remain controlled and their propagation
through the optimization iterations can be rigorously analyzed, which is crucial for establishing
convergence guarantees under low-precision training.

4.1 THEORETICAL RESULTS OF ADAM

We first present the convergence result of Adam under FP quantization in the following theorem.

Theorem 4.5 (Convergence of Quantized Adam). Suppose Assumptions 4.4 hold. Let
d = mn be the number of trainable parameters, consider the Quantized Adam algorithm defined in

run for T iterations with n; = (1 — 1), where Q; = \/Z;;é 3. Suppose 57(1 4 qar)? <
Ba(1—qv), B1(1+qun) < B2(1—qv), and 28, /(1 — B1) < T, then for an iteration index 7 chosen
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randomly from {0, .. — 1} with P(1 = j) (1 — 8] ~7), we have:
— 9 (1 — 2 2
E[|IVF(W,)IF] <4(1+ qc)RF0 TF* + Q;ﬂ 1 2awTn (1= P)d ”ﬁfij qi)R
1 Vel = B\ 1= g
4(1+gc)d 3 2 ¢ ( ( (14 gc)R)? > _ _ )
+ 5 (acR® + Law R*D) + 71+ Bl =) Tn(B(1—qv)) |,

where C' is a constant depending on the problem hyperparameters, and @(T) is a function with
respect to T', qv, q¢, and gz, which approaches zero when gy, gar — 0 (please refer to Eq[A.43]
for their detailed formula).

Moreover, by setting n = (l/f) 1-082=0l/T), qc = O/T), qu = O(1/T), qv =
O(1/T?), qw = O(1/T?), then Q(T)/T = O(T~/2) (refer to Eq. for calculation details)
and

E[VE(W-) s = O (77/%).

Theorem [.5] provides the first convergence guarantee for Adam under a practical floating-point
quantization model (Peng et al.} 2023; |Liu et al., 2024} [Fishman et al., [2025)), in contrast to prior
works that assume unbiased quantization or error-feedback mechanisms (Jiang & Agrawal, 2018;
Chen et al) 2021; Modoranu et al) 2024). The most similar prior theoretical work is |Ozkara
et al. (2025), whose analysis also builds on [Défossez et al.| (2022)); however, they consider only
quantization of the final weight update, assuming full-precision gradients and optimizer states with
£1 = 0, and thus do not capture the recursive error propagation arising from fully quantized Adam
under realistic floating-point rounding. Our analysis demonstrates that by setting the hyperparam-
eters as ) = O(1/v/T) and 1 — B, = O(1/T), and ensuring the relative quantization errors sat-
isfy ga,qm = O(1/T) and qw,qy = O(1/T?), Quantized Adam achieves a convergence rate
of O(T‘l/ 4), which successfully matches the established one for its full-precision counterpart in

smooth non-convex optimization (Guo et al., 2021; |Défossez et al., [2022; Wang et al.| [2023; [Hong
& Lin|, [2024).

Our theorem further reveals a nuanced sensitivity to different types of quantization error. The re-
quired precision for the second moment (gy) is stricter than for the first moment (¢qas). This sensitiv-
ity arises because accumulated errors in the second-moment estimate V; are non-linearly amplified
by the update step’s inverse square root. This theoretical finding provides a rigorous explanation for
the empirical observation that the second moment often require higher precision than the first mo-
ment in low-bit training setups (Peng et al.l 2023} [Yu et al., [2024; [Fishman et al., [2025). Similarly,
the stricter precision requirement for weights (g = O(1/T?)) is necessary to control error accu-
mulation over the entire training trajectory. Our analysis must account for the potential growth of
weight magnitudes throughout training, which acts as an amplification factor for the relative quanti-
zation error. To guarantee convergence under this worst-case scenario of unbounded weight growth,
the proof requires gy to decay rapidly to counteract this amplification. However, this strict condition
is a consequence of the proof’s generality. In practice, where weight norms often remain bounded,
this error amplification is less severe, and the precision requirement for gy could be relaxed to

o(1/17).
4.2 THEORETICAL RESULTS OF MUON

Then, we present the convergence result of quantized Muon in the following theorem.

Theorem 4.6 (Convergence of Quantized Muon). Suppose Assumptions [3.1} f.TH4.4 hold. Con-
sider the Quantized Muon algorithm in I 1| and [3 I run for 7T iterations with n, = 0, B(1 + qpr) < 1,
then

TX: E[[VE(W,)[[r] < ELF(Wo) = F(Wr)] | 26Lar Go /i 1— B6oy/r

= T =6 "Ta-pvE \1+5 VB

qm B
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Figure 4: Rosenbrock: Muon gradient norms under different mantissa precisions M (left: full
10,000 iterations; right: last 100 iterations). Larger mantissa bit-lengths yield smaller converged
gradient norms. Together with Figure[6] this shows that higher precision reduces quantization error
and improves convergence, consistent with Theorem @

where C5 is absolute constant, 7 = min{m, n}. Moreover, suppose F'(Wg) — F* < A for constant
A>0,setl—p=0(T"1?),n=0(T"3*),and B = 1, if q¢ = qw = qu = O(T~/?), then

T-1
= S EIVE(W,)[r] = 01,
t=0

Theorem [4.6] establishes the convergence of Quantized Muon under relative quantization errors
(qw,qc,qunr) for weights, gradients, and momentum, respectively—a practical setting for low-
precision training (Peng et al.| 2023} [Liu et al., |2024; Fishman et al.| 2025), in contrast to prior
works that assume unbiased quantization or error-feedback mechanisms (Jiang & Agrawall, 2018;
Chen et al., 2021; [Modoranu et al., 2024). As a sanity check, when qw = q¢ = qum = 0, our
result recovers the exact convergence rate O(1/T"/*) of Shen et al.| (2025) up to constant factors.
More importantly, as long as the mantissa length of the floating-point format scales logarithmically
with 7', i.e., M = Q(log T'), the quantization errors decay as qw = q¢ = qn = O(T~/?). With
appropriate choices of 7 and S (as in Theorem , the full-precision convergence rate O(T’l/ 4
is preserved.

Finally, we highlight a sharp contrast with quantized Adam. Theorem [4.6] requires only relative
errors on the order of ¢ = (’)(T‘l/ 2), whereas Theorem demands stricter conditions, at least
q = O(T~1) and in some cases ¢ = O(T~2). This theoretical distinction explains why Muon adapts
more efficiently to low-precision settings than Adam, corroborating the empirical observations of
Liu et al.| (2025)).

Experiments. We evaluate our theory on synthetic, image, and LLM benchmarks.

Synthetic setup. For the synthetic benchmark, we adopt the classical Rosenbrock function (Rosen-

brock,|1960). Let W € R™*", and define F(W) = Y-"—} (100\|Wj+1—w§||%+\|1m—wj||%),

where W denotes the j-th column of W and 1,, is the m-dimensional all-ones vector. We set
m = 50, n = 100, and run T' = 10,000 iterations with learning rate n = 5 X 10—%. Mantissa
bit-lengths are selected from M = 4,8, 16, 24, 32, 52 to quantize gradients, weights, and optimizer
states. For Adam, we use ;1 = 0.9, 8> = 0.999, and ¢ = 10~8; for Muon, we set 8 = 0.9 and
employ ns = 10 power iterations, following Jordan et al.|(2024).

CIFAR-10 setup. We train a 4-layer fully connected network [FC(512) — ReLU — FC(256) —
ReLU — FC(64) — ReLU — FC(10)] on CIFAR-10 using Adam and Muon. Additional implemen-
tation details are provided in Appendix [C}

nanoGPT setup. We train nanoGPT on OpenWebText (~ 26M parameters, 4 layers, 4 heads,
embedding 384, batch size 128, block size 512). Both AdamW and Muon are tested under varying
mantissa lengths M, with Muon applied to 2D parameters in transformer blocks and AdamW applied
to all 1D parameters (embedding, Im_head, layernorm).
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Empirical Validation of Theory. Across all benchmarks, our results empirically validate Theo-
rems .5 and [4.6] We observe a direct link between quantization error and convergence. As shown
across the Rosenbrock, CIFAR-10, and nanoGPT experiments (Figures 3} [ [8] Bl [12] [13), very
low mantissa lengths (M) lead to significant convergence degradation. This degradation correlates
directly with high relative quantization errors (detailed in Appendix Figures [3] [6] [I0} [LT)), which
stall the optimization. Conversely, moderate M values yield sufficiently small errors, enabling con-
vergence nearly identical to the full-precision baseline. Furthermore, our experiment in Figure [7]
explicitly confirms our analysis of Adam, showing that optimizer sensitivity to quantization error
increases significantly as S, — 1. The language modeling results in Figure[T3]suggest that Muon is
more robust than AdamW under low-precision training, consistent with Theorems [.5] and f.6] We
provide full experimental details and results in Appendix [C]

5 CONCLUSION AND LIMITATIONS

We introduced the first theoretical framework for analyzing adaptive optimizers under realistic
floating-point quantization, jointly modeling the quantization of gradients, parameters, and opti-
mizer states. Unlike prior work, our analysis does not rely on unbiased quantization or error feed-
back—assumptions that are impractical in modern large-scale low-precision training. Within this
framework, we derived the first convergence guarantees for Adam and Muon, with rates expressed
explicitly in terms of component-wise quantization errors. Our results highlight that Adam is highly
sensitive to parameter and second-moment quantization due to its reliance on S, — 1, whereas
Muon requires weaker error control and is therefore more robust. These findings explain empirical
observations in large-scale LLM training and narrow the gap between practice and theory.

Limitations and Future Directions. Several challenges remain. First, our analysis focuses on
smooth unconstrained non-convex objectives, leaving open extensions to broader settings, including
(Lo, L1 )-smooth functions (Zhang et al.,[2020), non-smooth convex objectives (Mishchenko & De-
fazio), 2023} Defazio et al., 2024)), constrained or composite problems (Kovalev, 2025} Pethick et al.,
2025)), and structured scenarios studied in recent works (Shen et al.l [2025). Second, our theoreti-
cal guarantees assume an increasing-bit regime, M = Q(log T'), to control cumulative quantization
error. In practice, bit-width is typically fixed (e.g., FP8 or BF16), which means convergence is
guaranteed only to a neighborhood of a stationary point; understanding why moderate fixed preci-
sion suffices empirically remains an open question. Third, we focus primarily on fully quantized
Adam/Muon and have not yet extended the framework to other popular optimizers benchmarked
in LLM training (Vlassis et al., 2025} |Semenov et al., [2025; Wen et al., |2025). Finally, our anal-
ysis models quantized states under exact arithmetic and does not account for practical considera-
tions such as low-precision operations (e.g., FP8 matrix multiplications) or communication-efficient
distributed training, which are critical for large-scale training. Incorporating these aspects would
provide a more complete theoretical account of large-scale low-precision optimization.

ETHICS STATEMENT

We have carefully reviewed the ICLR Code of Ethics and affirm that our work does not raise any
significant ethical concerns. Our research is purely theoretical and experimental within the scope
of optimization and quantization. It does not involve human subjects, personally identifiable or
sensitive data, or applications that may pose harm. All experiments are conducted on synthetically
generated datasets and standard benchmark datasets (e.g., CIFAR-10) and are intended solely to
validate the theoretical analysis. We believe our methodology and contributions adhere to principles
of fairness, transparency, and research integrity.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. All theoretical results
are fully detailed, with complete proofs provided in Appendix[A]and Appendix [B] The experimental
setup, including training protocols, hyperparameters, and evaluation details, is comprehensively
documented in Appendix [C} Experiments are conducted on both synthetically generated datasets and
the CIFAR-10 benchmark dataset; for synthetic datasets, precise generation procedures are included
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to eliminate ambiguity. Together, these details allow independent researchers to reproduce both the
theoretical and experimental results that support the main conclusions of the paper.
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USE OF LARGE LANGUAGE MODELS

Polishing writing. We used multiple large language models (LLMs) to polish the presentation of
the paper, focusing on grammar, fluency, and readability while preserving the technical meaning of
the content. For each passage, we generated outputs from several LLMs and selected the best version
based on clarity and accuracy. The LLMs served only as editorial assistants, and all suggested
outputs were carefully checked and revised by the authors. The prompt used for polishing is as
follows:

I am preparing a paper for ICLR in Optimization.
Please help me polish the following
[sentence/paragraph/section] to make it more logical,
precise, clear, and accurate, while preserving the
technical meaning and mathematical correctness. Focus
on improving sentence structure, clarity, flow, and
readability, and enhance logical coherence between
statements. Highlight any ambiguities or imprecise
statements and suggest more rigorous alternatives.
[sentence/paragraph/section]

Assisting INTEX code.  We also used github copilot/cursor as a typing assistant to conveniently type
IATEX code for mathematical formulas and derivations. All generated code was manually checked,
corrected, and integrated by the authors.

A PROOF OF THEOREM

A.1 PRELIMINARIES

We consider an optimization problem in a d-dimensional space (let d = mn be the number of train-
able parameters), where coordinates are indexed by 7 € [d] = {1,2,...,d}. Our algorithm generates
a sequence of vectors (u;):en, with the i-th component of u, denoted by u; ;. The objective is to
find a critical point of a global function F' : R? — R within a stochastic framework, where we have
access to a sequence of i.i.d. sample functions (f;);cn+ (e.g., the loss on a data minibatch). For any
differentiable function 4 : R? — R, we denote its gradient by VA and its i-th component by V.
Finally, we use a small constant € > 0 for numerical stability and let E;[-] denote the conditional ex-
pectation given the history of samples f1, ..., f;—1. We use vec(-) to vectorize a matrix and mat(-)
for the inverse operation.

Recall the dynamic system of our theoretical Quantized Adam. In the proof, we denote w; =
vec(Wy), g = vec(Gy) and the dimension d = m - n. For an iteration ¢t € N*, we define:

M = 51771?_171' + e = Br(me—1i + &—14) + (Vife(wio1) + 6e4),
vi; o = 62vf?_1,i + 75 = Bo(vi1i + 0i-14) + (Vife(wi1) + 51‘,,1')2 ) (A.D

. _ L me 4
Wt 4 = Wt—1,i Tt W

with the step size given by

1 -4
1— B

ne=n(l—p1) (A.2)
Here, 6;;, &1, and 6;_;,; represent the quantization errors for the gradient, first mo-
ment, and second moment, respectively. Especially, V, f;(w¢_1) = % Zle Vif (We—1572,5)s
0i = % Zle V?f(WtQ—ﬁ%,j) - % Zf:1 vift(wt71§7t,j)~ And we have E[V; fi(w;_1)] =
ViF(Wt_l)

Our convergence analysis for Quantized Adam is predicated on a specific, analytically convenient
formulation of the algorithm. This section serves to rigorously justify our theoretical framework
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by establishing two foundational equivalences. First, we demonstrate that our representation of the
Adam update is equivalent to the standard formulation. Following the methodology of |Défossez
et al.| (2022), we absorb the scaling factor into the learning rate, which simplifies the recursive
structure of the momentum term. Second, and more critically for our work, we prove that the
theoretical analysis of quantizing these weighted-sum states is directly applicable to the practical
scenario of quantizing the standard weighted-average states.

Equivalence with Standard Adam Our formulation in utilizes a weighted sum for the
moments, which differs slightly from the standard weighted-average approach in the original
Adam algorithm (Kingmal 2014). The standard first moment, often expressed as m;; = (1-
B1) 22:1 ,Bl_k’g\m, is simply a scaled version of our definition, i.e., m;; = (1 — 81)my,;. This
constant scaling factor can be directly absorbed into the learning rate.

Furthermore, the standard Adam algorithm includes bias correction terms to counteract the zero-
initialization of moments. These corrections are equivalent to using a time-dependent step size of

the form:

_ o 1-B J1-p (A3)

nt,Adam n m 1— ﬁi . .

For analytical tractability, our analysis adopts the simplified step size n; from (A.2)), which omits
the bias correction for the first moment (m; ;). This simplification is motivated by several practical
and theoretical considerations. First, it ensures that our step size 7, is monotonic with respect to ¢,
which is advantageous for the convergence proof. Second, for typical hyperparameter values (e.g.,
B1 = 0.9, B2 = 0.999), the omitted term 1/(1 — 3%) converges to its limit of 1 much more rapidly
than the retained term /1 — 3%. Finally, removing this term effectively implements a learning
rate warm-up, a common and beneficial practice, while retaining the correction for v, ; prevents an
undesirably large initial step size that could lead to training instability.

Equivalence of Quantization Schemes. A subtle but crucial aspect of our setup is the object
of quantization. Our theoretical framework analyzes the quantization of weighted-sum moments
(my, v), while a practical implementation would quantize the standard weighted-average moments
(my, v;). We now prove that these two approaches are, in fact, analytically equivalent.

To establish this rigorously, we first abstract the core dynamic behavior into a general mathematical
lemma. We will show that two discrete-time systems, representing the weighted-sum and weighted-
average accumulation methods under relative error perturbations, are analytically indistinguishable.
We will then apply this result to the specific case of Quantized Adam.

Lemma A.1 (Equivalence of Perturbed Dynamical Systems). Consider two scalar sequences
{ar}k>0 and {c }r>0 evolving according to the following dynamics for k£ > 1, with initial con-
ditions ag = ¢o = 0:
ap = B(ar—1 + dp—1) + by, (A4)
ck = Bcr—1 +ex—1) + (1 = B)by (A.5)

where 8 € (0, 1) is a decay factor, {b} is an external input sequence, and {dy, }, {ey } are perturba-
tion sequences. These perturbations are bounded by a relative error model with factor ¢ € [0, 1):

ldk—1] < qlar—1| and |ex—1| < glex—1]. (A.6)
Then, the sequence {cj} and the scaled sequence {a}} £ (1 — )ay are analytically equivalent.

Specifically, they follow identical recurrence relations where their respective perturbation terms
satisfy identical relative error bounds with respect to their own states.

Proof. To prove the equivalence, we derive the recurrence relation for the scaled sequence {a} } and
compare its structure and error properties to that of {cj }.

Step 1: Derive the recurrence for {a},}. Starting from the definition a}, = (1 — §)ay, and substi-
tuting the dynamics from (A.4):

a, = (1= B) [Blar—1 + dk—1) + b
=B = Bag—1+ (1 = B)dr—1 + (1 — B)bs.
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Now, we replace aj—1 with aj,_, /(1 — 3):
/

=50 5) (155 4 80 B)der + (- B

= 5&2,1 + ﬁ(]. - ﬁ)dk,1 + (1 - ﬁ)bk

Step 2: Compare recurrence structures. Let us place the recurrence relations for {c;} and {a},}
side-by-side:

ck = Bep—1 + Pex—1+ (1 — B)by
aj, = Baj,_y + B — B)dr—1+ (1 — B)b.

Both sequences share the identical structure: X, = X _; + Perturbationy, 4+ (1 — 38)by. The only
difference lies in the form of their respective perturbation terms.

Step 3: Compare relative bounds of the perturbation terms. The equivalence hinges on whether
these different perturbation terms satisfy the same relative error property with respect to their own
system’s state.
For system {cy}, the perturbation term is Sej_1. Using the bound from (A.6):

\Perturbationc| = |B€k,1‘ = ﬁ|€k,1| < ﬁq\ck,ﬂ.

For system {a} }, the effective perturbation term is 3(1 — 3)dj_1. Using the bound from (A.6) and
the scaling relationship ax—1 = aj,_, /(1 — B):

a/
[Perturbation,| = |8(1—p)dk—1| = B(1—5)|dk—1| < B(1—B)qlak-1| = B(l—ﬁ)q'l k__l; = Bqlaj,_|-
Conclusion of Proof. Both systems, {ci} and the scaled {a} }, adhere to the same mathematical
dynamics. Their evolution is governed by an identical recurrence structure, and their respective
perturbation terms are bounded by the exact same relative factor Sg with respect to their own pre-
vious state. Therefore, from an analytical standpoint, the two systems are indistinguishable. Any
conclusion regarding the long-term behavior (e.g., convergence, stability) of {c;, } under its perturba-

tion model will apply directly to {a},} (and thus proportionally to {a}) under its own perturbation
model. O

With Lemmal[A.T|established, we can now apply this general result to our specific case of Quantized
Adam. The weighted-sum moment m; from our analysis corresponds to the abstract sequence
{ar}, while the standard weighted-average moment m; corresponds to {c;}. The gradient term
g: corresponds to {by}, and the relative quantization errors in both schemes are modeled by the
perturbations {dj } and {ej } with the bound factor q.

Lemma [A.T] thus formally proves that analyzing the quantization of our weighted-sum moment m;
is analytically equivalent to analyzing the quantization of the standard weighted-average moment
m;. This rigorously justifies our proof strategy and ensures that our theoretical findings are directly
relevant to practical implementations of Quantized Adam. A parallel argument holds for the second
moments v; and v; with decay factor 5.

A.2 DETAILED PROOF

To systematically analyze the effects of quantization, we begin by isolating the different sources of
error. We introduce auxiliary moment estimates, mj ; and v; ;, which are defined to incorporate the
quantization error from the stochastic gradient, ¢; ;, but are themselves assumed to be stored with
perfect precision. Their dynamics are given by:

my; = Prmy_q ; + (Vifi(wi1) + i)
vy = Bavi_y; + (Vife(wi1) + 0¢4)°
Throughout the following proof we note E;_; [] the conditional expectation with respect to

(A7)

fi,---, ft—1. In particular, w;_1, v;_1 is deterministic knowing f1, ..., fr—1. With slightly abuse
of notation in the detailed proof, We introduce
G =VF(w¢_1) and gy = Vfi(wi_1). (A.8)
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We introduce the update u; € R?, as well as the update without momentum U; € R%:

My 5 gti+0pi
up; = ——— and U;; = ——=. (A9)
N v Jervha
For any k € N with k < ¢, we define ¥, . € R? by
t .
ki = B30t gi Bk | Y By (g0 +050)7 (A.10)

j=t—k+1

i.e. the contribution from the % last gradients are replaced by their expected value for know values
Offlu ceey ftfka

Using the smoothness of F', we have
L
F(w¢) < F(wi_1) —mG/lay + 2 H uy[3.

The overall motivation of our proof is to find a lower bound for 7,G7 u;.

My
Glu =Y Gri——ex (A.11)
i€[d] €+ Vi

We can rewrite G/ uy as:

(A.12)

Gt Gt Gri——tt )+ S G
Zg[(; K V€ +'Utz g[(; K VET Vi zez[;] i /€+Utz g[(; i /e

A

Here, Term A represents the error component arising from the quantization of the momentum accu-
mulators (my, v;), while Term B represents the behavior of the update driven by an ideal accumula-
tor.

Now we can bound term A. We split A into two parts as before:

my my
|A| < Qt — Gr.i c ’ (A.13)
7,;] V€ +Ut2 Z \/€+Ut,i \/€+U£,i
Aq A,

The first term, A;, which arises from the quantization noise on the first moment m, is bounded using
Lemma[A3](with ¢ = gas) and Lemmal[A.3}

|my,i —my |
|A;| < Z plbt il
icld) Vt,i

Yo (B (1 + qan)' =% = D) Vifu(Wi—1) + O
iR Vb0 B (1= ) R (VS wi) + 61,

<qu-dR-C; (A.14)

_ _ By
where C W and T = W

For the second term, A;, we use the bound on the gradient ||G;||cc < R and apply Lemma
which requires a case analysis.

1 1
[A2| < ) Rlmy 4 -
Zg[d:] 1 \/6 + Ut,i \/6 —+ vé,i
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1 1 1 1
< Z R|mj ;| max - ) -
i€ld] Ve+ LB \/6 + v, \/e + v, Ve+UB;

Let gri = Vifu(Wi—1) + k.. We analyze the two terms inside the max for a single coordinate ¢.

(A.15)

Case I (Deviation from Lower Bound): Following the approximation in the provided sketch, we
have

, 1 1 , vy, — LBy
|m“| - = ‘mt,i -
\/€+LBt,i \/6‘*‘14,7: \/5+LBt,i1/€+’U£7i( €+ LByi+ /e +vi,)
. |m;z‘ ’Uili,i — LBy,
e+ LBy, \/€+U£,i( €+ LB+ /e tuv,)
|m21\ /Uéz — LBy,

< 7
Vet LB, €+,

S o B gk + Ok

k0B = (B2(1 = qv))' ) (gr,i + Ok0)

= i t—k
\/6 + Ym0 (Bo(1 = qv)) ' (gh,i + Ok,i)? €+ 2pmo B2 (g1 + 0k)?
(A.16)
t k
The first fraction is bounded by Lemma Lo filae ki |~ < L . The
\/5""22:0(52(1—QV))’”<lt—k,i \/1—5%/(52(1—%/))

S (B —(B2(1—gv ) ¥)ai—r.i

e+> o Bhar_p

second fraction is a ratio of weighted sums . This ratio is bounded by

the maximum ratio of its coefficients:
BE — (Bo(1 — qv))” . .
= 1—-(1- =1-(1- .
kelo Bk ke%?ft}( (1—qv)") (1—gqv)
1 1—(1—qp)).
—B%/wz(l—qv))( 1 —av)")

Combining these bounds, the term for Case I is bounded by e
Case II (Deviation from Upper Bound): Similarly, we bound the second term:

1 1 |m;z‘ UB,i — U;,i

\/e+v;7i \/EJFUBM _ME+UBt,i

Applying Lemma|[A.4]and the maximum ratio:

< \/Mlﬁw : (1 - (1 +QV)_t)

Comparing the bounds from the two cases, the bound from Case I is larger since 1 — (1 — gqy)*

1 — (1 + gv)~* and the denominator term /1 — 37/(B2(1 — qv')) is smaller than /1 — 37 /Ps.
Therefore, taking the maximum and summing over d dimensions:

A5l < 3 RS 1_qV> _ dR(1 - (1—QV)t) (A17)

i€ld) \/1 ﬁz(l qv) \/1 Ba( 1 qv)

Combining the bounds for |A;| and | A2|, we can get the bound for term A:

RO~ (1-gv)) o

ﬁ2
=gt

A < A1 + |Ag] < qrs -dR-C, +

Q(t) (A.18)

Now we move on to bound Term B. Let us now focus on bounding Term B from (A.12). By
expanding the definition of the first moment estimate m; ;, we can decompose Term B into two
parts, which we will call Term C and Term D:

ZQHZBM bt Ot (A.19)

thz
i€[d] \/EJFrUm i€[d] k=0 \/EJFU“
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t—1
Gt—kyi + Oi—r, Gr—kyi + 0tk
=Y BiG g E y ZZﬂl (Gri — Geop) =Rt
' €e+vi; el k=0 Vet v

C
(A.20)

The magnitude of Term D, which captures the error from gradient drift, is bounded by Lemma[A.8}

77tL 51 (1+gc)R b1
| < BV (Znut l||22ﬁ ) il Z( ) ETTILB
(A21)

For Term C, we establish a lower bound on its expectation in Lemma[A.9

1 gt2—ki 2(14+q9c)R <ﬂ1)
R e ) VETTE U,
. ;] ;;> Vet ra N Z] Z 5, [ 2]
t—1
~ 40 A (A22)
k=0
where M, _, = ettbowHlveinill ypjecting (A22) (A2T)and (A20) into (A12) . We get the

final lower bound for gtT u:

Mt 1 = k gf—ki ‘| =1 &
Gt.i 5 BIE | —=Rl 1) — Q) —dS  BEM,_,
ze%tm Zi%]kz_ol\/m kzzolt
3(1 +
= (Z(Bl) VEFT|[UL- k||2>

n?L2
__mL (an szZﬂ ) T B

4(1 + 9G k=0
(A.23)

Y

Now lets look back at:
F(wi) < F(wi1) — Gl u; + 12 || u[3.

inject (A.23) into it:
E[F(w:)] < E[F(w;_1) ZZﬁfE gt ki

i€[d) k=0 VARaCASSE:

— 3m:(1+ go) R B
Z|utl||sgﬁfﬁ>+% Z([g) VEFI[UB ) -
(A.24)

=1 k=0

n2L
+ tT [[uell3] + ne@Q(t) + ned > BEM,
k=0

312
+’%me<

41+ g

We have for any k € N, k < ¢, and any coordinate i € [d], /€ + Ut g+1,; < (1 + qG)Rw/ZE;é 3.
Introducing € = 4/ Z;;é 33, we have

E[F(wy)] < E[F(wi1)] - m2ﬂ1 Hgt k\”

L’ S 3 (1+ go) R 8
+4(1+%)RF<ZM nuzﬂff) il Lol (;(M VEFT||U,- k||2>.
(A.25)

=1

t—1
“=F [[|us|3] +n:Q(t) + n:dE lz ﬁfMtk]

k=0

21



Under review as a conference paper at ICLR 2026

Now summing over all iterations ¢ € [T'] for T € N*, and 7, is non-decreasing, as well the fact that
F'is bounded below by F,, we get

t—1 I

1+QG 32%25 E[1|Gi—#l[3] < F(wo) — 77T ZE ||ug||2 +77TZQ +7]TdZIE ZﬁlMt &
t=1 """ k=0 =1
A B Eq M
L2 T t-1 . 37]T(1+QG VR T t—1 (51>k i
A A E[ VE+ DY VEFIE[||UI2].
¢ b
(A.26)

First lets bound Term A. We have 15, = (1— /31)$27. Thus, we can simplify the A term from (A26),
also using the usual change of index j = ¢ — k, to get

_ "
e TRy 1+qG Z Zﬁi "E [116113]

_ (1 —=5) 2 t_j
—WZE[H%HQ};m

- m > =51 TTHEIG1]
T
= S S = A IV F ()]
j=1
T—1
- (1+qG)R (1= B DE[IVF(w;)I] .- (A27)

(

<.
Il

To establish our convergence guarantee, we analyze the expected gradient norm at a randomly se-
lected iteration 7, drawn from the set {0,...,7 — 1}. The selection is not uniform but is instead
weighted to properly account for the influence of the momentum term over the iterations. The prob-
ability of selecting a specific iteration ¢ is defined as:

vte{0,...,T -1}, P(r=t)oc1—p{ " (A.28)
‘We can notice that
T—1
da-p)=T- 61 51_T— b (A.29)
— - B 1-5
=
Introducing
~ b1
T=T-— , A.30
=5 (A0
we then have
i g [[VF(w,)[3] - (A31)
~2(1+qc)R

Next looking at B, we apply Lemma ,

N (+a)B? \ oy
B (e ) T - a) (A3
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with

B — dnzL
2(1 =BT +qm))(1 - %)

Then looking at C and introducing the change of index j = ¢ — [,

t—1
C=1rr 7 1+ V1 —mZZE lu,l3] > BiVE
9G t=1 j=1 k=t—j
L T
= I”jq Vi &ZE IRy 3 AV
t=j k=t—j
jtk
—41+q V1 —mZE [luyl13] ZB kY 1
k= t=j
T—
:4(1+q «/1—612E ||| 3] kzoﬁk\/ﬁ(kﬂ)
W%Lz d 51

using Lemma Finally, using LemmalA.13] we get

0= (in(1e R ) TG - o).

with
Cl — dnTL261
(1+qe)R(L = B1)2(1 = Bi(1+ qur)) (1 — Sl

introducing the same change of index j = ¢t — k for D, we get

D= LR S5~ (B T vy i
37 (14 go) R o I .
== =5 2Elul; Z( ) Vitt—j
d 1
<n LI g
using Lemmal[A.T1] Finally, using Lemmal[A.10| we get
) Tins)

~ 6n7(1+qa)R

DS T=m— /" 2 (114"
6dnr(1+qc)R (L+g9e)R)*\ N

S VT=B(l= /Bl (1“ (” = 5) ) Thn(f 2’)

Then we rewrite the quantization error term Eg:

IN

dR(1—(1—qv)")

B3
B2(1—qv)

T
EQ:T]TZ gv - dR-Cy +
t=1 1-—
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dR ZT: de—qV)

T
=nr Z qu - dR - Cy +
1_

t=1 1= g qv> t=1 s qv)

T
dR dR
=nr | T (qM dR-Cy+ —~ ) — — Z(l—qv)t)
1 1

1- B2(1—qv) o 132(1i(JV) =1
TdR dR 1-—
=nr (T qu-dR-Cq+ — — > ( qv(l—(l—QV)T)>
\/1 _ B1 \/1 _ Bi qv
B2(1—qv) B2(1—qv)
(A.39)
Finally, we bound Term M using Lemma [A-T4}
dT 2 42 Lqw RT?
M < ﬁ (QGR2 + LqWR||W0||2) + U I EIErmE (A.40)
' 2e(1 - fu)y/1 - Gl
Now putting (A.31), (A.32), (A.33), (A.38)., (A.39) and (A.40) together into (A.26) and noting that
1-51 .
nr < n=s Ve get:

B (IV P ] <20+ i R 4 2 (1 (14 ((HQG)R)) ~Tiu(sy))

nT T €(1 = Bo)
H ((1+4gc)R)* > _ N ) Q(T)
# 5 (n (1 Rt ) T - ) +
_ 2 272
24T (o2 4 Ly o) + = 2T L 4G T
1= 52 TVe(t - pa)y/1 - G580
(A.41)
with
g - 12d((1+496)R)*VT— B
(1= B1/B2)3/2/1 = B2
- dnL(1 +qc)R(1 - p1)? 2d* LB (1 — Br)
(1= Br(1+aa))(1 = FGELI (1= o) (1= Ba(1+an)) (1 — L) (1 - By)
QT) = 2(1 + gc)qmdR*(1 — B)T ritr) 204 qc)dR*(1 — )T
V1—P2 (L+qm)(1 —17)3/2 \/(1_ﬁ_fqv))(1_52)
_ 2(1+QG)dR2(1_51) <1_QV (1_(1_qv)T))
\/(1 a1 -8 N I
51( +QM)2
where 1’ = 752(1 —av)
(A42)

For clarity in the main theorem statement, we can present a slightly looser but more accessible
version of this bound. By noting that for a sufficiently large T, we have T' > T'/2, and

((1+ QG)R)2> B ) ( < (14 g0)R)? ) B B )
(ln <1 + =) Thn(Bz) | < (In(1+ (=Bl —qv)) Tln(B2(1—qv)) |,
we can state the simplified bound presented in Theorem .5}

5 F-F C (1 +qgc)R)?
(9 ForI] <40+ ao) R 4 (i (14 I ) - paagar - g
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QT) | 4(1+qc)d 2(1 — B1)d2nLaw (1 + qc)R*T

+ + R® + LqwR?D) +
g T 1o D) Vel = Ba)y /1 - Gl
with
C— 24d((1 + g¢)R)*V1 - Bi n 2dnL(1 + gc)R(1 — B1)*
(L= B1/B)PVI=Br " (1= Bu(l+qu))(1 - FE2) (1 - o)
n Ad* L*B1(1 = Br)
(1= B+ qu) (1 = BERH0 - B2)F
O(T) = A1 + g¢)qmdR*(1 — B1)T (1 +1") 4(1 + qg)dR*(1 — )T
V1= (14 qar)(1 —17)3/2 \/(1 - 52(1ﬁ—%qv))(1 — P2)
Vi ) =) N
BE( + qur)?
where 1’ = 752(1 Zav)

(A.43)

Theory [4.5] states that under a specific schedule for the hyperparameters and a gradual reduction in
quantization error, Quantized Adam achieves the same convergence rate as its full-precision coun-
terpart. We prove this by performing a detailed asymptotic analysis of each term in the main bound
from Theorem [£.3] as the total number of iterations 7' — oco.

However, to perform a precise asymptotic analysis and derive the tightest possible convergence rate
from our framework, we will now analyze the order of each component from the more detailed

bound in

E [|[VE (vee(W),)[3] < 201+ ge) R
nT

Term 1

12d((1+qg) ) \/7& N M B )
T T /8T B (g - )

Term 2

E (14 ge)R)?
# 7 (1 (1 g ) - T - )

Term 3

Q(T) | 2(1+qgg)dT
T  Te(l-P5)

Term 4

(qu?’ + LqWR2||vec(W0)||2)

Term 5
(1 - B1)d3nLaw (1 + qc) R*T?

= Bt (1+am)?
Te(l—Ba2)y/1— 52(1j;é)

Term 6

_|_

Our proof strategy is to analyze the asymptotic order of each term under the following scaling
assumptions.

Scaling Assumptions. We adopt the scaling assumptions provided in the Theorem:

* Quantization Error Schedules: The quantization errors are annealed over time such that gz =
O(T 1), qu =O(T ™), qw = O(T~?), and qv = O(T?).
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+ Adam Hyperparameters: The learning rate and second-moment decay are set as ) = (T~ '/2)
and 1 — B2 = ©(1/T), while 3 is treated as a constant.

Asymptotic Analysis of Bound Terms. We now analyze the order of magnitude for each of the
Six terms.

Term 1 (Initial Condition Term): This term is given by T} = 2(1 + qc)R%. We analyze the
components of its denominator. The effective number of iterations is T=T- I 8 o= O(T). The
learning rate scales as = O(T~%/2). The denominator thus scales as 51" = ©(T~1/2)0(T) =
O(T/?). Since all other quantities are constants and g — 0, the entire term scales as:

1 1 _
Term 2 (First Logarithmic Term): This term is:
~ 12d((1+q6)R)*V1 = B ( ( ((Q+ QG)R)2> _ )
=50 ampryi=a U sy ) T

The leading fraction’s order is determined by its denominator, TVI— B2. With T = O(T') and
1 — By = ©(1/T), we have \/T — B3 = O(T~'/2). Thus, the fraction scales as ©(7rtr77) =
©(T~'/?). The term in the parenthesis scales as In(1 + ©(T)) — ©(1) = O(InT). The overall

order is:
T, =0 (ﬁ) .O(InT) =0 (T*l/z) -O(InT) = O <13;> .

Term 3 (Second Logarithmic Term): This termis 75 = % (In(...) = T'ln(...)). First, we determine
the asymptotic order of E/, which is defined as:

dnL(1 + qc)R(1 — B1)? 2dn?L?B1(1 — B) .
(1= Bi(1+qu))(1 = FEELD (1= B5) (1= Bi(1+qu))(1 — FHELLY(1 - Br)%

FE =

For the first part of F, the numerator scales as 7 = ©(T~'/2) and the denominator is dominated
by (1 — f2) = O(T~1). This part is O(T~/2)/6(T~') = ©(T"'/?). For the second part, the
numerator scales as 7 = ©(7~') and the denominator is dominated by (1 — 35)3/2 = ©(T—3/2).
This part is ©(T~1)/O(T~3/2) = ©(T'/?). Thus, E = ©(T'/?). The logarithmic part scales as
O(InT), so the entire term scales as:

S (3 B Ll R (A

Term 4 (Moment Quantization Error): We rewrite this term as:

2(1+ qg)dR*T(1 — A1)

T, = = Q, (A.44)
Tv/1— B2
A/ (1+7") 1—
where Q = au - =y + —— T T ( o (1- (- qV)T)>'
\/PW \/ T R0ay)

Our goal is to show that Ty = O(T~1/2),
First, the pre-factor has an asymptotic order of:

21+ qc)dR*T(1 — B1) T B )
P o (1 L) <ot
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The core of the analysis thus lies in determining the order of (). We can rewrite () by combining its
second and third components:

B . (14 1") 1 1 (l—qv .
Q=qu (1+qM)(1_T,)3/2+ 1_12{1 T< - 1-Q qv)T)ﬂ.

The first part of Q is clearly O(qy;) = O(T~!). The common factor in the second part, \/11_7,
converges to a constant as 7' — 00, so it is O(1). The analysis therefore simplifies to finding the
order of the bracketed term.

Let x = qy = O(T~?). We perform a Taylor expansion on (1 — z)7":

T(T — 1)

1-—2)l =1-Tz+ 5

2% 4+ O(T32%).
This allows us to analyze the term inside the bracket:

-1 (a-a-an) =1- 228 (- T s o)

=1- %(1 — ) (T— @x—i— O(T3a:2)>

—1-1 (T— -, —T:E+O(T3x2)>

T 2
- T(T+1) 9 9
-1 <1 7@+ O(T°a%)
= %m - O(T?2?).

Substituting back z = gy = O(T~2), the bracketed term has an order of:
O(T qv)=0(T-T ) =0(T"").
Therefore, the entire second component of @ is O(1) - O(T~') = O(T~!). Combining both
components of (), we find its overall order:
Q=0TH+0oTH)=01T").
Finally, we compute the order of Term 4 by combining the pre-factor and Q:

Ty =O(TY?) . 0T~ = O(T~1/?).

Term 5 (Initial W/G Quantization Error): This term is:
2(1 + g¢)dT 5 )
Ts = =————— (qa¢ R’ + Lqw R*||vec(Wy)||2
Tv/e(1— B2) ( )

The leading fraction scales as oT)

T _ _
TVI=F  e(@Me(T-1/2) =
dominant term g = O(T~!). The total order is:

T5 = O(T"?)- Olge + aw) = O(T'?) - (O(T™") + O(T %)) = O(T~'/?).

O(T"/?). The parenthesis scales with its

3
(1-B1)d2 nLaw (1+9¢)R*T>
~ B2(1+ap)?
T\ﬁ(l_ﬁQ)\/l_ /312(1,%/)

First, we analyze |/ W. As T' — o0, the denominator converges to the constant 1 — 6%,
1 TEM
B2(1—ay)

so its contribution is O(1). The term’s order is determined by the scaling of its other components:
n=0(T"Y?), qw = O(T~2), T =0O(T),and (1 — By) = O(T ). The total order is:

. . T2 —1/2 =2 72
CY UL S @(T Tt ) — (T 1/?).
T-(1-f) T-T

Term 6 (Weight Growth Quantization Error): This term is T =
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Conclusion. By comparing the asymptotic orders of all terms, we identify those that converge to
zero at the slowest rate, as they will dominate the overall convergence bound. The orders are:

e Term 1,4, 5,6: O(T~/?) or ©(T~1/?).
e Term 2,3: ©(T~'/21InT).
The dominant terms are the second and third, which are of order ©(7~/2InT). These terms form

the bottleneck that determines the overall convergence rate. Thus, under the specified parameter
schedule, the expected squared gradient norm converges to zero at the following rate:

B (IvrenlE) =0 (55 ) =6 =).

This matches the known convergence rate for full-precision Adam.

Furthermore, we derive the convergence rate for the expected gradient norm, E [||VF(w,)||2], from
the rate of its squared value. We use Jensen’s inequality, which states that for a convex function ¢
and a random variable X, ¢(E[X]) < E[¢(X)].

Let the random variable be X = ||V F(w,)||2 and the convex function be ¢(z) = z2. Applying
Jensen’s inequality yields:

E[[VE(w)ll2)* <E[[[VF(wo)ll3] -

By taking the square root of both sides, we obtain a bound on the expected norm:

E(IIVF(w)ll2] < \/E[IIVF(w-)[3]-

Substituting our previously derived convergence rate:

E([VF(w.)ll] < /O (jT)

-0 (Vr-172)
-0 (T*l/‘*).

Thus, the expected gradient norm converges to zero at a rate of (5(T_1/ ). This finalizes the proof
of the theorem.

A.3 PROOF OF LEMMA [A.D]

Lemma A.2 (The value range of v;; and the upper bound of | \/e}rv - — \/Eiv, D. Let LB;; =

S0 BT (1—qv) R (Vi fr(Wi—1)+01.0)2 and U By i = >4 85 F (14+qv )5 (Vi fe(Wi—1)+
Sk.i)%. We have:

t t
Z BEF(— qv) (Vi fe(Wh—1) + 01.0)? < vpy < Zﬁé_k(l +av) (Vi fr(Wi—1) + 65.0)?
k=0

k=0
(A.45)
1 1 < 1 1 1 1
— < max — , -
Vet v \/€+’Uéi Ve+ LB \/e+v£i \/e+v,§i Ve+UB
(A.46)

Proof. The proof consists of two parts.

Part 1: Bounding v, ;
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The update rule for the second moment estimate is vy ; = B2 (ve—1 i +60;—1.:)+ (Vi fe(Wi1) —|—(5t’i)2.
The quantization noise is assumed to be a relative error, bounded by |0,_1 ;| < gv|vy—14|. This
implies that (1 — QV)Ut—l,i < Vi—14 + 9,5_1_’7; < (1 + QV)Ut—l,i-

Applying this to the update rule, we can establish the lower bound by recursively unrolling the
inequality:

Vi > Bo(l — qu)vie1i + (Vife(Wio1) +0¢4)?
> Ba(1—qv) [Ba(l = qv)ve—a; + (Vifim1(Wi—2) + 6:-1,4)%] + (Vife(wio1) + 6¢4)°

- Z Bh- (Vi fe(We_1) + 61.)? (A.47)

Similarly, we can establish the upper bound:

Vi < 52(1 +qv)vi—1i + (Vifi(wio1) +0:4)?

—Zﬁ 1+ qv)' (Vifu(Wio1) + 0k.i)? (A.48)

This completes the proof of the first statement in the lemma.
Part 2: Bounding the difference of the inverse square roots

Let vt be the idealized second moment estimate, updated without the quantization noise 6. Its
exphclt form is:

Zﬁ (Vifu(We—1) + 0p,)? (A.49)

From Part 1, we know that v, ; is in the interval [LB; ;,UB; ;|, where LB;; and UB; ; are the
bounds established.

Now, we compare U{,z‘ with these bounds. Since 0 < 2 < 1 and we assume 0 < qy < 1, we have
Ba(l — qy) < B2 < B2(1 + qv). This implies a term-by-term inequality, leading to:

LBy; < v}, <UBy, (A.50)

Consider the function f(y) = 1//e + y for y > 0. This function is monotonically decreasing and
convex. The value vy ; lies in the interval [LB; ;, U By ;], and vy ; is a point within this interval. The

maximum absolute difference | f(v;;) — f(v; ;)| must occur when vy ; is at one of the endpoints of
the interval. Therefore, we can bound the difference as:

1 1 1 1 1 1
< max

TN R | W= Ty el Ve i =y
(A51)

Since LB;; < Uéﬂ- < UBy;,; and the function is decreasing, we have 1/,/e+ UB;;
1/\/e+v,; <1/\/e+ LBy ;. We can therefore remove the absolute value signs:

1 1 1 1 1 1
— < max — , —
VEF UL \/e + i, Ve+ LBy, \/e + i, \/e + i, Ve+UB;
(A.52)
This completes the proof of the second statement. O
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A.4 PROOF OF LEMMA[AJ]

Lemma A.3 (Bound on Discrete Error). Given two discrete-time systems defined for ¢ > 1:
o System A: a; = k(ai—1 + ¢ci—1) + di
e System B: by = kb;_1 + d;

where the perturbation term ¢; is bounded by |c;| < g|a;| for all ¢, and the constants k, g satisfy
0<k<landgq<k.

Under zero initial conditions, where ay = by = 0, the absolute error between the states of the two
systems is bounded by:

t—1
lag — be] <> [(k(1+ )" — k7] |dj] (A.53)
1

J

Proof. First, define the error as e; = a; — b;. Subtracting the two system equations yields the error
recurrence relation:

e = kes_1 + ke (A.54)

The explicit solution to this recurrence is e; = kteg+ E;;B k*=J¢;. Under the zero initial condition
ag = by = 0, this simplifies to:

e = ke (A.55)
Taking the absolute value and applying the given condition |¢;| < ¢|a;|, we have:
t—1 t—1
led] <D Ko <q ) Kyl (A.56)
§=0 j=0

Since ap = 0, the sum starts from j = 1. The state |a;| can be bounded from its own recurrence
lat| < k(14 q)|ar—1| + |d|, which for ag = 0 unrolls to:

\a]\<z (1+¢q))?"|dy| (A.57)

Substituting the bound for |a;| into the 1nequahty for |e;| gives a double summation:

led| < qZkt 7 (Z (1+ q))“ch) (A.58)

=1

By swapping the order of summation and evaluating the inner geometric series, we obtain the final
result:

|at—bt|<z (L4 q)"7 — k"] |d;] (A.59)
O

A.5 PROOF OF LEMMA [A 4]

Lemma A.4 (Finite Geometric Series Ratio Bounded by Infinite Sum). Let (g;)%_, be a sequence
of scalars for any finite ¢ € N. Let the weights be terms of two geometric series, A, = a* and
By, = b¥, where a,b € (0,1) are the base ratios.

If the condition a® < b holds, then the ratio of the weighted sum is bounded by a constant derived
from the corresponding infinite series:

Zk 0@ |9k|
/7Zk:O b2 1_ a2/b (A.60)
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Proof. Let the numerator be Ny = 3"} _, a*|gx| and the denominator be D; = /"5 _, b¥g2.

‘We rewrite the numerator as:

N; = i (j;) (VFlgel) (A61)

k=0

Applying the Cauchy-Schwarz inequality to these finite sums, we get:
t ak 2 t \/7 2
2 < - . k
= (5 () ) (5 (7))
t a2k t
-(2%5) ()
k=0 k=0
t o\ k
a 2
_ (Z () ) D (A6
k=0

The first term is a finite geometric series. Since the condition a? < b implies that the ratio 7 = a2 /b
is positive and less than 1, all terms in the series are positive. Therefore, the finite sum is always less
than or equal to the sum of the infinite series:

t a2 k [e'e] 0,2 k 1
];(b) S;O(b) =T % (A.63)

Substituting this upper bound back into the inequality for N7, we have:
1
N? < <> - D} (A.64)

Taking the square root of both sides gives:

[ 1
< )
Ne <y [7 T D, (A.65)

Finally, dividing by D, yields the desired result for any finite ¢:
N,
M Yo @lorl _ /1 7 (A.66)
—a
‘ Zk:o bkgk

A.6 PROOF OF LEMMA[A.J

Lemma A.5 (Bound on the Quantized Momentum Error Ratio). Let (gx)%_, be a sequence of

scalars. Let the weights be Ay = B¥((1 + qar)¥ — 1) and By, = (B2(1 — qv))*. If the condition
B2(1 4 qar)? < B2(1 — gv) holds, then the ratio of the weighted sum is bounded by:

Yoo Aulgel _ /(4T

> 4qm
NIy e

_ Bi(+am)?

where r’/ Ba(i—qy) "

Proof. Following the proof of Lemma[A.4] we apply the Cauchy-Schwarz inequality to get:

t 2 g2 t
<Z Aklgkl) < (Z B’“) : (Z Bkgi) : (A.67)
k=0 k=0 " k=0
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This implies that the ratio is bounded by the square root of the first term on the right-hand side. We
. t A2 . . A2
now focus on bounding the term ), B First, we express the ratio B as:

Ap _ (B (A +aqn)* = 1)?

By (B2(1 —qv))*

gy b
(i) @rant-1p (A58

To bound the term ((1 + qar)* —
Mean Value Theorem. Let f(z)
¢ € (1,1 + gpr) such that:

f(L+qum) — f(1)
(14+qnm)—1

Since ¢ < 1+ qar, and for k > 1, we have ¢*~1 < (1 + ga7)¥ 1. This leads to the inequality:

1) e first establish an inequality for (1 + gas)* — 1 using the
= z%. For qp;y > 0, by the Mean Value Theorem, there exists a

=flle) = (L4+qu)"—1=qu - (k" 1). (A.69)

(I4+qu)  —1<k-qu- (L4+qu) " (A.70)
Squaring both sides of (A.70) gives:
(1 +qm)* = 1)% < kg3 (1 + qar)* Y
_ ka3
(1+qn)?

Substituting this back into (A.68), and using the definition 7’ %, we get:

A2 2 k k2q2
k< ( B ) dy 2(1_~_qM>2k
By, Ba(1=qv)) (1+aqm)

By (ﬁ%umm?)’“

(14 qum)?*. (A71)

- (1+qm)? B2(1 —qv)
2
- (1_:_]#)215(7")’“. (A72)

Now we sum this term. The condition 7’ < 1 ensures the convergence of the infinite series. We first
derive the closed-form expression for Y~ K2z for |x| < 1. We start with the geometric series:

oo
E ab =
k=0

Differentiating with respect to  and multiplying by z gives:

1
ka —a (1_x> = (1—3395)2' (A74)

Differentiating one more time and multiplying by z yields:

(A.73)

> 9 d x B 1(1—x)2—z(2(17x)(—1))7$(1+x)
2Kt = dw((l—w)?)‘x - a) o AP

2
Using this result with = r’/, we can bound the sum 22:0 g—z by extending it to an infinite series:

k=0 k=0
oo q2 i
< M 2 T,I
- k:Z:O (14 qum)?
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2 o0
— dy § k2(7"l)k
2
(I+aqum)* &=

2 (1 /
_ v . '( +/7‘3) . (A76)
(T+qum)? (1=1")
Finally, taking the square root of and substituting it back into the result from the Cauchy-
Schwarz inequality gives the desired bound:

t
Zk:o Ak\9k| <

\ ZZ:O Bkgl%

A.7 PROOF OF LEMMA [A.6]

A} ay A+ (1 +7r")
< T+ a2 (1= ) =qu 0T (@ =772 (A.77)

O

Lemma A.6 (Bound on the Quantized Gradient Estimator). Let the stochastic gradient be bounded
in infinity norm almost surely by ||V f:(w;¥)||cc < R — /€ for any parameters w. Let the gradient
quantization operator satisfy the relative error model |Q(z) — z| < g¢g¢|z| for any scalar z. The
quantized gradient estimator g; is defined component-wise for i € [d] as:

B
N 1
Gei =5 > VUm0, (A78)
j=1

where we use V@ () as shorthand for Q(V f(-)) and [-]; to denote the i-th component. Then, the
infinity norm of the estimator is bounded almost surely:

18illcc < (1+ga)(R = Ve). (A.79)
For notational simplicity in subsequent proofs, we will use the slightly looser bound ||g;||oc <
(1+4qc)R.

Proof. We first bound the infinity norm of a single quantized gradient vector V¥ f(-). For any
component ¢ € [d], we have:

VEFWE 5,)| = ‘Vif(th_l;%,j) + (V?f(WtQ_l;%,j) - Vif(Wf_l;%,j))‘
< ‘Vz—f(vv?,l;%,j)‘ + ’V?f(ng%’Yt,j) - Vz‘f(Wgﬂ%,j)‘
< ‘Vif(wgﬁ%,j)’ +4qa ’vif(wfiﬁ’}’t,j)

= (1+40) |Vif (W 1i7,)

Since this holds for any component, it also holds for the component with the maximum absolute
value. Therefore, by taking the maximum over ¢ € [d], we can bound the infinity norm:

IV FWE 7)o < (14 aa) IV F(WE 15 765) oo

< (144ge)(R—Ve). (A.81)
Finally, we apply the triangle inequality to the full estimator g;, which is the average over B such
vectors:

. (A.80)

B

N 1
1€ellse = Il > VEFWE 1:7.9)le
j=1
1 B
< 5 2 VW)l
Jj=1
1B
< 5 L0+ a)(R= V0
=
= (1 +q¢)(R - Ve). (A.82)
This concludes the proof. O
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A.8 PROOF OF LEMMA[A7]

Lemma A.7 (Bound on the Expected Gradient Error with Biased Quantization). Under the assump-
tions that the infinity norm of stochastic gradient is up bounded (Assumption[4.2), the objective F is
L-smooth (Assumption {.3), and the quantization relative error model holds (Assumption [3.1)), the
magnitude of the conditional expectation of the total error term J; ; is bounded by:

|Ei—1[6¢4] | < qaR + Law |[Wi—1]|2-

Proof. We start from the decomposition of the conditional expectation of J; ;, which we derived
previously:

Et—1[62,4] = E, [viQf(WtQ—l; v) = Vif(w 7)} +E, [Vz-f(W?_l;v) - vif(“’t—l;’Y)]

=B, [VEF(w217) = Vif (Wi )] + (ViF(wily) = ViF(wi))  (A8)

Term I: Gradient Quantization Bias Term II: Weight Quantization Bias
Using the triangle inequality, we can bound the magnitude as:
|Ei—1 [0:4] | < |Term I| + |Term IIJ. (A.84)
We bound each term separately.

Bounding Term I: This term is the expected bias from the (potentially biased) gradient quantization.
We first apply Jensen’s inequality for absolute values, i.e., |E[X]| < E[|X|]:

[Term I| = ‘Ev [V?f(WtQ_l; V) = Vif(wiy; 7)} ‘
<E, Hv?f(th—ﬁ’Y) - Vif(WtQ_l;v)H : (A.85)
By the relative error model for gradient quantization (Assumption [3.1] with factor g¢):
|TermI| < E, [qG ‘Vif(wgl;’y)u < qcR. (A.86)
Bounding Term II: This term represents the bias from weight quantization. Using the L-smoothness
of F' (Assumption[4.3)) and the relative error for weights (Assumption [3.1)):

(Term 11| = [V, F(w?,) — ViF(we_1)| < [VE(WE,) = VE(we—1)ll2 < Law [ we1]l2-
(A.87)

Combining the Bounds: Summing the bounds for Term I and Term II, we arrive at the final result:
|Ei—1 [0] | < |Term I| + [Term 1| < gg R + Lgw||wi—1]]2- (A.88)
O

A.9 PROOF OF LEMMA[A 8| (BOUND ON TERM D)

Lemma A.8 (Bound on Term D). The term D, which captures the error from gradient drift as defined

in (A.20), is bounded by:

pl< B0 (Znut l||gzﬁff> ruk Z(m) VEFTU i,

(A.89)

Proof. We start with the definition of Term D:

D= Zzﬁl gfz gt kz)%@k7

i€[d] k=0 1/e+v“
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To tackle this, we employ the weighted Young’s inequality, which states that for any A > 0,

A 1,
- A.90
zy < 293 +2Ay ( )

We apply this inequality to each product within the summation for Term D, setting

_ gtk + Okl B NI
=G — Gr—pl, = —————, and A= .
Vet 201+ qe) RVE +1

This application gives us an initial bound on the magnitude of D:

V1-5 L N2 (1 + ge)RVE + 1 (gi—p,i + 0t—k,i)?
|D| < Z 251 ( 10+ ) BRVE 1 (Gti — Gi—ki)” + i ——— .
(A91)

To simplify this expression further, we must establish bounds for two of its key components.

First, we can find a lower bound for the denominator term. For any coordinate 7 € [d], the recursive
definition of v} ; implies that € +v; ; > € + Bhv;_ ki = B (e+v)_ ki -). This allows us to bound the
fraction as:
(Gt—k,i + 5t—k,i)
€+ v, N 52
Second, we bound the squared gradient difference using the L-smoothness of the objective function
F.

Ut hie (A.92)

k 2

Z Ne—1Wt—1

=1

||gt - gtkag < L2‘|Wt71 - Wt7k71||§ =L?

2
< nthkZHut 3. (A.93)

The final step above follows from Jensen’s inequality and the fact that the step size schedule 7; is
non-decreasing.

With these two intermediate results, (A.92)) and (A.93), we can return to our main inequality (A.9T).
Substituting these bounds yields:

— MLAVI= Bt i =1l RAEVETT
(s e (1 m) )« (S o)

k=0

D]

n; L? il k (1+gc)R B
U (kzoﬁlx/%Dut z||2> o Z( ) VTR

Finally, by rearranging the order of summation in the first term, we arrive at our desired bound:

LoV — Dby i1 k (1+4gc) B
D \/
|D| < A(1 <Z||ut l||22/31\f> N Z( k41U ]3.
(A.94)
O
A.10 PROOF OF LEMMA [A.9](LOWER BOUND ON TERM C)

Lemma A.9 (Lower Bound on the Expectation of Term C). The expectation of term C, defined in
(A20), is lower-bounded by:

Zzﬁl

i€[d] k=0

G ki ~2(1+gg)R (51>
\/m] VI-PBi ZZ B, VE+1E [|[Up—[3]

MM—I
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t—1

—d Z BEM, . (A.95)
k=0

qcR*+Lgw R||wi——_1]|2

where M;_;, = .

Proof. We study the main term of the summation in C, i.e. for i € [d] and k < ¢:
Gt—ki + Ot—ki Viftmk(Wi—p—1) + O¢—pi
VEF v VEF Vg

We will further drop indices in the rest of the proof, noting G = G;_ i, § = Gt—k,i» 0 = O¢—_pi,0 =
Ut k+1,; and v = vy ;. Finally, let us note

E [th,i } =E [viF(Wtkl) (A.96)

t
82 = Z B;ij (gj,i + §j,i)2 and 7“2 = Etfk‘fl [82] . (A97)
j=t—k

In particular we have 7 — v = r? — s2. With our new notations, we can rewrite (A.06) as

g+o [ g+6 < 1 1 )}
E =E 4] -
7S] =Ele S v (s - s

—E_IE _gg+5]+g( +5) r2 _ g2

] =kl U Ve+v g Vet ove+o(vVetruv+ Vet )
% [gﬂzt“[é}] r?—s’

_E LR [ 22 O R Gg s
| Ve+ 7| e+0 9lg )\/6+v\/6+5(\/6+v+\/6+5)

E

[ G* | qoR*+ LawR||wWi_j_1]|2

>E — E|E]. A.98

>E| = NG +E[E] (A.98)

The inequality uses Lemma and the bound for ||V F(+)|| . We denote ¢ R2+qu\];”g‘ we—kallz &
M;_g.

Then we focus on E:

2 2
+19(g +90)|

T s
Ve+v(e+0) (e +v)We+D
" P

due to the fact that /e + v + Ve + 0 > max(v/e + v, Ve +v) and |r? — 2| < r? + 52
Applying Young’s inequality to x with

_Vi-fivetv |G| g+

2 __gTor
2 Vet o Y Vet oetov

|E| < 16(g +9)|

A

we obtain
2 2,4
< G _ . 1 (g~+ 5)*r '
We+rv  V1—=P1(e+0)32(e+v)
Given that € + ¥ > 2 and taking the conditional expectation, we can simplify as
2 1 2 +6)2
< g = + - ~]Et—k—1[(g ) ]
AWe+v VI-0B1Ve+v e+

Now turning to p, we use Young’s inequality with

K

Ei k-1 [K]

(A.99)

v Yi-BAivero o |Gsl _ Is(g+9)|
B 2r? U Vetro T e+v ]
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we obtain
PG S Uh ) i
p_4\/e+57“2 VI=BiVe+v (e+v)?

. 2 . . . . .
Given that e + v > 2, and E;_j_1 [%} = 1, we obtain after taking the conditional expectation,

(A.100)

Eo—r—1 [p] (A.101)

P S [<g+5)2}
T 4Ve+v VI-0B1Ve+v R ey |

Notice that in (A-100), we possibly divide by zero. It suffice to notice that if 7> = 0 then s? = 0 a.s.
so that p = 0 and (A.IOT) is still verified. Summing (A.99) and (A.T0T)), we get

G2 2 r? (9‘“5)2]
Epk—lHEHS2\/6_’_5"'_\/1_51\/6_,_’5 tkl{ e+v |’

Given that r < v/€ + v by definition of v, and that r < +/k + 1(1 + ¢¢) R, reintroducing the indices
we had dropped

(A.102)

(Gt—ki + 61—ki)?
€+ 1127

Gz, 2(1+q¢)R
B Bl < — ki 2UHIOR fmmp
2\/6 + V¢ k41, VI-=5

Taking the complete expectation and using that by definition e+v; ; > e+B5v,_ ; > B5(e+v]_, ;)
we get

(A.103)

1 ng i 2(1 ki (57 i 2
E[E] < E Lk LA +QG)fx/m]E (9e-t, o L)L (A04)
2| Vet Vg V1 — B3 €+ Vg
Injecting (A.104) into (A.98) gives us
t—1
Gt—k,i + Ot—k.i
3 8B [g ke k]
i€[d] k=0 VET Ut
t—1 g2 ri
> B | B | ——=2—| —E[E[] - M (A.105)
iez[;] kZ:O ( VEF Vt k41,
t—1 2 2
G b 1 (i 21+ qo)RVE+ 1 ki 4 Or—pi)?
> Zzﬁf E t~k, _ g t ]i + ( qc) - E (gt—r, /t ki) + M,
ie[d] k=0 VEF Utk 2 | VetV V1—=/0153 €+ Vg
t—1 2 t—1 k i—1
1 G ki 2(1+gc)R B k
> (YD BE = - =) VE+IE[||U|3] | —dD_ B M.
2 i€[d] k=0 VET Uik v1=5 ie[d] k=0 Ba k=0
(A.106)
This is the desired lower bound for E [C]. O

A.11 PROOF OF LEMMAI[A.T10I

Lemma A.10 (Lemma A.2 in [Défossez et al.[(2022)). Assume we have 0 < 7 < B2 < land a
sequence of real numbers (a,, )nen+. We define for all n € N*:

n n
— n—j 2 — n—j
by, = g By “aj and ¢, = E By ’a;.
Jj=1 Jj=1

Then for any € > 0, we have the following inequality:

n CQ» 1 bn
Z 6+ij < A= B)0=5:/5) <1n <1+ €> —nln(ﬁg)>. (A.107)

j=1
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Proof. First, we use Jensen’s inequality onc , noting thatz 67 = 1= gi <= ﬂ , to get:
2 j
a=(Sotta) < (Sar) (Saa) < 25 oot
=1 =1 =1

Dividing by e+ b; and using the fact that for | < j, b; > 3~'b;, which implies e+b; > 35" (e+b),
we obtain:

c? 1 a? 1 J I} =t g2
J ke al} [ A.108
Hb-l%w eray(r) o e

Now, we sum over j € [n] and swap the order of summation:

n C? 1 n J 61 j—l n 2 n
Zé+bj§1—51zz<ﬂ2> €+bz 1—51Z€+bzz< >

j=1 j=11=1 =1 j=l
< ! zn: af , (A.109)
~(1-p1)(1—B1/B2) €+ b

=1
where the last step uses the sum of a geometric series, since 31/82 < 1.

The next step is to bound the final sum. Let’s denote x; = al The sum is Zl 172 +b , where b; =
Zk,:l BL=F 2. Note that by —x; = Bab;_1 (with by = 0). Using the inequality £ 3 < In(y)—In(y—=x)
for 0 < z < y, we have:
Z
e+b —

<In(e+b;) —In(e+ b — ;)
=1In(e+ b)) — In(e + Babi—1)
e+ b €+ b1
n<€+bz—1) * n<6+52b1—1)

Summing from [ = 1 to n, the first term forms a telescoping series equal to In(e + b,,) — In(e) =

In(1 + b, /€). For the second term, since S < 1 and b;—; > 0, we have E;‘f;;’:l > (5, which

implies In ( crbioy ) < —In(B3). Thus, summing over [ gives:

e+B2b1 1
n 2
>
€
=1

This inequality is a useful result in itself, corresponding to the special case where c? is replaced by
a? (or equivalently 51 — 0 and a; is replaced by a3).

Finally, substituting the bound from (A.110) into (A.109) yields the desired result. O

n (1 + b:) —nln(B2). (A.110)

A.12 PROOF OF LEMMA [ATT]

Lemma A.11 (Lemma A.3 in Défossez et al.| (2022)). For any scalar p € (0, 1) and any integer
K € N, the following bound holds for the finite geometric sum:

K—-1 9
Z PVEFI< —= . (A.111)

— 3/2
P (1—p)3/

Proof. Let the sum be denoted by Sx = Z 0 ! 0% \/k + 1. We analyze the term (1-p)Sk:

K-1 K )
PVEFT-3 i

k=0 j=1
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K-1
=14+ Y pF(WVE+1-Vk) - p"VK.
k=1

By the concavity of the square root function, vk + 1 — vk < f This implies:

= = p
(1- iy / .
st \f 0o 2V1
The integral is a standard Gaussian integral form which evaluates to 27\/;7() Using the inequality
—In(p

—1In(p) > 1 — p, we have:

VT < 2
2V1—p ~ VIT—=p
Dividing by (1 — p) yields the desired result. O

(1—p)SK§1+

A.13 PROOF OF LEMMA[A 12

Lemma A.12 (Lemma A.4 in Défossez et al.| (2022)). For any scalar p € (0, 1) and any integer
K € N, the following bound holds:

K-1
k 4p
> pVEE+1) < T (A.112)

Proof. Let the sum be denoted by Sic = S5 e—0 ' pF\/k(k+1). We proceed by analyzing (1 — p)Sk:

K-1
(L-p)Sx = o [\/E(k 1)~ kvVE = 1] —pEVE —1
ffi
pF(2VE),
k=1

where the inequality holds because \/E(k +1)—kvk—1< 2v/k. Re-indexing the sum gives:
K—1 K—2
1=p)Sk <20 p"'WE=20> p\i+1
k=1 §=0
Applying the result from Lemma[A.TT]to the final sum, we get:

2 4
=i <20 (=) = =g

Dividing both sides by (1 — p) completes the proof. O

A.14 PROOF OF LEMMA[A 13|

Lemma A.13 (Upper bound of Zthl E [||u¢||3]). Under the condition that 3 (1 + qar) < B2(1 —
qv ), the expected sum of squared updates over 7 iterations is bounded by:

ZE ||utH ! B1(1+qm)
(1 =Bl +am))(1 = Gazes)

(1+4qc)R) T B
x (m (1+ e(lﬂz(lqv))> Tln(fs(1 qv))). (A.113)
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Proof. The proof proceeds by first expanding the term of interest, applying bounds on the moment
estimates derived from their recurrence relations, and then leveraging Lemma to bound the
resulting sum.

We begin by expanding the definition of ||u||3, separating the sum over the dimension d, and taking
the expectation:

T

> [l ZEZH“ Sy YE

i€[d] ie[d] t=1

(A.114)

€+Utz

For each coordinate 4, we bound the numerator mm- from above and the denominator € + v; ; from
below. By unrolling the recurrence for m,; and applying the triangle inequality along with the
relative error model, we get an upper bound on its magnitude:

me.| <Zﬂ (L4 qn) ¥V fe(Wh—1) + ril. (A.115)

For the denominator, Lemma- [A.2|provides a lower bound for vy ;:

Vi >Z,3 (Vi fre(Wi—1) + 0r)2 (A.116)

Substituting these into the sum gives the inequality:

2
¢ | (i 870+ ) M)
Y E[wlE <> D E — — (A.117)
t=1 icld) t=1 e+ hm B (1 —av) gL,

where for brevity we denote gi ; = V; fr,(Wi_1) + 0g ;-

The inner sum over ¢ for each coordinate 7 in perfectly matches the form required by
Lemma[A.T0] To apply it, we make the following substitutions into the lemma’s notation:

* Let the sequence (a;) en+ be ap = |G, i

* Let the effective decay factors be 51 = 81 (1 + qar) and 85 = B2(1 — qv). The lemma’s condition
B1 < B is satisfied by our assumption.

2
With these substitutions, the numerator term becomes (22:1 (6{)“’“%) = ¢? and the sum in the

denominator becomes 3;._, (83)"*a3 = b;. Applying Lemma to the sum over ¢ for a fixed 4
yields:

T 2
C 1 bT
E|— ] < (ln(l+>—T1n Jo > (A.118)
2 ) S c (6)
The final step is to find an upper bound for by. By definition:
T T
br = (B Z Ba(1—aqv)) ' *G2 .. (A.119)
k=1 k=1

From Lemmal|A.6| we have a uniform bound on the quantized gradient estimator, |gy ;| < (14+¢¢)R.
Therefore:

T
<Y (Ba(1 =) (1 + g0)R)?
k=1
T-1
(L+4ga)R)* D (B2l —qv))
7=0
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1
2 L
< (A +a6)R)" = Ba—a) (A.120)

Substituting the bound for by back into (A.TT8), and re-inserting the definitions of 5] and j35, we
obtain the bound for a single coordinate i. As this bound is identical for all d coordinates, we

multiply by d to get the final result stated in (A.113). This completes the proof. O

A.15 PROOF OF LEMMA (BOUND ON TERM M)

Lemma A.14 (Bound on Term M). The term M, representing the accumulated quantization bias
from (A.26), is bounded by:

nrdT 2 n24dLgw U RT?
M < ——— (¢cR* + Law R||wo||2) + ——F—7———, (A.121)
Ve(l = p1) ( [Iwollz) 2/e(1— f31)
_ d
where U = eI
Ba(I—qy)
Proof. First, we establish a uniform bound on the update norm ||u||2 using Lemma [A.4}
2
My
adle = | 3" %
ierd € TVt
< |5 Sk A a0 AV fulwin) + Bl
TN\ S (im0 857 (= ) H (Vi (Wiot) + 61,0)%)
< |— 2% ey A.122
S| 1 Bran® (A.122)
B2(1—qv)

Now, let’s recall the definition of M':
qcR? + Law R||wi—— 1||2

M= anZIE Z[BlMt k], where M;_j, = NG
t=1

We can split M into two components: a constant part Mcons and a weight-dependent part Myeighes-

Mconst - anQG'R Zzﬁl

t=1 k=0

dLgw R
Mweighls = aresaw QW Z Z 61 |Wt—k—1||2]

t=1 k=0

Bounding Mgy is straightforward. The inner sum is a geometric series bounded by ﬁ, so the
double summation is bounded by %

< nrdqeR*T

onst > \ﬁ(l — ﬂl)

The main challenge is to bound Myeignis- To do this, we first need a bound on the expected weight
norm E [||w||2]. From the update rule w; = w;_1 — n;u;, we can unroll the recursion:

J
W; = Wo — E nmuay.
=1

Applying the triangle inequality and taking the expectation, we get:

J
Zmllmlzl.

=1

M, (A.123)

E[[[w;ll2] < [[woll2 +E
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Using the uniform bound ||w||2 < U, we have:
J
E{l|lw;ll2] < [Iwolla + U Y m < [|woll2 + Usnr.
1=1

Now we substitute this bound back into the expression for Myeigns. We first swap the order of
summation. Let j =t — k — 1. Forafixed j € {0,...,T — 1}, the term E [||w||2] appears when
k=1t —j — 1. This is valid for ¢ from j + 1 to T'.

T t-1 T—1
S5 BE (il = S Effwylls] 3 8
j=0

t=1 k=0 —J+1
T-1
= E[|[w;ll2] Z B
=0
1 _
< ZE[IIlelal
1— 51 &
=0
Next, we substitute the linear bound:
T— T-1
E[l[w;l]2] Z ([lwoll2 +37-U - nr)
=0 =0
T-1
T||wolls +Unr Y j
7=0

)T

The sum of the first 7' — 1 integers is E=nr o % This gives:

1 T
< T —U .
< =5 (Tliwolle + S0

Finally, we assemble the complete bound for Myeighs:

dLgw R T?
Mweights < % (T||W0|2 + 2U77T) .

Combining Mconst With Myeighss, We get the final bound for M.

n2dLqwURT?

nrdTl’
M < (qcR* + Law R||wol|2) + ENZEY O

- f (1-51)
(A.124)

O

B PROOF OF THEOREM

B.1 PRELIMINARIES

The momentum of the quantized Muon (Algorithm I] ) is defined as
1B B

M, =M, + (1= 6)5 SO VOFWEi). M= > VOAWEi). B

i=1 =1

We define the following auxiliary variables for analysis:

=BCi—1+ (1 — /B)VF(Wt) Co = VF (W) (B.2)
B
=X, 1 + (1~ ZVf (W), Xo= 53 VW) @
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1 B
Y, =Y, 1+ (1-7 Zva Wiki) YYo= V9[(Woikos)  (BA)

B B

Z=6Z 1+ (- ) SVEIWEE),  Zo= 3 > VOA(WEie).  (BS)

i=1 i=1

We also define the following relative quantization errors q¢, qw, g according to Assumption
and Lemma ie,foranyt € {0,1,...,T—1}andi € {1,2,..., B},

V(Wi i) — Vf(Wt,ﬁm)HF < qclVI(We &)l r,
IVOF(Wy) = VE(Wy)|lr < qal VE(W,)| e,
IV2F(WE€ra) = VAWE €)le < aallVF(WE €)1y
IVeF(WE) = VE(WP)|F < galVF(WE)||p,
IWE — Wil|r < qw|[WellF,
Mg — My||r < qur | My | . (B.6)

B.2 PROOF OF THEOREM 4.6
Proof. Set n, = n, denote r = min{m, n}, and according to the L-smoothness of F'(-), we have
E[F(W;) = F(Wii1)]
SE[(VF(W.), W, ~ Wei) — W, We [}
=E[p(VF(W,), UV]) — 2|0V 3]

L
ZE[MVF(Wt),UtV:” - 57727’

L
=E[n(M,, U, V") + n(VF(W,) — M, U, V)] — 577%«

L
>E[||M¢|l« = nl|VF(W) = Me||r - [UV{ [[£] — ST

L
ZEM[VE(Wi)ll« = nlVE(W¢) = Myl = nv/r|[VE(Wy) — Myl r] — 57727’

L
>E[n|VF (W)« — 2nVr[VE(W,) — My|p| — 57727“- (B.7)
The second inequality is due to [|[U,V/ [|%2 = tr(V,U/ U, V) < r = min{m,n}. The third

inequality is due to M; = U;S;V, and Cauchy-Schwarz inequality. The last inequality we used
the fact that |A||. < +/7||A||F for any A € R™*™,

Summing Eq. overt=0,1,...,T — 1, we get

1 T-1
= > E[IVF(W)).]
t=0
Al T
LEE (WO)Tn FWr) 2f Z E[|VF(W) — My||r] + 5 (B.8)

t=0

Next, we focus on term E[||V F' (W) — M || p]. With auxiliary variables defined in Eq. (B.2)-(B.3),
we have

E[|VF(W;) — M| r]
E[[VF(Wy) = Cillr +[|Ct = Xellr + [ Xe = Yellr + 1Ye = Zel|F + [|Ze — Myl F].
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By Lemmas [B.3] [B:4] [B:5] [B-6] and[B.7] we have
E[[|VF(W;) — M| F]
<E[|VF(W;) = Ci|r + [|C; — X4l + [ Xt = Yellr + [[Ye — Ze|lp + [|Ze — My 7]

L 3 —
_f”l f\f 5t a \/? +3qc (0 + G) + 3qcTnVrL + qw (1 + qa) DL+

qm B o 1-8 o
W(1+QG)T7]\/;L+1_B(I+QNI)<\/E+ m'ﬁ+G+QG(U+G)+

w(l+ae) DL+ (1+ qw)(1 + qc)Tn\/?L>~

Summing overt = 0,1,...,T — 1, we get

1T*l

T > E[|VF(W,) — My 7]

t=0

BLn\/r 30 1—53

< + + +3¢c(0 + G) + 3¢aTnVrL + quw (1 + qo) DL+
15 "T0_pv5 5 g T3+ G+ 3 nVrL+qw(l+qc)

w(l + go)Ty/rL + — 28 (U+ b T L Ggelo G+

1—-B(1+qu) \VB 1+8 VB
(14 46)DL + (Lt aw)(1 + ) THViL ). 9)

Substitute (B-9) into (B-8), with Assumption[3.1] we have

1 T-1

7 2 ElIVF(W,)].]
t=0
E[F(Wo) ~ F(Wr)] | Lir | 2V7 §-
< T ; [IVE(W:) = Mi|l]
_E[F(Wy) — F(Wr)]  Lar L 28Lir | 60\/T L 1=8 60/
- nT 2 " 1-8 T(1-BVB \1+8 VB

6qaVT (0 + G) + 6gaTnrL + 2qw (1 + qq)DLNT + 2qw (1 + qg)Tnr L+

2qm BT (0 1-8 "
=B +an\vB  \1+8 75 HCHwle Ot

w(l+a6)DL+ (1+qw)(1 + qc)Tn\/T"L)

E[F(Wo) — F(Wr)] | Lyr  28Lygr  Goy/r 1 - 5 6oy/r
< T 5 +1—5+T(175)\/§+ 1+B\/§+

e qc+qw+chn+qun+qMﬁ(1+\/1—5+qc+qw+Tn) .
1-8(1+qum)

Let F(Wy) — F* < A, where A > 0 is a constant. By setting B = 1, 1 — 3 = ©(T~'/?),
n=0((1—pB)Y/2T-1/2), we have Tp = ©(T"/*). Then we have

]E[F(Wo)*F(WT)}+@+23Lnr 60 /T N 1*660\/F: ( 1 )
nT 2 1-8  T(1-p)WB 1+8 VB T4
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Moreover, with condition 3(1+qas) < 1, suppose 1 —3 = C3T /2, Cs > 0 is a constant. Choose
gy = OpT~Y/2, where Cyr < Cp, Cpr > 0 is a constant, then we have

ﬁ(l + QJVI) = (1 — CﬂT_l/Q)(l + C]\/[T_l/z) =1- (O,@ - CM)T_1/2 — CﬁCMT_l < 1.
Thus, by setting g = O(T~/2), qw = O(T~Y/?), qar = O(T~1/?), we have

amB
QG+qw+ch77+qun+M<1+\/1—ﬁ+qc+qW+Tn)

1—B(1+qum)
:O(T71/2 +T71/2T1/4 +T71/2(1 _|_T71/4 _|_T71/2 +T1/4))
—or,
where we used the fact #ffqm = O0(qu B+ B(1+qn))) = O(T~Y/2), and B(1 + qur) < 1.

Combining the above results, with the fact that || A||. > ||A||F for any matrix A, we complete the
proof.

O

B.3 PROOF OF LEMMA [B.1]

Lemma B.1 (Bound of |W||p and ||[VF(W)| r for Muon). Suppose Assumptions and
hold. The iterates of Muon satisfy that for any ¢ > 0,

[Wellp < D+tnyr, [[VE(Wy)||lp <G+ tnyrL.

Proof of Lemma According to the update of Muon, we have

Wl r
=[[W,_1 — U V] |p
<[IWeoille +nl[UV] | g

=|Wi_1llr + n/tr(V, U] U, V])
<IWe_illp +nvr

<||Wollr + tnv/r

<D + tny/r.

The third inequality is because U; and V, are orthogonal matrices, and the last inequality is due to
Assumption[4.4]

[VE(W)|F
t—1
<|VE(Wo)llr + > IVF(Wii1) = VE(Wi)|
k=0
t—1
<SG+ ) LWt — Willr
k=0
t—1
<G+ Lnyr
k=0
=G +tny/rL.

The first inequality is due to the triangle inequality, the second inequality is due to Assumption 4.3}
and the last inequality is due to the update of Muon. [
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B.4 PROOF OF LEMMA[B.2|

Lemma B.2. Suppose Assumptlonnholds For any matrix X € R™*"™ and its quantized version
X, we have

1X? = X|[r < qll X[

Proof of Lemma[B2] According to Assumption [3.1] we have

IX? =X[E=>"> x5

i=1j=1

< ZZQ2|Xij|2

i=1j=1
=¢*|I X%
Taking the square root on both sides, we complete the proof. O

B.5 PROOF OF LEMMA[B.3|

Lemma B.3. Suppose Assumptions 4.3 and {.4]hold. For any ¢ > 0, we have

BUIVE(W,) - Cl) < S0

Proof of Lemma(B3] This proof is a standard technique for bounding the bias term of momentum.
We have

E[|[VF(W;) — C¢| r]

=E[|VF(W;) — (BCi—1 + (1 = B)VF(Wy))| F]
=E[B|VF(W;) — Ci—1]|F]

E[B|[VF(Wi_1) — Ci—1llp + BIIVF(Wi—1) = VF(Wy)||F]
E[B|VF(W-1) — Ci—1||r + BL|Wi_1 — W] F]
=E[BIVF(W;_1) = Ciallr + BLnl|U, 1V, || )
<E[B|VF(W;-1) = Ci_1l|r + BLn/7]

<B'|VF(Wo) = Collp + Y _ B'Lnv/r

i=1

B.6 PROOF OF LEMMA[B 4]

Lemma B.4. Suppose Assumptionsd.Tand.2]hold. For any ¢ > 0, we have

_ (7 1—60
E(IC: = Xillr) < 8' =+ [ 15 75

Proof of Lemma[B.4] Expanding C; and X, by their definitions in (B.2) and (B-3), we have
t

=B'Co+ (1-8) ) _ B"FVF(Wy),

k=1

X, =50+ (1~ 5)S 5+ ZVf Wii€s):

k=1
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Thus, we have

E[|C: — X )
t B
<E[||B(Co — Xo)[| ] + E[(1 = B)| >_ B F(VF(W)) — éZW(wk;sk,mHF]
k=1 =1
<B'E[||Co — Xollr] + 4| E[( HZ/@“ F(VF(Wg) — *va Wi €)1 7]

k=1

t

=B'E[||Co — Xollr] + (| E[(1 — B)2 Y _ p2-k) — ZHVF Wi ki) — VE(Wy)[12]

k=1

¢ 2
<B'E[[|Co — Xollr] + 1| (1 — B)? ;52@1@)‘73

ﬁt 1- B o
VB BVB'
The second inequality is due to Jensen’s inequality, the first equality is due to the independence of
&.; for different k or 4, and the third inequality is due to Assumptions@.1|and O

B.7 PROOF OF LEMMA [B.3

Lemma B.5. Suppose Assumptions[4.1] i-2]and [3.1]hold. For any ¢ > 0, we have
E[|X: — Y¢l|r] < ga(o + G +tny/rL).

Proof of Lemma(B-3] By the definition of X; and Y, in (B.3) and (B:4), we have
E[IX: = Y| #]

E[Vf(Wi;&i) — VOF(Wes €0) | F]

e
.Mm

@
Il
-

<E[B|Xi—1 — Yio1|lp] + (1 = 5)

S~
Mm

<E[B||X¢-1 — Yi1|p) + (1= B) ElqelV (Wi &)l ]

Il
_

7

<E[BXi-1 = Yi—1lr] + (1 = B)E[gc (o + [VF (W) | F)]
<E[||X;—1 = Yi1llr] + (1 = B)ga(o + G +tny/rL)

t—1

<B'Xo = Yolr + (1 = Bga(o + G+ tny/rL) > B
k=0

<B'qc(c +G) + (1 — B)gc(o + G + tn/rL)
<qa(o+G) + (1 — 8)qatnVrL
<qg(o + G +tn/rL).

The second inequality is due to Assumption[3.I] Lemma[B.2]and Definition[B.6] The third inequality
is due to Assumption 2] The fourth inequality is due to Lemma[B-1] O

B.8 PROOF OF LEMMA [B.6|

Lemma B.6. Suppose Assumptions[4.1] 2] [.3]and [3.T]hold. For any ¢ > 0, we have

BIIY: — Zilr) <5 T+ /155 - % + 26(o + ) + 2uctnyrilt
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w(l+gc)DL + qw (1 + q¢)tnyVrL,

1-5
f 1+53 \F
(1+qw)(1 + qg)tny/rL.

E[l|Z:]|r] < +G+qc(0+G)+qw(l+qa)DL+

Proof of Lemma|B.6] By the definition of Y, and Z; in (B.4) and (B.3)), we have

=B"Yo+ (1-8 Zﬂt E Zvawk,skz)

Z, =8'Zo + (1 - B) Zﬁt—% S VO WeL).
k=1 =1

Thus, by the triangle inequality, we have

E[Y: — Z:| 7]
B
<E[B[[Yo — Zoll#] + HZﬁt e (5 VO (Wit = VO WEsge) ]
=1
B
<E[B"[[Yo — Zol|r] + E[| Zﬂt M= ZvQﬂWk;sk,n — V(Wi &ei)llr] +
i=1
A
t 1 B
(1= B)E[| Y B (5 D V(Wi &ri) = VE(Wi)) | 7] +
k=1 i=1
C

(1= BE[| > BF - (VF(Wy) = VE(W2))|| 7] +
k=1

H
t B
B> B87F - (VF(W) - Z FOW2 &)l F] +
k=1 i=1

I

B

(1= ME Y B (5 S0 VAWE:6) — VOFWEi &)l e].

k=1 i=1

J
Next, we bound each term in (B.10) one by one.

Bound on 3'E[||Y¢ — Zo||r]. By the definitions of Y and Z in (B:4) and (B.3), we have

=5 Zva Wo; €.,

B

Z VOF(WE:&04).

Thus, we have

B'E[|[Yo — Zo| £]
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B B
=0Ell; VO (Woibo) — 5 > VW&o,
=1 1=1
B
<9 DBV (W) = V1 (Wo: 0T+

B
BBl 5 S VS (Wi o) — VE(Wo)ll+
BE[|VF(Wo) = VE(WG) | r]+

B
BBl Y VE(WE) - VI(WE: 0.1+

i=1

B
=1

B
Sﬁt% EQGE[HVJC(ngO,i)HF] + 5t% + B'LawE[|Wo || r] + ﬁt%—i—
1 B
ﬂtg;qGE[HW(WS;sM)HF]
<5tli ( +G)+Bt2—0+6t DL+Btii (0 + qwDL + G)
< Bi:1QGU \/E qw Bi:1QGU qw
—5"(206(0 + G) + awDL(1 + q6) + %), B.11

VB

The first inequality is due to the triangle inequality. The second inequality we used Definition [B.6]
for the first and last terms, Assumption and Jensen’s inequality for the second and fourth
terms, and Assumption [4.3] and Deﬁniti%for the third term. The third inequality is due to
Assumption 4.2} f-4] and Definition[B.6

Bound on A.

t B
A=(1-BE[> p*. (% > V(Wi bri) = VF(Wii k) 7]
k=1 1=1

=1

t 1 B
<(1- =k E[|Vf(Wp; &x.i
<( 5)};5 BZQG IV f(Wi; &)l F]
t

<=8 Y82 S aolo + EIVEW)] )

k=1 =1
t B
SA-B)Y B> aolo + G+ tnyrL)
k=1 =1
=(1-p"qc(0 + G +tny/rL). (B.12)

The first inequality is due to Definition [B.6|and the triangle inequality. The second inequality is due
to Assumption[4.2] The third inequality is due to Lemma [B.T]

Bound on C. Similar to Lemma we have

t B
C=(1- DB 87 (5 3 VA (Wii &) — VE(W) ]
k=1 =1
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t B
<= B) Bl (5 3 VAW 6) — VE(W)3]
k=1 =1

t

B
== 9)y| S S BNV (Wi ) — VR(W)[3]
=1

k=1

t B
1
<(1-p) E ﬁz(tfk)ﬁ§ o2
k=1 i=1

-9y 15
< % . %. (B.13)
Bound on H.
H =(1-B)E[| gﬁt"“ (VF(Wy) = VE(W)| £
<(1-5) gﬁf—’“mllw(ww = VE(W)|F]
)3 # LW - WO
) gﬁt""quE[IIWkIIF}
<(1-8) Xt: B Law (D + tny/r)
<(1- 6t)2:v;L(D + tn/r). (B.14)

The first inequality is due to the triangle inequality. The second inequality is due to Assumption4.3]
The third inequality is due to Definition[B.6] The fourth inequality is due to Lemma[B.T]

Bound on I. Similar to Lemma[B.4] we have

B
I=(1- ||Zﬁt F(VF(WE) - Z FWE61.0))| )

<(1-5) ||Zﬁt B (VE(WP) —fZVf (W &)%)
k=1

t

B
=(1-)y > 00 5 3 BIIVAWE € - VE(WE) I

k=1

B
<(1-8) 262“ M2 Z 2

1— B2 o2
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R (B.15)

Bound on J.

t B
B 5 (5 0 VI WE:6) ~ YOS WE; &) ]
k=1 1=1

-5) ;w; ianHVﬂWE;sk,»nF]
<(1-8) kt e iQG(U +E[IVE(WE)|#)
<(1-5) gt Zquaw + LE[[W ~ W] + E[|VE(Wy) | £])
<(1-8) ki gtz iQG(U + LawE[| Wil r] +E[| VE (W) )

fo’f el ch (0 + Law (D + tny/r) + G + tny/rL)

<(1-p )qG(a+G+qWDL+ (1+ qw)tn\/rL). (B.16)

The first inequality is due to Definition[B.6and the triangle inequality. The second inequality is due
to Assumption4.2] The third inequality is due to Assumption {.3|and the triangle inequality. The
fourth inequality is due to Definition[B.6] The fifth inequality is due to Lemma [B1]

Bound on E[||Y; — Z||r]. Substituting (B-T1), (B12), (B:13), (B-14), (B-13) and (B-16) into
(B.10), we have

BIIY: — Zilr) <6 T+ 155 22+ 2000 +G)+ (1= B)2agtan/r L+
w(l+gc)DL+ (1= B")qw (1 + gc)tnv/rL.
2 1-—
sﬁtv—%+ 1+/€ \F+2qc(a+G)+2qctTl\fL+

w(1+gc)DL + qw (1 + qc)tny/rL.

Bound on E[||Z;| r]. By the definition of Z, in (B.3)), we have
El|Z:| r]

sy}

<E[B"]|Zo||r] + E[(1 - 8 HZﬂt k. Z VeHWE: &) p]
=1
B

<B'El|ZollF) +E[(1 - 8)D_ B Z IVLF (Wi &) — VWP )l pl+

k=1 i=1

B
IIZBt . EZ VHWE i) = VE(WE)) ]+

E[(1 - B) ZW A(IVF(WE) = VE(W)|[p + [I[VE (W) )]
k=1
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t B
<B'E[||Zollr] + (1 - B) D B* Z B[V (W &)l rl+
k=1 =1
1-8 o ‘ i ! i
m~ﬁ+(1—ﬁ)qu;6 ’“E[Hwknﬂﬂl—m;ﬂ "E[IVF(W4)| r]
t B
<B'E[|Zollr] + (1= 8)) 6*’% > ac(o + qw LE[|[Wi||#] + E[|VE (W) r])+
k=1 =1
1-8 o i : i
\/ﬂ' 75 +(1-p qu;ﬂ FE[|[Wl|F] + (1 ﬂ)k;ﬂ "E[IVF(We)| ]

<B'E[|Zo||r] + (1 = ")qc (0 + qw L(D + tny/r) + G + tny/rL)+

\/ 1 ; g 7B + (1= Baw L(D + tnv/r) + (1 = ') (G + tn/rL)
<B'(¢a(0 + qwDL + G) + % +qwDL + G)+
(1= BYq96(0 + qw L(D + tny/r) + G + tny/rL)+

ﬁ‘ % + (1= 8w L(D +tny/r) + (1 = ') (G + tn\/rL)

_Bt ’/1+B +G+qc(a+G)+qw(1+qc)DL+

Y1+ qw)(1 + qg)tny/rL

<9 4 1-6.
“VB 146 \F

The first and second inequalities are due to the triangle inequality. The third inequality we used
Definition %or the second term, Jensen’s inequality, Assumptions [.1] 2] for the third term,
Assumption and Definition [B.6] for the fourth term. The fourth inequality we used triangle
inequality, Assumptions {.2] [4.3] Definition The fifth inequality is due to Lemma [B.T]

+ G +qalo+G) +qw(1+qa)DL+ (1 + qw)(1 + ga)tn/rL.

O

B.9 PROOF OF LEMMA[B.7]

Lemma B.7. Suppose Assumptions and3.1] hold. For any t > 0, if (1 + qu) < 1,
we have

qm B o 1-8 o
Bl - Milr] <0 (T 15D G anlo 6+

w(l+4gc)DL+ (1 +qw)(1+ qc)tn\/FL)

Proof of Lemma[B.7] By the definitions of Z; and M, in and (B.I), we have
Ell[Z; — M| r]
Bl|Ze—1 = M| ]
E[l|Ze-1 = Mo-r||p + B M1 = M|

<E|
<E[
<E[B||Zt—1 — Mi_1]lr + g B[ Mi—1]|F]
<E[BA+ qu)|Zi—1 — My_1||r + qu B||Zi—1 ]| F]
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t—1
<quB Y B* A+ qu)* |1 Zi—i—1 |l
k=0
amp ( o 1-5 o
1=+ qum)

\/§+ 0559 \/§+G+qc(a+G)+

aw(1+ qg)DL + (1+ qw)(1 +qc)t77\/7“L). (B.17)

The second inequality is due to the triangle inequality. The third inequality is due to Definition[B.6]
The fourth inequality is due to the triangle inequality. The fifth inequality is due to Zo = M. The
last inequality we used Lemma [B.6| O

C ADDITIONAL EXPERIMENTS AND DETAILS

C.1 IMITATING QUANTIZATION AND DEQUANTIZATION

We emulate floating-point quantization and dequantization by reducing the mantissa length from its
original precision (52 bits for f1oat 64 and 23 bits for f1oat32) to M bits, while keeping the
exponent and sign bits unchanged. This design choice is motivated by the fact that practical scaling
techniques can effectively prevent overflow and underflow (Peng et al.,|2023). After truncating the
mantissa, we apply stochastic rounding to the nearest two representable values, and then dequantize
the result back to standard £1oat32 or float 64.

C.2 SYNTHETIC EXPERIMENTS

We conduct synthetic experiments on the Rosenbrock function, defined as
n—1
FW) =3~ (100[[Wj41 = W2IE + |1 = W),
j=1

where W = [W;, Wy,...,Wy] € R™*" is the weight matrix. The global minimum is at
W* = [1,,1m,...,1,] with F(W*) = 0. We set m = 50, d = 100, and initialize
Wy ~ N(1,,%n,0.12T). For Muon, we apply the default hyperparameters in the Newton-Schulz
iteration to compute the zeroth power / orthogonalization of G (Jordan et al., [2024), using double
precision.

Figure |3| shows the gradient norms of Adam with different quantization errors on the Rosenbrock
function. Figure [] shows the gradient norms of Muon with different quantization errors on the
Rosenbrock function.

Figure [5] shows the function values of Adam with different quantization errors on the Rosenbrock
function. Figure [6] shows the function values of Muon with different quantization errors on the

Rosenbrock function. The relative quantization error is defined as W measuring the aver-
age quantization error of X, where )(+) is the quantization operator.

Figure [/| shows the effect of quantizing the second moment in Adam to different mantissa lengths
M, with all other components kept in FP32. As 85 — 1, the optimizer exhibits larger converged
gradient norms and becomes more sensitive to quantization errors induced by reduced M. This
phenomenon aligns with our theoretical analysis in Theorem which highlights the amplification
of quantization errors by the inverse square root of historical gradient variances in Adam when S5
is close to 1.

C.3 CIFAR-10 EXPERIMENTS

We conduct real-data experiments on the CIFAR-10 dataset (Krizhevsky et al.,[2009) using a 4-layer
fully connected network (FCN). The architecture is as follows: an input layer with 3072 neurons
(corresponding to 32 x 32 x 3 images), followed by three hidden layers with 512, 256, and 64
neurons, respectively, and an output layer with 10 neurons for classification. ReLU activations are
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Figure 5: Rosenbrock: Adam relative quantization error of different mantissa bits (M). Weights
error (top left), Gradient error (top right), First moment error (bottom left), Second moment error
(bottom right). These results show that the more mantissa bits, the smaller the relative quantization
error. Combining with Figure 3] we can see that the more mantissa bits, the smaller quantization

error, the better convergence performance (Theorem @)
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Figure 6: Rosenbrock: Muon relative quantization error of different mantissa bits (M ). Weights
error (left), Gradient error (middle), Momentum error (right). These results show that the more
mantissa bits, the smaller the relative quantization error. Combining with Figure @] we can see that
the more mantissa bits, the smaller quantization error, the better convergence performance (Theo-

rem @)

used for all hidden layers, and the network is trained with the cross-entropy loss for 100 epochs. We
evaluate both Adam and Muon under varying quantization precisions.

For Adam, we use mantissa bit-lengths M € {1,2,3,7,10, 23}, batch size B = 256, learning rate
n = 15x107% B, = 0.95, B> = 0.999, ¢ = 1078, and weight decay 0.1. For Muon, vector
parameters are updated using Adam, while matrix parameters are updated with Muon’s orthogonal-
ization step. We choose mantissa bit-lengths M € {2,3,7, 10,23}, batch size B = 512, learning
rate n = 0.001, 5 = 0.99, weight decay 0.1, and 5 Newton—Schulz iterations, following the iteration
hyperparameters in Jordan et al.| (2024). The auxiliary Adam optimizer in Muon uses learning rate
n=2x10"% B, = 0.9, B2 = 0.999, ¢ = 1078, and weight decay 0.05.

Figure [§] shows the gradient norms of Adam with different quantization errors on CIFAR-10. Fig-
ure 9] shows the gradient norms of Muon with different quantization errors on CIFAR-10. Figure[I0]
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shows the quantization errors of Adam with different precision on CIFAR-10. Figure [[T] shows
the quantization errors of Muon with different precision on CIFAR-10. The relative quantization

error is defined as W, measuring the average quantization error of X, where Q(-) is the
quantization operator.

C.4 NANOGPT EXPERIMENTS

We evaluate the impact of quantization on training the nanoGPT model on the OpenWebText
dataset (Gokaslan et al] [2019). The model has ~ 26.4M parameters, with weight tying between
the embedding and the output layer (1m_head). Its architecture includes 4 transformer layers, each
with 4 attention heads, embedding dimension 384, without dropout, and no bias terms. The dataset
contains ~ 655.4M tokens, and we use a block size (context length) of 512. Training is performed
with a batch size of 32 and gradient accumulation of 4, resulting in an effective batch size of 128.
Models are trained for up to 10,000 iterations.

Optimizer and Training Settings. We experiment with both AdamW and Muon optimizers, as
summarized below:

» AdamW: learning rate 3 x 104, weight decay 0.1, f; = 0.9, B2 = 0.95, ¢ = 108, gradient
clipping norm 1.0. Learning rate decay is disabled.

* Muon: 2D parameters in transformer blocks (~ 7M) are updated with Muon’s orthogonalization-
based step (Newton-Schulz iteration), while all remaining parameters (~ 19M, including embed-
dings, layer norms, and output layer) are updated with AdamW. Muon hyperparameters are: learn-
ing rate 3 x 1072, 8 = 0.95 (with Nesterov momentum), Newton-Schulz steps 5, ¢ = 1 x 10~7
for NS iteration. Auxiliary AdamW: learning rate 6 x 1073, 8; = 0.9, B2 = 0.95, ¢ = 1078,
weight decay 0.01, gradient clipping norm 1.0.

Quantization. Following the procedure in Section [C] we apply mantissa truncation to weights,
gradients, and optimizer states. We vary the mantissa length M € {1, 2,10, 23}, keeping exponent
and sign bits in full precision.

Results. Figures[I2]and [[3]show training and validation loss dynamics for nanoGPT under differ-
ent quantization precisions. We observe that:

e Lower mantissa lengths (e.g., M = 2) induce slightly slower convergence and higher final
training loss, consistent with the observed gradient norm amplification in Theorem .5]and
Theorem .6

* Muon exhibits greater robustness to low-precision quantization compared to AdamW,
achieving lower training and validation loss at M = 2. This aligns with our theoretical
findings that Muon’s quantization error amplification is less sensitive than Adam’s.

* As the mantissa length increases, both AdamW and Muon converge to almost identical
training and validation loss, indicating that higher precision mitigates quantization-induced
degradation.

Overall, these results on nanoGPT extend the findings from synthetic (Rosenbrock) and CIFAR-

10 experiments to a real large-scale language modeling setting, highlighting the interplay between
quantization precision, optimizer dynamics, and convergence stability.
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Figure 7: Rosenbrock: Effect of quantizing second moment in Adam to different mantissa lengths

M, with all other components kept in FP32. As 85 — 1, the optimizer exhibits larger converged
gradient norms and becomes more sensitive to quantization errors induced by reduced M.
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Figure 11: CIFAR-10: Muon with auxiliary Adam relative quantization error of different mantissa
9126 bits (M). Weights error (top left), Gradient error (top middle), Momentum error (top right), Auxil-
3127 jary Adam first moment error (bottom left), Auxiliary Adam second moment error (bottom middle).
3128 These results show that the more mantissa bits, the smaller the relative quantization error. Combin-
3129 ing with Figure 0] we can see that the more mantissa bits, the smaller quantization error, the better
3130 convergence performance (Theorem@.

3131
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Figure 12: Training loss of nanoGPT on OpenWebText with varying mantissa lengths M. Lower M
slightly increases the training loss due to amplified quantization error.
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Figure 13: Validation loss of nanoGPT on OpenWebText under varying mantissa precisions M.
Higher precision reduces quantization error and improves validation performance, particularly at low
M. Notably, Muon exhibits greater robustness to low-precision quantization compared to AdamW,
suggesting its potential advantage for low-precision training of large language models.
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