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ABSTRACT

The rapid scaling of large language models (LLMs) has made low-precision train-
ing essential for reducing memory, improving efficiency, and enabling larger mod-
els and datasets. Existing convergence theories for adaptive optimizers, however,
assume all components are exact and neglect hardware-aware quantization, leav-
ing open the question of why low-precision training remains effective. We in-
troduce the first theoretical framework for analyzing the convergence of adap-
tive optimizers, including Adam and Muon, under floating-point quantization of
gradients, weights, and optimizer states (e.g., moment estimates). Within this
framework, we derive convergence rates on smooth non-convex objectives under
standard stochastic gradient assumptions, explicitly characterizing how quanti-
zation errors from different components affect convergence. We show that both
algorithms retain rates close to their full-precision counterparts provided mantissa
length scales only logarithmically with the number of iterations. Our analysis fur-
ther reveals that Adam is highly sensitive to weights and second-moment quanti-
zation due to its reliance on β2 → 1, while Muon requires weaker error control
and is thus potentially more robust. These results narrow the gap between em-
pirical success and theoretical understanding of low-precision training methods.
Numerical experiments on synthetic and real-world data corroborate our theory.

1 INTRODUCTION

The rapid scaling of large language models (LLMs) has made low-precision training indispensable
for modern deep learning. By reducing memory usage and improving computational efficiency,
low-precision formats such as bfloat16 (BF16) and FP8 enable training with larger models and
datasets on contemporary hardware accelerators (Peng et al., 2023; Fishman et al., 2025). The
introduction of FP8 in Nvidia’s Hopper GPU architecture (NVIDIA, 2022; Micikevicius et al., 2022)
further cements its role as a practical datatype for the next generation of LLM training. In practice,
numerous frameworks now leverage mixed- or low-precision formats to quantize gradients, weights,
and optimizer states (Liu et al., 2024; 2025), showing that aggressively quantized training can scale
to trillion-token workloads without loss of accuracy.

Despite its empirical success, a rigorous theoretical understanding of quantization, particularly for
adaptive optimizers like Adam (Kingma, 2014) with decoupled weight decay (Loshchilov & Hutter,
2019) and Muon (Jordan et al., 2024), which are widely used in practice, remain largely under-
developed. Existing theoretical work on the non-convex optimization analysis under quantization
has primarily focused on Stochastic Gradient Descent with quantized gradients (QSGD) (Alistarh
et al., 2017). For example, Jiang & Agrawal (2018) established O(1/T 1/4) convergence under un-
biased quantization, while error-feedback mechanisms (Karimireddy et al., 2019) were later intro-
duced to handle biased quantization with the same guarantees. Extensions to QSGD and Quantized
SGDM with error feedback have been analyzed in various settings (Tang et al., 2019; Zheng et al.,
2019; Koloskova et al., 2020), again achieving O(1/T 1/4) rates. More recent efforts target Quan-
tized Adam (Chen et al., 2021; Modoranu et al., 2024; Ozkara et al., 2025). Chen et al. (2021)
proved convergence of Adam with quantized gradients and weights under error feedback achieves
O(1/T 1/4), but the method requires storing error terms for every parameter, which is memory-
intensive and impractical for modern low-precision LLM training. Modoranu et al. (2024) reduced
this cost by compressing error feedback with unbiased compression, proving O(1/T 1/4) conver-
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gence for Adam with quantized gradients. Ozkara et al. (2025) further explored stochastic rounding
(SR) as a mechanism for mitigating numerical errors in low-precision training, providing analyses of
implicit regularization and convergence of Adam under SR; however, their analysis omits optimizer
state quantization or practical floating-point formats, which are increasingly central to low-bit LLM
optimization (Dettmers et al., 2021; Xi et al., 2025; Fishman et al., 2025). This leaves a critical gap:
practical low-bit training crucially involves the quantization of optimizer states (e.g., momentum and
second-moment estimates), a component these analyses omit. Furthermore, these studies often rely
on assumptions like unbiased quantization or error-feedback mechanisms that are not consistent with
modern large-scale LLM training. Consequently, the community lacks a theoretical framework to
explain the robust convergence observed when adaptive optimizers are quantized in all components
during LLM training.

This paper. The objective of this work is to develop the convergence analysis of adaptive opti-
mization algorithms with a more practical quantization configuration. In particular, we develop the
first analytical framework for quantized adaptive optimizers under floating-point quantization. More
importantly, following the practical configuration (Liu et al., 2024), our framework explicitly mod-
els the quantization of all key components: gradients, weights, momentum, and second moments.
We then establish convergence guarantees for both Adam and Muon optimizers, expressing the re-
sults as a function of the quantization errors in these components. This clearly reveals how each
type of error individually affects convergence. Crucially, rather than relying on unbiased quanti-
zation assumptions or storing per-parameter error feedback, we require only relative error control,
which aligns with the behavior of standard floating-point formats (FP32→ BF16 or FP8; Section 3,
Figure 5, 6, 10, 11; see also (Kuzmin et al., 2022)).

We then summarize the main contributions of this work as follows:

• We introduce a rigorous analytical framework for adaptive optimizers under hardware-aware low-
precision training, explicitly modeling the quantization of weights, gradients, and optimizer states
(Section 3). Unlike prior works that rely on unbiased quantization assumptions or error-feedback
mechanisms, which are impractical in large-scale LLM training, we adopt a relative error model
(Assumption 3.1) that faithfully captures the behavior of floating-point quantization. This facili-
tates a formal and rigorous convergence analysis for quantized adaptive optimization algorithms
that closely align with real-world implementations.

• We provide the first convergence guarantees for quantized Adam (Theorem 4.5) and Muon (The-
orem 4.6) on smooth non-convex objectives under the relative error quantization model (Assump-
tion 3.1), which closely reflects the behavior of floating-point quantization. Our analysis shows
that both methods attain the same convergence rates as their full-precision counterparts (Défossez
et al., 2022; Shen et al., 2025), provided the mantissa length increases only logarithmically with
the number of iterations, which is consistent with practical hardware precision.

• Our analysis in Theorems 4.5 and 4.6 precisely characterizes how quantization errors in different
components impact convergence. Notably, we show that Adam is particularly sensitive to quanti-
zation of weights and second moments due to their dependence on β2, which is typically set close
to 1 for convergence in practice and theory (Figure 7). This aligns with empirical observations
from Peng et al. (2023); Yu et al. (2024), where weights and second moments require slightly
higher precision than gradients or the momentum. Our experiments (Figures 3, 4, 8, 9, 12) cor-
roborate this, demonstrating graceful degradation with reduced precision and near full-precision
performance at moderate mantissa lengths. In contrast, Theorem 4.6 reveals that Muon is more
tolerant to quantization, requiring weaker relative error conditions (e.g., 1/T 1/2 versus 1/T 2 for
Adam). This robustness stems from the SVD-based sign operator in Muon, which avoids the am-
plification of quantization errors by the inverse square root of historical gradient variances. This
theoretical insight also explains empirical findings in Liu et al. (2025) that Muon exhibits superior
robustness to low-precision training compared to Adam (Figure 13).

Overall, our results narrow the gap between the empirical success of quantized adaptive training
and its theoretical understanding, providing a foundation for analyzing and designing future low-
precision optimization algorithms.

Notations. Scalars are denoted by lowercase letters (x, . . .), vectors by bold lowercase (x, . . .),
and matrices by bold uppercase (X, . . .). The i-th entry of x is xi, and the (i, j)-th entry of X is
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Xij . The ℓ2 norm of x is ∥x∥2 =
√∑

i x
2
i , the Frobenius norm of X is ∥X∥F =

√∑
i,j X

2
ij ,

and the nuclear norm of X is ∥X∥∗ =
∑

i σi(X), where σi(X) denotes the i-th singular value. For
d ∈ N+, let [d] = {1, 2, . . . , d}. For real sequences {at} and {bt}, we write at = O(bt) if there
exist constants C,N > 0 such that at ≤ Cbt for all t ≥ N ; at = Ω(bt) if bt = O(at); at = Θ(bt)

if both at = O(bt) and at = Ω(bt); and we use Õ(·) and Ω̃(·) to suppress logarithmic factors. The
quantization operator is Q(·), with xQ denoting the quantized version of x.

2 RELATED WORK

Adaptive Optimization. Adaptive optimizers are a key part of deep learning because they can
automatically respond to changes in the data. The progression of modern adaptive optimizers began
with Adagrad (Duchi et al., 2011), which scales learning rates based on the accumulated sum of past
squared gradients. Despite extensive convergence analysis (Zou et al., 2019; Chen et al., 2018; Shi
et al., 2020; Li & Orabona, 2019; Faw et al., 2022), its aggressive learning rate decay often leads to
premature stalling. RMSProp (Hinton et al., 2012) addressed this issue by using an exponentially
decaying average of squared gradients instead, a method whose convergence has also been well-
studied (Zaheer et al., 2018; De et al., 2018; Shi et al., 2020; Li et al., 2025). Adam (Kingma, 2014)
then synthesized these ideas by incorporating momentum, effectively combining the adaptive learn-
ing rates of RMSProp with first-moment estimates. Its widespread success has motivated a vast body
of theoretical work analyzing its convergence and implicit bias generalization under various settings
(Reddi et al., 2018; Défossez et al., 2022; Zou et al., 2019; Chen et al., 2018; Zhang et al., 2022;
Wang et al., 2022; Guo et al., 2021; Hong & Lin, 2023; Li et al., 2023; Wang et al., 2023; Zhang
et al., 2025; 2024; Zou et al., 2023; Cattaneo et al., 2024). More recently, the Muon optimizer (Jor-
dan et al., 2024) was proposed, which leverages a matrix-based perspective for optimization, with
its convergence guarantees established by concurrent works (Shen et al., 2025; Sato et al., 2025).
While convergence guarantees for these methods have been established in high-precision settings,
their behavior under the low-precision quantization common in modern large model training is not
well understood, a gap that this paper aims to address.

Low-bit Training. As the field of deep learning continues to advance rapidly, the scale of mod-
els, particularly Large Language Models (LLMs), has grown exponentially. Low precision train-
ing (Wang et al., 2018; Wortsman et al., 2023; Liu et al., 2023; Xi et al., 2024; Liu et al., 2024)
has become a prominent technique in modern deep learning, offering reductions in both computa-
tional costs and memory requirements. Mixed-precision training typically performs forward and
backward passes in low-precision formats like FP16 (Micikevicius et al., 2017) or the more stable,
wider-range BF16 (Kalamkar et al., 2019), while maintaining master weights and optimizer states in
FP32. The advent of hardware like NVIDIA’s Hopper GPU architecture (NVIDIA, 2022) has made
8-bit floating-point (FP8) training a practical reality for further efficiency gains (Micikevicius et al.,
2022; Peng et al., 2023; Xi et al., 2025; Fishman et al., 2025). Even more aggressive approaches
now extend to 4-bit (FP4) training (Wang et al., 2025; Zhou et al., 2025). Especially in adaptive op-
timization, the optimizer states can consume as much memory as the model parameters themselves.
This has motivated a class of methods that specifically compresses these states, decompressing them
to a higher precision just-in-time for the weight update to save memory (Dettmers et al., 2021; Peng
et al., 2023; Li et al., 2024; Fishman et al., 2025; Xi et al., 2025). Despite the empirical success
of these techniques, a comprehensive theory explaining their convergence behavior remains absent.
Our work addresses this gap by establishing an analytical framework that formally incorporates
quantization errors from all parts of a realistic low-bit training pipeline, from gradients and weights
to the crucial optimizer states themselves.

Quantization Convergence. Most convergence guarantees for optimizers assume ideal, high-
precision arithmetic, failing to account for the quantization effects inherent in modern large-scale
training. Much of the existing theoretical work in this area has therefore focused on the convergence
of Quantized Stochastic Gradient Descent (SGD). Early analyses established convergence rates for
SGD with quantized gradients, often relying on the strong assumption of an unbiased quantizer
(Alistarh et al., 2017; Jiang & Agrawal, 2018; Wen et al., 2017). To handle more practical, biased
quantization schemes, subsequent work introduced error-feedback mechanisms to compensate for
the quantization bias and still guarantee convergence (Karimireddy et al., 2019; Zheng et al., 2019;
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Tang et al., 2019; Koloskova et al., 2020). Complementing these efforts on gradient compression,
another line of research has analyzed the convergence of SGD when the model weights themselves
are also quantized (Markov et al., 2023). Beyond SGD, analyzing quantized adaptive optimizers is a
more recent challenge. Early work in this direction includes Hou et al. (2019), which studies Adam
with β1 = 0, analyzing joint quantization of both gradients and weights in convex settings. Other
studies have applied error-feedback to ensure the convergence of Adam under quantized weights
and gradients in non-convex settings (Chen et al., 2021; Modoranu et al., 2024; Robert et al., 2025).
However, these existing analyses for adaptive methods rely heavily on error-feedback mechanisms,
which are often impractical in state-of-the-art LLM training pipelines (Xi et al., 2025; Fishman et al.,
2025). Complementary work on stochastic rounding (SR) (Ozkara et al., 2025) studies a different
quantization regime: SR is approximately unbiased but introduces variance, and their Adam anal-
ysis quantizes only the final weight update while assuming full-precision gradients and optimizer
states (with β1 = 0). Such an additive-noise formulation and simplification avoid the recursive
and interaction-heavy quantization error propagation that arises in adaptive optimization under re-
alistic floating-point rounding. In contrast, our work addresses this critical gap by providing the
first convergence framework for adaptive optimizers under a realistic floating-point error model that
covers all components of the training process, without resorting to error-feedback or unbiasedness
assumptions.

3 PRELIMINARIES AND PROBLEM SETUP

3.1 PRELIMINARIES

We begin by formalizing the quantization operator and its error properties. Our focus is on floating-
point quantization, which is widely adopted in practice. Compared to integer quantization, floating-
point formats achieve strictly smaller reconstruction errors due to their exponent scaling (Kuzmin
et al., 2022). This explains why most large-scale low-precision training frameworks rely on floating-
point representations, including recent FP8 and mixed-precision systems (Peng et al., 2023; Liu
et al., 2024; Fishman et al., 2025).

Floating-point quantization. Let Q : R → R be a scalar quantization operator applied elemen-
twise to vectors and matrices. We illustrate Q through the common case of quantizing from single
precision (fp32) to brain floating-point (bf16). The fp32 format uses 1 sign bit, 8 exponent bits, and
23 mantissa bits (total 32 bits) (IEEE, 2019), while bf16 keeps the same sign and exponent layout
but truncates the mantissa to 7 bits (Wang & Kanwar, 2019). Thus, FP32 can be written as

xfp32 = (−1)S × 2E−127 × (1.M0:22),

where S is the sign bit, E the exponent, and M0:22 the mantissa bits. Quantization discards the
low-order 16 mantissa bits M7:22, possibly with rounding or truncation. The BF16 number becomes

xbf16 = (−1)S × 2E−127 ×
(
1.M0:6 + C · 2−7

)
,

where C ∈ {0, 1} is a carry bit from rounding. Dequantization pads the truncated mantissa with
zeros to recover an fp32 value. Figure 1 visualizes this process.

Relative error. The above construction implies that the quantization error satisfies

|xbf16 − xfp32| =
∣∣C · 2−7 − 0.M7:22 · 2−7

∣∣ · 2E−127 ≤ 2−7 · 2E−127 ≤ q|xfp32|,

where q = Θ(2−M ) and M is the mantissa length of the target format (here M = 7 for bf16). More
generally, we assume the absence of underflow and overflow, so that the sign and exponent remain
unchanged after quantization. This prevents large quantization errors and guarantees convergence of
the quantization process. In practice, this assumption is well justified: low-precision LLM training
commonly employs engineering techniques such as per-tensor or per-channel scaling, which ensure
that post-quantization values remain within the representable range (Peng et al., 2023; Fishman et al.,
2025). Under this condition, the relative quantization error decays exponentially with the number
of mantissa bits—a property that is intrinsic to floating-point representations. This observation
motivates the following assumption.
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S E0 E1 E2 E3 E4 E5 E6 E7 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22

S E0 E1 E2 E3 E4 E5 E6 E7 M0 M1 M2 M3 M4 M5 M6

S E0 E1 E2 E3 E4 E5 E6 E7 M0 M1 M2 M3 M4 M5 M6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FP32

S: Sign E: Exponent M: Mantissa

BF16

FP32

M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22

C C: Rounding Carry Rounding Error

+1 if C = 1

Figure 1: Floating-point quantization from fp32 to bf16. Only the mantissa is truncated, while sign
and exponent remain unchanged.

Assumption 3.1 (Quantization Error). Let Q : R → R be a scalar quantization operator applied
elementwise. Then, for any x ∈ R, the quantization error is relatively bounded:

|xQ − x| ≤ q|x|,

where q = Θ(2−M ), and M is the mantissa length of the target floating-point format.

3.2 PROBLEM SETUP

We study stochastic optimization (3.1) with low-precision training under an analytical quantization
framework shown in Figure 2. Formally, the goal is to minimize the loss:

min
W∈Rm×n

F (W) = Eξ[f(W; ξ)], (3.1)

where W denotes the model parameters, ξ is a random variable representing the data, and f(W; ξ)
is the sample loss. We denote F ∗ = infW F (W) > −∞ as the optimal objective value.

Low-precision training framework. During training, both computation and communication are
constrained by memory and bandwidth. Modern practice therefore quantizes weights, gradients, and
optimizer states into lower-precision formats (e.g., BF16, FP8) to accelerate training (Peng et al.,
2023; Liu et al., 2024; Fishman et al., 2025). We model this process with the analytical framework
shown in Figure 2. The key steps are:

1. The master maintains full-precision weights Wt but transmits their quantized version WQ
t to

workers.
2. Workers perform forward and backward passes with WQ

t , compute gradients∇f(WQ
t ; ξ), quan-

tize them, and send quantized gradients back.
3. The master dequantizes gradients, updates quantized optimizer states (e.g., momentum, second

moment), and applies the optimizer update. Updated states are re-quantized for storage.

The first two steps can be illustrated by Algorithm 1, while the third step depends on the choice
of optimizer (e.g., Adam in Algorithm 2 or Muon in Algorithm 3). The dashed arrows in Figure 2
highlight the quantization operations applied to weights, gradients, and optimizer states within the
proposed framework.

Relative errors. We denote the relative errors q of different components after applying Q as

qW (weights), qG (gradients), qM (first moment), qV (second moment).

Each error term arises from applying a floating-point quantization operatorQ that satisfies Assump-
tion 3.1. Formally, for any quantized quantity Xt (e.g., Wt, Gt, Mt, Vt) at iteration t, its relative
quantization error is defined as the smallest constant q ≥ 0 such that

|[XQ
t ]ij − [Xt]ij | ≤ qX |[Xt]ij |, ∀t ∈ 0, . . . , T − 1.

In particular, we have

qW := inf
{
q ≥ 0 : |[WQ

t ]ij − [Wt]ij | ≤ q|[Wt]ij |, ∀t
}
,

qG := inf
{
q ≥ 0 : |[GQ

t ]ij − [Gt]ij | ≤ q|[Gt]ij |, ∀t
}
,

5
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Figure 2: An analytical low-precision training framework

Algorithm 1 Analytical Adaptive Method Quantization Training Framework

1: Input 1: AlgorithmA ∈ {Adam,Muon} and its parameters set Θ ∈ {{β1, β2, ϵ}, {β}}, initial
weights W0, learning rate schedule {ηt}, batch size B, quantization operator Q

2: for t = 0, . . . , T − 1 do
3: Sample batch {ξt,i}Bi=1 uniformly ▷ B workers
4: Gt =

1
B

∑B
i=1∇Qf(WQ

t ; ξt,i) ▷ Master receives B quantized gradients
5: Wt+1 = A(Wt,Gt,Θ, t) ▷ Update by Adam or Muon
6: end for

Algorithm 2 Adam(Wt,Gt,Θ, t)

1: {β1, β2, ϵ} ← Θ

2: Mt ← β1M
Q
t−1 + Gt if t > 0 else M0 =

G0

3: Vt ← β2V
Q
t−1+G2

t if t > 0 else V0 = G2
0

4: return Wt − ηtMt/
√
Vt + ϵ1

Algorithm 3 Muon(Wt,Gt,Θ, t)

1: {β} ← Θ

2: Mt = βMQ
t−1 + (1 − β)Gt if t > 0 else

M0 = G0

3: (Ut,St,Vt) = SVD(Mt)
4: return Wt − ηtUtV

⊤
t

qM := inf
{
q ≥ 0 : |[MQ

t ]ij − [Mt]ij | ≤ q|[Mt]ij |, ∀t
}
,

qV := inf
{
q ≥ 0 : |[VQ

t ]ij − [Vt]ij | ≤ q|[Vt]]ij |, ∀t
}
.

This framework is more general than most prior theoretical analyses, which typically consider quan-
tization of only a subset of components (e.g., gradients).

Optimizers. We focus on two adaptive optimizers: Adam (Kingma, 2014) and Muon (Jordan
et al., 2024). Algorithm 1 outlines the general quantized training loop, while Algorithms 2 and 3
detail the specific update rules for Adam1 and Muon, respectively. Note that the quantization oper-
ator Q can represent any floating-point quantization (e.g., fp32→ bf16 or fp8) satisfying Assump-
tion 3.1.

In the following sections, we will analyze the convergence of quantized Adam and Muon under this
framework with relative quantization errors (qW , qG, qM , qV ).

4 MAIN RESULTS

We now present our main theoretical results on the convergence of quantized Adam and Muon under
the analytical framework in Section 3. We begin by stating the assumptions required for our analysis,
followed by the convergence theorems for each optimizer.
Assumption 4.1 (Unbiased Stochastic Gradient). The stochastic gradient∇f(W; ξ) is an unbiased
estimator of the true gradient ∇F (W), i.e., E[∇f(W; ξ)] = ∇F (W).
Assumption 4.2 (Stochastic Gradient Bounds). The stochastic gradient∇f(W; ξ) satisfies the fol-
lowing bounds depending on the algorithm:

1Our Algorithm slightly differs from the standard Adam, but will not affect the proof. We provide a detailed
discussion in Appendix A.1.
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Figure 3: Rosenbrock: Adam gradient norms under different mantissa precisions M (left: full
10,000 iterations; right: last 100 iterations). Larger mantissa bit-lengths yield smaller converged
gradient norms. Together with Figure 5, this shows that higher precision reduces quantization error
and improves convergence, consistent with Theorem 4.5.

• Adam: The stochastic gradient is ℓ∞ uniformly almost surely bounded, i.e., there exists a constant
R >

√
ϵ (where ϵ > 0 is the stability constant used to simplify the final bounds) such that

∥∇f(W; ξ)∥∞ = max
i,j
|[∇f(W; ξ)]ij | ≤ R−

√
ϵ, a.s..

• Muon: The stochastic gradient has bounded variance, i.e., there exists a constant σ > 0 such that

E[∥∇f(W; ξ)−∇F (W)∥2F ] ≤ σ2.

Assumption 4.3 (Smoothness). The objective function F : Rm×n → R is L-smooth, i.e., for any
X,Y ∈ Rm×n, we have

∥∇F (X)−∇F (Y)∥F ≤ L∥X−Y∥F .

Assumptions 4.1, 4.2 and 4.3 are standard in the analysis of smooth non-convex stochastic optimiza-
tion (Zaheer et al., 2018; Chen et al., 2019; Zou et al., 2019; Défossez et al., 2022; Chen et al., 2022;
Zhang et al., 2022; Wang et al., 2023). They are usually employed to control the stochastic gradient
noise and the local geometry of the objective function.

We remark that a more general (L0, L1)-smoothness condition (Zhang et al., 2020), which has
been adopted in recent analyses of Adam (Li et al., 2023; Wang et al., 2024; Hong & Lin,
2024), allows the smoothness constant to depend on the gradient norm: ∥∇F (X) − ∇F (Y)∥F ≤
(L0 + L1∥∇F (Y)∥F )∥X −Y∥F . While this condition can better capture practical deep learning
scenarios, since our focus is on characterizing how quantization errors influence the convergence
behavior of Adam and Muon, we adopt the standard L-smoothness assumption for simplicity. Ex-
tending our results to (L0, L1)-smoothness remains an interesting direction for future work.

Finally, we assume the optimization begins from a controlled initialization:

Assumption 4.4 (Bounded Initialization). The initial parameter matrix W0 and its gradient are
bounded in Frobenius norm, i.e., ∥W0∥F ≤ D, ∥∇F (W0)∥F ≤ G, for some constants D,G > 0.

Bounding the initialization ensures that quantization errors remain controlled and their propagation
through the optimization iterations can be rigorously analyzed, which is crucial for establishing
convergence guarantees under low-precision training.

4.1 THEORETICAL RESULTS OF ADAM

We first present the convergence result of Adam under FP quantization in the following theorem.

Theorem 4.5 (Convergence of Quantized Adam). Suppose Assumptions 3.1, 4.1–4.4 hold. Let
d = mn be the number of trainable parameters, consider the Quantized Adam algorithm defined in

1 run for T iterations with ηt = (1 − β1)Ωtη, where Ωt =
√∑t−1

j=0 β
j
2 . Suppose β2

1(1 + qM )2 <

β2(1− qV ), β1(1+ qM ) < β2(1− qV ), and 2β1/(1−β1) ≤ T , then for an iteration index τ chosen

7
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randomly from {0, . . . , T − 1} with P (τ = j) ∝ (1− βT−j
1 ), we have:

E
[
||∇F (Wτ )||2F

]
≤ 4(1 + qG)R

F0 − F∗

ηT
+

Q̃(T )

T
+

2qWTη · (1− β1)d
3
2 ηL(1 + qG)R

2

√
ϵ(1− β2)

√
1− β2

1(1+qM )2

β2(1−qV )

+
4(1 + qG)d√
ϵ(1− β2)

(
qGR

3 + LqWR2D
)
+

C

T

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)
,

where C is a constant depending on the problem hyperparameters, and Q̃(T ) is a function with
respect to T , qV , qG, and qM , which approaches zero when qV , qM → 0 (please refer to Eq A.43
for their detailed formula).

Moreover, by setting η = Θ(1/
√
T ), 1 − β2 = Θ(1/T ), qG = O(1/T ), qM = O(1/T ), qV =

O(1/T 2), qW = O(1/T 2), then Q̃(T )/T = O(T−1/2) (refer to Eq. A.44 for calculation details)
and

E[∥∇F (Wτ )∥F ] = Õ
(
T−1/4

)
.

Theorem 4.5 provides the first convergence guarantee for Adam under a practical floating-point
quantization model (Peng et al., 2023; Liu et al., 2024; Fishman et al., 2025), in contrast to prior
works that assume unbiased quantization or error-feedback mechanisms (Jiang & Agrawal, 2018;
Chen et al., 2021; Modoranu et al., 2024). The most similar prior theoretical work is Ozkara
et al. (2025), whose analysis also builds on Défossez et al. (2022); however, they consider only
quantization of the final weight update, assuming full-precision gradients and optimizer states with
β1 = 0, and thus do not capture the recursive error propagation arising from fully quantized Adam
under realistic floating-point rounding. Our analysis demonstrates that by setting the hyperparam-
eters as η = Θ(1/

√
T ) and 1 − β2 = Θ(1/T ), and ensuring the relative quantization errors sat-

isfy qG, qM = O(1/T ) and qW , qV = O(1/T 2), Quantized Adam achieves a convergence rate
of Õ(T−1/4), which successfully matches the established one for its full-precision counterpart in
smooth non-convex optimization (Guo et al., 2021; Défossez et al., 2022; Wang et al., 2023; Hong
& Lin, 2024).

Our theorem further reveals a nuanced sensitivity to different types of quantization error. The re-
quired precision for the second moment (qV ) is stricter than for the first moment (qM ). This sensitiv-
ity arises because accumulated errors in the second-moment estimate Vt are non-linearly amplified
by the update step’s inverse square root. This theoretical finding provides a rigorous explanation for
the empirical observation that the second moment often require higher precision than the first mo-
ment in low-bit training setups (Peng et al., 2023; Yu et al., 2024; Fishman et al., 2025). Similarly,
the stricter precision requirement for weights (qW = O(1/T 2)) is necessary to control error accu-
mulation over the entire training trajectory. Our analysis must account for the potential growth of
weight magnitudes throughout training, which acts as an amplification factor for the relative quanti-
zation error. To guarantee convergence under this worst-case scenario of unbounded weight growth,
the proof requires qW to decay rapidly to counteract this amplification. However, this strict condition
is a consequence of the proof’s generality. In practice, where weight norms often remain bounded,
this error amplification is less severe, and the precision requirement for qW could be relaxed to
O(1/T ).

4.2 THEORETICAL RESULTS OF MUON

Then, we present the convergence result of quantized Muon in the following theorem.
Theorem 4.6 (Convergence of Quantized Muon). Suppose Assumptions 3.1, 4.1–4.4 hold. Con-
sider the Quantized Muon algorithm in 1 and 3 run for T iterations with ηt = η, β(1 + qM ) < 1,
then

1

T

T−1∑
t=0

E[∥∇F (Wt)∥F ] ≤
E[F (W0)− F (WT )]

ηT
+

2βLηr

1− β
+

6σ
√
r

T (1− β)
√
B

+

√
1− β

1 + β

6σ
√
r√

B
+

Lηr

2
+ C2 ·

(
qG + qW + qGTη + qWTη +

qMβ

1− β(1 + qM )
(1 + Tη)

)
,
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Figure 4: Rosenbrock: Muon gradient norms under different mantissa precisions M (left: full
10,000 iterations; right: last 100 iterations). Larger mantissa bit-lengths yield smaller converged
gradient norms. Together with Figure 6, this shows that higher precision reduces quantization error
and improves convergence, consistent with Theorem 4.6.

where C2 is absolute constant, r = min{m,n}. Moreover, suppose F (W0)−F ∗ ≤ ∆ for constant
∆ > 0, set 1− β = Θ(T−1/2), η = Θ(T−3/4), and B = 1, if qG = qW = qM = O(T−1/2), then

1

T

T−1∑
t=0

E[∥∇F (Wt)∥F ] = O(T−1/4).

Theorem 4.6 establishes the convergence of Quantized Muon under relative quantization errors
(qW , qG, qM ) for weights, gradients, and momentum, respectively—a practical setting for low-
precision training (Peng et al., 2023; Liu et al., 2024; Fishman et al., 2025), in contrast to prior
works that assume unbiased quantization or error-feedback mechanisms (Jiang & Agrawal, 2018;
Chen et al., 2021; Modoranu et al., 2024). As a sanity check, when qW = qG = qM = 0, our
result recovers the exact convergence rate O(1/T 1/4) of Shen et al. (2025) up to constant factors.
More importantly, as long as the mantissa length of the floating-point format scales logarithmically
with T , i.e., M = Ω(log T ), the quantization errors decay as qW = qG = qM = O(T−1/2). With
appropriate choices of η and β (as in Theorem 4.6), the full-precision convergence rate O(T−1/4)
is preserved.

Finally, we highlight a sharp contrast with quantized Adam. Theorem 4.6 requires only relative
errors on the order of q = O(T−1/2), whereas Theorem 4.5 demands stricter conditions, at least
q = O(T−1) and in some cases q = O(T−2). This theoretical distinction explains why Muon adapts
more efficiently to low-precision settings than Adam, corroborating the empirical observations of
Liu et al. (2025).

Experiments. We evaluate our theory on synthetic, image, and LLM benchmarks.

Synthetic setup. For the synthetic benchmark, we adopt the classical Rosenbrock function (Rosen-
brock, 1960). Let W ∈ Rm×n, and define F (W) =

∑n−1
j=1

(
100∥Wj+1−W2

j∥2F+∥1m−Wj∥2F
)

,
where Wj denotes the j-th column of W and 1m is the m-dimensional all-ones vector. We set
m = 50, n = 100, and run T = 10,000 iterations with learning rate η = 5 × 10−4. Mantissa
bit-lengths are selected from M = 4, 8, 16, 24, 32, 52 to quantize gradients, weights, and optimizer
states. For Adam, we use β1 = 0.9, β2 = 0.999, and ϵ = 10−8; for Muon, we set β = 0.9 and
employ ns = 10 power iterations, following Jordan et al. (2024).

CIFAR-10 setup. We train a 4-layer fully connected network [FC(512) − ReLU − FC(256) −
ReLU− FC(64)−ReLU− FC(10)] on CIFAR-10 using Adam and Muon. Additional implemen-
tation details are provided in Appendix C.

nanoGPT setup. We train nanoGPT on OpenWebText (∼ 26M parameters, 4 layers, 4 heads,
embedding 384, batch size 128, block size 512). Both AdamW and Muon are tested under varying
mantissa lengths M , with Muon applied to 2D parameters in transformer blocks and AdamW applied
to all 1D parameters (embedding, lm head, layernorm).

9
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Empirical Validation of Theory. Across all benchmarks, our results empirically validate Theo-
rems 4.5 and 4.6. We observe a direct link between quantization error and convergence. As shown
across the Rosenbrock, CIFAR-10, and nanoGPT experiments (Figures 3, 4, 8, 9, 12, 13), very
low mantissa lengths (M ) lead to significant convergence degradation. This degradation correlates
directly with high relative quantization errors (detailed in Appendix Figures 5, 6, 10, 11), which
stall the optimization. Conversely, moderate M values yield sufficiently small errors, enabling con-
vergence nearly identical to the full-precision baseline. Furthermore, our experiment in Figure 7
explicitly confirms our analysis of Adam, showing that optimizer sensitivity to quantization error
increases significantly as β2 → 1. The language modeling results in Figure 13 suggest that Muon is
more robust than AdamW under low-precision training, consistent with Theorems 4.5 and 4.6. We
provide full experimental details and results in Appendix C.

5 CONCLUSION AND LIMITATIONS

We introduced the first theoretical framework for analyzing adaptive optimizers under realistic
floating-point quantization, jointly modeling the quantization of gradients, parameters, and opti-
mizer states. Unlike prior work, our analysis does not rely on unbiased quantization or error feed-
back—assumptions that are impractical in modern large-scale low-precision training. Within this
framework, we derived the first convergence guarantees for Adam and Muon, with rates expressed
explicitly in terms of component-wise quantization errors. Our results highlight that Adam is highly
sensitive to parameter and second-moment quantization due to its reliance on β2 → 1, whereas
Muon requires weaker error control and is therefore more robust. These findings explain empirical
observations in large-scale LLM training and narrow the gap between practice and theory.

Limitations and Future Directions. Several challenges remain. First, our analysis focuses on
smooth unconstrained non-convex objectives, leaving open extensions to broader settings, including
(L0, L1)-smooth functions (Zhang et al., 2020), non-smooth convex objectives (Mishchenko & De-
fazio, 2023; Defazio et al., 2024), constrained or composite problems (Kovalev, 2025; Pethick et al.,
2025), and structured scenarios studied in recent works (Shen et al., 2025). Second, our theoreti-
cal guarantees assume an increasing-bit regime, M = Ω(log T ), to control cumulative quantization
error. In practice, bit-width is typically fixed (e.g., FP8 or BF16), which means convergence is
guaranteed only to a neighborhood of a stationary point; understanding why moderate fixed preci-
sion suffices empirically remains an open question. Third, we focus primarily on fully quantized
Adam/Muon and have not yet extended the framework to other popular optimizers benchmarked
in LLM training (Vlassis et al., 2025; Semenov et al., 2025; Wen et al., 2025). Finally, our anal-
ysis models quantized states under exact arithmetic and does not account for practical considera-
tions such as low-precision operations (e.g., FP8 matrix multiplications) or communication-efficient
distributed training, which are critical for large-scale training. Incorporating these aspects would
provide a more complete theoretical account of large-scale low-precision optimization.

ETHICS STATEMENT

We have carefully reviewed the ICLR Code of Ethics and affirm that our work does not raise any
significant ethical concerns. Our research is purely theoretical and experimental within the scope
of optimization and quantization. It does not involve human subjects, personally identifiable or
sensitive data, or applications that may pose harm. All experiments are conducted on synthetically
generated datasets and standard benchmark datasets (e.g., CIFAR-10) and are intended solely to
validate the theoretical analysis. We believe our methodology and contributions adhere to principles
of fairness, transparency, and research integrity.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. All theoretical results
are fully detailed, with complete proofs provided in Appendix A and Appendix B. The experimental
setup, including training protocols, hyperparameters, and evaluation details, is comprehensively
documented in Appendix C. Experiments are conducted on both synthetically generated datasets and
the CIFAR-10 benchmark dataset; for synthetic datasets, precise generation procedures are included
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to eliminate ambiguity. Together, these details allow independent researchers to reproduce both the
theoretical and experimental results that support the main conclusions of the paper.
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USE OF LARGE LANGUAGE MODELS

Polishing writing. We used multiple large language models (LLMs) to polish the presentation of
the paper, focusing on grammar, fluency, and readability while preserving the technical meaning of
the content. For each passage, we generated outputs from several LLMs and selected the best version
based on clarity and accuracy. The LLMs served only as editorial assistants, and all suggested
outputs were carefully checked and revised by the authors. The prompt used for polishing is as
follows:

I am preparing a paper for ICLR in Optimization.
Please help me polish the following
[sentence/paragraph/section] to make it more logical,
precise, clear, and accurate, while preserving the
technical meaning and mathematical correctness. Focus
on improving sentence structure, clarity, flow, and
readability, and enhance logical coherence between
statements. Highlight any ambiguities or imprecise
statements and suggest more rigorous alternatives.
[sentence/paragraph/section]

Assisting LATEX code. We also used github copilot/cursor as a typing assistant to conveniently type
LATEX code for mathematical formulas and derivations. All generated code was manually checked,
corrected, and integrated by the authors.

A PROOF OF THEOREM 4.5

A.1 PRELIMINARIES

We consider an optimization problem in a d-dimensional space (let d = mn be the number of train-
able parameters), where coordinates are indexed by i ∈ [d] = {1, 2, . . . , d}. Our algorithm generates
a sequence of vectors (ut)t∈N, with the i-th component of ut denoted by ut,i. The objective is to
find a critical point of a global function F : Rd → R within a stochastic framework, where we have
access to a sequence of i.i.d. sample functions (ft)t∈N∗ (e.g., the loss on a data minibatch). For any
differentiable function h : Rd → R, we denote its gradient by ∇h and its i-th component by ∇ih.
Finally, we use a small constant ϵ > 0 for numerical stability and let Et[·] denote the conditional ex-
pectation given the history of samples f1, . . . , ft−1. We use vec(·) to vectorize a matrix and mat(·)
for the inverse operation.

Recall the dynamic system of our theoretical Quantized Adam. In the proof, we denote wt =
vec(Wt), ĝt = vec(Gt) and the dimension d = m · n. For an iteration t ∈ N∗, we define:

mt,i = β1m
Q
t−1,i + ĝt,i = β1(mt−1,i + ξt−1,i) + (∇ift(wt−1) + δt,i),

vt,i = β2v
Q
t−1,i + ĝ2t,i = β2(vt−1,i + θt−1,i) + (∇ift(wt−1) + δt,i)

2
,

wt,i = wt−1,i − ηt
mt,i√
ϵ+vt,i

.
(A.1)

with the step size given by

ηt = η(1− β1)

√
1− βt

2

1− β2
. (A.2)

Here, δt,i, ξt−1,i, and θt−1,i represent the quantization errors for the gradient, first mo-
ment, and second moment, respectively. Especially, ∇ift(wt−1) = 1

B

∑B
j=1∇if(wt−1; γt,j),

δt,i = 1
B

∑B
j=1∇

Q
i f(w

Q
t−1; γt,j) − 1

B

∑B
j=1∇ift(wt−1; γt,j). And we have E [∇ift(wt−1)] =

∇iF (wt−1)

Our convergence analysis for Quantized Adam is predicated on a specific, analytically convenient
formulation of the algorithm. This section serves to rigorously justify our theoretical framework
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by establishing two foundational equivalences. First, we demonstrate that our representation of the
Adam update is equivalent to the standard formulation. Following the methodology of Défossez
et al. (2022), we absorb the scaling factor into the learning rate, which simplifies the recursive
structure of the momentum term. Second, and more critically for our work, we prove that the
theoretical analysis of quantizing these weighted-sum states is directly applicable to the practical
scenario of quantizing the standard weighted-average states.

Equivalence with Standard Adam Our formulation in (A.1) utilizes a weighted sum for the
moments, which differs slightly from the standard weighted-average approach in the original
Adam algorithm (Kingma, 2014). The standard first moment, often expressed as m̃t,i = (1 −
β1)
∑t

k=1 β
t−k
1 ĝk,i, is simply a scaled version of our definition, i.e., m̃t,i = (1 − β1)mt,i. This

constant scaling factor can be directly absorbed into the learning rate.

Furthermore, the standard Adam algorithm includes bias correction terms to counteract the zero-
initialization of moments. These corrections are equivalent to using a time-dependent step size of
the form:

ηt,Adam = η · 1− β1√
1− β2

·
√
1− βt

2

1− βt
1

. (A.3)

For analytical tractability, our analysis adopts the simplified step size ηt from (A.2), which omits
the bias correction for the first moment (mt,i). This simplification is motivated by several practical
and theoretical considerations. First, it ensures that our step size ηt is monotonic with respect to t,
which is advantageous for the convergence proof. Second, for typical hyperparameter values (e.g.,
β1 = 0.9, β2 = 0.999), the omitted term 1/(1 − βt

1) converges to its limit of 1 much more rapidly
than the retained term

√
1− βt

2. Finally, removing this term effectively implements a learning
rate warm-up, a common and beneficial practice, while retaining the correction for vt,i prevents an
undesirably large initial step size that could lead to training instability.

Equivalence of Quantization Schemes. A subtle but crucial aspect of our setup is the object
of quantization. Our theoretical framework analyzes the quantization of weighted-sum moments
(mt,vt), while a practical implementation would quantize the standard weighted-average moments
(m̃t, ṽt). We now prove that these two approaches are, in fact, analytically equivalent.

To establish this rigorously, we first abstract the core dynamic behavior into a general mathematical
lemma. We will show that two discrete-time systems, representing the weighted-sum and weighted-
average accumulation methods under relative error perturbations, are analytically indistinguishable.
We will then apply this result to the specific case of Quantized Adam.
Lemma A.1 (Equivalence of Perturbed Dynamical Systems). Consider two scalar sequences
{ak}k≥0 and {ck}k≥0 evolving according to the following dynamics for k ≥ 1, with initial con-
ditions a0 = c0 = 0:

ak = β(ak−1 + dk−1) + bk (A.4)
ck = β(ck−1 + ek−1) + (1− β)bk (A.5)

where β ∈ (0, 1) is a decay factor, {bk} is an external input sequence, and {dk}, {ek} are perturba-
tion sequences. These perturbations are bounded by a relative error model with factor q ∈ [0, 1):

|dk−1| ≤ q|ak−1| and |ek−1| ≤ q|ck−1|. (A.6)

Then, the sequence {ck} and the scaled sequence {a′k} ≜ (1 − β)ak are analytically equivalent.
Specifically, they follow identical recurrence relations where their respective perturbation terms
satisfy identical relative error bounds with respect to their own states.

Proof. To prove the equivalence, we derive the recurrence relation for the scaled sequence {a′k} and
compare its structure and error properties to that of {ck}.
Step 1: Derive the recurrence for {a′k}. Starting from the definition a′k = (1 − β)ak and substi-
tuting the dynamics from (A.4):

a′k = (1− β) [β(ak−1 + dk−1) + bk]

= β(1− β)ak−1 + β(1− β)dk−1 + (1− β)bk.
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Now, we replace ak−1 with a′k−1/(1− β):

a′k = β(1− β)

(
a′k−1

1− β

)
+ β(1− β)dk−1 + (1− β)bk

= βa′k−1 + β(1− β)dk−1 + (1− β)bk.

Step 2: Compare recurrence structures. Let us place the recurrence relations for {ck} and {a′k}
side-by-side:

ck = βck−1 + βek−1 + (1− β)bk

a′k = βa′k−1 + β(1− β)dk−1 + (1− β)bk.

Both sequences share the identical structure: Xk = βXk−1 + Perturbationk + (1− β)bk. The only
difference lies in the form of their respective perturbation terms.

Step 3: Compare relative bounds of the perturbation terms. The equivalence hinges on whether
these different perturbation terms satisfy the same relative error property with respect to their own
system’s state.

For system {ck}, the perturbation term is βek−1. Using the bound from (A.6):
|Perturbationc| = |βek−1| = β|ek−1| ≤ βq|ck−1|.

For system {a′k}, the effective perturbation term is β(1− β)dk−1. Using the bound from (A.6) and
the scaling relationship ak−1 = a′k−1/(1− β):

|Perturbationa| = |β(1−β)dk−1| = β(1−β)|dk−1| ≤ β(1−β)q|ak−1| = β(1−β)q
|a′k−1|
1− β

= βq|a′k−1|.

Conclusion of Proof. Both systems, {ck} and the scaled {a′k}, adhere to the same mathematical
dynamics. Their evolution is governed by an identical recurrence structure, and their respective
perturbation terms are bounded by the exact same relative factor βq with respect to their own pre-
vious state. Therefore, from an analytical standpoint, the two systems are indistinguishable. Any
conclusion regarding the long-term behavior (e.g., convergence, stability) of {ck} under its perturba-
tion model will apply directly to {a′k} (and thus proportionally to {ak}) under its own perturbation
model.

With Lemma A.1 established, we can now apply this general result to our specific case of Quantized
Adam. The weighted-sum moment mt from our analysis corresponds to the abstract sequence
{ak}, while the standard weighted-average moment m̃t corresponds to {ck}. The gradient term
gt corresponds to {bk}, and the relative quantization errors in both schemes are modeled by the
perturbations {dk} and {ek} with the bound factor q.

Lemma A.1 thus formally proves that analyzing the quantization of our weighted-sum moment mt

is analytically equivalent to analyzing the quantization of the standard weighted-average moment
m̃t. This rigorously justifies our proof strategy and ensures that our theoretical findings are directly
relevant to practical implementations of Quantized Adam. A parallel argument holds for the second
moments vt and ṽt with decay factor β2.

A.2 DETAILED PROOF

To systematically analyze the effects of quantization, we begin by isolating the different sources of
error. We introduce auxiliary moment estimates, m′

t,i and v′t,i, which are defined to incorporate the
quantization error from the stochastic gradient, δt,i, but are themselves assumed to be stored with
perfect precision. Their dynamics are given by:

m′
t,i = β1m

′
t−1,i + (∇ift(wt−1) + δt,i)

v′t,i = β2v
′
t−1,i + (∇ift(wt−1) + δt,i)

2
(A.7)

Throughout the following proof we note Et−1 [·] the conditional expectation with respect to
f1, . . . , ft−1. In particular, wt−1, vt−1 is deterministic knowing f1, . . . , ft−1. With slightly abuse
of notation in the detailed proof, We introduce

Gt = ∇F (wt−1) and gt = ∇ft(wt−1). (A.8)
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We introduce the update ut ∈ Rd, as well as the update without momentum Ut ∈ Rd:

ut,i =
mt,i√
ϵ+ vt,i

and Ut,i =
gt,i + δt,i√
ϵ+ v′t,i

. (A.9)

For any k ∈ N with k < t, we define ṽt,k ∈ Rd by

ṽt,k,i = βk
2 v

′
t−k,i + Et−k

 t∑
j=t−k+1

βt−j
2 (gj,i + δj,i)

2

 , (A.10)

i.e. the contribution from the k last gradients are replaced by their expected value for know values
of f1, . . . , ft−k−1.

Using the smoothness of F , we have

F (wt) ≤ F (wt−1)− ηtGTt ut +
η2tL

2
||ut||22.

The overall motivation of our proof is to find a lower bound for ηtGTt ut.

GTt ut =
∑
i∈[d]

Gt,i
mt,i√
ϵ+ vt,i

(A.11)

We can rewrite GTt ut as:∑
i∈[d]

Gt,i
mt,i√
ϵ+ vt,i

= (
∑
i∈[d]

Gt,i
mt,i√
ϵ+ vt,i

−
∑
i∈[d]

Gt,i
m′

t,i√
ϵ+ v′t,i

)

︸ ︷︷ ︸
A

+
∑
i∈[d]

Gt,i
m′

t,i√
ϵ+ v′t,i︸ ︷︷ ︸

B

(A.12)

Here, Term A represents the error component arising from the quantization of the momentum accu-
mulators (mt,vt), while Term B represents the behavior of the update driven by an ideal accumula-
tor.

Now we can bound term A. We split A into two parts as before:

|A| ≤

∣∣∣∣∣∣
∑
i∈[d]

Gt,i
mt,i −m′

t,i√
ϵ+ vt,i

∣∣∣∣∣∣︸ ︷︷ ︸
A1

+

∣∣∣∣∣∣
∑
i∈[d]

Gt,i

 m′
t,i√

ϵ+ vt,i
−

m′
t,i√

ϵ+ v′t,i

∣∣∣∣∣∣︸ ︷︷ ︸
A2

(A.13)

The first term, A1, which arises from the quantization noise on the first moment m, is bounded using
Lemma A.3 (with q = qM ) and Lemma A.5:

|A1| ≤
∑
i∈[d]

R
|mt,i −m′

t,i|√
vt,i

≤ R
∑
i∈[d]

∑t
k=0(β

t−k
1 ((1 + qM )t−k − 1))|∇ifk(wk−1) + δk,i|√∑t

k=0 β
t−k
2 (1− qV )t−k(∇ifk(wk−1) + δk,i)2

≤ qM · dR · Cq (A.14)

where Cq =

√
r′(1+r′)

(1+qM )(1−r′)3/2
and r′ =

β2
1(1+qM )2

β2(1−qV ) .

For the second term, A2, we use the bound on the gradient ||Gt||∞ ≤ R and apply Lemma A.2,
which requires a case analysis.

|A2| ≤
∑
i∈[d]

R|m′
t,i|

∣∣∣∣∣∣ 1
√
ϵ+ vt,i

− 1√
ϵ+ v′t,i

∣∣∣∣∣∣
19
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≤
∑
i∈[d]

R|m′
t,i|max

 1√
ϵ+ LBt,i

− 1√
ϵ+ v′t,i

,
1√

ϵ+ v′t,i

− 1√
ϵ+ UBt,i

 (A.15)

Let gk,i = ∇ifk(wk−1) + δk,i. We analyze the two terms inside the max for a single coordinate i.

Case I (Deviation from Lower Bound): Following the approximation in the provided sketch, we
have

|m′
t,i|

 1√
ϵ+ LBt,i

− 1√
ϵ+ v′t,i

 = |m′
t,i|

 v′t,i − LBt,i√
ϵ+ LBt,i

√
ϵ+ v′t,i(

√
ϵ+ LBt,i +

√
ϵ+ v′t,i)


=

|m′
t,i|√

ϵ+ LBt,i

v′t,i − LBt,i√
ϵ+ v′t,i(

√
ϵ+ LBt,i +

√
ϵ+ v′t,i)

≤
|m′

t,i|√
ϵ+ LBt,i

v′t,i − LBt,i

ϵ+ v′t,i

=

∑t
k=0 β

t−k
1 |gk,i + δk,i|√

ϵ+
∑t

k=0(β2(1− qV ))t−k(gk,i + δk,i)2
·
∑t

k=0(β
t−k
2 − (β2(1− qV ))

t−k)(gk,i + δk,i)
2

ϵ+
∑t

k=0 β
t−k
2 (gk,i + δk,i)2

(A.16)

The first fraction is bounded by Lemma A.4:
∑t

k=0 βk
1 |at−k,i|√

ϵ+
∑t

k=0(β2(1−qV ))kat−k,i

≤ 1√
1−β2

1/(β2(1−qV ))
. The

second fraction is a ratio of weighted sums
∑t

k=0(β
k
2−(β2(1−qV ))k)at−k,i

ϵ+
∑t

k=0 βk
2 at−k,i

. This ratio is bounded by
the maximum ratio of its coefficients:

max
k∈{0,...,t}

βk
2 − (β2(1− qV ))

k

βk
2

= max
k∈{0,...,t}

(1− (1− qV )
k) = 1− (1− qV )

t.

Combining these bounds, the term for Case I is bounded by 1√
1−β2

1/(β2(1−qV ))
(1− (1− qV )

t).

Case II (Deviation from Upper Bound): Similarly, we bound the second term:

|m′
t,i|

 1√
ϵ+ v′t,i

− 1√
ϵ+ UBt,i

 ≤ |m′
t,i|√

ϵ+ v′t,i

UBt,i − v′t,i
ϵ+ UBt,i

Applying Lemma A.4 and the maximum ratio:

≤ 1√
1− β2

1/β2

·
(
1− (1 + qV )

−t
)

Comparing the bounds from the two cases, the bound from Case I is larger since 1 − (1 − qV )
t >

1 − (1 + qV )
−t and the denominator term

√
1− β2

1/(β2(1− qV )) is smaller than
√
1− β2

1/β2.
Therefore, taking the maximum and summing over d dimensions:

|A2| ≤
∑
i∈[d]

R
1− (1− qV )

t√
1− β2

1

β2(1−qV )

=
dR(1− (1− qV )

t)√
1− β2

1

β2(1−qV )

(A.17)

Combining the bounds for |A1| and |A2|, we can get the bound for term A:

|A| ≤ |A1|+ |A2| ≤ qM · dR · Cq +
dR(1− (1− qV )

t)√
1− β2

1

β2(1−qV )

≜ Q(t) (A.18)

Now we move on to bound Term B. Let us now focus on bounding Term B from (A.12). By
expanding the definition of the first moment estimate m′

t,i, we can decompose Term B into two
parts, which we will call Term C and Term D:∑
i∈[d]

Gt,i
m′

t,i√
ϵ+ v′t,i

=
∑
i∈[d]

Gt,i
t−1∑
k=0

βk
1

gt−k,i + δt−k,i√
ϵ+ v′t,i

(A.19)
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=
∑
i∈[d]

t−1∑
k=0

βk
1Gt−k,i

gt−k,i + δt−k,i√
ϵ+ v′t,i︸ ︷︷ ︸

C

+
∑
i∈[d]

t−1∑
k=0

βk
1 (Gt,i − Gt−k,i)

gt−k,i + δt−k,i√
ϵ+ v′t,i︸ ︷︷ ︸

D

.

(A.20)

The magnitude of Term D, which captures the error from gradient drift, is bounded by Lemma A.8:

|D| ≤ η2tL
2
√
1− β1

4(1 + qG)R

(
t−1∑
l=1

||ut−l||22
t−1∑
k=l

βk
1

√
k

)
+

(1 + qG)R√
1− β1

t−1∑
k=0

(
β1

β2

)k√
k + 1||Ut−k||22.

(A.21)

For Term C, we establish a lower bound on its expectation in Lemma A.9:

E [C] ≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk
1E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]− 2(1 + qG)R√
1− β1

∑
i∈[d]

t−1∑
k=0

(
β1

β2

)k√
k + 1E

[
||Ut−k||22

]
− d

t−1∑
k=0

βk
1Mt−k. (A.22)

where Mt−k = qGR2+LqWR||wt−k−1||2√
ϵ

. Injecting (A.22) ,(A.21)and (A.20) into (A.12) . We get the
final lower bound for GTt ut:

E

∑
i∈[d]

Gt,i
mt,i√
ϵ+ vt,i

 ≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk
1E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]−Q(t)− d

t−1∑
k=0

βk
1Mt−k

− η2tL
2

4(1 + qG)R

√
1− β1

(
t−1∑
l=1

||ut−l||22
t−1∑
k=l

βk
1

√
k

)
− 3(1 + qG)R√

1− β1

(
t−1∑
k=0

(
β1

β2

)k√
k + 1||Ut−k||22

)
.

(A.23)

Now lets look back at:

F (wt) ≤ F (wt−1)− ηtGTt ut +
η2tL

2
||ut||22.

inject (A.23) into it:

E [F (wt)] ≤ E [F (wt−1)]−
ηt
2

∑
i∈[d]

t−1∑
k=0

βk
1E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]+
η2tL

2
E
[
||ut||22

]
+ ηtQ(t) + ηtd

t−1∑
k=0

βk
1Mt−k

+
η3tL

2

4(1 + qG)R

√
1− β1

(
t−1∑
l=1

||ut−l||22
t−1∑
k=l

βk
1

√
k

)
+

3ηt(1 + qG)R√
1− β1

(
t−1∑
k=0

(
β1

β2

)k√
k + 1||Ut−k||22

)
.

(A.24)

We have for any k ∈ N, k < t, and any coordinate i ∈ [d],
√

ϵ+ ṽt,k+1,i ≤ (1 + qG)R
√∑t−1

j=0 β
j
2 .

Introducing Ωt =
√∑t−1

j=0 β
j
2 , we have

E [F (wt)] ≤ E [F (wt−1)]−
ηt

2(1 + qG)RΩt

t−1∑
k=0

βk
1E
[
||Gt−k||22

]
+

η2tL

2
E
[
||ut||22

]
+ ηtQ(t) + ηtdE

[
t−1∑
k=0

βk
1Mt−k

]

+
η3tL

2

4(1 + qG)R

√
1− β1

(
t−1∑
l=1

||ut−l||22
t−1∑
k=l

βk
1

√
k

)
+

3ηt(1 + qG)R√
1− β1

(
t−1∑
k=0

(
β1

β2

)k√
k + 1||Ut−k||22

)
.

(A.25)
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Now summing over all iterations t ∈ [T ] for T ∈ N∗, and ηt is non-decreasing, as well the fact that
F is bounded below by F∗, we get

1

2(1 + qG)R

T∑
t=1

ηt
Ωt

t−1∑
k=0

βk
1E
[
||Gt−k||22

]
︸ ︷︷ ︸

Ã

≤ F (w0)− F∗ +
η2TL

2

T∑
t=1

E
[
||ut||22

]
︸ ︷︷ ︸

B̃

+ ηT

T∑
t=1

Q(t)︸ ︷︷ ︸
EQ

+ ηT d

T∑
t=1

E

[
t−1∑
k=0

βk
1Mt−k

]
︸ ︷︷ ︸

M

+
η3TL

2

4(1 + qG)R

√
1− β1

T∑
t=1

t−1∑
l=1

E
[
||ut−l||22

] t−1∑
k=l

βk
1

√
k︸ ︷︷ ︸

C̃

+
3ηT (1 + qG)R√

1− β1

T∑
t=1

t−1∑
k=0

(
β1

β2

)k√
k + 1E

[
||Ut−k||22

]
︸ ︷︷ ︸

D̃

.

(A.26)

First lets bound Term Ã. We have ηt = (1−β1)Ωtη. Thus, we can simplify the Ã term from (A.26),
also using the usual change of index j = t− k, to get

Ã =
1

2(1 + qG)R

T∑
t=1

ηt
Ωt

t∑
j=1

βt−j
1 E

[
||Gj ||22

]
=

η(1− β1)

2(1 + qG)R

T∑
j=1

E
[
||Gj ||22

] T∑
t=j

βt−j
1

=
η

2(1 + qG)R

T∑
j=1

(1− βT−j+1
1 )E

[
||Gj ||22

]
=

η

2(1 + qG)R

T∑
j=1

(1− βT−j+1
1 )E

[
||∇F (wj−1)||22

]
=

η

2(1 + qG)R

T−1∑
j=0

(1− βT−j
1 )E

[
||∇F (wj)||22

]
. (A.27)

To establish our convergence guarantee, we analyze the expected gradient norm at a randomly se-
lected iteration τ , drawn from the set {0, . . . , T − 1}. The selection is not uniform but is instead
weighted to properly account for the influence of the momentum term over the iterations. The prob-
ability of selecting a specific iteration t is defined as:

∀t ∈ {0, . . . , T − 1}, P(τ = t) ∝ 1− βT−t
1 . (A.28)

We can notice that
T−1∑
j=0

(1− βT−j
1 ) = T − β1

1− βT
1

1− β1
≥ T − β1

1− β1
. (A.29)

Introducing

T̃ = T − β1

1− β1
, (A.30)

we then have

Ã ≥ ηT̃

2(1 + qG)R
E
[
||∇F (wτ )||22

]
. (A.31)

Next looking at B̃, we apply Lemma A.13,

B̃ ≤ B′
(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)
(A.32)
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with

B′ =
dη2TL

2(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )

. (A.33)

Then looking at C̃ and introducing the change of index j = t− l,

C̃ =
η3TL

2

4(1 + qG)R

√
1− β1

T∑
t=1

t∑
j=1

E
[
||uj ||22

] t−1∑
k=t−j

βk
1

√
k

=
η3TL

2

4(1 + qG)R

√
1− β1

T∑
j=1

E
[
||uj ||22

] T∑
t=j

t−1∑
k=t−j

βk
1

√
k

=
η3TL

2

4(1 + qG)R

√
1− β1

T∑
j=1

E
[
||uj ||22

] T−1∑
k=0

βk
1

√
k

j+k∑
t=j

1

=
η3TL

2

4(1 + qG)R

√
1− β1

T∑
j=1

E
[
||uj ||22

] T−1∑
k=0

βk
1

√
k(k + 1)

≤ η3TL
2

(1 + qG)R

T∑
j=1

E
[
||uj ||22

] β1

(1− β1)2
. (A.34)

using Lemma A.12. Finally, using Lemma A.13, we get

C̃ ≤ C ′
(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)
. (A.35)

with

C ′ =
dη3TL

2β1

(1 + qG)R(1− β1)2(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )

. (A.36)

introducing the same change of index j = t− k for D̃, we get

D̃ =
3ηT (1 + qG)R√

1− β1

T∑
t=1

t∑
j=1

(
β1

β2

)t−j√
1 + t− jE

[
||Uj ||22

]
=

3ηT (1 + qG)R√
1− β1

T∑
j=1

E
[
||Uj ||22

] T∑
t=j

(
β1

β2

)t−j√
1 + t− j

≤ 6ηT (1 + qG)R√
1− β1

T∑
j=1

E
[
||Uj ||22

] 1

(1− β1/β2)3/2
, (A.37)

using Lemma A.11. Finally, using Lemma A.10, we get

D̃ ≤ 6ηT (1 + qG)R√
1− β1(1− β1/β2)3/2

∑
i∈[d]

(
ln

(
1 +

v′T,i

ϵ

)
− T ln(β2)

)

≤ 6dηT (1 + qG)R√
1− β1(1− β1/β2)3/2

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2)

)
− T ln(β2)

)
(A.38)

Then we rewrite the quantization error term EQ:

EQ = ηT

T∑
t=1

qM · dR · Cq +
dR(1− (1− qV )

t)√
1− β2

1

β2(1−qV )


23
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= ηT

 T∑
t=1

qM · dR · Cq +
dR√

1− β2
1

β2(1−qV )

− T∑
t=1

dR(1− qV )
t√

1− β2
1

β2(1−qV )


= ηT

T

qM · dR · Cq +
dR√

1− β2
1

β2(1−qV )

− dR√
1− β2

1

β2(1−qV )

T∑
t=1

(1− qV )
t


= ηT

T · qM · dR · Cq +
TdR√

1− β2
1

β2(1−qV )

− dR√
1− β2

1

β2(1−qV )

(
1− qV
qV

(1− (1− qV )
T )

)
(A.39)

Finally, we bound Term M using Lemma A.14:

M ≤ ηT dT√
ϵ(1− β1)

(
qGR

2 + LqWR||w0||2
)
+

η2T d
3
2LqWRT 2

2
√
ϵ(1− β1)

√
1− β2

1(1+qM )2

β2(1−qV )

, (A.40)

Now putting (A.31), (A.32), (A.35), (A.38), (A.39) and (A.40) together into (A.26) and noting that
ηT ≤ η 1−β1√

1−β2
, we get:

E
[
||∇F (wτ )||22

]
≤ 2(1 + qG)R

F0 − F∗

ηT̃
+

E

T̃

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2)

)
− T ln(β2)

)
+

H

T̃

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)
+

Q(T )

T̃

+
2(1 + qG)dT

T̃
√

ϵ(1− β2)

(
qGR

3 + LqWR2||w0||2
)
+

(1− β1)d
3
2 ηLqW (1 + qG)R

2T 2

T̃
√
ϵ(1− β2)

√
1− β2

1(1+qM )2

β2(1−qV )

.

(A.41)

with

E =
12d((1 + qG)R)2

√
1− β1

(1− β1/β2)3/2
√
1− β2

H =
dηL(1 + qG)R(1− β1)

2

(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )(1− β2)

+
2dη2L2β1(1− β1)

(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )(1− β2)

3
2

Q(T ) =
2(1 + qG)qMdR2(1− β1)T√

1− β2

·
√
r′(1 + r′)

(1 + qM )(1− r′)3/2
+

2(1 + qG)dR
2(1− β1)T√

(1− β2
1

β2(1−qV ) )(1− β2)

− 2(1 + qG)dR
2(1− β1)√

(1− β2
1

β2(1−qV ) )(1− β2)

(
1− qV
qV

(1− (1− qV )
T )

)

where r′ =
β2
1(1 + qM )2

β2(1− qV )
(A.42)

For clarity in the main theorem statement, we can present a slightly looser but more accessible
version of this bound. By noting that for a sufficiently large T , we have T̃ ≥ T/2, and(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2)

)
− T ln(β2)

)
<

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)
,

we can state the simplified bound presented in Theorem 4.5:

E
[
||∇F (wτ )||22

]
≤ 4(1 + qG)R

F0 − F∗

ηT
+

C

T

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

+
Q̃(T )

T
+

4(1 + qG)d√
ϵ(1− β2)

(
qGR

3 + LqWR2D
)
+

2(1− β1)d
3
2 ηLqW (1 + qG)R

2T
√
ϵ(1− β2)

√
1− β2

1(1+qM )2

β2(1−qV )

,

with

C =
24d((1 + qG)R)2

√
1− β1

(1− β1/β2)3/2
√
1− β2

+
2dηL(1 + qG)R(1− β1)

2

(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )(1− β2)

+
4dη2L2β1(1− β1)

(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )(1− β2)

3
2

,

Q̃(T ) =
4(1 + qG)qMdR2(1− β1)T√

1− β2
·

√
r′(1 + r′)

(1 + qM )(1− r′)3/2
+

4(1 + qG)dR
2(1− β1)T√

(1− β2
1

β2(1−qV ) )(1− β2)

− 4(1 + qG)dR
2(1− β1)√

(1− β2
1

β2(1−qV ) )(1− β2)

(
1− qV
qV

(1− (1− qV )
T )

)

where r′ =
β2
1(1 + qM )2

β2(1− qV )
(A.43)

Theory 4.5 states that under a specific schedule for the hyperparameters and a gradual reduction in
quantization error, Quantized Adam achieves the same convergence rate as its full-precision coun-
terpart. We prove this by performing a detailed asymptotic analysis of each term in the main bound
from Theorem 4.5 as the total number of iterations T →∞.

However, to perform a precise asymptotic analysis and derive the tightest possible convergence rate
from our framework, we will now analyze the order of each component from the more detailed
bound in A.41:

E
[
||∇F (vec(W)τ )||22

]
≤ 2(1 + qG)R

F0 − F∗

ηT̃︸ ︷︷ ︸
Term 1

+
12d((1 + qG)R)2

√
1− β1

T̃ (1− β1/β2)3/2
√
1− β2

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2)

)
− T ln(β2)

)
︸ ︷︷ ︸

Term 2

+
E

T̃

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)
︸ ︷︷ ︸

Term 3

+
Q(T )

T̃︸ ︷︷ ︸
Term 4

+
2(1 + qG)dT

T̃
√
ϵ(1− β2)

(
qGR

3 + LqWR2||vec(W0)||2
)

︸ ︷︷ ︸
Term 5

+
(1− β1)d

3
2 ηLqW (1 + qG)R

2T 2

T̃
√
ϵ(1− β2)

√
1− β2

1(1+qM )2

β2(1−qV )︸ ︷︷ ︸
Term 6

.

Our proof strategy is to analyze the asymptotic order of each term under the following scaling
assumptions.

Scaling Assumptions. We adopt the scaling assumptions provided in the Theorem:

• Quantization Error Schedules: The quantization errors are annealed over time such that qG =
O(T−1), qM = O(T−1), qW = O(T−2), and qV = O(T−2).
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• Adam Hyperparameters: The learning rate and second-moment decay are set as η = Θ(T−1/2)
and 1− β2 = Θ(1/T ), while β1 is treated as a constant.

Asymptotic Analysis of Bound Terms. We now analyze the order of magnitude for each of the
six terms.

Term 1 (Initial Condition Term): This term is given by T1 = 2(1 + qG)R
F0−F∗

ηT̃
. We analyze the

components of its denominator. The effective number of iterations is T̃ = T − β1

1−β1
= Θ(T ). The

learning rate scales as η = Θ(T−1/2). The denominator thus scales as ηT̃ = Θ(T−1/2)Θ(T ) =
Θ(T 1/2). Since all other quantities are constants and qG → 0, the entire term scales as:

T1 = Θ

(
1

ηT̃

)
= Θ

(
1

T 1/2

)
= Θ(T−1/2).

Term 2 (First Logarithmic Term): This term is:

T2 =
12d((1 + qG)R)2

√
1− β1

T̃ (1− β1/β2)3/2
√
1− β2

(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2)

)
− T ln(β2)

)
The leading fraction’s order is determined by its denominator, T̃

√
1− β2. With T̃ = Θ(T ) and

1 − β2 = Θ(1/T ), we have
√
1− β2 = Θ(T−1/2). Thus, the fraction scales as Θ( 1

T ·T−1/2 ) =

Θ(T−1/2). The term in the parenthesis scales as ln(1 + Θ(T )) − Θ(1) = Θ(lnT ). The overall
order is:

T2 = Θ

(
1

T̃
√
1− β2

)
·Θ(lnT ) = Θ

(
T−1/2

)
·Θ(lnT ) = Θ

(
lnT√
T

)
.

Term 3 (Second Logarithmic Term): This term is T3 = E

T̃
(ln(...)− T ln(...)). First, we determine

the asymptotic order of E, which is defined as:

E =
dηL(1 + qG)R(1− β1)

2

(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )(1− β2)

+
2dη2L2β1(1− β1)

(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )(1− β2)

3
2

.

For the first part of E, the numerator scales as η = Θ(T−1/2) and the denominator is dominated
by (1 − β2) = Θ(T−1). This part is Θ(T−1/2)/Θ(T−1) = Θ(T 1/2). For the second part, the
numerator scales as η2 = Θ(T−1) and the denominator is dominated by (1− β2)

3/2 = Θ(T−3/2).
This part is Θ(T−1)/Θ(T−3/2) = Θ(T 1/2). Thus, E = Θ(T 1/2). The logarithmic part scales as
Θ(lnT ), so the entire term scales as:

T3 = Θ

(
E

T̃

)
·Θ(lnT ) = Θ

(
T 1/2

T

)
·Θ(lnT ) = Θ

(
lnT√
T

)
.

Term 4 (Moment Quantization Error): We rewrite this term as:

T4 =
2(1 + qG)dR

2T (1− β1)

T̃
√
1− β2

Q, (A.44)

where Q = qM ·
√

r′(1+r′)

(1+qM )(1−r′)3/2
+ 1√

1− β2
1

β2(1−qV )

− 1
T

1√
1− β2

1
β2(1−qV )

(
1−qV
qV

(1− (1− qV )
T )
)

.

Our goal is to show that T4 = O(T−1/2).

First, the pre-factor has an asymptotic order of:

2(1 + qG)dR
2T (1− β1)

T̃
√
1− β2

= Θ

(
T

T · T−1/2

)
= Θ(T 1/2).
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The core of the analysis thus lies in determining the order of Q. We can rewrite Q by combining its
second and third components:

Q = qM ·
√
r′(1 + r′)

(1 + qM )(1− r′)3/2
+

1√
1− β2

1

β2(1−qV )

[
1− 1

T

(
1− qV
qV

(1− (1− qV )
T )

)]
.

The first part of Q is clearly O(qM ) = O(T−1). The common factor in the second part, 1√
1−...

,
converges to a constant as T → ∞, so it is O(1). The analysis therefore simplifies to finding the
order of the bracketed term.

Let x = qV = O(T−2). We perform a Taylor expansion on (1− x)T :

(1− x)T = 1− Tx+
T (T − 1)

2
x2 +O(T 3x3).

This allows us to analyze the term inside the bracket:

1− 1

T

(
1− x

x
(1− (1− x)T )

)
= 1− 1

T

1− x

x

(
Tx− T (T − 1)

2
x2 +O(T 3x3)

)
= 1− 1

T
(1− x)

(
T − T (T − 1)

2
x+O(T 3x2)

)
= 1− 1

T

(
T − T (T − 1)

2
x− Tx+O(T 3x2)

)
= 1−

(
1− T (T + 1)

2T
x+O(T 2x2)

)
=

T + 1

2
x−O(T 2x2).

Substituting back x = qV = O(T−2), the bracketed term has an order of:

O(T · qV ) = O(T · T−2) = O(T−1).

Therefore, the entire second component of Q is O(1) · O(T−1) = O(T−1). Combining both
components of Q, we find its overall order:

Q = O(T−1) +O(T−1) = O(T−1).

Finally, we compute the order of Term 4 by combining the pre-factor and Q:

T4 = Θ(T 1/2) · O(T−1) = O(T−1/2).

Term 5 (Initial W/G Quantization Error): This term is:

T5 =
2(1 + qG)dT

T̃
√
ϵ(1− β2)

(
qGR

3 + LqWR2||vec(W0)||2
)

The leading fraction scales as T

T̃
√
1−β2

= Θ(T )
Θ(T )Θ(T−1/2)

= Θ(T 1/2). The parenthesis scales with its

dominant term qG = O(T−1). The total order is:

T5 = Θ(T 1/2) · O(qG + qW ) = Θ(T 1/2) · (O(T−1) +O(T−2)) = O(T−1/2).

Term 6 (Weight Growth Quantization Error): This term is T6 = (1−β1)d
3
2 ηLqW (1+qG)R2T 2

T̃
√
ϵ(1−β2)

√
1− β2

1(1+qM )2

β2(1−qV )

.

First, we analyze
√

1

1− β2
1(1+qM )2

β2(1−qV )

. As T → ∞, the denominator converges to the constant 1 − β2
1 ,

so its contribution is O(1). The term’s order is determined by the scaling of its other components:
η = Θ(T−1/2), qW = O(T−2), T̃ = Θ(T ), and (1− β2) = Θ(T−1). The total order is:

T6 = Θ

(
η · qW · T 2

T̃ · (1− β2)

)
= Θ

(
T−1/2 · T−2 · T 2

T · T−1

)
= Θ(T−1/2).
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Conclusion. By comparing the asymptotic orders of all terms, we identify those that converge to
zero at the slowest rate, as they will dominate the overall convergence bound. The orders are:

• Term 1, 4, 5, 6: O(T−1/2) or Θ(T−1/2).

• Term 2, 3: Θ(T−1/2 lnT ).

The dominant terms are the second and third, which are of order Θ(T−1/2 lnT ). These terms form
the bottleneck that determines the overall convergence rate. Thus, under the specified parameter
schedule, the expected squared gradient norm converges to zero at the following rate:

E
[
||∇F (wτ )||22

]
= Θ

(
lnT√
T

)
= Õ

(
1√
T

)
.

This matches the known convergence rate for full-precision Adam.

Furthermore, we derive the convergence rate for the expected gradient norm, E [||∇F (wτ )||2], from
the rate of its squared value. We use Jensen’s inequality, which states that for a convex function ϕ
and a random variable X , ϕ(E[X]) ≤ E[ϕ(X)].

Let the random variable be X = ||∇F (wτ )||2 and the convex function be ϕ(x) = x2. Applying
Jensen’s inequality yields:

(E [||∇F (wτ )||2])2 ≤ E
[
||∇F (wτ )||22

]
.

By taking the square root of both sides, we obtain a bound on the expected norm:

E [||∇F (wτ )||2] ≤
√
E [||∇F (wτ )||22].

Substituting our previously derived convergence rate:

E [||∇F (wτ )||2] ≤

√
Õ
(

1√
T

)
= Õ

(√
T−1/2

)
= Õ

(
T−1/4

)
.

Thus, the expected gradient norm converges to zero at a rate of Õ(T−1/4). This finalizes the proof
of the theorem.

A.3 PROOF OF LEMMA A.2

Lemma A.2 (The value range of vt,i and the upper bound of | 1√
ϵ+vt,i

− 1√
ϵ+v′

t,i

|). Let LBt,i =∑t
k=0 β

t−k
2 (1−qV )t−k(∇ifk(wk−1)+δk,i)

2 and UBt,i =
∑t

k=0 β
t−k
2 (1+qV )

t−k(∇ifk(wk−1)+
δk,i)

2. We have:

t∑
k=0

βt−k
2 (1− qV )

t−k(∇ifk(wk−1) + δk,i)
2 ≤ vt,i ≤

t∑
k=0

βt−k
2 (1 + qV )

t−k(∇ifk(wk−1) + δk,i)
2

(A.45)

∣∣∣∣∣∣ 1
√
ϵ+ vt,i

− 1√
ϵ+ v′t,i

∣∣∣∣∣∣ ≤ max

 1√
ϵ+ LBt,i

− 1√
ϵ+ v′t,i

,
1√

ϵ+ v′t,i

− 1√
ϵ+ UBt,i


(A.46)

Proof. The proof consists of two parts.

Part 1: Bounding vt,i
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The update rule for the second moment estimate is vt,i = β2(vt−1,i+θt−1,i)+(∇ift(wt−1)+δt,i)
2.

The quantization noise is assumed to be a relative error, bounded by |θt−1,i| ≤ qV |vt−1,i|. This
implies that (1− qV )vt−1,i ≤ vt−1,i + θt−1,i ≤ (1 + qV )vt−1,i.

Applying this to the update rule, we can establish the lower bound by recursively unrolling the
inequality:

vt,i ≥ β2(1− qV )vt−1,i + (∇ift(wt−1) + δt,i)
2

≥ β2(1− qV )
[
β2(1− qV )vt−2,i + (∇ift−1(wt−2) + δt−1,i)

2
]
+ (∇ift(wt−1) + δt,i)

2

= . . .

=

t∑
k=0

βt−k
2 (1− qV )

t−k(∇ifk(wk−1) + δk,i)
2 (A.47)

Similarly, we can establish the upper bound:

vt,i ≤ β2(1 + qV )vt−1,i + (∇ift(wt−1) + δt,i)
2

=

t∑
k=0

βt−k
2 (1 + qV )

t−k(∇ifk(wk−1) + δk,i)
2 (A.48)

This completes the proof of the first statement in the lemma.

Part 2: Bounding the difference of the inverse square roots

Let v′t,i be the idealized second moment estimate, updated without the quantization noise θ. Its
explicit form is:

v′t,i =

t∑
k=0

βt−k
2 (∇ifk(wk−1) + δk,i)

2 (A.49)

From Part 1, we know that vt,i is in the interval [LBt,i, UBt,i], where LBt,i and UBt,i are the
bounds established.

Now, we compare v′t,i with these bounds. Since 0 < β2 < 1 and we assume 0 < qV < 1, we have
β2(1− qV ) < β2 < β2(1 + qV ). This implies a term-by-term inequality, leading to:

LBt,i < v′t,i < UBt,i (A.50)

Consider the function f(y) = 1/
√
ϵ+ y for y ≥ 0. This function is monotonically decreasing and

convex. The value vt,i lies in the interval [LBt,i, UBt,i], and v′t,i is a point within this interval. The
maximum absolute difference |f(vt,i) − f(v′t,i)| must occur when vt,i is at one of the endpoints of
the interval. Therefore, we can bound the difference as:∣∣∣∣∣∣ 1
√
ϵ+ vt,i

− 1√
ϵ+ v′t,i

∣∣∣∣∣∣ ≤ max


∣∣∣∣∣∣ 1√

ϵ+ LBt,i

− 1√
ϵ+ v′t,i

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ 1√

ϵ+ UBt,i

− 1√
ϵ+ v′t,i

∣∣∣∣∣∣


(A.51)

Since LBt,i < v′t,i < UBt,i and the function is decreasing, we have 1/
√
ϵ+ UBt,i <

1/
√
ϵ+ v′t,i < 1/

√
ϵ+ LBt,i. We can therefore remove the absolute value signs:∣∣∣∣∣∣ 1

√
ϵ+ vt,i

− 1√
ϵ+ v′t,i

∣∣∣∣∣∣ ≤ max

 1√
ϵ+ LBt,i

− 1√
ϵ+ v′t,i

,
1√

ϵ+ v′t,i

− 1√
ϵ+ UBt,i


(A.52)

This completes the proof of the second statement.
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A.4 PROOF OF LEMMA A.3

Lemma A.3 (Bound on Discrete Error). Given two discrete-time systems defined for t ≥ 1:

• System A: at = k(at−1 + ct−1) + dt

• System B: bt = kbt−1 + dt

where the perturbation term ct is bounded by |ct| ≤ q|at| for all t, and the constants k, q satisfy
0 < k < 1 and q < k.

Under zero initial conditions, where a0 = b0 = 0, the absolute error between the states of the two
systems is bounded by:

|at − bt| ≤
t−1∑
j=1

[
(k(1 + q))t−j − kt−j

]
|dj | (A.53)

Proof. First, define the error as et = at − bt. Subtracting the two system equations yields the error
recurrence relation:

et = ket−1 + kct−1 (A.54)

The explicit solution to this recurrence is et = kte0+
∑t−1

j=0 k
t−jcj . Under the zero initial condition

a0 = b0 = 0, this simplifies to:

et =

t−1∑
j=0

kt−jcj (A.55)

Taking the absolute value and applying the given condition |cj | ≤ q|aj |, we have:

|et| ≤
t−1∑
j=0

kt−j |cj | ≤ q

t−1∑
j=0

kt−j |aj | (A.56)

Since a0 = 0, the sum starts from j = 1. The state |aj | can be bounded from its own recurrence
|at| ≤ k(1 + q)|at−1|+ |dt|, which for a0 = 0 unrolls to:

|aj | ≤
j∑

i=1

(k(1 + q))j−i|di| (A.57)

Substituting the bound for |aj | into the inequality for |et| gives a double summation:

|et| ≤ q

t−1∑
j=1

kt−j

(
j∑

i=1

(k(1 + q))j−i|di|

)
(A.58)

By swapping the order of summation and evaluating the inner geometric series, we obtain the final
result:

|at − bt| ≤
t−1∑
j=1

[
(k(1 + q))t−j − kt−j

]
|dj | (A.59)

A.5 PROOF OF LEMMA A.4

Lemma A.4 (Finite Geometric Series Ratio Bounded by Infinite Sum). Let (gk)tk=0 be a sequence
of scalars for any finite t ∈ N. Let the weights be terms of two geometric series, Ak = ak and
Bk = bk, where a, b ∈ (0, 1) are the base ratios.

If the condition a2 < b holds, then the ratio of the weighted sum is bounded by a constant derived
from the corresponding infinite series:∑t

k=0 a
k|gk|√∑t

k=0 b
kg2k

≤

√
1

1− a2/b
(A.60)
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Proof. Let the numerator be Nt =
∑t

k=0 a
k|gk| and the denominator be Dt =

√∑t
k=0 b

kg2k.

We rewrite the numerator as:

Nt =

t∑
k=0

(
ak√
bk

)
·
(√

bk|gk|
)

(A.61)

Applying the Cauchy-Schwarz inequality to these finite sums, we get:

N2
t ≤

(
t∑

k=0

(
ak√
bk

)2
)
·

(
t∑

k=0

(√
bk|gk|

)2)

=

(
t∑

k=0

a2k

bk

)
·

(
t∑

k=0

bkg2k

)

=

(
t∑

k=0

(
a2

b

)k
)
·D2

t (A.62)

The first term is a finite geometric series. Since the condition a2 < b implies that the ratio r = a2/b
is positive and less than 1, all terms in the series are positive. Therefore, the finite sum is always less
than or equal to the sum of the infinite series:

t∑
k=0

(
a2

b

)k

≤
∞∑
k=0

(
a2

b

)k

=
1

1− a2/b
(A.63)

Substituting this upper bound back into the inequality for N2
t , we have:

N2
t ≤

(
1

1− a2/b

)
·D2

t (A.64)

Taking the square root of both sides gives:

Nt ≤

√
1

1− a2/b
·Dt (A.65)

Finally, dividing by Dt yields the desired result for any finite t:

Nt

Dt
=

∑t
k=0 a

k|gk|√∑t
k=0 b

kg2k

≤

√
1

1− a2/b
(A.66)

A.6 PROOF OF LEMMA A.5

Lemma A.5 (Bound on the Quantized Momentum Error Ratio). Let (gk)tk=0 be a sequence of
scalars. Let the weights be Ak = βk

1 ((1 + qM )k − 1) and Bk = (β2(1 − qV ))
k. If the condition

β2
1(1 + qM )2 < β2(1− qV ) holds, then the ratio of the weighted sum is bounded by:∑t

k=0 Ak|gk|√∑t
k=0 Bkg2k

≤ qM ·
√
r′(1 + r′)

(1 + qM )(1− r′)3/2

where r′ =
β2
1(1+qM )2

β2(1−qV ) .

Proof. Following the proof of Lemma A.4, we apply the Cauchy-Schwarz inequality to get:(
t∑

k=0

Ak|gk|

)2

≤

(
t∑

k=0

A2
k

Bk

)
·

(
t∑

k=0

Bkg
2
k

)
. (A.67)
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This implies that the ratio is bounded by the square root of the first term on the right-hand side. We
now focus on bounding the term

∑t
k=0

A2
k

Bk
. First, we express the ratio A2

k

Bk
as:

A2
k

Bk
=

(βk
1 ((1 + qM )k − 1))2

(β2(1− qV ))k

=

(
β2
1

β2(1− qV )

)k

((1 + qM )k − 1)2. (A.68)

To bound the term ((1 + qM )k − 1)2, we first establish an inequality for (1 + qM )k − 1 using the
Mean Value Theorem. Let f(x) = xk. For qM > 0, by the Mean Value Theorem, there exists a
c ∈ (1, 1 + qM ) such that:

f(1 + qM )− f(1)

(1 + qM )− 1
= f ′(c) =⇒ (1 + qM )k − 1 = qM · (kck−1). (A.69)

Since c < 1 + qM , and for k ≥ 1, we have ck−1 ≤ (1 + qM )k−1. This leads to the inequality:

(1 + qM )k − 1 ≤ k · qM · (1 + qM )k−1. (A.70)

Squaring both sides of (A.70) gives:

((1 + qM )k − 1)2 ≤ k2q2M (1 + qM )2(k−1)

=
k2q2M

(1 + qM )2
(1 + qM )2k. (A.71)

Substituting this back into (A.68), and using the definition r′ =
β2
1(1+qM )2

β2(1−qV ) , we get:

A2
k

Bk
≤
(

β2
1

β2(1− qV )

)k
k2q2M

(1 + qM )2
(1 + qM )2k

=
q2M

(1 + qM )2
k2
(
β2
1(1 + qM )2

β2(1− qV )

)k

=
q2M

(1 + qM )2
k2(r′)k. (A.72)

Now we sum this term. The condition r′ < 1 ensures the convergence of the infinite series. We first
derive the closed-form expression for

∑∞
k=0 k

2xk for |x| < 1. We start with the geometric series:
∞∑
k=0

xk =
1

1− x
. (A.73)

Differentiating with respect to x and multiplying by x gives:
∞∑
k=0

kxk = x
d

dx

(
1

1− x

)
=

x

(1− x)2
. (A.74)

Differentiating one more time and multiplying by x yields:
∞∑
k=0

k2xk = x
d

dx

(
x

(1− x)2

)
= x

1(1− x)2 − x(2(1− x)(−1))
(1− x)4

=
x(1 + x)

(1− x)3
. (A.75)

Using this result with x = r′, we can bound the sum
∑t

k=0
A2

k

Bk
by extending it to an infinite series:

t∑
k=0

A2
k

Bk
≤

∞∑
k=0

A2
k

Bk

≤
∞∑
k=0

q2M
(1 + qM )2

k2(r′)k
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=
q2M

(1 + qM )2

∞∑
k=0

k2(r′)k

=
q2M

(1 + qM )2
r′(1 + r′)

(1− r′)3
. (A.76)

Finally, taking the square root of (A.76) and substituting it back into the result from the Cauchy-
Schwarz inequality (A.67) gives the desired bound:∑t

k=0 Ak|gk|√∑t
k=0 Bkg2k

≤

√√√√ t∑
k=0

A2
k

Bk
≤

√
q2M

(1 + qM )2
r′(1 + r′)

(1− r′)3
= qM ·

√
r′(1 + r′)

(1 + qM )(1− r′)3/2
. (A.77)

A.7 PROOF OF LEMMA A.6

Lemma A.6 (Bound on the Quantized Gradient Estimator). Let the stochastic gradient be bounded
in infinity norm almost surely by ||∇ft(w; γ)||∞ ≤ R−

√
ϵ for any parameters w. Let the gradient

quantization operator satisfy the relative error model |Q(z) − z| ≤ qG|z| for any scalar z. The
quantized gradient estimator ĝt is defined component-wise for i ∈ [d] as:

ĝt,i =
1

B

B∑
j=1

[∇Qf(wQ
t−1; γt,j)]i, (A.78)

where we use ∇Qf(·) as shorthand for Q(∇f(·)) and [·]i to denote the i-th component. Then, the
infinity norm of the estimator is bounded almost surely:

||ĝt||∞ ≤ (1 + qG)(R−
√
ϵ). (A.79)

For notational simplicity in subsequent proofs, we will use the slightly looser bound ||ĝt||∞ ≤
(1 + qG)R.

Proof. We first bound the infinity norm of a single quantized gradient vector ∇Qf(·). For any
component i ∈ [d], we have:∣∣∣∇Q

i f(w
Q
t−1; γt,j)

∣∣∣ = ∣∣∣∇if(w
Q
t−1; γt,j) +

(
∇Q

i f(w
Q
t−1; γt,j)−∇if(w

Q
t−1; γt,j)

)∣∣∣
≤
∣∣∣∇if(w

Q
t−1; γt,j)

∣∣∣+ ∣∣∣∇Q
i f(w

Q
t−1; γt,j)−∇if(w

Q
t−1; γt,j)

∣∣∣
≤
∣∣∣∇if(w

Q
t−1; γt,j)

∣∣∣+ qG

∣∣∣∇if(w
Q
t−1; γt,j)

∣∣∣
= (1 + qG)

∣∣∣∇if(w
Q
t−1; γt,j)

∣∣∣ . (A.80)

Since this holds for any component, it also holds for the component with the maximum absolute
value. Therefore, by taking the maximum over i ∈ [d], we can bound the infinity norm:

||∇Qf(wQ
t−1; γt,j)||∞ ≤ (1 + qG)||∇f(wQ

t−1; γt,j)||∞
≤ (1 + qG)(R−

√
ϵ). (A.81)

Finally, we apply the triangle inequality to the full estimator ĝt, which is the average over B such
vectors:

||ĝt||∞ = || 1
B

B∑
j=1

∇Qf(wQ
t−1; γt,j)||∞

≤ 1

B

B∑
j=1

||∇Qf(wQ
t−1; γt,j)||∞

≤ 1

B

B∑
j=1

(1 + qG)(R−
√
ϵ)

= (1 + qG)(R−
√
ϵ). (A.82)

This concludes the proof.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

A.8 PROOF OF LEMMA A.7

Lemma A.7 (Bound on the Expected Gradient Error with Biased Quantization). Under the assump-
tions that the infinity norm of stochastic gradient is up bounded (Assumption 4.2), the objective F is
L-smooth (Assumption 4.3), and the quantization relative error model holds (Assumption 3.1), the
magnitude of the conditional expectation of the total error term δt,i is bounded by:

|Et−1 [δt,i] | ≤ qGR+ LqW ||wt−1||2.

Proof. We start from the decomposition of the conditional expectation of δt,i, which we derived
previously:

Et−1 [δt,i] = Eγ

[
∇Q

i f(w
Q
t−1; γ)−∇if(w

Q
t−1; γ)

]
+ Eγ

[
∇if(w

Q
t−1; γ)−∇if(wt−1; γ)

]
= Eγ

[
∇Q

i f(w
Q
t−1; γ)−∇if(w

Q
t−1; γ)

]
︸ ︷︷ ︸

Term I: Gradient Quantization Bias

+
(
∇iF (wQ

t−1)−∇iF (wt−1)
)

︸ ︷︷ ︸
Term II: Weight Quantization Bias

(A.83)

Using the triangle inequality, we can bound the magnitude as:

|Et−1 [δt,i] | ≤ |Term I|+ |Term II|. (A.84)

We bound each term separately.

Bounding Term I: This term is the expected bias from the (potentially biased) gradient quantization.
We first apply Jensen’s inequality for absolute values, i.e., |E[X]| ≤ E[|X|]:

|Term I| =
∣∣∣Eγ

[
∇Q

i f(w
Q
t−1; γ)−∇if(w

Q
t−1; γ)

]∣∣∣
≤ Eγ

[∣∣∣∇Q
i f(w

Q
t−1; γ)−∇if(w

Q
t−1; γ)

∣∣∣] . (A.85)

By the relative error model for gradient quantization (Assumption 3.1 with factor qG):

|Term I| ≤ Eγ

[
qG

∣∣∣∇if(w
Q
t−1; γ)

∣∣∣] ≤ qGR. (A.86)

Bounding Term II: This term represents the bias from weight quantization. Using the L-smoothness
of F (Assumption 4.3) and the relative error for weights (Assumption 3.1):

|Term II| = |∇iF (wQ
t−1)−∇iF (wt−1)| ≤ ||∇F (wQ

t−1)−∇F (wt−1)||2 ≤ LqW ||wt−1||2.
(A.87)

Combining the Bounds: Summing the bounds for Term I and Term II, we arrive at the final result:

|Et−1 [δt,i] | ≤ |Term I|+ |Term II| ≤ qGR+ LqW ||wt−1||2. (A.88)

A.9 PROOF OF LEMMA A.8 (BOUND ON TERM D)

Lemma A.8 (Bound on Term D). The term D, which captures the error from gradient drift as defined
in (A.20), is bounded by:

|D| ≤ η2tL
2
√
1− β1

4(1 + qG)R

(
t−1∑
l=1

||ut−l||22
t−1∑
k=l

βk
1

√
k

)
+

(1 + qG)R√
1− β1

t−1∑
k=0

(
β1

β2

)k√
k + 1||Ut−k||22.

(A.89)

Proof. We start with the definition of Term D:

D =
∑
i∈[d]

t−1∑
k=0

βk
1 (Gt,i − Gt−k,i)

gt−k,i + δt−k,i√
ϵ+ v′t,i
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To tackle this, we employ the weighted Young’s inequality, which states that for any λ > 0,

xy ≤ λ

2
x2 +

1

2λ
y2 (A.90)

We apply this inequality to each product within the summation for Term D, setting

x = |Gt,i − Gt−k,i|, y =
|gt−k,i + δt−k,i|√

ϵ+ v′t,i

, and λ =

√
1− β1

2(1 + qG)R
√
k + 1

.

This application gives us an initial bound on the magnitude of D:

|D| ≤
∑
i∈[d]

t−1∑
k=0

βk
1

( √
1− β1

4(1 + qG)R
√
k + 1

(Gt,i − Gt−k,i)
2
+

(1 + qG)R
√
k + 1√

1− β1

(gt−k,i + δt−k,i)
2

ϵ+ v′t,i

)
.

(A.91)

To simplify this expression further, we must establish bounds for two of its key components.

First, we can find a lower bound for the denominator term. For any coordinate i ∈ [d], the recursive
definition of v′t,i implies that ϵ+ v′t,i ≥ ϵ+ βk

2 v
′
t−k,i ≥ βk

2 (ϵ+ v′t−k,i). This allows us to bound the
fraction as:

(gt−k,i + δt−k,i)
2

ϵ+ v′t,i
≤ 1

βk
2

U2
t−k,i. (A.92)

Second, we bound the squared gradient difference using the L-smoothness of the objective function
F .

||Gt − Gt−k||22 ≤ L2||wt−1 −wt−k−1||22 = L2

∥∥∥∥∥
k∑

l=1

ηt−lut−l

∥∥∥∥∥
2

2

≤ η2tL
2k

k∑
l=1

||ut−l||22. (A.93)

The final step above follows from Jensen’s inequality and the fact that the step size schedule ηt is
non-decreasing.

With these two intermediate results, (A.92) and (A.93), we can return to our main inequality (A.91).
Substituting these bounds yields:

|D| ≤

(
t−1∑
k=0

η2tL
2
√
1− β1β

k
1

4(1 + qG)R
√
k + 1

(
k

k∑
l=1

||ut−l||22

))
+

(
t−1∑
k=0

(1 + qG)Rβk
1

√
k + 1√

1− β1βk
2

||Ut−k||22

)

≤ η2tL
2
√
1− β1

4(1 + qG)R

(
t−1∑
k=0

βk
1

√
k

k∑
l=1

||ut−l||22

)
+

(1 + qG)R√
1− β1

t−1∑
k=0

(
β1

β2

)k√
k + 1||Ut−k||22.

Finally, by rearranging the order of summation in the first term, we arrive at our desired bound:

|D| ≤ η2tL
2
√
1− β1

4(1 + qG)R

(
t−1∑
l=1

||ut−l||22
t−1∑
k=l

βk
1

√
k

)
+

(1 + qG)R√
1− β1

t−1∑
k=0

(
β1

β2

)k√
k + 1||Ut−k||22.

(A.94)

A.10 PROOF OF LEMMA A.9 (LOWER BOUND ON TERM C)

Lemma A.9 (Lower Bound on the Expectation of Term C). The expectation of term C, defined in
(A.20), is lower-bounded by:

E [C] ≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk
1E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]− 2(1 + qG)R√
1− β1

∑
i∈[d]

t−1∑
k=0

(
β1

β2

)k√
k + 1E

[
||Ut−k||22

]
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− d

t−1∑
k=0

βk
1Mt−k. (A.95)

where Mt−k = qGR2+LqWR||wt−k−1||2√
ϵ

.

Proof. We study the main term of the summation in C, i.e. for i ∈ [d] and k < t:

E
[
Gt−k,i

gt−k,i + δt−k,i√
ϵ+ vt,i

]
= E

[
∇iF (wt−k−1)

∇ift−k(wt−k−1) + δt−k,i√
ϵ+ vt,i

]
. (A.96)

We will further drop indices in the rest of the proof, noting G = Gt−k,i, g = gt−k,i, δ = δt−k,i,ṽ =
ṽt,k+1,i and v = v′t,i. Finally, let us note

s2 =

t∑
j=t−k

βt−j
2 (gj,i + δj,i)

2 and r2 = Et−k−1

[
s2
]
. (A.97)

In particular we have ṽ − v = r2 − s2. With our new notations, we can rewrite (A.96) as

E
[
G g + δ√

ϵ+ v

]
= E

[
G g + δ√

ϵ+ ṽ
+ G(g + δ)

(
1√
ϵ+ v

− 1√
ϵ+ ṽ

)]
= E

[
Et−k−1

[
G g + δ√

ϵ+ ṽ

]
+ G(g + δ)

r2 − s2
√
ϵ+ v

√
ϵ+ ṽ(

√
ϵ+ v +

√
ϵ+ ṽ)

]

= E
[
G2√
ϵ+ ṽ

]
+ E

[
GEt−k−1 [δ]√

ϵ+ ṽ

]
+ E

G(g + δ)
r2 − s2

√
ϵ+ v

√
ϵ+ ṽ(

√
ϵ+ v +

√
ϵ+ ṽ)︸ ︷︷ ︸

E


≥ E

[
G2√
ϵ+ ṽ

]
− qGR

2 + LqWR||wt−k−1||2√
ϵ

+ E [E] . (A.98)

The inequality uses Lemma A.7 and the bound for ||∇F (·)||∞. We denote qGR2+LqWR||wt−k−1||2√
ϵ

≜
Mt−k.

Then we focus on E:

|E| ≤ |G(g + δ)| r2√
ϵ+ v(ϵ+ ṽ)︸ ︷︷ ︸
κ

+ |G(g + δ)| s2

(ϵ+ v)
√
ϵ+ ṽ︸ ︷︷ ︸

ρ

,

due to the fact that
√
ϵ+ v +

√
ϵ+ ṽ ≥ max(

√
ϵ+ v,

√
ϵ+ ṽ) and |r2 − s2| ≤ r2 + s2.

Applying Young’s inequality to κ with

λ =

√
1− β1

√
ϵ+ ṽ

2
, x =

|G|√
ϵ+ ṽ

, y =
|g + δ|r2√
ϵ+ ṽ

√
ϵ+ v

,

we obtain

κ ≤ G2

4
√
ϵ+ ṽ

+
1√

1− β1

(g + δ)2r4

(ϵ+ ṽ)3/2(ϵ+ v)
.

Given that ϵ+ ṽ ≥ r2 and taking the conditional expectation, we can simplify as

Et−k−1 [κ] ≤
G2

4
√
ϵ+ ṽ

+
1√

1− β1

r2√
ϵ+ ṽ

Et−k−1

[
(g + δ)2

ϵ+ v

]
. (A.99)

Now turning to ρ, we use Young’s inequality with

λ =

√
1− β1

√
ϵ+ ṽ

2r2
, x =

|Gs|√
ϵ+ ṽ

, y =
|s(g + δ)|
ϵ+ v

,
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we obtain

ρ ≤ G2

4
√
ϵ+ ṽ

s2

r2
+

1√
1− β1

r2√
ϵ+ ṽ

(g + δ)2s2

(ϵ+ v)2
. (A.100)

Given that ϵ+ v ≥ s2, and Et−k−1

[
s2

r2

]
= 1, we obtain after taking the conditional expectation,

Et−k−1 [ρ] ≤
G2

4
√
ϵ+ ṽ

+
1√

1− β1

r2√
ϵ+ ṽ

Et−k−1

[
(g + δ)2

ϵ+ v

]
. (A.101)

Notice that in (A.100), we possibly divide by zero. It suffice to notice that if r2 = 0 then s2 = 0 a.s.
so that ρ = 0 and (A.101) is still verified. Summing (A.99) and (A.101), we get

Et−k−1 [|E|] ≤
G2

2
√
ϵ+ ṽ

+
2√

1− β1

r2√
ϵ+ ṽ

Et−k−1

[
(g + δ)2

ϵ+ v

]
. (A.102)

Given that r ≤
√
ϵ+ ṽ by definition of ṽ, and that r ≤

√
k + 1(1+ qG)R, reintroducing the indices

we had dropped

Et−k−1 [|E|] ≤
G2t−k,i

2
√
ϵ+ ṽt,k+1,i

+
2(1 + qG)R√

1− β1

√
k + 1Et−k−1

[
(gt−k,i + δt−k,i)

2

ϵ+ v′t,i

]
. (A.103)

Taking the complete expectation and using that by definition ϵ+v′t,i ≥ ϵ+βk
2 v

′
t−k,i ≥ βk

2 (ϵ+v′t−k,i)
we get

E [|E|] ≤ 1

2
E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]
+

2(1 + qG)R√
1− β1βk

2

√
k + 1E

[
(gt−k,i + δt−k,i)

2

ϵ+ v′t−k,i

]
. (A.104)

Injecting (A.104) into (A.98) gives us

∑
i∈[d]

t−1∑
k=0

βk
1E
[
Gt−k,i

gt−k,i + δt−k,i√
ϵ+ vt,i

]

≥
∑
i∈[d]

t−1∑
k=0

βk
1

(
E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]
− E [|E|]−Mt−k

)
(A.105)

≥
∑
i∈[d]

t−1∑
k=0

βk
1

(
E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]
−

(
1

2
E

[
G2t−k,i√
ϵ+ ṽt,k,i

]
+

2(1 + qG)R
√
k + 1√

1− β1βk
2

E

[
(gt−k,i + δt−k,i)

2

ϵ+ v′t−k,i

]
+Mt−k

))

≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk
1E

[
G2t−k,i√

ϵ+ ṽt,k+1,i

]− 2(1 + qG)R√
1− β1

∑
i∈[d]

t−1∑
k=0

(
β1

β2

)k√
k + 1E

[
||Ut−k||22

]− d

t−1∑
k=0

βk
1Mt−k.

(A.106)

This is the desired lower bound for E [C].

A.11 PROOF OF LEMMA A.10

Lemma A.10 (Lemma A.2 in Défossez et al. (2022)). Assume we have 0 < β1 < β2 ≤ 1 and a
sequence of real numbers (an)n∈N∗ . We define for all n ∈ N∗:

bn =

n∑
j=1

βn−j
2 a2j and cn =

n∑
j=1

βn−j
1 aj .

Then for any ϵ > 0, we have the following inequality:
n∑

j=1

c2j
ϵ+ bj

≤ 1

(1− β1)(1− β1/β2)

(
ln

(
1 +

bn
ϵ

)
− n ln(β2)

)
. (A.107)
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Proof. First, we use Jensen’s inequality on c2j , noting that
∑j

l=1 β
j−l
1 =

1−βj
1

1−β1
≤ 1

1−β1
, to get:

c2j =

(
j∑

l=1

βj−l
1 al

)2

≤

(
j∑

l=1

βj−l
1

)(
j∑

l=1

βj−l
1 a2l

)
≤ 1

1− β1

j∑
l=1

βj−l
1 a2l .

Dividing by ϵ+bj and using the fact that for l ≤ j, bj ≥ βj−l
2 bl, which implies ϵ+bj ≥ βj−l

2 (ϵ+bl),
we obtain:

c2j
ϵ+ bj

≤ 1

1− β1

j∑
l=1

βj−l
1

a2l
ϵ+ bj

≤ 1

1− β1

j∑
l=1

(
β1

β2

)j−l
a2l

ϵ+ bl
. (A.108)

Now, we sum over j ∈ [n] and swap the order of summation:

n∑
j=1

c2j
ϵ+ bj

≤ 1

1− β1

n∑
j=1

j∑
l=1

(
β1

β2

)j−l
a2l

ϵ+ bl
=

1

1− β1

n∑
l=1

a2l
ϵ+ bl

n∑
j=l

(
β1

β2

)j−l

≤ 1

(1− β1)(1− β1/β2)

n∑
l=1

a2l
ϵ+ bl

, (A.109)

where the last step uses the sum of a geometric series, since β1/β2 < 1.

The next step is to bound the final sum. Let’s denote xl = a2l . The sum is
∑n

l=1
xl

ϵ+bl
, where bl =∑l

k=1 β
l−k
2 xk. Note that bl−xl = β2bl−1 (with b0 = 0). Using the inequality x

y ≤ ln(y)−ln(y−x)
for 0 < x < y, we have:

xl

ϵ+ bl
≤ ln(ϵ+ bl)− ln(ϵ+ bl − xl)

= ln(ϵ+ bl)− ln(ϵ+ β2bl−1)

= ln

(
ϵ+ bl

ϵ+ bl−1

)
+ ln

(
ϵ+ bl−1

ϵ+ β2bl−1

)
.

Summing from l = 1 to n, the first term forms a telescoping series equal to ln(ϵ + bn) − ln(ϵ) =

ln(1 + bn/ϵ). For the second term, since β2 ≤ 1 and bl−1 ≥ 0, we have ϵ+β2bl−1

ϵ+bl−1
≥ β2, which

implies ln
(

ϵ+bl−1

ϵ+β2bl−1

)
≤ − ln(β2). Thus, summing over l gives:

n∑
l=1

a2l
ϵ+ bl

≤ ln

(
1 +

bn
ϵ

)
− n ln(β2). (A.110)

This inequality is a useful result in itself, corresponding to the special case where c2j is replaced by
a2j (or equivalently β1 → 0 and aj is replaced by a2j ).

Finally, substituting the bound from (A.110) into (A.109) yields the desired result.

A.12 PROOF OF LEMMA A.11

Lemma A.11 (Lemma A.3 in Défossez et al. (2022)). For any scalar ρ ∈ (0, 1) and any integer
K ∈ N, the following bound holds for the finite geometric sum:

K−1∑
k=0

ρk
√
k + 1 ≤ 2

(1− ρ)3/2
. (A.111)

Proof. Let the sum be denoted by SK =
∑K−1

k=0 ρk
√
k + 1. We analyze the term (1− ρ)SK :

(1− ρ)SK =

K−1∑
k=0

ρk
√
k + 1−

K∑
j=1

ρj
√
j
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= 1 +

K−1∑
k=1

ρk(
√
k + 1−

√
k)− ρK

√
K.

By the concavity of the square root function,
√
k + 1−

√
k ≤ 1

2
√
k

. This implies:

(1− ρ)SK ≤ 1 +

K−1∑
k=1

ρk

2
√
k
≤ 1 +

∫ ∞

0

ρt

2
√
t
dt.

The integral is a standard Gaussian integral form which evaluates to
√
π

2
√

− ln(ρ)
. Using the inequality

− ln(ρ) ≥ 1− ρ, we have:

(1− ρ)SK ≤ 1 +

√
π

2
√
1− ρ

≤ 2√
1− ρ

.

Dividing by (1− ρ) yields the desired result.

A.13 PROOF OF LEMMA A.12

Lemma A.12 (Lemma A.4 in Défossez et al. (2022)). For any scalar ρ ∈ (0, 1) and any integer
K ∈ N, the following bound holds:

K−1∑
k=0

ρk
√
k(k + 1) ≤ 4ρ

(1− ρ)5/2
. (A.112)

Proof. Let the sum be denoted by SK =
∑K−1

k=0 ρk
√
k(k+1). We proceed by analyzing (1−ρ)SK :

(1− ρ)SK =

K−1∑
k=1

ρk
[√

k(k + 1)− k
√
k − 1

]
− ρKk

√
K − 1

≤
K−1∑
k=1

ρk(2
√
k),

where the inequality holds because
√
k(k + 1)− k

√
k − 1 ≤ 2

√
k. Re-indexing the sum gives:

(1− ρ)SK ≤ 2ρ

K−1∑
k=1

ρk−1
√
k = 2ρ

K−2∑
j=0

ρj
√

j + 1.

Applying the result from Lemma A.11 to the final sum, we get:

(1− ρ)SK ≤ 2ρ

(
2

(1− ρ)3/2

)
=

4ρ

(1− ρ)3/2
.

Dividing both sides by (1− ρ) completes the proof.

A.14 PROOF OF LEMMA A.13

Lemma A.13 (Upper bound of
∑T

t=1 E
[
||ut||22

]
). Under the condition that β1(1 + qM ) < β2(1−

qV ), the expected sum of squared updates over T iterations is bounded by:

T∑
t=1

E
[
||ut||22

]
≤ d

(1− β1(1 + qM ))(1− β1(1+qM )
β2(1−qV ) )

×
(
ln

(
1 +

((1 + qG)R)2

ϵ(1− β2(1− qV ))

)
− T ln(β2(1− qV ))

)
. (A.113)
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Proof. The proof proceeds by first expanding the term of interest, applying bounds on the moment
estimates derived from their recurrence relations, and then leveraging Lemma A.10 to bound the
resulting sum.

We begin by expanding the definition of ||ut||22, separating the sum over the dimension d, and taking
the expectation:

T∑
t=1

E
[
||ut||22

]
=

T∑
t=1

E

∑
i∈[d]

m2
t,i

ϵ+ vt,i

 =
∑
i∈[d]

T∑
t=1

E

[
m2

t,i

ϵ+ vt,i

]
. (A.114)

For each coordinate i, we bound the numerator m2
t,i from above and the denominator ϵ + vt,i from

below. By unrolling the recurrence for mt,i and applying the triangle inequality along with the
relative error model, we get an upper bound on its magnitude:

|mt,i| ≤
t∑

k=1

βt−k
1 (1 + qM )t−k|∇ifk(wk−1) + δk,i|. (A.115)

For the denominator, Lemma A.2 provides a lower bound for vt,i:

vt,i ≥
t∑

k=1

βt−k
2 (1− qV )

t−k(∇ifk(wk−1) + δk,i)
2. (A.116)

Substituting these into the sum gives the inequality:

T∑
t=1

E
[
||ut||22

]
≤
∑
i∈[d]

T∑
t=1

E


(∑t

k=1 β
t−k
1 (1 + qM )t−k|ĝk,i|

)2
ϵ+

∑t
k=1 β

t−k
2 (1− qV )t−kĝ2k,i

 , (A.117)

where for brevity we denote ĝk,i = ∇ifk(wk−1) + δk,i.

The inner sum over t for each coordinate i in (A.117) perfectly matches the form required by
Lemma A.10. To apply it, we make the following substitutions into the lemma’s notation:

• Let the sequence (aj)j∈N∗ be ak = |ĝk,i|.

• Let the effective decay factors be β′
1 = β1(1+ qM ) and β′

2 = β2(1− qV ). The lemma’s condition
β′
1 < β′

2 is satisfied by our assumption.

With these substitutions, the numerator term becomes
(∑t

k=1(β
′
1)

t−kak

)2
= c2t and the sum in the

denominator becomes
∑t

k=1(β
′
2)

t−ka2k = bt. Applying Lemma A.10 to the sum over t for a fixed i
yields:

T∑
t=1

E
[

c2t
ϵ+ bt

]
≤ 1

(1− β′
1)(1− β′

1/β
′
2)

(
ln

(
1 +

bT
ϵ

)
− T ln(β′

2)

)
. (A.118)

The final step is to find an upper bound for bT . By definition:

bT =

T∑
k=1

(β′
2)

T−ka2k =

T∑
k=1

(β2(1− qV ))
T−kĝ2k,i. (A.119)

From Lemma A.6, we have a uniform bound on the quantized gradient estimator, |ĝk,i| ≤ (1+qG)R.
Therefore:

bT ≤
T∑

k=1

(β2(1− qV ))
T−k((1 + qG)R)2

= ((1 + qG)R)2
T−1∑
j=0

(β2(1− qV ))
j

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

≤ ((1 + qG)R)2
1

1− β2(1− qV )
. (A.120)

Substituting the bound for bT back into (A.118), and re-inserting the definitions of β′
1 and β′

2, we
obtain the bound for a single coordinate i. As this bound is identical for all d coordinates, we
multiply by d to get the final result stated in (A.113). This completes the proof.

A.15 PROOF OF LEMMA A.14 (BOUND ON TERM M)

Lemma A.14 (Bound on Term M). The term M, representing the accumulated quantization bias
from (A.26), is bounded by:

M ≤ ηT dT√
ϵ(1− β1)

(
qGR

2 + LqWR||w0||2
)
+

η2T dLqWURT 2

2
√
ϵ(1− β1)

, (A.121)

where U =
√

d

1− β2
1(1+qM )2

β2(1−qV )

.

Proof. First, we establish a uniform bound on the update norm ||ut||2 using Lemma A.4:

||ut||2 =

√√√√∑
i∈[d]

m2
t,i

ϵ+ vt,i

≤

√√√√∑
i∈[d]

(
∑t

k=0 β
t−k
1 (1 + qM )t−k|∇ifk(wk−1) + δk,i|)2

(
∑t

k=0 β
t−k
2 (1− qV )t−k(∇ifk(wk−1) + δk,i)2)

≤

√√√√ d

1− β2
1(1+qM )2

β2(1−qV )

≜ U (A.122)

Now, let’s recall the definition of M :

M = ηT d

T∑
t=1

E

[
t−1∑
k=0

βk
1Mt−k

]
, where Mt−k =

qGR
2 + LqWR||wt−k−1||2√

ϵ
.

We can split M into two components: a constant part Mconst and a weight-dependent part Mweights.

Mconst =
ηT dqGR

2

√
ϵ

T∑
t=1

t−1∑
k=0

βk
1

Mweights =
ηT dLqWR√

ϵ

T∑
t=1

t−1∑
k=0

βk
1E [||wt−k−1||2]

Bounding Mconst is straightforward. The inner sum is a geometric series bounded by 1
1−β1

, so the
double summation is bounded by T

1−β1
.

Mconst ≤
ηT dqGR

2T√
ϵ(1− β1)

. (A.123)

The main challenge is to bound Mweights. To do this, we first need a bound on the expected weight
norm E [||wj ||2]. From the update rule wj = wj−1 − ηjuj , we can unroll the recursion:

wj = w0 −
j∑

l=1

ηlul.

Applying the triangle inequality and taking the expectation, we get:

E [||wj ||2] ≤ ||w0||2 + E

[
j∑

l=1

ηl||ul||2

]
.
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Using the uniform bound ||ul||2 ≤ U , we have:

E [||wj ||2] ≤ ||w0||2 + U

j∑
l=1

ηl ≤ ||w0||2 + UjηT .

Now we substitute this bound back into the expression for Mweights. We first swap the order of
summation. Let j = t − k − 1. For a fixed j ∈ {0, . . . , T − 1}, the term E [||wj ||2] appears when
k = t− j − 1. This is valid for t from j + 1 to T .

T∑
t=1

t−1∑
k=0

βk
1E [||wt−k−1||2] =

T−1∑
j=0

E [||wj ||2]
T∑

t=j+1

βt−j−1
1

=

T−1∑
j=0

E [||wj ||2]
T−j−1∑
m=0

βm
1

≤ 1

1− β1

T−1∑
j=0

E [||wj ||2] .

Next, we substitute the linear bound:

1

1− β1

T−1∑
j=0

E [||wj ||2] ≤
1

1− β1

T−1∑
j=0

(||w0||2 + j · U · ηT )

=
1

1− β1

T ||w0||2 + UηT

T−1∑
j=0

j

 .

The sum of the first T − 1 integers is (T−1)T
2 < T 2

2 . This gives:

≤ 1

1− β1

(
T ||w0||2 +

T 2

2
UηT

)
.

Finally, we assemble the complete bound for Mweights:

Mweights ≤
ηT dLqWR√
ϵ(1− β1)

(
T ||w0||2 +

T 2

2
UηT

)
.

Combining Mconst with Mweights, we get the final bound for M .

M ≤ ηT dT√
ϵ(1− β1)

(
qGR

2 + LqWR||w0||2
)
+

η2T dLqWURT 2

2
√
ϵ(1− β1)

(A.124)

B PROOF OF THEOREM 4.6

B.1 PRELIMINARIES

The momentum of the quantized Muon (Algorithm 1, 3) is defined as

Mt =βMQ
t−1 + (1− β)

1

B

B∑
i=1

∇Qf(WQ
t ; ξt,i), M0 =

1

B

B∑
i=1

∇Qf(WQ
0 ; ξ0,i). (B.1)

We define the following auxiliary variables for analysis:

Ct =βCt−1 + (1− β)∇F (Wt), C0 = ∇F (W0) (B.2)

Xt =βXt−1 + (1− β)
1

B

B∑
i=1

∇f(Wt; ξt,i), X0 =
1

B

B∑
i=1

∇f(W0; ξ0,i) (B.3)
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Yt =βYt−1 + (1− β)
1

B

B∑
i=1

∇Qf(Wt; ξt,i), Y0 =
1

B

B∑
i=1

∇Qf(W0; ξ0,i) (B.4)

Zt =βZt−1 + (1− β)
1

B

B∑
i=1

∇Qf(WQ
t ; ξt,i), Z0 =

1

B

B∑
i=1

∇Qf(WQ
0 ; ξ0,i). (B.5)

We also define the following relative quantization errors qG, qW , qM according to Assumption 3.1
and Lemma B.2, i.e., for any t ∈ {0, 1, . . . , T − 1} and i ∈ {1, 2, . . . , B},

∥∇Qf(Wt; ξt,i)−∇f(Wt; ξt,i)∥F ≤ qG∥∇f(Wt; ξt,i)∥F ,
∥∇QF (Wt)−∇F (Wt)∥F ≤ qG∥∇F (Wt)∥F ,

∥∇Qf(WQ
t ; ξt,i)−∇f(W

Q
t ; ξt,i)∥F ≤ qG∥∇f(WQ

t ; ξt,i)∥F ,
∥∇QF (WQ

t )−∇F (WQ
t )∥F ≤ qG∥∇F (WQ

t )∥F ,
∥WQ

t −Wt∥F ≤ qW ∥Wt∥F ,
∥MQ

t −Mt∥F ≤ qM∥Mt∥F . (B.6)

B.2 PROOF OF THEOREM 4.6

Proof. Set ηt = η, denote r = min{m,n}, and according to the L-smoothness of F (·), we have

E[F (Wt)− F (Wt+1)]

≥E[⟨∇F (Wt),Wt −Wt+1⟩ −
L

2
∥Wt −Wt+1∥2F ]

=E[η⟨∇F (Wt),UtV
⊤
t ⟩ −

L

2
η2∥UtV

⊤
t ∥2F ]

≥E[η⟨∇F (Wt),UtV
⊤
t ⟩]−

L

2
η2r

=E[η⟨Mt,UtV
⊤
t ⟩+ η⟨∇F (Wt)−Mt,UtV

⊤
t ⟩]−

L

2
η2r

≥E[η∥Mt∥∗ − η∥∇F (Wt)−Mt∥F · ∥UtV
⊤
t ∥F ]−

L

2
η2r

≥E[η∥∇F (Wt)∥∗ − η∥∇F (Wt)−Mt∥∗ − η
√
r∥∇F (Wt)−Mt∥F ]−

L

2
η2r

≥E[η∥∇F (Wt)∥∗ − 2η
√
r∥∇F (Wt)−Mt∥F ]−

L

2
η2r. (B.7)

The second inequality is due to ∥UtV
⊤
t ∥2F = tr(VtU

⊤
t UtV

⊤
t ) ≤ r = min{m,n}. The third

inequality is due to Mt = UtStV
⊤
t and Cauchy-Schwarz inequality. The last inequality we used

the fact that ∥A∥∗ ≤
√
r∥A∥F for any A ∈ Rm×n.

Summing Eq. (B.7) over t = 0, 1, . . . , T − 1, we get

1

T

T−1∑
t=0

E[∥∇F (Wt)∥∗]

≤E[F (W0)− F (WT )]

Tη
+

2
√
r

T

T−1∑
t=0

E[∥∇F (Wt)−Mt∥F ] +
ηLr

2
. (B.8)

Next, we focus on term E[∥∇F (Wt)−Mt∥F ]. With auxiliary variables defined in Eq. (B.2)-(B.5),
we have

E[∥∇F (Wt)−Mt∥F ]
≤E[∥∇F (Wt)−Ct∥F + ∥Ct −Xt∥F + ∥Xt −Yt∥F + ∥Yt − Zt∥F + ∥Zt −Mt∥F ].
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By Lemmas B.3, B.4, B.5, B.6, and B.7, we have

E[∥∇F (Wt)−Mt∥F ]
≤E[∥∇F (Wt)−Ct∥F + ∥Ct −Xt∥F + ∥Xt −Yt∥F + ∥Yt − Zt∥F + ∥Zt −Mt∥F ]

≤βLη
√
r

1− β
+ βt 3σ√

B
+

√
1− β

1 + β

3σ√
B

+ 3qG(σ +G) + 3qGTη
√
rL+ qW (1 + qG)DL+

qW (1 + qG)Tη
√
rL+

qMβ

1− β(1 + qM )

(
σ√
B

+

√
1− β

1 + β
· σ√

B
+G+ qG(σ +G) +

qW (1 + qG)DL+ (1 + qW )(1 + qG)Tη
√
rL

)
.

Summing over t = 0, 1, . . . , T − 1, we get

1

T

T−1∑
t=0

E[∥∇F (Wt)−Mt∥F ]

≤βLη
√
r

1− β
+

3σ

T (1− β)
√
B

+

√
1− β

1 + β

3σ√
B

+ 3qG(σ +G) + 3qGTη
√
rL+ qW (1 + qG)DL+

qW (1 + qG)Tη
√
rL+

qMβ

1− β(1 + qM )

(
σ√
B

+

√
1− β

1 + β
· σ√

B
+G+ qG(σ +G) +

qW (1 + qG)DL+ (1 + qW )(1 + qG)Tη
√
rL

)
. (B.9)

Substitute (B.9) into (B.8), with Assumption 3.1, we have

1

T

T−1∑
t=0

E[∥∇F (Wt)∥∗]

≤E[F (W0)− F (WT )]

ηT
+

Lηr

2
+

2
√
r

T

T−1∑
t=0

E[∥∇F (Wt)−Mt∥F ]

≤E[F (W0)− F (WT )]

ηT
+

Lηr

2
+

2βLηr

1− β
+

6σ
√
r

T (1− β)
√
B

+

√
1− β

1 + β

6σ
√
r√

B
+

6qG
√
r(σ +G) + 6qGTηrL+ 2qW (1 + qG)DL

√
r + 2qW (1 + qG)TηrL+

2qMβ
√
r

1− β(1 + qM )

(
σ√
B

+

√
1− β

1 + β
· σ√

B
+G+ qG(σ +G) +

qW (1 + qG)DL+ (1 + qW )(1 + qG)Tη
√
rL

)
≤E[F (W0)− F (WT )]

ηT
+

Lηr

2
+

2βLηr

1− β
+

6σ
√
r

T (1− β)
√
B

+

√
1− β

1 + β

6σ
√
r√

B
+

Θ

(
qG + qW + qGTη + qWTη +

qMβ

1− β(1 + qM )

(
1 +

√
1− β + qG + qW + Tη

))
.

Let F (W0) − F ∗ ≤ ∆, where ∆ > 0 is a constant. By setting B = 1, 1 − β = Θ(T−1/2),
η = Θ((1− β)1/2T−1/2), we have Tη = Θ(T 1/4). Then we have

E[F (W0)− F (WT )]

ηT
+

Lηr

2
+

2βLηr

1− β
+

6σ
√
r

T (1− β)
√
B

+

√
1− β

1 + β

6σ
√
r√

B
= O( 1

T 1/4
).
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Moreover, with condition β(1+qM ) < 1, suppose 1−β = CβT
−1/2, Cβ > 0 is a constant. Choose

qM = CMT−1/2, where CM < Cβ , CM > 0 is a constant, then we have

β(1 + qM ) = (1− CβT
−1/2)(1 + CMT−1/2) = 1− (Cβ − CM )T−1/2 − CβCMT−1 < 1.

Thus, by setting qG = O(T−1/2), qW = O(T−1/2), qM = O(T−1/2), we have

qG + qW + qGTη + qWTη +
qMβ

1− β(1 + qM )

(
1 +

√
1− β + qG + qW + Tη

)
=O(T−1/2 + T−1/2T 1/4 + T−1/2(1 + T−1/4 + T−1/2 + T 1/4))

=O(T−1/4),

where we used the fact qMβ
1−β(1+qM ) = O(qMβ(1 + β(1 + qM ))) = O(T−1/2), and β(1 + qM ) < 1.

Combining the above results, with the fact that ∥A∥∗ ≥ ∥A∥F for any matrix A, we complete the
proof.

B.3 PROOF OF LEMMA B.1

Lemma B.1 (Bound of ∥W∥F and ∥∇F (W)∥F for Muon). Suppose Assumptions 4.3 and 4.4
hold. The iterates of Muon satisfy that for any t ≥ 0,

∥Wt∥F ≤ D + tη
√
r, ∥∇F (Wt)∥F ≤ G+ tη

√
rL.

Proof of Lemma B.1. According to the update of Muon, we have

∥Wt∥F
=∥Wt−1 − ηUtV

⊤
t ∥F

≤∥Wt−1∥F + η∥UtV
⊤
t ∥F

=∥Wt−1∥F + η
√
tr(VtU⊤

t UtV⊤
t )

≤∥Wt−1∥F + η
√
r

≤∥W0∥F + tη
√
r

≤D + tη
√
r.

The third inequality is because Ut and Vt are orthogonal matrices, and the last inequality is due to
Assumption 4.4.

∥∇F (Wt)∥F

≤∥∇F (W0)∥F +

t−1∑
k=0

∥∇F (Wk+1)−∇F (Wk)∥F

≤G+

t−1∑
k=0

L∥Wk+1 −Wk∥F

≤G+

t−1∑
k=0

Lη
√
r

=G+ tη
√
rL.

The first inequality is due to the triangle inequality, the second inequality is due to Assumption 4.3,
and the last inequality is due to the update of Muon.
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B.4 PROOF OF LEMMA B.2

Lemma B.2. Suppose Assumption 3.1 holds. For any matrix X ∈ Rm×n and its quantized version
XQ, we have

∥XQ −X∥F ≤ q∥X∥F .

Proof of Lemma B.2. According to Assumption 3.1, we have

∥XQ −X∥2F =

m∑
i=1

n∑
j=1

|XQ
ij −Xij |2

≤
m∑
i=1

n∑
j=1

q2|Xij |2

=q2∥X∥2F .
Taking the square root on both sides, we complete the proof.

B.5 PROOF OF LEMMA B.3

Lemma B.3. Suppose Assumptions 4.3 and 4.4 hold. For any t ≥ 0, we have

E[∥∇F (Wt)−Ct∥F ] ≤
βLη
√
r

1− β
.

Proof of Lemma B.3. This proof is a standard technique for bounding the bias term of momentum.
We have

E[∥∇F (Wt)−Ct∥F ]
=E[∥∇F (Wt)− (βCt−1 + (1− β)∇F (Wt))∥F ]
=E[β∥∇F (Wt)−Ct−1∥F ]
≤E[β∥∇F (Wt−1)−Ct−1∥F + β∥∇F (Wt−1)−∇F (Wt)∥F ]
≤E[β∥∇F (Wt−1)−Ct−1∥F + βL∥Wt−1 −Wt∥F ]
=E[β∥∇F (Wt−1)−Ct−1∥F + βLη∥Ut−1V

⊤
t−1∥F ]

≤E[β∥∇F (Wt−1)−Ct−1∥F + βLη
√
r]

≤βt∥∇F (W0)−C0∥F +

t∑
i=1

βiLη
√
r

≤βLη
√
r

1− β
.

B.6 PROOF OF LEMMA B.4

Lemma B.4. Suppose Assumptions 4.1 and 4.2 hold. For any t ≥ 0, we have

E[∥Ct −Xt∥F ] ≤ βt σ√
B

+

√
1− β

1 + β

σ√
B
.

Proof of Lemma B.4. Expanding Ct and Xt by their definitions in (B.2) and (B.3), we have

Ct =βtC0 + (1− β)

t∑
k=1

βt−k∇F (Wk),

Xt =βtX0 + (1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

∇f(Wk; ξk,i).
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Thus, we have

E[∥Ct −Xt∥F ]

≤E[∥βt(C0 −X0)∥F ] + E[(1− β)∥
t∑

k=1

βt−k(∇F (Wk)−
1

B

B∑
i=1

∇f(Wk; ξk,i))∥F ]

≤βtE[∥C0 −X0∥F ] +

√√√√E[(1− β)2∥
t∑

k=1

βt−k(∇F (Wk)−
1

B

B∑
i=1

∇f(Wk; ξk,i))∥2F ]

=βtE[∥C0 −X0∥F ] +

√√√√E[(1− β)2
t∑

k=1

β2(t−k)
1

B2

B∑
i=1

∥∇F (Wk; ξk,i)−∇F (Wk)∥2F ]

≤βtE[∥C0 −X0∥F ] +

√√√√(1− β)2
t∑

k=1

β2(t−k)
σ2

B

≤βt σ√
B

+

√
1− β

1 + β

σ√
B
.

The second inequality is due to Jensen’s inequality, the first equality is due to the independence of
ξk,i for different k or i, and the third inequality is due to Assumptions 4.1 and 4.2.

B.7 PROOF OF LEMMA B.5

Lemma B.5. Suppose Assumptions 4.1, 4.2 and 3.1 hold. For any t ≥ 0, we have

E[∥Xt −Yt∥F ] ≤ qG(σ +G+ tη
√
rL).

Proof of Lemma B.5. By the definition of Xt and Yt in (B.3) and (B.4), we have

E[∥Xt −Yt∥F ]

≤E[β∥Xt−1 −Yt−1∥F ] + (1− β)
1

B

B∑
i=1

E[∥∇f(Wt; ξt,i)−∇Qf(Wt; ξt,i)∥F ]

≤E[β∥Xt−1 −Yt−1∥F ] + (1− β)
1

B

B∑
i=1

E[qG∥∇f(Wt; ξt,i)∥F ]

≤E[β∥Xt−1 −Yt−1∥F ] + (1− β)E[qG(σ + ∥∇F (Wt)∥F )]
≤E[β∥Xt−1 −Yt−1∥F ] + (1− β)qG(σ +G+ tη

√
rL)

≤βt∥X0 −Y0∥F + (1− β)qG(σ +G+ tη
√
rL)

t−1∑
k=0

βk

≤βtqG(σ +G) + (1− βt)qG(σ +G+ tη
√
rL)

≤qG(σ +G) + (1− βt)qGtη
√
rL

≤qG(σ +G+ tη
√
rL).

The second inequality is due to Assumption 3.1, Lemma B.2 and Definition B.6. The third inequality
is due to Assumption 4.2. The fourth inequality is due to Lemma B.1.

B.8 PROOF OF LEMMA B.6

Lemma B.6. Suppose Assumptions 4.1, 4.2, 4.3 and 3.1 hold. For any t ≥ 0, we have

E[∥Yt − Zt∥F ] ≤βt · 2σ√
B

+

√
1− β

1 + β
· 2σ√

B
+ 2qG(σ +G) + 2qGtη

√
rL+
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qW (1 + qG)DL+ qW (1 + qG)tη
√
rL,

E[∥Zt∥F ] ≤
σ√
B

+

√
1− β

1 + β
· σ√

B
+G+ qG(σ +G) + qW (1 + qG)DL+

(1 + qW )(1 + qG)tη
√
rL.

Proof of Lemma B.6. By the definition of Yt and Zt in (B.4) and (B.5), we have

Yt =βtY0 + (1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

∇Qf(Wk; ξk,i),

Zt =βtZ0 + (1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

∇Qf(WQ
k ; ξk,i).

Thus, by the triangle inequality, we have

E[∥Yt − Zt∥F ]

≤E[βt∥Y0 − Z0∥F ] + (1− β)E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇Qf(Wk; ξk,i)−∇Qf(WQ
k ; ξk,i))∥F ]

≤E[βt∥Y0 − Z0∥F ] + (1− β)E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇Qf(Wk; ξk,i)−∇f(Wk; ξk,i)∥F ]︸ ︷︷ ︸
A

+

(1− β)E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇f(Wk; ξk,i)−∇F (Wk))∥F ]︸ ︷︷ ︸
C

+

(1− β)E[∥
t∑

k=1

βt−k · (∇F (Wk)−∇F (WQ
k ))∥F ]︸ ︷︷ ︸

H

+

(1− β)E[∥
t∑

k=1

βt−k · (∇F (WQ
k )−

1

B

B∑
i=1

∇f(WQ
k ; ξk,i))∥F ]︸ ︷︷ ︸

I

+

(1− β)E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇f(WQ
k ; ξk,i)−∇

Qf(WQ
k ; ξk,i))∥F ]︸ ︷︷ ︸

J

. (B.10)

Next, we bound each term in (B.10) one by one.

Bound on βtE[∥Y0 − Z0∥F ]. By the definitions of Y0 and Z0 in (B.4) and (B.5), we have

Y0 =
1

B

B∑
i=1

∇Qf(W0; ξ0,i),

Z0 =
1

B

B∑
i=1

∇Qf(WQ
0 ; ξ0,i).

Thus, we have

βtE[∥Y0 − Z0∥F ]
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=βtE[∥ 1
B

B∑
i=1

∇Qf(W0; ξ0,i)−
1

B

B∑
i=1

∇Qf(WQ
0 ; ξ0,i)∥F ]

≤βt 1

B

B∑
i=1

E[∥∇Qf(W0; ξ0,i)−∇f(W0; ξ0,i)∥F ]+

βtE[∥ 1
B

B∑
i=1

∇f(W0; ξ0,i)−∇F (W0)∥F ]+

βtE[∥∇F (W0)−∇F (WQ
0 )∥F ]+

βtE[∥ 1
B

B∑
i=1

∇F (WQ
0 )−∇f(W

Q
0 ; ξ0,i)∥F ]+

βt 1

B

B∑
i=1

E[∥∇f(WQ
0 ; ξ0,i)−∇Qf(WQ

0 ; ξ0,i)∥F ]

≤βt 1

B

B∑
i=1

qGE[∥∇f(W0; ξ0,i)∥F ] + βt σ√
B

+ βtLqWE[∥W0∥F ] + βt σ√
B
+

βt 1

B

B∑
i=1

qGE[∥∇f(WQ
0 ; ξ0,i)∥F ]

≤βt 1

B

B∑
i=1

qG(σ +G) + βt 2σ√
B

+ βtqWDL+ βt 1

B

B∑
i=1

qG(σ + qWDL+G)

=βt(2qG(σ +G) + qWDL(1 + qG) +
2σ√
B
). (B.11)

The first inequality is due to the triangle inequality. The second inequality we used Definition B.6
for the first and last terms, Assumption 4.1, 4.2 and Jensen’s inequality for the second and fourth
terms, and Assumption 4.3 and Definition B.6 for the third term. The third inequality is due to
Assumption 4.2, 4.4 and Definition B.6.

Bound on A.

A =(1− β)E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇Qf(Wk; ξk,i)−∇f(Wk; ξk,i)∥F ]

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qGE[∥∇f(Wk; ξk,i)∥F ]

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qG(σ + E[∥∇F (Wk)∥F ])

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qG(σ +G+ tη
√
rL)

=(1− βt)qG(σ +G+ tη
√
rL). (B.12)

The first inequality is due to Definition B.6 and the triangle inequality. The second inequality is due
to Assumption 4.2. The third inequality is due to Lemma B.1.

Bound on C. Similar to Lemma B.4, we have

C =(1− β)E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇f(Wk; ξk,i)−∇F (Wk))∥F ]
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≤(1− β)

√√√√E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇f(Wk; ξk,i)−∇F (Wk))∥2F ]

=(1− β)

√√√√ t∑
k=1

β2(t−k)
1

B2

B∑
i=1

E[∥∇f(Wk; ξk,i)−∇F (Wk)∥2F ]

≤(1− β)

√√√√ t∑
k=1

β2(t−k)
1

B2

B∑
i=1

σ2

=(1− β)

√
1− β2t

1− β2
· σ

2

B

≤

√
1− β

1 + β
· σ√

B
. (B.13)

Bound on H.

H =(1− β)E[∥
t∑

k=1

βt−k · (∇F (Wk)−∇F (WQ
k ))∥F ]

≤(1− β)

t∑
k=1

βt−kE[∥∇F (Wk)−∇F (WQ
k )∥F ]

≤(1− β)

t∑
k=1

βt−kLE[∥Wk −WQ
k ∥F ]

≤(1− β)

t∑
k=1

βt−kLqWE[∥Wk∥F ]

≤(1− β)

t∑
k=1

βt−kLqW (D + tη
√
r)

≤(1− βt)qWL(D + tη
√
r). (B.14)

The first inequality is due to the triangle inequality. The second inequality is due to Assumption 4.3.
The third inequality is due to Definition B.6. The fourth inequality is due to Lemma B.1.

Bound on I. Similar to Lemma B.4, we have

I =(1− β)E[∥
t∑

k=1

βt−k · (∇F (WQ
k )−

1

B

B∑
i=1

∇f(WQ
k ; ξk,i))∥F ]

≤(1− β)

√√√√E[∥
t∑

k=1

βt−k · (∇F (WQ
k )−

1

B

B∑
i=1

∇f(WQ
k ; ξk,i))∥2F ]

=(1− β)

√√√√ t∑
k=1

β2(t−k)
1

B2

B∑
i=1

E[∥∇f(WQ
k ; ξk,i)−∇F (WQ

k )∥2F ]

≤(1− β)

√√√√ t∑
k=1

β2(t−k)
1

B2

B∑
i=1

σ2

=(1− β)

√
1− β2t

1− β2
· σ

2

B
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≤

√
1− β

1 + β
· σ√

B
. (B.15)

Bound on J.

J =(1− β)E[∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇f(WQ
k ; ξk,i)−∇

Qf(WQ
k ; ξk,i))∥F ]

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qGE[∥∇f(WQ
k ; ξk,i)∥F ]

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qG(σ + E[∥∇F (WQ
k )∥F ])

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qG(σ + LE[∥WQ
k −Wk∥F ] + E[∥∇F (Wk)∥F ])

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qG(σ + LqWE[∥Wk∥F ] + E[∥∇F (Wk)∥F ])

≤(1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qG(σ + LqW (D + tη
√
r) +G+ tη

√
rL)

≤(1− βt)qG(σ +G+ qWDL+ (1 + qW )tη
√
rL). (B.16)

The first inequality is due to Definition B.6 and the triangle inequality. The second inequality is due
to Assumption 4.2. The third inequality is due to Assumption 4.3 and the triangle inequality. The
fourth inequality is due to Definition B.6. The fifth inequality is due to Lemma B.1.

Bound on E[∥Yt − Zt∥F ]. Substituting (B.11), (B.12), (B.13), (B.14), (B.15) and (B.16) into
(B.10), we have

E[∥Yt − Zt∥F ] ≤βt · 2σ√
B

+

√
1− β

1 + β
· 2σ√

B
+ 2qG(σ +G) + (1− βt)2qGtη

√
rL+

qW (1 + qG)DL+ (1− βt)qW (1 + qG)tη
√
rL.

≤βt · 2σ√
B

+

√
1− β

1 + β
· 2σ√

B
+ 2qG(σ +G) + 2qGtη

√
rL+

qW (1 + qG)DL+ qW (1 + qG)tη
√
rL.

Bound on E[∥Zt∥F ]. By the definition of Zt in (B.5), we have

E[∥Zt∥F ]

≤E[βt∥Z0∥F ] + E[(1− β)∥
t∑

k=1

βt−k · 1
B

B∑
i=1

∇Qf(WQ
k ; ξk,i)∥F ]

≤βtE[∥Z0∥F ] + E[(1− β)

t∑
k=1

βt−k · 1
B

B∑
i=1

∥∇Qf(WQ
k ; ξk,i)−∇f(W

Q
k ; ξk,i)∥F ]+

E[(1− β)∥
t∑

k=1

βt−k · ( 1
B

B∑
i=1

∇f(WQ
k ; ξk,i)−∇F (WQ

k ))∥F ]+

E[(1− β)

t∑
k=1

βt−k · (∥∇F (WQ
k )−∇F (Wk)∥F + ∥∇F (Wk)∥F )]
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≤βtE[∥Z0∥F ] + (1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qGE[∥∇f(WQ
k ; ξk,i)∥F ]+√

1− β

1 + β
· σ√

B
+ (1− β)qWL

t∑
k=1

βt−kE[∥Wk∥F ] + (1− β)

t∑
k=1

βt−kE[∥∇F (Wk)∥F ]

≤βtE[∥Z0∥F ] + (1− β)

t∑
k=1

βt−k 1

B

B∑
i=1

qG(σ + qWLE[∥Wk∥F ] + E[∥∇F (Wk)∥F ])+√
1− β

1 + β
· σ√

B
+ (1− β)qWL

t∑
k=1

βt−kE[∥Wk∥F ] + (1− β)

t∑
k=1

βt−kE[∥∇F (Wk)∥F ]

≤βtE[∥Z0∥F ] + (1− βt)qG(σ + qWL(D + tη
√
r) +G+ tη

√
rL)+√

1− β

1 + β
· σ√

B
+ (1− βt)qWL(D + tη

√
r) + (1− βt)(G+ tη

√
rL)

≤βt(qG(σ + qWDL+G) +
σ√
B

+ qWDL+G)+

(1− βt)qG(σ + qWL(D + tη
√
r) +G+ tη

√
rL)+√

1− β

1 + β
· σ√

B
+ (1− βt)qWL(D + tη

√
r) + (1− βt)(G+ tη

√
rL)

≤βt σ√
B

+

√
1− β

1 + β
· σ√

B
+G+ qG(σ +G) + qW (1 + qG)DL+

(1− βt)(1 + qW )(1 + qG)tη
√
rL

≤ σ√
B

+

√
1− β

1 + β
· σ√

B
+G+ qG(σ +G) + qW (1 + qG)DL+ (1 + qW )(1 + qG)tη

√
rL.

The first and second inequalities are due to the triangle inequality. The third inequality we used
Definition B.6 for the second term, Jensen’s inequality, Assumptions 4.1, 4.2 for the third term,
Assumption 4.3 and Definition B.6 for the fourth term. The fourth inequality we used triangle
inequality, Assumptions 4.2, 4.3, Definition B.6. The fifth inequality is due to Lemma B.1.

B.9 PROOF OF LEMMA B.7

Lemma B.7. Suppose Assumptions 4.1, 4.2, 4.3 and 3.1 hold. For any t ≥ 0, if β(1 + qM ) < 1,
we have

E[∥Zt −Mt∥F ] ≤
qMβ

1− β(1 + qM )

(
σ√
B

+

√
1− β

1 + β
· σ√

B
+G+ qG(σ +G) +

qW (1 + qG)DL+ (1 + qW )(1 + qG)tη
√
rL

)
.

Proof of Lemma B.7. By the definitions of Zt and Mt in (B.5) and (B.1), we have

E[∥Zt −Mt∥F ]
≤E[β∥Zt−1 −MQ

t−1∥F ]

≤E[β∥Zt−1 −Mt−1∥F + β∥Mt−1 −MQ
t−1∥F ]

≤E[β∥Zt−1 −Mt−1∥F + qMβ∥Mt−1∥F ]
≤E[β(1 + qM )∥Zt−1 −Mt−1∥F + qMβ∥Zt−1∥F ]

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

≤qMβ

t−1∑
k=0

βk(1 + qM )k∥Zt−k−1∥F

≤ qMβ

1− β(1 + qM )

(
σ√
B

+

√
1− β

(1 + β)
· σ√

B
+G+ qG(σ +G) +

qW (1 + qG)DL+ (1 + qW )(1 + qG)tη
√
rL

)
. (B.17)

The second inequality is due to the triangle inequality. The third inequality is due to Definition B.6.
The fourth inequality is due to the triangle inequality. The fifth inequality is due to Z0 = M0. The
last inequality we used Lemma B.6

C ADDITIONAL EXPERIMENTS AND DETAILS

C.1 IMITATING QUANTIZATION AND DEQUANTIZATION

We emulate floating-point quantization and dequantization by reducing the mantissa length from its
original precision (52 bits for float64 and 23 bits for float32) to M bits, while keeping the
exponent and sign bits unchanged. This design choice is motivated by the fact that practical scaling
techniques can effectively prevent overflow and underflow (Peng et al., 2023). After truncating the
mantissa, we apply stochastic rounding to the nearest two representable values, and then dequantize
the result back to standard float32 or float64.

C.2 SYNTHETIC EXPERIMENTS

We conduct synthetic experiments on the Rosenbrock function, defined as

F (W) =

n−1∑
j=1

(
100∥Wj+1 −W2

j∥2F + ∥1m −Wj∥2F
)
,

where W = [W1,W2, . . . ,Wd] ∈ Rm×n is the weight matrix. The global minimum is at
W∗ = [1m,1m, . . . ,1m] with F (W∗) = 0. We set m = 50, d = 100, and initialize
W0 ∼ N (1m×n, 0.1

2I). For Muon, we apply the default hyperparameters in the Newton-Schulz
iteration to compute the zeroth power / orthogonalization of G (Jordan et al., 2024), using double
precision.

Figure 3 shows the gradient norms of Adam with different quantization errors on the Rosenbrock
function. Figure 4 shows the gradient norms of Muon with different quantization errors on the
Rosenbrock function.

Figure 5 shows the function values of Adam with different quantization errors on the Rosenbrock
function. Figure 6 shows the function values of Muon with different quantization errors on the
Rosenbrock function. The relative quantization error is defined as ∥X−Q(X)∥F

∥X∥F
, measuring the aver-

age quantization error of X, where Q(·) is the quantization operator.

Figure 7 shows the effect of quantizing the second moment in Adam to different mantissa lengths
M , with all other components kept in FP32. As β2 → 1, the optimizer exhibits larger converged
gradient norms and becomes more sensitive to quantization errors induced by reduced M . This
phenomenon aligns with our theoretical analysis in Theorem 4.5, which highlights the amplification
of quantization errors by the inverse square root of historical gradient variances in Adam when β2

is close to 1.

C.3 CIFAR-10 EXPERIMENTS

We conduct real-data experiments on the CIFAR-10 dataset (Krizhevsky et al., 2009) using a 4-layer
fully connected network (FCN). The architecture is as follows: an input layer with 3072 neurons
(corresponding to 32 × 32 × 3 images), followed by three hidden layers with 512, 256, and 64
neurons, respectively, and an output layer with 10 neurons for classification. ReLU activations are
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Figure 5: Rosenbrock: Adam relative quantization error of different mantissa bits (M ). Weights
error (top left), Gradient error (top right), First moment error (bottom left), Second moment error
(bottom right). These results show that the more mantissa bits, the smaller the relative quantization
error. Combining with Figure 3, we can see that the more mantissa bits, the smaller quantization
error, the better convergence performance (Theorem 4.5).
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Figure 6: Rosenbrock: Muon relative quantization error of different mantissa bits (M ). Weights
error (left), Gradient error (middle), Momentum error (right). These results show that the more
mantissa bits, the smaller the relative quantization error. Combining with Figure 4, we can see that
the more mantissa bits, the smaller quantization error, the better convergence performance (Theo-
rem 4.6).

used for all hidden layers, and the network is trained with the cross-entropy loss for 100 epochs. We
evaluate both Adam and Muon under varying quantization precisions.

For Adam, we use mantissa bit-lengths M ∈ {1, 2, 3, 7, 10, 23}, batch size B = 256, learning rate
η = 1.5 × 10−4, β1 = 0.95, β2 = 0.999, ϵ = 10−8, and weight decay 0.1. For Muon, vector
parameters are updated using Adam, while matrix parameters are updated with Muon’s orthogonal-
ization step. We choose mantissa bit-lengths M ∈ {2, 3, 7, 10, 23}, batch size B = 512, learning
rate η = 0.001, β = 0.99, weight decay 0.1, and 5 Newton–Schulz iterations, following the iteration
hyperparameters in Jordan et al. (2024). The auxiliary Adam optimizer in Muon uses learning rate
η = 2× 10−4, β1 = 0.9, β2 = 0.999, ϵ = 10−8, and weight decay 0.05.

Figure 8 shows the gradient norms of Adam with different quantization errors on CIFAR-10. Fig-
ure 9 shows the gradient norms of Muon with different quantization errors on CIFAR-10. Figure 10
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shows the quantization errors of Adam with different precision on CIFAR-10. Figure 11 shows
the quantization errors of Muon with different precision on CIFAR-10. The relative quantization
error is defined as ∥X−Q(X)∥F

∥X∥F
, measuring the average quantization error of X, where Q(·) is the

quantization operator.

C.4 NANOGPT EXPERIMENTS

We evaluate the impact of quantization on training the nanoGPT model on the OpenWebText
dataset (Gokaslan et al., 2019). The model has ∼ 26.4M parameters, with weight tying between
the embedding and the output layer (lm head). Its architecture includes 4 transformer layers, each
with 4 attention heads, embedding dimension 384, without dropout, and no bias terms. The dataset
contains ∼ 655.4M tokens, and we use a block size (context length) of 512. Training is performed
with a batch size of 32 and gradient accumulation of 4, resulting in an effective batch size of 128.
Models are trained for up to 10,000 iterations.

Optimizer and Training Settings. We experiment with both AdamW and Muon optimizers, as
summarized below:

• AdamW: learning rate 3 × 10−4, weight decay 0.1, β1 = 0.9, β2 = 0.95, ϵ = 10−8, gradient
clipping norm 1.0. Learning rate decay is disabled.

• Muon: 2D parameters in transformer blocks (∼ 7M) are updated with Muon’s orthogonalization-
based step (Newton-Schulz iteration), while all remaining parameters (∼ 19M, including embed-
dings, layer norms, and output layer) are updated with AdamW. Muon hyperparameters are: learn-
ing rate 3 × 10−2, β = 0.95 (with Nesterov momentum), Newton-Schulz steps 5, ϵ = 1 × 10−7

for NS iteration. Auxiliary AdamW: learning rate 6 × 10−3, β1 = 0.9, β2 = 0.95, ϵ = 10−8,
weight decay 0.01, gradient clipping norm 1.0.

Quantization. Following the procedure in Section C, we apply mantissa truncation to weights,
gradients, and optimizer states. We vary the mantissa length M ∈ {1, 2, 10, 23}, keeping exponent
and sign bits in full precision.

Results. Figures 12 and 13 show training and validation loss dynamics for nanoGPT under differ-
ent quantization precisions. We observe that:

• Lower mantissa lengths (e.g., M = 2) induce slightly slower convergence and higher final
training loss, consistent with the observed gradient norm amplification in Theorem 4.5 and
Theorem 4.6.

• Muon exhibits greater robustness to low-precision quantization compared to AdamW,
achieving lower training and validation loss at M = 2. This aligns with our theoretical
findings that Muon’s quantization error amplification is less sensitive than Adam’s.

• As the mantissa length increases, both AdamW and Muon converge to almost identical
training and validation loss, indicating that higher precision mitigates quantization-induced
degradation.

Overall, these results on nanoGPT extend the findings from synthetic (Rosenbrock) and CIFAR-
10 experiments to a real large-scale language modeling setting, highlighting the interplay between
quantization precision, optimizer dynamics, and convergence stability.
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(a): Mantissa length M = 1.
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(b): Mantissa length M = 2.
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(c): Mantissa length M = 4.
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(d): Mantissa length M = 7.
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(e): Mantissa length M = 10.

Figure 7: Rosenbrock: Effect of quantizing second moment in Adam to different mantissa lengths
M , with all other components kept in FP32. As β2 → 1, the optimizer exhibits larger converged
gradient norms and becomes more sensitive to quantization errors induced by reduced M .
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Figure 8: CIFAR-10: Adam gradient norms under different mantissa precisions M . Larger mantissa
bit-lengths lead to smaller converged gradient norms. Together with Figure 10, this demonstrates
that higher precision reduces quantization error and improves convergence, consistent with Theo-
rem 4.5.
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Figure 9: CIFAR-10: Muon gradient norms under different mantissa precisions M . Larger mantissa
bit-lengths lead to smaller converged gradient norms. Together with Figure 11, this demonstrates
that higher precision reduces quantization error and improves convergence, consistent with Theo-
rem 4.6.
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Figure 10: CIFAR-10: Adam relative quantization error of different mantissa bits (M ). Weights
error (top left), Gradient error (top right), First moment error (bottom left), Second moment error
(bottom right). These results show that the more mantissa bits, the smaller the relative quantization
error. Combining with Figure 8, we can see that the more mantissa bits, the smaller quantization
error, the better convergence performance (Theorem 4.5).
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Figure 11: CIFAR-10: Muon with auxiliary Adam relative quantization error of different mantissa
bits (M ). Weights error (top left), Gradient error (top middle), Momentum error (top right), Auxil-
iary Adam first moment error (bottom left), Auxiliary Adam second moment error (bottom middle).
These results show that the more mantissa bits, the smaller the relative quantization error. Combin-
ing with Figure 9, we can see that the more mantissa bits, the smaller quantization error, the better
convergence performance (Theorem 4.6).
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Figure 12: Training loss of nanoGPT on OpenWebText with varying mantissa lengths M . Lower M
slightly increases the training loss due to amplified quantization error.
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Figure 13: Validation loss of nanoGPT on OpenWebText under varying mantissa precisions M .
Higher precision reduces quantization error and improves validation performance, particularly at low
M . Notably, Muon exhibits greater robustness to low-precision quantization compared to AdamW,
suggesting its potential advantage for low-precision training of large language models.
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