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ABSTRACT

Gene expression prediction, which predicts mRNA expression levels from DNA
sequences, presents significant challenges. Previous works often focus on extending
input sequence length to locate distal enhancers, which may influence target genes
from hundreds of kilobases away. Our work first reveals that for current models,
long sequence modeling can decrease performance. Even carefully designed
algorithms only mitigate the performance degradation caused by long sequences.
Instead, we find that proximal multimodal epigenomic signals near target genes
prove more essential. Hence we focus on how to better integrate these signals,
which has been overlooked. We find that different signal types serve distinct
biological roles, with some directly marking active regulatory elements while
others reflect background chromatin patterns that may introduce confounding
effects. Simple concatenation may lead models to develop spurious associations
with these background patterns. To address this challenge, we propose Prism
(Proximal regulatory integration of signals for mRNA expression levels prediction),
a framework that learns multiple combinations of high-dimensional epigenomic
features to represent distinct background chromatin states and uses backdoor
adjustment to mitigate confounding effects. Our experimental results demonstrate
that proper modeling of multimodal epigenomic signals achieves state-of-the-art
performance using only short sequences for gene expression prediction.

1 INTRODUCTION

Understanding and predicting gene expression is fundamental to deciphering the complex regulatory
mechanisms governing cellular functions (Pratapa et al., 2020). Accurate gene expression predic-
tion enables breakthroughs across biomedicine (Mamoshina et al., 2016), from unraveling disease
pathogenesis (Cookson et al., 2009; Emilsson et al., 2008), to enabling personalized therapeutic
strategies (Blass & Ott, 2021).

However, accurately predicting gene expression presents significant challenges. First, gene expression
depends on regulatory elements that can be located hundreds of thousands of base pairs (bps)
away (Schoenfelder & Fraser, 2019) (Figure 1 (a)), which naturally requires models capable of
processing long DNA sequences (Figure 1 (b)) (Avsec et al., 2021; Nguyen et al., 2023; Schiff et al.,
2024; Su et al., 2025). Additionally, gene expression is a cell-type specific process (Shen-Orr et al.,
2010) that is difficult to predict precisely using cell-shared DNA sequences alone, necessitating the
integration of cell-type specific information such as histone modifications, chromatin accessibility,
and other multimodal epigenomic signals (Lin et al., 2024; Su et al., 2025) (Figure 1 (c)).

Previous works primarily focus on modeling long sequences. However, through simple but insightful
experiments, we demonstrate that these methods merely mitigate the performance degradation
inherent in current long-sequence modeling paradigms (Figure 1(d), details in Section 2). In contrast,
using short sequences already achieves excellent results, especially when combined with multimodal
epigenomic signals. We attribute the effectiveness of short sequences to the fact that proximal
epigenomic signals reflect the activity of distal regulatory elements through chromatin looping and
spatial interactions (Plank & Dean, 2014). As shown in Figure 1(a), although enhancers and genes
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Figure 1: (a) Long-range regulatory interactions through chromatin looping. (b) Current long-
sequence models suffer from technical limitations. (c) Multimodal epigenomic signals provide
cell-type specific regulatory information. (d) Performance of Seq2Exp (Su et al., 2025) and Ca-
duceus (Schiff et al., 2024) with varying input sequence lengths. (e) Different signals show varying
contributions. (f) Performance degradation when specific signals are removed during testing from a
model trained with all signals.

are separated by large distances, some epigenomic signals near the gene can reveal the regulatory
influence of these distal elements.

State-of-the-art (SOTA) methods (Lin et al., 2024; Schiff et al., 2024; Su et al., 2025) utilize epige-
nomic signals through simple concatenation (Figure 1(c)) without considering their distinct biological
roles. We conducted a study characterizing the differential contributions of various epigenomic
signals by training Caduceus (Schiff et al., 2024) with DNA sequence alone and with individual
signals (H3K27ac, DNase-seq, Hi-C) or all combined. Figure 1(e) shows each signal improves
performance, with H3K27ac providing the most substantial enhancement. This aligns with biological
understanding: H3K27ac directly marks active regulatory elements (Creyghton et al., 2010), func-
tioning as a foreground signal, while DNase-seq and Hi-C serve as background signals indicating
chromatin accessibility (Thurman et al., 2012) and organization (Rao et al., 2014). Models trained on
all signals performed comparably to H3K27ac alone, indicating background signals provide limited
incremental benefit beyond foreground signals.

Figure 1(f) reveals a critical paradox: removing background signals during testing from models
trained on all signals causes severe performance degradation. While background signals provide
minimal standalone improvement, models develop over-dependence during training. This asym-
metric behavior indicates these background patterns introduce confounding effects. The underlying
mechanism stems from spurious correlations in training data, where gene expression systematically
co-occurs with open chromatin patterns, causing models to learn non-causal associations between
accessibility and expression levels. However, gene expression can occur independently of chromatin
accessibility (Volpe et al., 2002), and our case study (Appendix D) demonstrates high expression in
regions with limited accessibility, substantiating the spurious correlation hypothesis.

To address these confounding effects, we propose a simple yet effective approach that learns multiple
combinations of high-dimensional epigenomic features to represent distinct background chromatin
states (Qiang et al., 2022). Each learned combination corresponds to a specific background state.
We then apply backdoor adjustment (Pearl, 2009) to perform causal intervention across these states,
thereby mitigating confounding effects and enhancing the model’s predictive performance.

We summarize our contributions here:
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• We challenge current approaches that use long sequence modeling for gene expression pre-
diction, which, while biologically plausible, may not yield improvements due to limitations
of present technical tools.

• We systematically analyze the differential roles of various epigenomic signals and identify
that background chromatin patterns may introduce confounding effects, leading models to
learn spurious associations.

• From a causal perspective, we propose Prism, an approach that learns high-dimensional fea-
ture combinations to represent background chromatin states and applies backdoor adjustment
to mitigate confounding effects.

• Through extensive experimentation, we demonstrate the effectiveness of our approach,
achieving state-of-the-art performance using only short sequences through a simple and
effective method.

2 CURRENT METHODS DO NOT BENEFIT FROM LONG SEQUENCE INPUT

Mainstream deep learning methods for gene expression prediction focus on extending model input
length. However, since the context length that can influence gene expression is extremely long (up
to 1M bps (Avsec et al., 2025)), quadratic-complexity Transformers cannot handle such sequences.
Therefore, previous works have adopted alternative approaches beyond traditional Transformers,
primarily falling into two categories.

The first category comprises CNN-Transformer hybrid models, which first downsample long se-
quences into low-resolution bins through convolutional neural networks (CNNs), then employ
Transformers to model these low-resolution bins (Avsec et al., 2021; Linder et al., 2025; Avsec
et al., 2025). These works follow Enformer (Avsec et al., 2021) in performing 128-fold down-
sampling, resulting in the loss of single-nucleotide resolution, which is sub-optimal for DNA data
where single-base variations (Avsec et al., 2025) can have profound biological impacts. Although
Enformer performs well in multi-task prediction, Su et al. (2025) revealed that it underperforms
compared to single-nucleotide modeling approaches like Caduceus (Schiff et al., 2024) on specialized
gene expression prediction tasks. Similarly, recent work focusing on personalized gene expression
prediction (Li et al., 2025) demonstrated that these approaches perform worse than Caduceus when
predicting gene expression in unseen individuals. Therefore, we conclude that for gene expression
prediction tasks with specialized training data, maintaining single-nucleotide resolution is crucial.

Another class leverages neural networks with linear complexity, primarily the recently popular state
space models (SSMs) (Gu & Dao, 2023; Nguyen et al., 2023; Schiff et al., 2024; Nguyen et al., 2024),
which directly model long sequences at single-nucleotide resolution. Recently, Seq2Exp (Su et al.,
2025) achieved SOTA results in gene expression prediction by introducing learnable masks on top of
Caduceus (Schiff et al., 2024), whose motivation is to learn to focus SSMs on important regulatory
elements, pushing SSM-based methods to SOTA performance.
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k 3k 5k 10
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20

0k
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Figure 2: Shortening input length at test time.

In this work, we first challenge the prevalent
approach of using linear-complexity SSMs for
single-nucleotide resolution long sequence mod-
eling (Schiff et al., 2024; Su et al., 2025). These
methods typically evaluate their effectiveness on
long sequences only. For instance, Seq2Exp (Su
et al., 2025) tested exclusively on 200K-length
sequences and demonstrated superior perfor-
mance over existing methods, thereby claiming
enhanced long-sequence modeling capabilities.
However, current SSMs merely offer computa-
tional efficiency advantages with linear complex-
ity when processing long sequences, while their
actual modeling performance remains question-
able (Figure 1 (b)). Specifically, (1) SSMs have
fixed-size hidden states (Gu & Dao, 2023), mak-
ing it difficult to memorize all information in
long sequences. (2) Wang et al. (2025) indicates
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that SSMs exhibit a strong recency bias, meaning tokens in the sequence primarily interact with their
nearby context. This contradicts the goal of gene expression prediction, which aims to model the
relationship between target genes and distant regulatory elements.

Hence, we conducted a preliminary study to validate whether SSMs can truly handle long sequences
effectively. Specifically, we trained Caduceus (Schiff et al., 2024) and Seq2Exp (Su et al., 2025) with
varying input lengths centered at the transcription start site (TSS) for gene expression prediction,
completely following the experimental settings of Su et al. (2025) except for sequence length.
According to Figure 1 (d), we observe that Caduceus’s performance consistently declines after input
lengths exceed 2k. Seq2Exp, despite its carefully designed learning-to-mask mechanism for filtering
unimportant regions, doesn’t show a clear downward trend, but its performance with 200k input length
remains essentially comparable to using just 500 bps. Figure 2 (raw data in Table 4) demonstrates that
the Seq2Exp model trained on 200k sequences maintains nearly identical performance even when
input sequences are shortened to 2.5k during the testing phase, suggesting that even Seq2Exp trained
on long sequences fundamentally relies only on proximal information.

Therefore, rather than extending sequence length, we focus on better leveraging multimodal epige-
nomic signals—a longstanding overlooked direction for enhancing prediction performance.

3 METHOD

3.1 PROBLEM FORMULATION

Given a gene sequence X = [x1, x2, . . . , xL], where for each i ∈ {1, 2, . . . , L}, xi ∈ R4 represents
the one-hot encoding of a nucleotide base from the set V = {A, T,C,G}, and L denotes the
sequence length surrounding the gene’s TSS (Lin et al., 2024; Su et al., 2025). For each X , there are
associated multimodal epigenomic signals S = [s1, s2, . . . , sL], where si ∈ Rd with d representing
the number of epigenomic signals. Our approach first employs a signal encoder gθ : RL×d → RL×d′

with parameters θ to map the raw epigenomic signals S into a higher-dimensional feature space
H = gθ(S), where d′ represents the dimensionality of this enriched representation following (Su et al.,
2025). We then use a predictor network hϕ : (RL×4,RL×d′)→ R with parameters ϕ that integrates
both sequence information X and encoded epigenomic features H to predict gene expression levels
Y ∈ R. To optimize our model parameters {θ, ϕ}, we define the following objective function:

L1 = ∥hϕ(X, gθ(S))− Y ∥22, (1)

where ∥ · ∥22 represents the squared L2 norm (MSE loss) following Su et al. (2025),

3.2 STRUCTURAL CAUSAL MODEL

H

C

Y

Figure 3: The proposed
SCM.

From the previous analysis, we observed that models may learn spurious
associations with background epigenomic signals. To conceptualize this
confounding issue, we formalize the problem using a Structural Causal
Model (SCM) shown in Figure 3, where nodes represent data variables
and directed edges represent hypothesized relationships. For clarity, we
omit X from the graph, though our model ultimately uses both X and H .

We first explain our definition of confounder C. In Section 1, we catego-
rize H3K27ac as foreground signal and DNase-seq/Hi-C as background
signals based on biological priors. However, this categorization is overly
simplistic. H3K27ac alone cannot fully capture causal effects, as incorpo-
rating additional signals improves performance (Figure 1(e)). Similarly,
background signals cannot be directly defined as confounders. Instead,
we define the confounder as a more abstract concept: background chromatin states, which rep-
resent complex combinations of multiple epigenomic signals. This aligns with approaches like
ChromHMM (Ernst & Kellis, 2017), which uses combinations of epigenomic signals to represent
cellular states. The specific functional implementation of C is detailed in Subsection 3.4.

This definition is inspired by works in computer vision (Zhou et al., 2016; Yue et al., 2020; Qiang et al.,
2022), where confounders (representing image background information) are modeled as combinations

4
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Figure 4: Architecture of Prism. Epigenomic signals S are processed by two encoders: a signal
encoder gθ extracts high-dimension epigenomic features H , while a confounder encoder gω learns n
distinct weights representing the confounder C. A final predictor hϕ uses these weighted features
along with the DNA sequence X to make a prediction.

of high-dimensional semantic feature representations. Specifically, RGB images (analogous to our
raw signals S ∈ RL×d) are encoded into high-dimensional spaces (analogous to our H ∈ RL×d′),
where different linear combinations of features can represent various background contexts (Zhou
et al., 2016; Qiang et al., 2022). Next, we explain the meaning of the edges in our SCM (Figure 3).

H → Y . High-dimensional epigenomic features H contain comprehensive regulatory information
that directly influences gene expression Y .

H ← C → Y . The confounding pathway where background chromatin state C simultaneously
affects both the observed epigenomic features H and expression levels Y . For instance, globally
active chromatin regions often exhibit both high accessibility signals and high expression, creating
correlations that may not reflect gene-specific regulation directly.

3.3 CAUSAL INTERVENTION VIA BACKDOOR ADJUSTMENT

An effective prediction model should capture the direct regulatory relationship H → Y rather than
spurious correlations through the confounding pathway H ← C → Y . However, standard approaches
optimize P (Y |H), which conflates both pathways. Our goal is to estimate the interventional distri-
bution P (Y |do(H)) (Pearl et al., 2016) that isolates the direct causal effect by controlling for back-
ground chromatin states C. The do operator represents an intervention that sets H while removing its
dependency on confounders, enabling isolation of the direct causal effect. We stratify the confounder
C into n distinct background chromatin states: C = {C1, C2, ..., Cn}, where n is a hyperparameter.
Using backdoor adjustment, we formulate: P (Y |do(H)) =

∑n
i=1 P (Y |H,C = Ci)P (C = Ci).

For computational tractability, we assume C follows a uniform distribution: P (C = Ci) =
1
n . (Qiang

et al., 2022)

3.4 FUNCTIONAL IMPLEMENTATION

To functionally instantiate the confounder C, we draw inspiration from method in computer vision
that model background context using learnable weights (Qiang et al., 2022). We introduce the
confounder encoder gω : RL×d → Rn×d′ with parameters ω, which processes the raw epigenomic
signals S to generate a set of learnable weight vectors A = [a1, a2, . . . , an]. Each vector ai ∈ Rd′

represents a distinct background chromatin state Ci by applying a unique weighting scheme across
the d′ dimensions of the encoded epigenomic features. These weights are gene-wise rather than
position-wise, reflecting the assumption that background regulatory patterns are consistent across a
given gene region. For example, one weight vector might learn to emphasize chromatin accessibility
signals, while another might prioritize features related to 3D chromatin organization.

This data-driven approach allows the model to capture the complex nature of background confounding
effects without relying on overly simplistic biological priors. With this implementation, we can
compute the interventional distribution from the backdoor adjustment formula by stratifying across
these learned background states. Since we assume the DNA sequence X is independent of the
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epigenomic features H (Su et al., 2025), we include it directly in the predictor:

Ŷdo = P (Y |X, do(H)) =

n∑
i=1

P (Y |X,H,C = Ci)P (C = Ci) =
1

n

n∑
i=1

hϕ(X,H ⊙ ai), (2)

where ⊙ denotes element-wise multiplication. Each term hϕ(X,H ⊙ ai) represents a prediction
under a specific background context Ci.

We incorporate this interventional prediction as a regularization term (Qiang et al., 2022), forming a
second loss component that encourages the model to be robust to different background chromatin
states:

L2 = ∥Ŷdo − Y ∥22 =

∥∥∥∥∥ 1n
n∑
i=1

hϕ(X,H ⊙ ai)− Y

∥∥∥∥∥
2

2

. (3)

3.5 TRAINING OBJECTIVE

To ensure our model learns a meaningful and diverse set of background chromatin states, we should
prevent the weight vectors {ai} from collapsing into a single pattern. We introduce a uniform loss
function (Wang & Isola, 2020) that encourages the weight vectors to be distinct from each other. This
loss penalizes similarity between background representations, promoting diversity in the learned
weights:

L3 = log

∑
i̸=j

exp(2t · aTi aj − 2t)

 , (4)

where t is a temperature parameter that controls the sharpness of the penalty.

Our final training objective combines the standard prediction loss, the intervention-based regulariza-
tion, and the uniform diversity loss:

L = L1 + αL2 + βL3, (5)

where α and β are hyperparameters controlling the relative importance of the intervention regular-
ization and the uniform diversity constraint, respectively. The complete algorithm workflow for our
Prism framework is provided in Appendix E.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate gene expression prediction, we adopt Cap Analysis of Gene Expression
(CAGE) values as our prediction proxy, in line with established approaches (Avsec et al., 2021; Lin
et al., 2024; Su et al., 2025). Our study focuses on two well-characterized human cell lines that
represent distinct cellular lineages: K562 and GM12878, both of which are extensively characterized
in genomic research. We use CAGE measurements obtained from the ENCODE (Consortium et al.,
2012). Following the experimental framework established in previous studies (Lin et al., 2024; Su
et al., 2025), we evaluate our model across 18,377 protein-coding genes.

For input data, we utilize both DNA sequences and epigenomic signals. The DNA sequences
are derived from the human genome HG38 project, while the epigenomic signals were carefully
selected (Su et al., 2025) to capture different aspects of gene regulation: H3K27ac marks histone
acetylation at active enhancers and promoters. DNase-seq measures chromatin accessibility in
genomic regions, often coinciding with but not causally determining regulatory elements. Hi-C
quantifies contact frequencies between genomic positions and the target TSS, processed using the
ABC pipeline (Fulco et al., 2019). Like DNase-seq, we categorize Hi-C as a background signal
representing the broader chromatin environment rather than specific regulatory elements.

Furthermore, we incorporate additional features such as mRNA half-life and promoter activity, which
are taken from previous studies (Lin et al., 2024; Su et al., 2025). These features are simply concate-
nated to the final linear predictor and are not part of our core modeling approach for epigenomic
signals.

6
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Table 1: Performance on Gene Expression CAGE Prediction with Standard Deviation for Both Cell
Types.

K562 GM12878

MSE ↓ MAE ↓ Pearson ↑ MSE ↓ MAE ↓ Pearson ↑
Enformer 0.2920 ± 0.0050 0.4056 ± 0.0040 0.7961 ± 0.0019 0.2889 ± 0.0009 0.4185 ± 0.0013 0.8327 ± 0.0025
HyenaDNA 0.2265 ± 0.0013 0.3497 ± 0.0012 0.8425 ± 0.0008 0.2217 ± 0.0018 0.3562 ± 0.0012 0.8729 ± 0.0010
Mamba 0.2241 ± 0.0027 0.3416 ± 0.0026 0.8412 ± 0.0021 0.2145 ± 0.0021 0.3446 ± 0.0022 0.8788 ± 0.0011
Caduceus 0.2197 ± 0.0038 0.3327 ± 0.0070 0.8475 ± 0.0014 0.2124 ± 0.0037 0.3436 ± 0.0031 0.8819 ± 0.0009

EPInformer 0.2140 ± 0.0042 0.3291 ± 0.0031 0.8473 ± 0.0017 0.1975 ± 0.0031 0.3246 ± 0.0025 0.8907 ± 0.0011

MACS3 0.2195 ± 0.0023 0.3455 ± 0.0018 0.8435 ± 0.0013 0.2340 ± 0.0028 0.3654 ± 0.0017 0.8634 ± 0.0020

Caduceus w/ signals 0.1959 ± 0.0036 0.3187 ± 0.0036 0.8630 ± 0.0008 0.1942 ± 0.0058 0.3269 ± 0.0048 0.8928 ± 0.0017

Seq2Exp-hard 0.1863 ± 0.0051 0.3074 ± 0.0036 0.8682 ± 0.0045 0.1890 ± 0.0045 0.3199 ± 0.0040 0.8916 ± 0.0027
Seq2Exp-soft 0.1856 ± 0.0032 0.3054 ± 0.0024 0.8723 ± 0.0012 0.1873 ± 0.0044 0.3137 ± 0.0028 0.8951 ± 0.0038

Prism 0.1789 ± 0.0041 0.3000 ± 0.0058 0.8751 ± 0.0036 0.1759 ± 0.0054 0.3054 ± 0.0048 0.9016 ± 0.0024

Baselines. We benchmark our Prism against the following baselines: Enformer (Avsec et al., 2021),
a CNN-Transformer hybrid architecture designed to predict epigenomic signals and gene expression
from sequences, here used solely for CAGE prediction; HyenaDNA (Nguyen et al., 2023), Mamba (Gu
& Dao, 2023), and Caduceus (Schiff et al., 2024), three recently developed DNA foundation models
leveraging efficient long-sequence modeling capabilities through SSMs as prediction backbones;
EPInformer (Lin et al., 2024), which extends the Activity-By-Contact (ABC) model (Fulco et al.,
2019) by utilizing DNase-seq peaks to define potential regulatory regions and applying attention
mechanisms to aggregate enhancer signals; and Seq2Exp (Su et al., 2025), a recent SOTA method
that applies information bottleneck principles to learn regulatory element masks, available in hard
(binary) and soft (continuous) variants. We also include Caduceus w/signal, which incorporates
epigenomic signals directly into Caduceus’s encoder, and MACS3 (Zhang et al., 2008), which differs
from Seq2Exp by using MACS3-identified regulatory elements instead of learned masks. Most
baseline models process raw DNA sequences from the input region, while EPInformer operates
on potential enhancer candidates extracted based on DNase-seq measurements following the ABC
model (Fulco et al., 2019).

Evaluation Metrics. We assess model performance using three metrics following Su et al. (2025):
Mean Squared Error (MSE) for measuring prediction variance with emphasis on larger errors; Mean
Absolute Error (MAE) for quantifying average prediction deviation in expression units; and Pearson
Correlation for evaluating how well models capture expression patterns and gene rankings regardless
of absolute scale. These metrics together provide a balanced assessment of both prediction accuracy
and pattern preservation capabilities.

Implementation Details. We partition datasets by chromosome for training, validation, and testing,
following Su et al. (2025). Specifically, chromosomes 3 and 21 serve as the validation set, while
chromosomes 22 and X are reserved for testing. The inclusion of chromosome X provides a more
stringent evaluation of model robustness due to its distinct biological characteristics compared to
autosomes.

Our signal encoder gθ is implemented as a simple linear layer (Su et al., 2025), while the confounder
encoder gω utilizes a lightweight 1D-CNN, with details in Appendix F. For the predictor hϕ, we adopt
Caduceus (Schiff et al., 2024) as our backbone model, following Seq2Exp Su et al. (2025). Notably,
we maintain the same training hyperparameters in Seq2Exp (Su et al., 2025). Further performance
gains could likely be achieved through hyperparameter fine-tuning specific to our approach. We
use the L1 function as our prediction loss function, while the best model is selected based on the
MSE metric on the validation set following Su et al. (2025). All experiments were conducted on
NVIDIA A40 and A100 GPUs. While most baseline models process inputs of length 200k, our Prism
implementation operates on sequences of 2k bps. Additional implementation details can be found in
Appendix F.

4.2 RESULTS OF GENE EXPRESSION PREDICTION

Table 1 present performance results across all methods for the K562 and GM12878 cell types,
respectively. All baseline results are directly cited from Seq2Exp (Su et al., 2025) to ensure fair

7
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Table 2: Hyperparameter sensitivity analysis for Prism on the K562 cell line. We evaluate the model’s
performance while varying (a) the number of background states n, (b) the intervention loss weight α,
and (c) the diversity loss weight β.

(a) Sensitivity on n

n MSE ↓ MAE ↓ Pearson ↑
0 0.1863 ± 0.0035 0.3092 ± 0.0050 0.8713 ± 0.0023
1 0.1891 ± 0.0047 0.3084 ± 0.0039 0.8676 ± 0.0032
2 0.1789 ± 0.0041 0.3000 ± 0.0058 0.8751 ± 0.0036
3 0.1818 ± 0.0091 0.3018 ± 0.0090 0.8739 ± 0.0031
4 0.1762 ± 0.0071 0.2961 ± 0.0070 0.8780 ± 0.0028
5 0.1788 ± 0.0062 0.2996 ± 0.0071 0.8752 ± 0.0030
6 0.1857 ± 0.0078 0.3057 ± 0.0047 0.8737 ± 0.0022

(b) Sensitivity on α

α MSE ↓ MAE ↓ Pearson ↑
0.1 0.1829 ± 0.0065 0.3037 ± 0.0078 0.8725 ± 0.0030
1.0 0.1789 ± 0.0041 0.3000 ± 0.0058 0.8751 ± 0.0036

10.0 0.1916 ± 0.0055 0.3119 ± 0.0071 0.8709 ± 0.0029

(c) Sensitivity on β

β MSE ↓ MAE ↓ Pearson ↑
0.1 0.1789 ± 0.0056 0.2993 ± 0.0037 0.8757 ± 0.0038
1.0 0.1789 ± 0.0041 0.3000 ± 0.0058 0.8751 ± 0.0036

10.0 0.1836 ± 0.0120 0.3027 ± 0.0123 0.8748 ± 0.0036
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Figure 5: Visualization of learned confounder weights (a1, a2) for three sampled genes.

comparison. Additionally, all results reported include the mean and standard deviation from five
runs using different random seeds: {2, 22, 222, 2222, 22222} following Su et al. (2025). The
best-performing method for each metric is highlighted in bold, with the second-best underlined.
Notably, our Prism consistently outperforms the previous SOTA Seq2Exp-soft across all datasets and
metrics. Among the six total metrics, only K562’s MAE and Pearson correlation show improvements
less than one standard deviation, while all other metrics demonstrate robust improvements exceeding
one standard deviation. These results provide strong evidence that our approach achieves new SOTA
performance in gene expression prediction.

4.3 HYPERPARAMETER SENSITIVITY ANALYSIS

Our method introduces several hyperparameters: the number of background chromatin states n, and
coefficients α and β that balance the loss components in our training objective (Equation 5). We
conducted a sensitivity analysis on the K562 cell line, with results (Also averaged results from five
runs, here only the mean values are shown) presented in Table 2. Our analysis of n shows that
while performance peaks at n = 4, configurations with n ≥ 2 substantially outperform the n = 0
baseline, validating our intervention; we select n = 2 to balance performance and efficiency. For the
intervention weight α, we found performance is optimal at 1.0 and degrades when either disabled
(α = 0) or set too high (α = 10.0). This confirms its role as an auxiliary regularizer, consistent with
prior work (Qiang et al., 2022). Finally, the diversity constraint proves to be robust. The model’s
performance is nearly identical for β = 0.1 and β = 1.0, and shows only a slight degradation even
with a large weight of β = 10.0.
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4.4 ANALYSIS OF LEARNED WEIGHTS

To understand how our model represents the confounder C, we visualize the weights learned by
the confounder encoder gω (Figure 5). The analysis reveals two key properties. First, we observe
strong intra-gene diversity: for any given gene, the two learned weight vectors (a1 and a2) are
distinct and often complementary, confirming that our model learns non-redundant representations
for each confounder stratum. Second, we find evidence of inter-gene structural similarity. The
overall intensity of the learned weights is clearly gene-specific, reflecting each gene’s unique local
epigenomic context. Despite this variation in magnitude, the relative pattern between the two
states is remarkably consistent across different genes, suggesting the model learns a generalizable
strategy—such as an ”activating” versus a ”suppressive” state—which it then adapts to each gene’s
local context. These structured representations support the validity of our causal framework.

4.5 PARAMETER OVERHEAD

Table 3: Parameter comparison between models.

Model Trainable Parameters
Caduceus 574K
Seq2Exp 1.1M
Prism 585K

Our confounder encoder is designed to be
lightweight while delivering substantial perfor-
mance improvements. We compare the ad-
ditional parameters introduced by Prism and
Seq2Exp (Su et al., 2025) relative to the base
Caduceus (Schiff et al., 2024). As shown in Ta-
ble 3, Prism adds only 11K trainable parameters
to the base model. Our lightweight confounder
encoder gω introduces minimal parameter over-
head, whereas Seq2Exp’s mask generator causes
its parameter count to double compared to Caduceus. Notably, our approach outperforms Seq2Exp
across all metrics while maintaining an almost unchanged parameter count compared to Caduceus.

5 RELATED WORKS

Gene expression prediction represents a fundamental challenge in bioinformatics (Segal et al.,
2002). Early approaches like Enformer (Avsec et al., 2021) attempted to predict gene expression
directly from DNA sequences, facing inherent limitations, while GraphReg (Karbalayghareh et al.,
2022) enhanced performance by incorporating epigenomic information through graph attention
networks to model physical interactions between genomic regions. More recent methods have
progressed toward integrating both sequence and epigenomic information, with Creator (Li et al.,
2023) and EPInformer (Lin et al., 2024) demonstrating improved performance through this combined
approach. However, these models typically rely on pre-identified regulatory elements, overlooking
potential contributions from unannotated regions. Seq2Exp (Su et al., 2025) addressed this limitation
through an end-to-end, data-driven methodology that simultaneously learns to identify relevant
regulatory elements and predict expression with epigenomic guidance. Despite these advances,
current research tends to focus predominantly on modeling distal regulatory elements through long
sequence architectures, rather than optimizing the utilization of biologically interrelated epigenomic
signals that directly influence gene regulation.

6 CONCLUSION

This work reveals a critical challenge in gene expression prediction: while previous methods focus on
modeling longer sequences, current technical paradigms suffer from inherent performance degradation
with extended sequence length. Instead, we discovered that proximal epigenomic signals are crucial,
but complex background chromatin states may introduce confounding effects, creating spurious
correlations in models. Building on these insights, we propose Prism, a lightweight framework that
achieves state-of-the-art gene expression prediction performance through effective integration of
multimodal epigenomic signals using only short sequences while adding minimal computational
overhead.

9
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ETHIC STATEMENT

We acknowledge that we have read and adhered to the ICLR Code of Ethics.

If the reviewers or the community raise any ethical concern about our work, we are ready to address
them transparently and responsibly.

REPRODUCIBILITY STATEMENT

In the spirit of reproducible science, we have taken the following steps to ensure that our results can
be reliably replicated:

• We provide a complete algorithmic workflow in pseudocode for our Prism framework in the
appendix, ensuring clarity of the methodological pipeline.

• All hyperparameter settings, random seeds, and implementation details (e.g., scheduler
strategy, batch size, and optimization settings) are fully documented in the appendix.

• Comprehensive descriptions of experimental configurations and computing infrastructure
(e.g., GPU types) are included to enable faithful reproduction.

• We report detailed ablation studies and hyperparameter sensitivity analyses, along with
systematic evaluations of experimental results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only to aid or polish the writing of this manuscript. They
were not involved in idea generation, methodological design, experiments, or analysis. All scientific
content was created and verified by the authors, who take full responsibility for the final text.

B SHORTENING INPUT SEQUENCE LENGTH AT TEST TIME

In Figure 1 (d) of Section 1, we have confirmed that training with longer sequences from scratch does
not provide additional benefits. Further, we aim to investigate whether shortening the input length at
test time would decrease the performance of a model trained on longer sequences. Specifically, we
tested the Seq2Exp-soft model (Su et al., 2025)1 trained on 200k sequences to evaluate if reducing
context during inference affects performance. As shown in Table 4, we found that Seq2Exp, despite
being trained on 200k inputs, shows minimal performance degradation when the input length is
reduced from 200K to 2.5K during testing. This suggests that Seq2Exp fails to effectively utilize
long-context information even during training, indicating that the model does not genuinely leverage
the extended sequence information it was provided.

Interestingly, however, there is a significant performance drop when inputs are shortened to 2,500
tokens, with a particularly sharp decline observed below 2,100 tokens. We attribute this behavior to
an implementation detail in Seq2Exp: the model forcibly prevents the central 2,000-bp region from
undergoing masking (this constraint was not mentioned in the Seq2Exp paper but can be found in

1Model available at: https://huggingface.co/xingyusu/GeneExp_Seq2Exp/tree/main
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their GitHub repository), effectively forcing the model to focus predominantly on the central 2,000
bp and proximal regulatory information.

Based on these observations and comparing with Figure 1, we can conclude that input context length
has a much smaller impact on model performance than epigenomic signals. Removing epigenomic
signals during testing substantially hurts performance, while shortening sequence length has minimal
effect. This finding motivates our focus on modeling epigenomic information effectively.

Table 4: Performance of Seq2Exp (Su et al., 2025) when testing with shortened input sequences on
the K562 cell line.

Input Length MSE ↓ MAE ↓ Pearson ↑
200000 0.1856 0.3054 0.8723
10000 0.1855 0.3074 0.8751
8000 0.1864 0.3082 0.8747
3000 0.1943 0.3134 0.8698
2500 0.1996 0.3174 0.8674
2100 0.2301 0.3471 0.8603
2070 0.3639 0.2464 0.8576
2050 0.3848 0.2686 0.8540
2040 0.4017 0.2855 0.8521
2030 0.4248 0.3093 0.8496
2020 0.4634 0.3543 0.8429
2010 0.5371 0.4506 0.8291
2000 0.6485 0.6183 0.8084

C EXPERIMENTAL DATA OF TABLE 1

We provide comprehensive numerical results corresponding to Figure 1 in the main text, including
complete performance metrics and ablation studies.

C.1 SEQUENCE LENGTH SENSITIVITY

Table 5 compares the performance stability of Seq2Exp and Caduceus across different input lengths.

Table 5: Performance comparison with varying input lengths (left: Seq2Exp (Su et al., 2025), right:
Caduceus (Schiff et al., 2024))

Length MAE MSE Pearson

100 0.3394 0.2233 0.8441
500 0.3096 0.1879 0.8744
2000 0.3150 0.1971 0.8678
5000 0.3098 0.1949 0.8703
10000 0.3088 0.1897 0.8719

Length MAE MSE Pearson

100 0.3385 0.2200 0.8449
500 0.3096 0.1889 0.8716
2000 0.3036 0.1831 0.8747
5000 0.3170 0.1941 0.8692
10000 0.3235 0.2029 0.8550

C.2 EPIGENOMIC SIGNAL CONTRIBUTIONS

Table 6 demonstrates that combining all epigenomic signals yields optimal performance, with
H3K27ac showing the strongest individual impact.

C.3 ABLATION STUDY

Table 7 reveals critical signal dependencies. Removing H3K27ac during testing from a model trained
on all signals degrades performance most severely (22.3% MAE increase), while Hi-C removal has
minimal effect (4.7% MAE increase).
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Table 6: Caduceus performance with different epigenomic signal configurations

Configuration MSE MAE Pearson r

No signals 0.2163 0.3325 0.8485
+H3K27ac 0.1873 0.3080 0.8628
+DNase 0.2089 0.3227 0.8497
+Hi-C 0.2135 0.3264 0.8530
All signals 0.1886 0.3079 0.8652

Table 7: Performance degradation from signal removal (trained with all signals)

Condition MAE MSE Pearson r

Drop H3K27ac 0.5653 0.6115 0.6964
Drop DNase 0.3890 0.2962 0.8189
Drop Hi-C 0.3548 0.2280 0.8467
Baseline (all signals) 0.3078 0.1886 0.8652

D CASE STUDY AND QUANTITATIVE EVIDENCE OF WIDESPREAD
BACKGROUND CONFOUNDERS

D.1 QUANTITATIVE PREVALENCE OF LONG-RANGE INTERACTIONS

To statistically validate the ubiquity of long-distance chromatin interactions in the K562 and GM12878
cell lines – a core premise of our work – we conducted a two-fold analysis. This quantitative evidence
establishes that the case study in Section D.2 is representative of a genome-wide signal-to-noise
challenge.

First, we analyzed promoter-centric Hi-C contact data. For each gene’s TSS, we examined its vector
of Hi-C contact frequencies, defining a significant interaction as any contact with a signal strength
greater than 0.01. We classified an interaction as “long-range” if the genomic distance from the
TSS exceeded 50kb. Second, to specifically quantify connections to putative regulatory elements,
we analyzed pre-computed Promoter-Enhancer (P-E) linkages from the Activity-by-Contact (ABC)
model, identifying all genes connected to at least one distal enhancer (>50kb away).

The results, presented in Table 8, demonstrate that long-distance interactions are a ubiquitous feature
of both genomes. Nearly all genes (∼99%) exhibit numerous long-range contacts, with a median
of nearly 200,000 potential interaction partners per gene. The ABC model data further confirms
that virtually all genes are linked to at least one distal enhancer. This creates a significant signal-
to-noise problem, as the vast number of interactions indicated by Hi-C data cannot all be causally
determinative of gene expression, thus acting as background confounders.

Table 8: Statistical Summary of Hi-C Long-Range Interactions in K562 and GM12878 Cell Lines

Statistic K562 GM12878

% of genes with promoter-interacting1 98.9% 99.3%
% of genes with long-range (>50kb) promoter1 98.9% 99.3%
% of genes linked to a distal enhancer via ABC model2 100.0% 100.0%
Median number of long-range partners per gene1 199,899 199,899
Median distance of long-range interactions (kb)1 49,707.0 49,939.0

1Statistics derived from promoter-centric Hi-C contact vectors.
2Statistics derived from pre-computed ABC model P-E links.
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D.2 QUALITATIVE CASE STUDY

The statistical prevalence of interactions motivates our hypothesis that many of these signals act as
confounders rather than direct regulators. To qualitatively support this, we present a representative
case (Figure 6) at a genomic locus (Entrez ID: ENSG00000080561).

In this region, both DNase (chromatin accessibility) and Hi-C (3D spatial proximity) signals exhibit
broad, high activation. Despite this permissive chromatin environment, the marker of active regulatory
elements, H3K27ac, shows no enrichment. Consequently, the gene expression level remains low
(0.6021).

This case demonstrates that high background signal activity alone is insufficient to drive gene
expression. The absence of H3K27ac indicates that key regulatory elements are inactive, resulting in
minimal transcriptional output despite strong accessibility and spatial contacts.

D.3 CONCLUSION AND MOTIVATION FOR OUR METHOD

Together, the quantitative data and the qualitative case reinforce the necessity of disambiguating
causal foreground signals (like H3K27ac) from pervasive background confounders (like broad DNase
and Hi-C signals) when modeling gene expression. This pervasive signal-to-noise problem directly
motivates our approach of explicitly modeling background signals through a Structural Causal Model
and applying backdoor adjustment to correct for their confounding effects, thereby improving both
interpretability and prediction accuracy.

Figure 6: A representative genomic locus (Entrez ID: ENSG00000080561) where DNase and Hi-C
signals are broadly active, but H3K27ac shows no enrichment. Despite strong chromatin accessibility
and spatial contacts, gene expression remains low (0.6021). This supports the hypothesis that such
pervasive background signals (quantified in Table 8) act as confounders rather than causal regulators.

E ALGORITHM WORKFLOW

Here we provide the complete algorithm workflow for our Prism framework in Algorithm 1. The
algorithm initializes three neural networks: the signal encoder gθ, the predictor network hψ , and the
confounder encoder gω. During training, we compute both standard and interventional predictions,
then optimize the model using three objectives: prediction loss L1, intervention loss L2, and uniform
diversity loss L3.

F MORE IMPLEMENTATION DETAILS

F.1 TRAINING SETTINGS

Our training framework is implemented using PyTorch Lightning. All training-related hyperparame-
ters were adopted directly from Seq2Exp (Su et al., 2025), which means we did not perform extensive
parameter tuning for our specific approach. Consequently, there is potential for further performance
improvements through careful hyperparameter optimization. The complete set of hyperparameters
used in our experiments is presented in Table 9.
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Algorithm 1 Interventional Framework for Gene Expression Prediction (Prism)

Require: Gene sequence X , epigenomic signals S, gene expression Y , hyperparameters α, β, t, n.
Ensure: Trained model parameters θ, ϕ, ω.

1: Initialize parameters θ, ϕ, ω randomly.
2: while not converged do
3: //— Forward Pass —
4: H ← gθ(S) {Encode epigenomic signals into features}
5: Ŷ ← hϕ(X,H) {Make standard prediction}
6: {a1, . . . , an} ← gω(S) {Learn confounder weights representing C}
7: //— Interventional Prediction via Backdoor Adjustment —
8: Ŷdo ← 1

n

∑n
i=1 hϕ(X,H ⊙ ai) {Apply backdoor adjustment}

9: //— Loss Computation —
10: L1 ← ∥Ŷ − Y ∥22 {Standard prediction loss (MSE)}
11: L2 ← ∥Ŷdo − Y ∥22 {Intervention loss}
12: L3 ← log

(∑
i̸=j exp(2t · aTi aj − 2t)

)
{Uniform diversity loss}

13: L ← L1 + αL2 + βL3 {Total objective}
14: //— Backward Pass —
15: Update θ, ϕ, ω using gradient descent on L.
16: end while
17: return θ, ϕ, ω.

Table 9: Hyperparameter values following Seq2Exp (Su et al., 2025).

Hyperparameters Values

Layers of backbone 4
Hidden dimensions 128
Max training steps 50000

Batch size 8
Learning rate 5e-4

Scheduler strategy CosineLR with Linear Warmup
Initial warmup learning rate 1e-5

Min learning rate 1e-4
Warmup steps 5,000

Validation model selection criterion validation MSE

F.2 IMPLEMENTATION DETAILS OF CONFOUNDER ENCODER

Our confounder encoder gω is implemented as a lightweight 1D-CNN that maps raw epigenomic
signals S ∈ RL×d to weight vectors A ∈ Rn×d′ . The architecture consists of a three-layer CNN
followed by a projection layer:

• Layer 1: Conv1D (in channels=d, out channels=8, kernel size=7) followed by BatchNorm,
ReLU, and MaxPool (kernel size=4)

• Layer 2: Conv1D (in channels=8, out channels=16, kernel size=5) followed by BatchNorm,
ReLU, and MaxPool (kernel size=4)

• Layer 3: Conv1D (in channels=16, out channels=32, kernel size=3) followed by Batch-
Norm, ReLU, and MaxPool (kernel size=4)

• Global Pooling: AdaptiveAvgPool1D(1) followed by Flatten
• Projection: Linear layer mapping the flattened features (32 dimensions) to n×d′ dimensions

The progressive reduction in sequence length through max pooling operations (by a factor of 64
in total) efficiently captures patterns at different genomic scales while significantly reducing the
computational overhead. After obtaining the raw weights, we apply a sigmoid activation function to
constrain the values between 0 and 1, making them suitable for weighting the epigenomic signals via
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Table 10: The effect of pre-training

Model Metric From Scratch Pre-trained

Enformer MSE ↓ 0.2920 ± 0.0050 0.2913 (↓ 0.0007) ± 0.0209
Pearson ↑ 0.7961 ± 0.0019 0.7983 (↑ 0.0022) ± 0.0229

Caduceus w/signals (2k input) MSE ↓ 0.1863 ± 0.0035 0.1858 (↓ 0.0005) ± 0.0082
Pearson ↑ 0.8713 ± 0.0023 0.8759 (↑ 0.0046) ± 0.0042

Caduceus w/signals (200k input) MSE ↓ 0.1959 ± 0.0036 0.1897 (↓ 0.0062) ± 0.0026
Pearson ↑ 0.8630 ± 0.0008 0.8743 (↑ 0.0113) ± 0.0030

Prism MSE ↓ 0.1789 ± 0.0041 0.1795 (↑ 0.0006) ± 0.0061
Pearson ↑ 0.8751 ± 0.0036 0.8774 (↑ 0.0023) ± 0.0018

the Hadamard product operation. This lightweight design adds minimal parameters to the overall
model while effectively modeling the background epigenomic regulatory patterns. The entire encoder
requires only 11K parameters, which is negligible compared to the backbone model’s parameter
count.

G THE EFFECT OF PRE-TRAINING

Our main experiments follow Seq2Exp Su et al. (2025), where all models are trained from scratch
without pre-training. To further investigate whether DNA model pre-training benefits gene expression
prediction, we conducted experiments using pre-trained Enformer (pre-trained on 200k sequences)
and Caduceus (pre-trained on 131k sequences) with signals, as shown in Table 10, to examine the
effectiveness of long-context pre-training.

Overall, we find that pre-training provides consistent improvements. For Enformer, the improvement
is marginal. For Caduceus, which was pre-trained on 131k sequences, loading pre-trained weights
before fine-tuning on 200k gene expression prediction tasks yields substantial improvements, with
Pearson correlation notably improving by 0.0113. However, the effect of pre-training mirrors that of
Seq2Exp—it can only mitigate the performance degradation caused by extended sequence length,
rather than making long-context models superior to short-context ones.

When we use only 2k input length, pre-training also provides some improvement, but this im-
provement is relatively modest. The absolute MSE improvement is particularly negligible. We
also experimented with loading pre-trained Caduceus weights for Prism training and found that
it achieves stable improvements while Prism continues to maintain state-of-the-art performance.
Notably, pre-training significantly improves Pearson correlation, while MSE shows minimal change.

Therefore, our conclusion is that long-context pre-training can substantially improve long-context
capabilities, but this improvement only mitigates the performance degradation inherent to long-context
models, while providing only marginal improvements for short-context models.

H EXTENDED ANALYSIS WITH ADDITIONAL EPIGENOMIC SIGNALS

To comprehensively evaluate the effectiveness of different epigenomic signals in gene expression
prediction, we conducted additional experiments on the K562 cell line using signals beyond the three
primary ones (H3K27ac, DNase-seq, and Hi-C) employed in our main analysis following Lin et al.
(2024); Su et al. (2025).

H.1 ADDITIONAL SIGNAL DESCRIPTIONS

We incorporated three additional epigenomic signals with distinct biological functions:

H3K4me3 (ENCODE ID: ENCFF405ZDL): A histone modification signal that specifically marks
active promoter regions with high precision, complementing H3K27ac which marks both promoters
and enhancers with broader coverage.
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DNase footprint (ENCODE ID: ENCSR000EOT): High-resolution protein-DNA binding footprints
derived from DNase-seq data, identifying exact transcription factor binding sites within accessible
chromatin regions through computational algorithms.

ChIA-PET (ENCODE ID: ENCFF278RFG): Protein-mediated chromatin interaction data that
captures functionally relevant long-range contacts, providing more targeted information compared to
genome-wide Hi-C interactions.

Signal processing followed standard protocols: H3K4me3 and ChIA-PET used direct bigwig signal
values, while DNase footprint regions from bigbed annotations were encoded as binary signals (1 for
annotated regions, 0 elsewhere).

H.2 INDIVIDUAL SIGNAL ANALYSIS

Table 11 presents the performance of Caduceus with individual signals. Most signals demonstrate
improvements over the no-signal baseline, with H3K4me3 showing the most substantial enhancement
(MSE: 0.1801, Pearson: 0.8781). ChIA-PET showed degraded performance, likely due to high
noise levels in the raw data. DNase footprint performed comparably to DNase-seq, suggesting
limited additional information content despite higher theoretical resolution. The superior perfor-
mance of H3K4me3 and H3K27ac aligns with their roles as direct indicators of active regulatory
elements, supporting our categorization as foreground signals with stronger causal relationships to
gene expression.

H.3 COMPOSITIONAL SIGNAL EFFECTS

Table 12 examines the effects of combining multiple signals. Adding DNase footprint to the initial
three signals provides minimal improvement, consistent with its derivation from DNase-seq data.
However, incorporating H3K4me3 yields substantial performance gains across all metrics.

Most notably, Prism with H3K4me3 integration achieves the best performance (MSE: 0.1719,
representing a 0.0137 improvement over Seq2Exp baseline). This demonstrates that Prism’s causal
intervention framework maintains robust improvements even when strong individual signals like
H3K4me3 are present, suggesting that the method effectively disentangles genuine regulatory signals
from confounding background effects.

H.4 KEY FINDINGS

Our extended analysis reveals several important insights: First, signals with direct regulatory roles
(H3K4me3, H3K27ac) provide greater predictive value than background accessibility signals. Second,
computationally derived signals like DNase footprint offer limited additional information beyond
their source data. Third, Prism consistently outperforms baseline approaches across different signal
combinations, validating the robustness of our causal intervention framework. These findings support
the importance of careful signal selection and highlight the potential for further improvements through
strategic integration of complementary epigenomic data types.

Table 11: Single Signal Input (Caduceus w/signals (2k input))

Signal MSE ↓ MAE ↓ Pearson ↑
No Signal 0.2215 ± 0.0086 0.3342 ± 0.0081 0.8502 ± 0.0026
H3K27ac 0.1986 ± 0.0059 0.3179 ± 0.0054 0.8645 ± 0.0037
DNase-seq 0.2207 ± 0.0060 0.3342 ± 0.0085 0.8530 ± 0.0037
Hi-C 0.2202 ± 0.0045 0.3330 ± 0.0064 0.8489 ± 0.0039
H3K4me3 0.1801 ± 0.0079 0.3084 ± 0.0099 0.8781 ± 0.0018
ChIA-PET 0.2262 ± 0.0062 0.3387 ± 0.0060 0.8422 ± 0.0059
DNase footprint 0.2186 ± 0.0073 0.3300 ± 0.0045 0.8523 ± 0.0044
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Table 12: Effect of Compositional Signal Input (Models with 2k input)

Model Configuration MSE ↓ MAE ↓ Pearson ↑
Caduceus w/signals
(initial 3 signals) 0.1863 ± 0.0035 0.3092 ± 0.0050 0.8713 ± 0.0023

Caduceus w/signals
(initial 3 signals + DNase footprint) 0.1870 ± 0.0059 0.3092 ± 0.0058 0.8703 ± 0.0026

Caduceus w/signals
(initial 3 signals + H3K4me3) 0.1789 ± 0.0122 0.3067 ± 0.0117 0.8804 ± 0.0101

Caduceus w/signals
(initial 3 signals + DNase footprint + H3K4me3) 0.1762 ± 0.0054 0.3072 ± 0.0031 0.8837 ± 0.0024

Prism
(initial 3 signals) 0.1789 ± 0.0041 0.3000 ± 0.0058 0.8751 ± 0.0036

Prism
(initial 3 signals + DNase footprint) 0.1794 ± 0.0064 0.2996 ± 0.0055 0.8752 ± 0.0042

Prism
(initial 3 signals + H3K4me3) 0.1719 ± 0.0070 0.2969 ± 0.0049 0.8839 ± 0.0035

Prism
(initial 3 signals + DNase footprint + H3K4me3) 0.1730 ± 0.0055 0.3005 ± 0.0051 0.8850 ± 0.0020

I CROSS-CELL GENERALIZATION

Our main experiments follow EPInformer (Lin et al., 2024) and Seq2Exp (Su et al., 2025) in training
separate models for each cell type. To evaluate whether a single model can generalize across cell
types, we conducted a mixed-training experiment combining K562 and GM12878. Specifically,
during training, for each gene we randomly sample either its K562 or GM12878 epigenomic signals
and corresponding expression value. The Table 13 below shows that this mixed model achieves
comparable performance to cell-type-specific models.

Table 13: Performance of mixed-training

Dataset Model MSE ↓ MAE ↓ Pearson ↑

K562 Seq2Exp (cell-specific) 0.1856 ± 0.0032 0.3054 ± 0.0024 0.8723 ± 0.0012
K562 Prism (cell-specific) 0.1789 ± 0.0041 0.3000 ± 0.0058 0.8751 ± 0.0036
K562 Prism (mixed-training) 0.1875 ± 0.0085 0.3084 ± 0.0077 0.8662 ± 0.0049
GM12878 Seq2Exp (cell-specific) 0.1873 ± 0.0044 0.3137 ± 0.0028 0.8951 ± 0.0038
GM12878 Prism (cell-specific) 0.1759 ± 0.0054 0.3054 ± 0.0048 0.9016 ± 0.0024
GM12878 Prism (mixed-training) 0.1759 ± 0.0038 0.3027 ± 0.0041 0.9012 ± 0.0032

J PERFORMANCE ACROSS DIFFERENT INPUT LENGTHS

We have explored how performance changes with varying sequence lengths. In Table 14 below, we
present the Pearson correlation results for Caduceus w/signal (Schiff et al., 2024), Seq2Exp (Su et al.,
2025), and Prism on K562 across different input lengths ranging from 100 to 10,000 bp.
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Table 14: Pearson across different input lengths on K562

Input Length Caduceus w/signal Seq2Exp-soft Prism (α = 1) Prism (α = 2)

100 0.8488 ± 0.0042 0.8492 ± 0.0064 0.8493 ± 0.0056 -
500 0.8719 ± 0.0043 0.8694 ± 0.0051 0.8726 ± 0.0045 -
2000 0.8713 ± 0.0023 0.8643 ± 0.0088 0.8751 ± 0.0036 -
5000 0.8662 ± 0.0035 0.8675 ± 0.0035 0.8690 ± 0.0037 -
10000 0.8614 ± 0.0059 0.8699 ± 0.0032 0.8661 ± 0.0027 0.8699 ± 0.0023

As shown in Table 14, Prism exhibits a similar trend to Caduceus, with performance beginning to
decline when input length increases beyond 2000-5000 bp. While Seq2Exp maintains relatively robust
performance across lengths, their reported results at 200k only match the performance of Caduceus
at 500-2000 bp, validating our claim that Seq2Exp merely mitigates the performance degradation
caused by extending sequence length in Caduceus. Prism achieves the best performance among all
three models across lengths from 100 to 5000 bp. We hypothesize that as input length increases,
the confounding effects of background signals become stronger. To test this, we experimented with
increasing the intervention loss weight to α = 2 when the input length reaches 10,000 bp, and observed
performance improvement.

K PERFORMANCE ON H1 CELL LINE

We conducted additional experiments on the H1 cell line (which only appeared in Seq2Exp’s rebuttal
stage but was not included in their final camera-ready version). The results are shown in Table 15
below.

Table 15: Performance on H1 cell line

Method MSE ↓ MAE ↓ Pearson ↑

Caduceus w/signal (2k input) 0.2751 ± 0.0104 0.3929 ± 0.0103 0.6681 ± 0.0137
Seq2Exp-soft (our reproduction) 0.2784 ± 0.0064 0.3957 ± 0.0045 0.6595 ± 0.0089
Prism 0.2642 ± 0.0060 0.3817 ± 0.0044 0.6844 ± 0.0078

On H1, Seq2Exp performs worse than the Caduceus baseline, while Prism consistently achieves
SOTA results across all metrics. These results on a third cell line further demonstrate the consistent
improvements of our approach.

L LEARNING CONFOUNDER WEIGHTS WITHOUT SUPERVISION

Unsupervised learning of chromatin states is a well-established approach in genomics, such as
ChromHMM (Ernst & Kellis, 2017). ChromHMM defines states based on combinatorial patterns of
epigenomic marks without explicit labels, which are subsequently mapped to biological chromatin
states through expert annotation. Similarly, although our confounder weights are learned without
supervision, Figure 5 in our manuscript shows that the model captures structured, gene-specific
patterns rather than random noise. This suggests the model may learn meaningful latent states driven
by the prediction task, which could potentially be validated with the assistance of biological experts
like ChromHMM (Ernst & Kellis, 2017).

We distinguish our approach from naive data augmentation. The fundamental difference is that our
weights are learnable and gene-dependent, whereas naive augmentation relies on random perturbations.
While random augmentation is effective in domains like computer vision, applying it to biological
signals carries the risk of destroying critical information.

To validate this distinction, we first conducted a dropout experiment on the Caduceus baseline,
where input signals are randomly discarded during training. Here, we define the retention rate as the
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proportion of signals preserved (i.e., 1 - dropout probability). We observed that performance degrades
significantly as the retention rate decreases. As shown in Table 16 below, keeping only 70% of signals
results in a notable performance drop, and keeping 50% degrades the MSE further to 0.2248. In
contrast, we further evaluated our approach by using the learned weights to element-wise multiply
the raw high-dimensional signals for prediction. We found that the average weight values on the
K562 test set is approximately 0.35, which corresponds to an average retention rate of approximately
35%. However, unlike the random dropout baseline, our model maintains robust performance despite
this high sparsity. This demonstrates that the learnable weights are meaningful, selectively preserving
essential biological information.

Table 16: Comparison of dropout and learned weight methods

Model MSE ↓ MAE ↓ Pearson ↑

Caduceus w/ Dropout (rate = 0.9) 0.1874 ± 0.0074 0.3062 ± 0.0064 0.8702 ± 0.0026
Caduceus w/ Dropout (rate = 0.7) 0.2059 ± 0.0075 0.3199 ± 0.0010 0.8625 ± 0.0041
Caduceus w/ Dropout (rate = 0.5) 0.2248 ± 0.0115 0.3428 ± 0.0119 0.8446 ± 0.0109
Prism w/ Learned Weights (rate ≈ 0.35) 0.1834 ± 0.0092 0.3032 ± 0.0083 0.8745 ± 0.0061

21


	Introduction
	Current methods do not benefit from long sequence input
	Method
	Problem Formulation
	Structural Causal Model
	Causal Intervention via Backdoor Adjustment
	Functional Implementation
	Training Objective

	Experiments
	Experimental Setup
	Results of Gene Expression Prediction
	Hyperparameter Sensitivity Analysis
	Analysis of Learned Weights
	Parameter Overhead

	Related Works
	Conclusion
	The Use of Large Language Models (LLMs)
	Shortening Input Sequence Length at Test Time
	Experimental Data of Table 1
	Sequence Length Sensitivity
	Epigenomic Signal Contributions
	Ablation Study

	Case Study and Quantitative Evidence of Widespread Background Confounders
	Quantitative Prevalence of Long-Range Interactions
	Qualitative Case Study
	Conclusion and Motivation for Our Method

	Algorithm Workflow
	More Implementation Details
	Training Settings
	Implementation Details of Confounder Encoder

	The effect of pre-training
	Extended Analysis with Additional Epigenomic Signals
	Additional Signal Descriptions
	Individual Signal Analysis
	Compositional Signal Effects
	Key Findings

	Cross-cell Generalization
	Performance across Different Input Lengths
	Performance on H1 Cell Line
	Learning Confounder Weights without Supervision

