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ABSTRACT

Recently, low-dimensional vector space representations of Knowledge Graphs
(KGs) have been applied to find answers to logical queries over incomplete KGs.
However, the current methods only focus on inductive reasoning, i.e. answering
such queries by predicting facts based on patterns learned from the data, and lack
the ability of deductive reasoning, the task of computing logical entailments using
expert domain knowledge. To address this shortcoming, we investigate how exist-
ing embedding models for query answering over incomplete KGs can be adapted
to incorporate domain knowledge in the form of ontologies. We propose two novel
datasets, based on LUBM and NELL KGs, as well as various training strategies to
integrate domain knowledge into prominent representatives of embedding models
for query answering. Our strategies involve (1) different ontology-driven data aug-
mentation techniques and (2) adaptation of the loss function using query-rewriting
methods. The achieved improvements in the settings that require both inductive
and deductive reasoning, are from 20% to 50% in HITS@3.

1 INTRODUCTION

Answering complex logical queries over Knowledge Graphs (KGs) has recently received a lot of
attention due to the relevance of this task in various applications such as natural question answer-
ing, web search or data analytics. For example, the query Who works for Amazon and has a de-
gree from MIT? over the KG in Figure 1 can be formulated as q(X) ← degreeFrom(X,mit) ∧
worksFor(X, amazon). Answering such a query is very challenging when KGs are incomplete,
which is often the case due to their (semi-) automatic construction, and obtaining complete answers
typically requires further domain knowledge. For instance, mary is a missing but desired answer
of q. Due to the data distribution in the KG, link prediction models might only be able to derive
managerAt(mary, amazon). Therefore, in this case, further domain knowledge that managerAt
implies worksFor in ontologyO of Figure 1 would be required to derive worksFor(mary, amazon)
and retrieve mary as an answer for q.

Recently, Knowledge Graph Embedding (KGE) techniques (Nickel et al., 2016; Wang et al., 2017)
that are able to predict missing facts have been proposed for answering logical queries over incom-
plete KGs. The existing methods can be broadly divided into two categories: query-based (Ren
et al., 2020; Ren & Leskovec, 2020; Liu et al., 2021; Choudhary et al., 2021; Kotnis et al., 2021)
and atom-based (Arakelyan et al., 2021). The former compute continuous query embedding rep-
resentations, and use them for answering queries, while the latter compute answers to a query by
identifying the most likely answers to all its atoms using neural link predictors (Nickel et al., 2016),
and then aggregating those answers using t-norms.

While being promising, such existing embedding-based methods do not account for ontologies,
regarded as KG schema that enriches the KG by describing dependencies between types and/or
relations. Exploiting ontologies when querying KGs is beneficial, e.g., for simplifying query formu-
lation and obtaining more complete answers. The task of answering logical queries in the presence
of ontologies is referred to as Ontology-Mediated Query Answering (OMQA) (Bienvenu & Ortiz,
2015). On the one hand, the use of ontologies requires deductive reasoning, i.e., inferring new facts
by applying ontology rules to existing facts, but ignoring missing true facts. On the other hand,
embedding methods are essentially tailored towards inductive reasoning, i.e. learning from exam-
ples: Given a number of queries and their answers, they are used to predict answers to other similar
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Figure 1: An exemplary KG in which solid edges illustrate existing facts in the KG, while dashed
edges indicate missing facts. The rules in O state that (1) managers at companies also work there;
(2) the inverse of relation degreeFrom is hasAlumnus; (3) assistant professors are professors; (4)
teachers at organizations also work there; (5) the range of the relation teachesAt is University.

queries, but they typically cannot perform ontology reasoning. Since large portions of expert knowl-
edge can be conveniently encoded using ontologies, the benefits of coupling ontology reasoning and
embedding methods for KG completion are evident, and have been acknowledged (e.g. see Bianchi
et al., 2020; Zhang et al., 2020; Gutiérrez-Basulto & Schockaert, 2018; Kulmanov et al., 2019).
However, to the best of our knowledge, such coupling has not been studied for OMQA.

A natural attempt is to interchangeably complete the KG using ontology reasoning and embedding
methods, and then perform query answering on top of the result. This naive procedure comes with
a big scalability challenge: In practice, we need to restrict ourselves to computing merely small
subsets of likely fact predictions required for answering a given query; thus more sophisticated
proposals are required. To this end, we investigate three open questions: (1) How to adapt existing
OMQA techniques to the setting of KGE? (2) How do different data augmentation strategies impact
the accuracy of existing embedding models for OMQA task? and (3) Does the enforcement of
ontology axioms in the embedding space via loss function help to improve inductive and deductive
reasoning performance? We answer these questions by making the following contributions:

• We formally define the task of Embedding-Based OMQA (E-OMQA) and empirically show that
existing off-the-shelf KGE models applied naively perform poorly on this task.

• We propose novel ontology-driven strategies for sampling training queries as well as loss function
modification to enforce the ontology within the embedding space, and demonstrate the effective-
ness of these proposals on popular representatives of query-based and atom-based models.

• Since no previous benchmarks exist for E-OMQA, we design two datasets using LUBM and
NELL, which are well-known benchmarks for OMQA and embedding models, respectively.

• Extensive evaluation demonstrates improvements (20% to 50% in HITS@3) in the accuracy of
E-OMQA by our methods compared to the baselines, and allows us to obtain and analyze answers
to the above questions.

2 PRELIMINARIES

Knowledge Graphs and Ontologies. We assume a signature Σ = 〈E,C,R〉 consisting of count-
able pairwise disjoint sets E,C, and R of constants (entities), concepts (types), and roles (bi-
nary relations) respectively. A knowledge graph G (a.k.a. ABox) is a set of triples, such as
(mit, type,University) and (bob,worksFor,mit) formalized using Σ. These triples can also be
represented as type(mit,University) and worksFor(bob,mit). An ontology O (a.k.a. TBox), e.g.
O in Figure 1, is a set of axioms in Description Logics (Baader et al., 2009) over Σ. We focus on
DL-LiteR (Artale et al., 2009) which has the following syntax: A v A′, A v ∃p, ∃p v A,∃p− v
A, p v s, p− v s, where A,A′ ∈ C, p, s ∈ R, and p− denotes the inverse relation of p. The
deductive closure O∞(G), contains all (possibly infinitely many) new facts derived from G using
axioms from O (e.g., type(bob,Professor) follows from (3) and type(bob,AProfessor)).

Ontology-Mediated Query Answering. A query atom is an expression of the form p(T1, T2),
where p ∈ R, and each Ti ∈ V ∪ E is called a term, with V disjoint with E,C, and R being
a set of variables. A monadic conjunctive query (CQ) q(X) is a First-Order (FO) formula of the
form q(X)← ∃~Y .p1( ~T1) ∧ · · · ∧ pn( ~Tn) where each pi(~Ti) is a query atom, and vars(q) = X ∪ ~Y
denotes the set of variables appearing in q, with X 6∈ ~Y being the answer variable. A monadic
Existential Positive FO (EPFO) query is a union of monadic CQs (Dalvi & Suciu, 2007). For a
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query q(X) and a KG G, a constant a from G is an answer to q(X) if there exists a mapping
π : var(q) 7→ E that maps the body (the right-hand side) of q to a sub-graph of G. We denote
by q [G] the answers of q on G. Ontology-Mediated Query Answering (OMQA) concerns answering
queries by accounting for both the KG and the accompanying ontology. Given a KG G and an
ontology O, an entity a from G is a certain answer of q(X) over (G,O) if a is an answer to q(X )
over O∞(G). We use q[G,O] to denote the set of certain answers of q over (G,O). Let q and q′ be
two monadic queries over (G,O), then q is contained in q′ w.r.t. O if q[G,O] ⊆ q′[G,O]; we call q
a specialization of q′ (written as q′ s

 q), and q′ a generalization of q (written as q
g
 q′). Query

generalizations and specializations can be obtained by exploiting ontology axioms; such process
(and result) is referred to as query rewriting.
Example 1. Consider G in Figure 1 and q(X )← type(X ,Professor) ∧ degreeFrom(X ,mit).
Since mat ∈ q[G], it is a certain answer. Moreover, according to O, AProfessor is a sub-type
of Professor and degreeFrom is inverse of hasAlumnus, thus bob is also a certain answer. Query
q′(X)←type(X,AProfessor) ∧ degreeFrom(X,mit) is a specialization of q as mat 6∈ q′[G,O].

Embedding-Based Query Answering. Recent works on KGEs for answering logical queries can
be divided into two categories: query-based (Ren et al., 2020; Ren & Leskovec, 2020; Liu et al.,
2021; Choudhary et al., 2021; Kotnis et al., 2021) and atom-based (Arakelyan et al., 2021) models.
A neural QA model maps entities and relations into a d-dimensional embedding space. It then
computes a score of each entity c for being an answer to a given query q via a scoring function
φq(c) : Rd 7→ [0, 1], where c denotes the embedding vector of c.1 Using these scoring functions,
the final embedding QA function EG takes as input a query and returns answers to that query. We
describe below how this is done for Query2Box and Continuous Query Decomposition (CQD). In
Query2Box, entities and queries are embedded as points and boxes, respectively, in a d-dimensional
vector space. A d-dimensional embedding is a function ϕ that maps c ∈ E ∪ C to c ∈ Rd and a
query q to q=(cenq,offq)∈Rd × Rd≥0, which is used to define a query box as boxq = {v ∈ Rd |
cenq − offq � v � cenq + offq}, where � is the element-wise inequality, cenq is the center of
the box, and offq is the positive offset of the box, modeling its size. The score for an entity c being
an answer to q is computed based on the distance from c to boxq . A prominent representative of
the second category, Continuous Query Decomposition (Arakelyan et al., 2021) reduces the task
of answering a complex query to that of answering each of its sub-queries. It relies on neural link
predictors for answering atomic sub-queries, and aggregates the resulting scores via t-norms.

3 EMBEDDING-BASED ONTOLOGY-MEDIATED QUERY ANSWERING

Inductive and deductive reasoning complement each other, thus combining both yields more com-
plete answers to queries. To target such combination, we define an embedding-based QA function
that can additionally apply ontology rules to answer queries.
Definition 1 (E-OMQA). Let G be a KG, letO be an ontology, and let Gi be an ideal completion of
G. An embedding QA function EG is reliable if for any query q and entity a we have that a ∈ EG(q)
iff a ∈ q[Gi]. Moreover, EG is ontology-aware iff a ∈ q[Gi,O]. The problem of embedding-based
OMQA is to obtain an embedding QA function that is both reliable and ontology-aware.

Note that, q[Gi,O] subsumes both q[Gi], the answers requiring inductive reasoning, and q[G,O], the
answers computed via deductive reasoning. We proceed to present several methods for E-OMQA.

Query Rewriting over Pre-trained Models. In the traditional OMQA setting, each query q can be
evaluated by first rewriting q into a set of FO-queries qO, and then evaluating each query in qO over
G alone. In our case, this amounts to constructing an embedding QA function EG aware of G alone,
and using it to compute the answers to all queries in qO rather than only to the query q.
Example 2. For G,O in Figure 1 and queries q(X)←degreeFrom(X,mit) ∧ worksFor(X, amazon)
and q′(X)←degreeFrom(X,mit) ∧managerAt(X, amazon), qO contains q and q′ among others,
and to approximate q[Gi,O] we take the EG-based answers of all queries in qO.

Ontology-Aware Models. An alternative to query rewriting is to develop an embedding QA func-
tion that accounts for axioms in O. To the best of our knowledge, there are no KGE models that di-

1Bold small letters denote vector representations.

3



Under review as a conference paper at ICLR 2022

Table 1: Rules to specialize and generalize an atom β from q(X) ← α ∧ β, where A,B ∈ C,
p, r, s ∈ R and T, T1, T2 ∈ vars(q) ∪ E. The operators s

 and
g
 are used for constructing

specializations and generalizations respectively of a given query.

(R1) If A v B ∈ O then: α ∧ type(T,B)
s
 α ∧ type(T,A) α ∧ type(T,A)

g
 α ∧ type(T,B)

(R2) If ∃p v A ∈ O then: α ∧ type(T1, A)
s
 α ∧ p(T1, T2) α ∧ p(T1, T2)

g
 α ∧ type(T1, A)

(R3) If A v ∃p ∈ O then: α ∧ p(T1, T2)
s
 α ∧ type(T,A) α ∧ type(T1, A)

g
 α ∧ p(T1, T2)

(R4) If ∃p− v A ∈ O then: α ∧A(T )
s
 α ∧ p(T2, T1) α ∧ p(T2, T1)

g
 α ∧ type(T1, A)

(R5) If A v ∃p ∈ O then: α ∧ p(T1, T2)
s
 α ∧ type(T,A) α ∧ type(T1, A)

g
 α ∧ p(T1, T2)

(R6) If p v s ∈ O then: α ∧ s(T1, T2)
s
 α ∧ p(T1, T2) α ∧ p(T1, T2)

g
 α ∧ s(T1, T2)

(R7) If s− v p ∈ O then: α ∧ p(T1, T2)
s
 α ∧ s(T2, T1) α ∧ s(T1, T2)

g
 α ∧ p(T2, T1)

(R8) If θ:vars(q)7→vars(q)∪E

s.t. θ(Ti) = θ(T ′i )

then: α ∧ p(T1, T2) ∧ p(T ′1, T ′2) ∈ q s
 αθ ∧ p(T1, T2)θ

α ∧ p(T1, T2) s.t. T1 or T2 ∈ E
g
 α ∧ p(Z, T2) or α ∧ p(T1, Z)

rectly address the problem of E-OMQA. Therefore, we suggest the following two options: (1) Train
existing embedding models for logical QA on the data derived from O∞(G) instead of G;(2) De-
velop an ontology-aware embedding model that will be trained on G, but will have special terms in
the training objective structurally enforcing O.

While the proposed approaches can be realized on top of any embedding model for logical QA, in
this work we verify their effectiveness on the two prominent recent embedding models: Query2Box
and CQD. Regarding (1), in Section 3.1 we present several methods for effective ontology-driven
training. As for (2), building on Query2Box, in Section 3.2 we develop an ontology-aware embed-
ding model. Finally, we use the query-rewriting method over embeddings as a baseline in Section 4.

3.1 ONTOLOGY-DRIVEN DATA SAMPLING

Let QG be the set of all possible EPFO monadic queries that can be formed using signature Σ. To
answer any arbitrary such query, existing embedding models are trained on a set of sampled queries
of certain shapes and their answers over the KG G. For instance, queries in (Ren et al., 2020) have
multiple atoms while in (Arakelyan et al., 2021) they are atomic (e.g., q(X)← worksFor(X,mit)).
Usually, the set of training queries does not take the schema into account. For example, in (Ren et al.,
2020), the queries are randomly selected from QG and used for training the model along with their
answers over G as positive examples and randomly generated non-answers as negative examples.
However, if the ontology is present along with the KG, this procedure is not guaranteed to capture
the ontology axioms, and using all possible queries from QG may be infeasible in practice. In the
following, we discuss various options for sampling queries to train ontology-aware KGE models.

Certain Answer and Query Rewriting-Based Sampling. The first natural approach for query
sampling is to select queries along with their certain answers instead of the standard answers. For
ontology languages such as those in the DL-Lite family (Artale et al., 2009) computing certain
answers can be done efficiently. An example of this training case is to randomly sample query
q(Y ) ← ∃X.hasAlumnus(mit, X) ∧ worksFor(X,Y ) and, given (G, O) in Figure 1, use it along
with all its certain answers: mit, yale during training. To account for the ontology, we can randomly
sample queries over the KG, and add also all of their generalizations and specializations obtained
using the rules in Table 1. To rewrite a query we select an atom and apply an ontology axiom,
e.g., the first rule (R1) applies a concept inclusion axiom, while (R6) applies a role inclusion. The
specializations of a given query q (denoted as Spec(q)), incorporate specific information regarding
the answers of q, while the generalizations of q (i.e. Gen(q)) incorporate additional related entities.
Example 3. Consider q1(X)←∃Y.type(X,University), q2(X)←∃Y, Z.teachesAt(Z,X). Using
R2 in Table 1 and (5) in Figure 1 we get q1

s
 q2. Similarly, in Example 2, q′

g
 q using R6 and (1).

In general, there are exponentially many rewritings thus to keep the training size reasonable, we fix a
rewriting depth, up to which the respective training queries are generated, via a dedicated parameter.

Strategic Ontology-Based Sampling. While adding generalizations and specializations of ran-
domly selected queries should capture some parts of the ontological background knowledge,
many relevant queries might still be missed. For example, if O contains also ∃worksFor− v
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Figure 2: Ontology-driven rules to label query shapes; r− denotes any of inv(r).

Organization, queries such as q(X)←∃YmanagerAt(Y,X)∧type(X,Organization) are likely to
be disregarded during training. Therefore, another training approach that we propose is to leverage
the ontology to strategically generate the train queries.

For that first, we formalize the set of target queries by means of a query template graph, i.e., a
directed acyclic graph (DAG) (N,E), where N is a set of nodes and E ⊆ N ×N is a set of directed
edges. Such DAG captures the shape of each query. The set of target queries is then obtained by
applying a labeling function to assign symbols in Σ to nodes and edges.

Definition 2 (Query Shape). A query shape S is a tuple (N,E, n) such that (N,E) is a DAG and
n ∈ N is the distinguished node of S (i.e., the node corresponding to the answer variable). For a
given set of relations and constants in Σ, a labeling function f : N ∪ E 7→ Σ ∪V maps each node
to either a variable or an entitiy and each edge to a relation symbol in Σ.

Our goal is to exploit the ontology to label query shapes to create semantically meaningful queries.
Towards that, let v∗ be the reflexive and transitive closure of v. Then, for a given relation p :

- inv(p) = {p′ | p v p′− ∈ O}, dom(p) = {A | ∃p′vA′ ∈ O s.t. p v∗ p′,Av∗A′ or A′v∗A},
- range(p) = {A | ∃p′−vA′ ∈ O s.t. pv∗p′,Av∗A′ or A′v∗A},
- follows(p) = {p′ | range(p) ∩ dom(p′) 6= ∅ or },
- interr(p)={p′|range(p)∩range(p′) 6=∅ or p1∈ inv(p), p2∈ inv(p′) and dom(p1)∩dom(p2) 6=∅},
- interd(p)={p′|dom(p)∩dom(p′) 6= ∅ or p1∈ inv(p), p2∈ inv(p′)andrange(p1)∩range(p2) 6=∅}.
Intuitively, for a given relation p, the set inv(p) contains all inverse relations of p, dom(p) contains
all domain types for p, range(p) all range types for p, follows(p) stores all relations p′ which can
follow p, and interr(p), interd(p) contain resp. all relations p′ which can intersect p on range and
domain positions. Then, for each shape we label nodes and edges to create queries that are valid
w.r.t. O as illustrated in Figure 2. Note that this query sampling process uses only the ontology,
thus it is data independent. However, if the ontology does not capture additional data patterns we
can proceed in a bottom-up fashion. We randomly take some labeled query shapes which produce
answers, and construct their generalizations as before.

3.2 AN ONTOLOGY-AWARE TRAINING OBJECTIVE

In this section, we present our novel training objective function employed by Query2Box. Recall
that when embedding a query, the Query2Box model defines a box in an embedding space, s.t. the
answer entities of the given query are mapped to points located inside of the box. Note that for every
ontological axiom its both left- and right-hand side can be turned into queries. We observe that when
embedding those queries as boxes, ontological axioms can be naturally injected into the model if in
the vector space the inclusion of the boxes corresponding to the respective queries is ensured.

Example 4. In Figure 3, the entities and relations are embedded into the vector space as points and
projection operators, resp. The embedding of q(Y )←∃X .hasAlumnus(mit,X )∧worksFor(X ,Y )
is represented by the larger grey box, obtained by applying the projection hasAlumnus to the em-
bedding of entity mit followed by the projection on worksFor. To enforce teachesAt v worksFor
we ensure that the box corresponding to q′(Y )←∃X.hasAlumnus(mit, X) ∧ teachesAt(X,Y ), is
contained in the box corresponding to q.

The goal is to learn the embedding of queries, such that the distance between the box, corresponding
to the query, and its answers is minimized, while the distance to this box from other negative samples
is maximized. Similarly to Ren et al. (2020), we define the distance between q ∈ Rd × Rd≥0 and
v ∈ Rd as d(q,v) = ‖cenq − v‖1, namely the L1 distance from the entity v to the center of the
box. Using the sigmoid function we transform the distance into the (0, 1) interval, that is, p(v |q) =
σ
(
− (d(q,v)− γ)

)
, where γ > 0 is a margin, which denotes the probability of v ∈ q[O,Gi].
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Figure 3: Our extension of Query2Box, where query embeddings capture the ontology axiom
teachesAt v worksFor , represented by the inclusion of the respective boxes.

For a query q, let Gen(q) = {q1 . . . qn} be the set of all generalizations of q based on O. Given
a train query q and its certain answer v ∈ q[G,O], we aim at maximizing

∏n
i=1 p(v |qi)βi , where

βi ≥ 0 is a weighting parameter for all i = 1, . . . , n. This is achieved by minimizing the negative
log-likelihood:2 − log

(∏n
i=1 p(v |qi)βi

)
= −

∑n
i=1 βi log

(
p(v |qi)

)
. By exploiting the fact that

σ(x) = 1−σ(−x), for any v′j 6∈ q[G,O], we have that p(v′ |q) = 1− p(v |qi) = σ(d(q,v)−γ) .

Our goal is to ensure that if q′ is a generalization of a given train query q w.r.t. O, then the box of
q′ contains the box of q. In other words, if a is an answer to the query q then the distance not only
between a and q should be minimized, but also between a and q′ as well as between a and all other
generalizations of q. The following training objective reflects our goal:

L=−
n∑
i=1

βi log σ
(
γ − d(v,qi)

)
−

k∑
j=1

1

k
log σ(d(v′j ; q)− γ),

where v′j 6∈ q[G,O] is a random entity for all j = 1, . . . , k obtained via negative sampling. In our
experiments, we use βi = |Gen(q)|−1 = 1/n.

Example 5. Consider q(Y )←∃X .hasAlumnus(mit,X )∧type(X,AProfessor)∧teachesAt(X ,Y ).
We have Gen(q) = {q1 , q2 , q3}, where q1 is obtained from q by substituting teachesAt with
worksAt, while q2 is q with type(X,Professor) instead of type(X,AProfessor). In q3 the first,
second and third atoms are resp. the same as in q, q1 and q2. It holds that q [G,O] = {yale}, hence
our training objective is to minimize the distance between yale (the embedding of yale), and q as
well as the distance between yale and the boxes of q1, q2 and q3 (denoted by q1, q2 and q3).

Note that conceptually, our training data sampling techniques and the loss function modifications
are flexible in terms of the Description Logic in which the ontology is encoded. The only restriction
is the existence of efficient query rewriting algorithms for this DL. In this work, we focused on
DL-LiteR, since the majority of available ontologies are belong to this language.

4 EVALUATION

In this section, we evaluate the proposed training strategies on the two recent embedding models
for QA: Query2Box model (Q2B , Ren et al., 2020) and Continuous Query Decomposition (CQD ,
Arakelyan et al., 2021). We also measure the effectiveness of the newly introduced training objective
function of Q2B model (called O2B ). All models are evaluated in different settings to measure their
ability to perform inductive reasoning, deductive reasoning, and their combination.3

4.1 EXPERIMENTAL SETUP

We have configured both Q2B and O2B systems as follows: We set the size of the embedding
dimension to 400, and trained the models for 15×104 steps using Adam (Kingma & Ba, 2015) with
an initial learning rate of 10−4 and the batch size of 512. We evaluated the models periodically and
reported the test results of the models which have the best performance on the validation dataset. For
CQD we have used the following configuration: we used ComplEx-N3 (Lacroix et al., 2018) as the
underlying neural link predictor, where the embedding size was set to 1000, and the regularisation
weight was selected based on the validation set by searching in {10−3, 5× 10−3, . . . , 10−1}.

2The log is strictly monotonically increasing, thus, it will not change the maximization. It only changes the
product to a summation. During training we consider a minimization, which motivates the negative sign.

3Code and data are available at https://tinyurl.com/66hbhppc.
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Figure 4: Comparison of Q2B ,O2B and CQD in each training setting for test cases (D) and (I+D)

Table 2: HITS@3 metric per query shape for deductive (D) and inductive+deductive (I+D)

Model Test Case D Test Case I+D
Avg. 1p 2p 3p 2i 3i ip pi 2u up Avg. 1p 2p 3p 2i 3i ip pi 2u up

LUBM

Q2Bplain 0.253 0.318 0.12 0.103 0.464 0.588 0.181 0.242 0.160 0.104 0.218 0.173 0.101 0.107 0.433 0.546 0.167 0.200 0.133 0.100
O2Bplain 0.276 0.317 0.113 0.094 0.512 0.63 0.189 0.263 0.257 0.110 0.245 0.235 0.109 0.095 0.488 0.584 0.176 0.218 0.200 0.103
CQDplain 0.174 0.101 0.051 0.100 0.364 0.509 0.133 0.199 0.076 0.040 0.179 0.109 0.058 0.104 0.384 0.502 0.130 0.187 0.092 0.046

Q2Bgen 0.506 0.619 0.242 0.113 0.887 0.936 0.426 0.333 0.671 0.327 0.458 0.592 0.267 0.129 0.789 0.870 0.360 0.282 0.552 0.279
O2Bgen 0.493 0.641 0.221 0.100 0.876 0.921 0.399 0.317 0.66 0.301 0.447 0.577 0.257 0.114 0.777 0.859 0.359 0.27 0.546 0.264
CQDgen 0.427 0.460 0.150 0.079 0.770 0.830 0.343 0.342 0.618 0.252 0.408 0.539 0.214 0.098 0.710 0.791 0.304 0.302 0.513 0.208

Q2Bspec 0.506 0.677 0.229 0.107 0.893 0.936 0.408 0.327 0.66 0.313 0.456 0.590 0.263 0.122 0.791 0.872 0.359 0.286 0.548 0.275
O2Bspec 0.497 0.646 0.228 0.104 0.873 0.919 0.407 0.317 0.666 0.310 0.447 0.576 0.258 0.113 0.776 0.857 0.360 0.27 0.544 0.265
CQDspec 0.436 0.459 0.193 0.097 0.764 0.825 0.378 0.342 0.616 0.252 0.414 0.539 0.240 0.114 0.705 0.787 0.330 0.298 0.511 0.210

Q2Bonto 0.818 0.929 0.760 0.482 0.988 0.994 0.877 0.646 0.932 0.751 0.687 0.762 0.617 0.447 0.868 0.915 0.693 0.555 0.732 0.600
O2Bonto 0.838 0.960 0.771 0.514 0.991 0.996 0.879 0.697 0.963 0.768 0.707 0.771 0.629 0.476 0.878 0.927 0.694 0.619 0.752 0.618
CQDonto 0.861 0.901 0.857 0.552 0.961 0.979 0.896 0.879 0.942 0.788 0.723 0.752 0.681 0.481 0.870 0.924 0.735 0.728 0.738 0.604

NELL

Q2Bplain 0.521 0.763 0.401 0.325 0.776 0.832 0.452 0.535 0.337 0.272 0.458 0.516 0.343 0.286 0.747 0.81 0.404 0.447 0.325 0.241
O2Bplain 0.664 0.816 0.483 0.413 0.961 0.975 0.535 0.648 0.792 0.355 0.596 0.79 0.409 0.359 0.904 0.936 0.479 0.521 0.666 0.303
CQDplain 0.598 0.710 0.412 0.341 0.891 0.929 0.522 0.593 0.649 0.331 0.555 0.664 0.383 0.304 0.853 0.903 0.471 0.512 0.599 0.306

Q2Bgen 0.734 0.974 0.559 0.466 0.99 0.99 0.622 0.685 0.94 0.377 0.642 0.858 0.485 0.397 0.928 0.95 0.538 0.539 0.768 0.312
O2Bgen 0.744 0.962 0.572 0.492 0.989 0.990 0.639 0.712 0.944 0.396 0.652 0.859 0.494 0.420 0.928 0.953 0.552 0.559 0.77 0.329
CQDgen 0.953 1.000 0.996 0.601 1.000 1.000 0.997 0.999 1.000 0.988 0.809 0.903 0.775 0.473 0.957 0.969 0.821 0.757 0.886 0.743

Q2Bspec 0.734 0.974 0.559 0.464 0.99 0.991 0.622 0.684 0.940 0.377 0.641 0.859 0.483 0.397 0.927 0.950 0.538 0.538 0.766 0.313
O2Bspec 0.745 0.967 0.573 0.493 0.988 0.990 0.639 0.711 0.944 0.397 0.651 0.859 0.494 0.42 0.928 0.954 0.551 0.558 0.771 0.329
CQDspec 0.953 1.000 0.996 0.599 1.000 1.000 0.998 0.999 1.000 0.988 0.808 0.902 0.774 0.474 0.958 0.968 0.820 0.755 0.885 0.741

Q2Bonto 0.725 0.973 0.567 0.466 0.985 0.986 0.606 0.654 0.909 0.384 0.636 0.858 0.472 0.398 0.927 0.948 0.529 0.524 0.747 0.317
O2Bonto 0.748 0.968 0.598 0.496 0.989 0.988 0.646 0.697 0.941 0.412 0.655 0.862 0.498 0.423 0.933 0.953 0.557 0.555 0.773 0.340
CQDonto 0.591 0.659 0.404 0.329 0.896 0.943 0.515 0.611 0.663 0.302 0.545 0.667 0.368 0.293 0.848 0.904 0.453 0.506 0.595 0.275

Query and Answers Sampling. We use the same type of queries (corresponding to directed acyclic
graphs with entities as the source nodes, also known as anchors) as Ren et al. (2020) (see Figure 5
in Appendix). We consider each input KG G to be the ideal completion (i.e. Gi) and then partition it
into Gvalid for validation and Gtrain for training by discarding 10% of edges at each step; this yields
Gtrain ( Gvalid ( G. We then create several training sets of queries according to our ontology-
aware data sampling strategies from Section 3.1. More specifically, these include:

plain: the training queries are randomly sampled based on the signature of Gtrain , and their plain
answers, i.e. over Gtrain .

gen: queries from plain augmented with their ontology-based generalizations 4; all answers are
certain, i.e. over O∞(Gtrain).

spec: queries from gen augmented with their ontology-based specializations; all answers are
certain answers as well.

onto: queries constructed relying on the ontology axioms as introduced in Section 3.1, for which
we randomly choose a percentage of valid entities as anchors; all answers are certain.

4This setting is similar to random sampling over O∞(Gtrain) but unlike the deductive closure, our procedure
is guaranteed to terminate. We used the rewriting depth of up to 10.
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Following Ren & Leskovec (2020), the training query shapes are the first five ones in Figure 5 (1p–
3i); non-compliant specializations and generalizations are discarded. The Q2B and O2B are trained
on all five query shapes, while CQD is trained only on 1p queries (Arakelyan et al., 2021).

Evaluation Procedure. For each trained model we measure its performance using standard metric
HITS at K for K=3 (HITS@3), which indicates the frequency that the correct answer is ranked
among the top-3 results (the higher, the better). We use such metric for measuring the reliability and
ontology-awareness of the resulting models (as in Definition 1):

Inductive case (I). Evaluating the inductive reasoning ability (accounts for the standard test case):
Is the model able to predict missing answers to queries over the ideal completion Gi?

Deductive case (D). Evaluating the deductive reasoning ability: Is the model able to predict an-
swers that can be inferred from the known triples in Gtrain using ontology axioms?

Inductive + Deductive case (I+D). The combination of I and D: Is the model able to predict miss-
ing answers that are inferred from the ideal completion Gi using axioms from O?

For I, we randomly generate validation and test queries over Gvalid, and input G, in such a way that
for each validation query q we have that q[Gtrain] ( q[Gvalid], and for each test query q we have
q[Gvalid] ( q[G]. For D, we randomly generate evaluation queries overO∞(Gtrain) s.t. they are not
trivially answered over Gtrain . Moreover, each validation query is unseen during training, and each
test query is unseen during training and validation. For I+D, we proceed as for I, but useO∞(Gvalid)
and O∞(G) to sample validation and test queries and their answers. In each test case all shapes in
Figure 5 are sampled, and we measure accuracy based on so-called hard answers, which cannot be
trivially retrieved from Gtrain and require prediction of missing edges and/or the application of some
ontology axioms. A hard answer for the case I is an answer in q[G] \ q[Gvalid], for D it is an answer
in q[O∞(Gtrain)] \ q[Gtrain], while for I+D it is an answer in q[O∞(G)] \ q[O∞(Gvalid)].

Models and Datasets. We consider Q2B , O2B and CQD trained in each described setting: i.e.,
Mx, where M ∈ {Q2B ,O2B ,CQD} and x ∈ {plain, gen, spec, onto}. Additionally, we consider
the use of the query-rewriting method on top of each model pre-trained using plain strategy, denoted
by M rew

plain , i.e., Q2Bplain , Q2Brew
plain and CQDplain , CQDrew

plain respectively are used as baselines.
We evaluate the proposed training methods, as well as the novel training objective, on two datasets:
NELL (Carlson et al., 2010), a general purpose real world KG, and LUBM (Guo et al., 2005), a
domain specific synthetic dataset describing the university domain. We selected these datasets, as
they are among few large KGs that have ontologies (see Appendix for statistics).

4.2 EVALUATION RESULTS

For the standard test case I, the baseline Q2Bplain performs best on LUBM, while CQDplain out-
performs the other models and configurations on NELL. This is not surprising: ontologies are not
effective when coping with missing edges and facts in a KG beyond those that they can deduc-
tively infer. In fact, if statistically, the patterns reflected by ontologies do not hold in the data,
ontology-aware training strategies might worsen the prediction quality. The second observation is
that the query rewriting over embedding models only slightly improves the prediction accuracy;
Q2Brew

plain , O2Brew
plain and CQDrew

plain result in at most 10% enhancement on test cases D and I+D
over Q2Bplain , O2Bplain and CQDplain respectively. These limited improvements are likely due
to the incompleteness of the rewriting procedure caused by the restriction of the queries supported
by the models. The results on I and query-rewriting over embeddings are in Appendix E.1.

Next, we discuss our main observations for the other more interesting test cases D and I+D. The
results are reported in Table 2 and visually illustrated in Figure 4. Overall, the effectiveness of
the proposed solutions is evident: for I+D on LUBM the improvements are of almost 50% for
Query2Box and 54% for CQD, while for NELL of almost 20% for Query2Box and 25% for CQD.

Performance of Training Strategies. The results on certain answer prediction (D and I+D) show
that none of the baselines is able to capture the domain knowledge expressed in the ontology, and
thus cannot be used directly for OMQA. Our ontology-aware model–O2Bplain outperforms the
other models trained on plain , but incorporation of certain answers and generalizations via our train-
ing strategies leads to better results. The proposed training methods from Section 3.1 significantly
improved the accuracy for test cases D and I+D. For all models generating training queries by taking
the ontology into account yields improvements. This observation holds already when augmenting
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the set of random queries by choosing their generalizations, though the addition of specializations
does not seem to have a major impact. We observed that randomly selecting training queries, as usu-
ally done in the literature, does not result in the most accurate models. On LUBM, for all models,
the advantage of the ontology-driven query sampling (i.e. onto setting) is significant compared to
all other settings. Remarkably, for LUBM CQDonto trained on less data than CQDgen or CQDspe
results in higher accuracy. This shows that random sampling is not adequate for OMQA. For NELL,
to keep the size of the training set reasonable, we chose a much lower number of anchors obtaining
a significantly lower number of atomic queries (details in the Appendix), however since Q2B and
O2B use information from other query shapes onto setting still outperforms all others, unlike for
CQD which only relies on atomic queries.

Evaluation of the Ontology-Aware Training Objective. The model O2Bonto has far better ac-
curacy on cases D and I+D than the Q2B baseline. This shows that the enforcement of ontology
axioms in the embedding space together with strategic ontology-driven training provides significant
improvement, especially for LUBM which has a more expressive ontology. Furthermore, the im-
provement of O2Bplain over Q2Bplain shows that we are able to partially incorporate the domain
knowledge into the embedding model without explicitly training on certain answers.

5 RELATED WORK

The task of answering queries that involve multiple atoms using embedding techniques has recently
received a lot of attention. The existing proposals can be divided into query-based (Ren et al., 2020;
Ren & Leskovec, 2020; Liu et al., 2021; Choudhary et al., 2021; Kotnis et al., 2021; Sun et al.,
2020) and atom-based (Arakelyan et al., 2021). Friedman & den Broeck (2020) and Borgwardt
et al. (2019) study the relation between the problem of conjunctive QA in the embedding space and
over probabilistic databases. Our work is different from the above proposals in that along with the
data we also rely on ontologies to answer queries.

Integration of ontologies into KG embeddings has been studied by e.g. Krompaß et al. (2015);
Minervini et al. (2017); Hao et al. (2019); Guo et al. (2016); Rocktäschel et al. (2015); Demeester
et al. (2016); Kazemi & Poole (2018); Fatemi et al. (2019); Abboud et al. (2020), but these works
do not capture all supported axioms and focus on link prediction rather than QA. The capability
of embeddings to model hierarchical data has been explored by Patel et al. (2020); Idahl et al.
(2019); Gutiérrez-Basulto & Schockaert (2018). In particular, Idahl et al. (2019) aim at interpreting
embeddings by finding concept spaces in node embeddings and linking them to a simple external
type hierarchy; this is different from our method for OMQA over embeddings. In Gutiérrez-Basulto
& Schockaert (2018), conceptual space representations of known concepts are learned by associating
a Gaussian distribution with each concept over a learned vector space. Constructing models for EL
ontologies in the embedding space (Kulmanov et al., 2019) is another relevant direction. While
Gutiérrez-Basulto & Schockaert (2018); Kulmanov et al. (2019) are related to our work, they do
not touch upon the problem of OMQA. The OMQA problem has been actively studied (see e.g.
Schneider & Simkus (2020) for an overview), but available methods only focus on purely logic-
based deductive reasoning, without aiming at simultaneously handling missing links.

6 CONCLUSION

We have presented methods for Ontology-Mediated Query Answering that operate in the embedding
space to enable simultaneous inductive and deductive reasoning over the incomplete data. To the best
of our knowledge, this is the first work on embedding-based OMQA. We have empirically demon-
strated that embedding-based methods for QA applied naively or combined with query rewriting
techniques are not effective. In our work, we have proposed solutions for making the existing mod-
els ontology-aware via ontology-driven training sampling strategies and loss function modifications.
The improvements in the accuracy on prominent query-based and atom-based models range from
20% to 50% compared to the baselines. We believe that this work opens interesting perspectives
for combining OMQA methods, with roots in knowledge representation, and embedding techniques
from the machine learning area.
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Reproducibility Statement. Code, data, and instructions for reproducing all experiments are
available at https://tinyurl.com/66hbhppc. The hyperparameters are presented in Appendix F.
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Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box
embedding model for knowledge base completion. In NeurIPS, 2020.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering
with neural link predictors. In ICLR, 2021.

Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The dl-lite
family and relations. J. Artif. Intell. Res., 36:1–69, 2009.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Handbook on Ontologies, pp.
21–43. 2009.

Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Palmonari, and Pasquale Minervini.
Knowledge graph embeddings and explainable AI. In Knowledge Graphs for eXplainable Artifi-
cial Intelligence: Foundations, Applications and Challenges, pp. 49–72. 2020.

Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering with data-tractable
description logics. In Reasoning Web, volume 9203 of Lecture Notes in Computer Science, pp.
218–307. Springer, 2015.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Neurips, pp. 2787–2795, 2013.
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A DESCRIPTION LOGICS ONTOLOGIES

Table 3: Ontology axioms in the Description Logic DL-LiteR and their translation to First Order
syntax.

DL syntax FO syntax

A v A′ type(X, A) → type(X, A’)
A v ∃p type(X, A) → ∃Y.p(X,Y )
∃p v A p(X ,Y ) → type(X , A)
∃p− v A p(Y,X) → type(X, A)
p v s p(X ,Y ) → s(X ,Y )
p− v s p(Y,X) → s(X,Y )

The syntax of DL-LiteR ontologies and its translation into rule-based syntax are given in Table 3.

The semantics of DL ontologies is defined using FO interpretations (∆I , ·I) consisting of a non-
empty domain ∆I and an interpretation function ·I , which maps each entity e to an element eI ∈
∆I , each concept name A to a subset AI ⊆ ∆I , and each role name r to a binary relation rI ⊆
∆I×∆I . The interpretation function ·I is extended to complex concepts as follows: (∃p)I = {d ∈
∆I | ∃d′, (d, d′) ∈ pI}, (p−)I = {(d′, d) | (d, d) ∈ pI}.
An interpretation I satisfies a concept inclusionC v D iffCI ⊆ DI , and I satisfies a role inclusion
p v s iff pI ⊆ sI . Finally, I is a model of an ontologyO if it satisfies all concept and role inclusions
in O. The notion of modelhood is applied also to a KG G as follows: An interpretation I satisfies a
fact A(c) (i.e., type(c, A)), resp. p(c, c′), if c ∈ AI , resp. (c, c′) ∈ pI .

Given a KG G and an ontology O, an interpretation I is a model of G w.r.t O if I satisfies each fact
in G and each axiom in O. In OMQA setting, to answer a given query, we need to evaluate it over
each such model; in the case of DL-LiteR ontologies, for computing answers to ontology-mediated
queries, we can rely on the deductive closureO∞(G), since the model constructed fromO∞(G) can
be homomorphically mapped to every other model.

B TRACTABILITY OF REWRITING-BASED QUERY GENERATION

For an arbitrary DL-LiteR ontology O and an arbitrary existential positive FO query q, let

Spe(q,O) = {q′ | q
s

 ∗ q′} be the set of all specializations of q w.r.t. O, modulo variable re-

namings, obtained by exhaustively applying
s

 ∗ rules from Table 1. Similarly, let Gen(q,O) =

{q′ | q
g

 ∗ q′} be the set of all generalizations of q w.r.t. O, modulo variable renamings, obtained

by exhaustively applying
g

 ∗ rules.

The following proposition, states that our training strategies based on query-rewriting are tractable.

Proposition 1. Let O be an arbitrary DL-LiteR ontology, and let q be an existential positive FO
query. Then, Spe(q,O) and Gen(q,O) are finite and can be computed in time that is polynomial in
the size of O.

Proof (Sketch). The rewriting rules we propose are simulating the standard rewriting for DL-LiteR.
Thus, it follows from Lemma 34 in Calvanese et al. (2007) that Spe(q,O) is finite. Moreover,
based on Lemma 42 in Calvanese et al. (2007) it follows that there exists a procedure to compute
Spe(q,O) in time that is polynomial in the size of O. Since the generalization procedure is similar,
only applying the axioms in the other direction, we also conclude that Gen(q,O) is finite and
polynomially bounded by O.

C QUERY2BOX GEOMETRIC OPERATIONS

We now describe the geometric operators employed in the Query2Box model.
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Figure 5: Query shapes considered in our experiments, where blue nodes correspond to anchor
entities and red ones to answer variables; p stands for projection, i for intersection and u for union.
The first five shapes are used in training.

Table 4: The number of axioms in the ontology |O|, the number of each type of axiom, the size
of the input KG |G|, the number of entities |E|, the number of relations |R|, and the number of
materialized triples |O∞(G)|.

Dataset Ontology O KG G
|O| A v A′ p v s p− v s ∃p v A ∃p− v A |G| |E| |R| |O∞(G)|

LUBM 68 13 5 28 11 11 284k 55684 28 565k
NELL 307 – 92 215 – – 285k 63361 400 497k

Projection. Let S ⊆ E ∪ C be a set of entities, and r ∈ R a relation. Intuitively, the projection
operator performs graph traversal, e.g. given an embedding of entity e, the projection operator for
the relation r provides the box corresponding to the set {e′ ∈ E ∪ C | r(e, e′) ∈ G}. Given the
embedding r = (cenr,offr) ∈ Rd × Rd≥0 for the relation r, we model the projection of a box
v = (cenv,offv) by applying element-wise summation v + r = (cenv + cenr,offv + offr). This
relational translation Bordes et al. (2013) operation corresponds to the translation and enlargement
of the box v.

Intersection. Given a set of entity sets {S1, . . . , Sn}, the intersection operator computes the inter-
section of these sets. Recall that each set of entities is represented by a box in Query2Box model.
The intersection w = (cenw,offw) of a set of boxes {(cenv1 ,offv1), . . . , (cenvn ,offvn)} corre-
sponding to the set {S1, . . . , Sn} is modeled by applying the following operations:

cenw =

n∑
i=1

Φ
(
NN(cenv1), . . . ,NN(cenvn)

)
i
� cenvi ,

offw = min(offv1 , . . . ,offvn)� σ
(
Ψ(offv1 , . . . ,offvn)

)
,

where � and min denote the element-wise multiplication and minimum, respectively. NN : Rd →
Rd is a 2-layer feed-forward neural network having the same dimensionality for the hidden layers
as for the input layer. Φ and σ stand for the softmax and sigmoid functions, resp., applied in a
dimension-wise manner. Ψ is a permutation invariant function composed of a 2-layer feed-forward
network followed by element-wise mean operation and a linear transformation. The center cenw is
calculated as the weighted mean of the box centers cenv1 , . . . , cenvn .

This geometric intersection provides a smaller box that lies inside a given set of boxes – for more
details we refer to Ren et al. (2020).

D DATA AND QUERY STATISTICS

Following the procedure in the literature, each input KG is completed w.r.t. inverse edges. For the
considered datasets, in Table 4 we present the number of ontology axioms of various types as well as
the number of (materialized) triples, entities and relations. In our experiments, we have considered
both complex and simple ontologies. Indeed, LUBM has a rich ontology including domain and
range axioms as well as concept and role inclusions, while the NELL KG is accompanied with a
more simple ontology containing only (inverse) role inclusions.

The size of each training/testing set, as well as the number of queries per shape for each of the
considered settings is presented in Table 5, while each query shape is illustrated in Figure 5. Note
that for NELL, the plain data is exactly the one from Ren et al. (2021). We observe that the number
of 1p queries obtained for gen and spe settings are identical. This is probably because the set of 1p
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Table 5: Queries statistics.

Dataset Train/Test Query Shape
1p 2p 3p 2i 3i ip pi 2u up

LUBM

Plain 110000 110000 110000 110000 110000 – – – –
Gen 117124 136731 150653 181234 208710 – – – –
Spe 117780 154851 173678 271532 230085 – – – –
Onto 116893 166159 333406 212718 491707 – – – –

I 8000 8000 8000 8000 8000 8000 8000 8000 8000
D 1241 4701 6472 3829 4746 7393 7557 4986 7122

I+D 8000 8000 8000 8000 8000 8000 8000 7986 8000

NELL

Plain 107982 107982 107982 107982 107982 – – – –
Gen 174310 408842 864268 398412 930787 – – – –
Spe 174310 419664 906609 401954 936537 – – – –
Onto 114614 542923 864268 629144 930787 – – – –

I 15688 3910 3918 3828 3786 3932 3895 3940 3966
D 346 4461 4294 4842 5996 7295 5862 5646 6894

I+D 8000 8000 8000 8000 8000 8000 8000 7990 8000

queries in plain covers all edges in the train KG. This explains the high accuracy of CQDgen and
CQDspe on the test case D. Moreover, the NELL ontology does not contain interesting axioms that
can be leveraged by ontology-driven query sampling technique, thus to obtain onto we had to rely
on the patterns from the data alone. Since there are too many queries to chose from, due to the large
number of relations, we had to select a smaller number of valid entities as anchors, namely 20-30%.
This explains the small number of 1p queries.

For the LUBM dataset, we have created the training and testing sets from scratch, and the 1p queries
in plain do not contain the entire training KG. The onto set of queries leverages the proposed
ontology-driven technique, given that the ontology covers all relations and concepts in the KG and
describes how they interact, i.e. the ontology axioms support all the constructed queries, and we
chose 50 % of valid entities as anchors.

E EXTENDED DISCUSSION OF EXPERIMENTAL RESULTS

In this section, we present more insights into our results on the inductive case I and performance of
the query-rewriting baselines.

E.1 RESULTS ON INDUCTIVE TEST CASE

In Figure 6, we present the average HITS@3 for the inductive test case I. As previously discussed,
we see no improvement of ontology-injection methods upon answering queries over incomplete
KGs without taking certain answers into account. Indeed, Q2Bplain outperforms all other models
on LUBM, while CQDplain performs best on NELL for this test case. This behaviour is expected,
since ontologies cannot handle missing edges and facts in a KG that are not inferred from the data
using ontological reasoning.

E.2 QUERY REWRITING OVER PRE-TRAINED EMBEDDING MODELS

In order to evaluate the target procedure that performs query rewriting over pre-trained embeddings
for QA, for each hard answer a we take the best (i.e., minimum) ranking among all rankings gener-
ated by all queries in the rewriting of each test query. In other words, we take the minimal distance
between the embedding of a and all rewritings of q. Note that, for measuring the performance we
use the pre-trained models Q2Bplain , CQDplain and O2Bplain , obtained after 450K training steps.

Due to the reliance on particular query shapes of the respective models, the complete rewriting for
each query is not guaranteed. In Table 6, we present the results for this method compared to the
plain setting. Minor improvements of only at most 10% are observed.
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Figure 6: Comparison of Q2B , O2B , CQD in each train setting for test case I

Table 6: Avg. HITS@3 metric on answering queries of shapes 1p, 2p, 3p, 2i, 3i using rewriting on
top of pre-trained plain model versus the plain model alone.

Models Test Case D Test Case I+D
LUBM NELL LUBM NELL

Q2Bplain 0.189 0.617 0.193 0.539
Q2B rew

plain 0.248 0.683 0.261 0.639

Gain +0.059 +0.066 +0.068 + 0.1

CQDplain 0.225 0.656 0.231 0.621
CQDrew

plain 0.228 0.743 0.249 0.708

Gain +0.003 +0.087 +0.018 + 0.087

O2Bplain 0.245 0.731 0.264 0.680
O2B rew

plain 0.255 0.760 0.273 0.711

Gain +0.01 +0.029 +0.009 + 0.031

We have also used our pre-trained O2Bplain model as a possible way to cope with this issue, and
indeed it outperforms all other baselines. In fact, on NELL O2Bplain becomes relatively competitive
even compared to the other ontology-aware models that have been trained using more advanced
ontology-driven training strategies. However, for richer ontology that comes with the LUBM KG,
the improvements are still not sufficient.

E.3 DATA AUGMENTATION

In Figure 7, we present the performance of each model and the number of training queries needed
in each training setting. In general, naturally, the increase of the number of training queries leads
to better performance, with the exception of the setting spe, for which the training data contains all
queries from gen , but the performance is comparable or slightly decreases. The onto setting boosts
the performance for almost all models. In particular, on LUBM, which has a richer ontology, the
increase in performance is much higher compared to that for the setting when query generalizations
and certain answers are included. It is worth noting that the number of 1p queries is smaller for
onto than for gen , but CQDonto performs much better than CQDgen , which demonstrates the
effectiveness of our proposed ontology-driven training strategy.
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Figure 7: Performance of Q2B, O2B and CQD on I+D and size of the training set for each setting
plain , gen , spe , onto. The number of training queries is scaled by multiplying with 106.

F HYPERPARAMETERS FOR Q2B, O2B AND CQD

For Q2B we have used the code5 from Ren & Leskovec (2020). Our extension of this code with the
implementation of the novel training objective is available online.6.

The systems Q2B and O2B have been configured as follows: We set the size of the embedding
dimension to 400, and trained the models for 15×104 steps using Adam (Kingma & Ba, 2015) with
an initial learning rate of 10−4 and the batch size of 512. The rest of the parameters were set in the
same way as in Ren et al. (2020). We evaluated the models periodically and reported the test results
of the models which have the best performance on the validation dataset.

For CQD, we used the code shared by Arakelyan et al. (2021) 7, using ComplEx-N3 (Lacroix et al.,
2018) as the base model, where the embedding size was set to 1000, and the regularisation weight
was selected based on the validation set by searching in {10−3, 5 × 10−3, . . . , 10−1}. For LUBM,
the regularization weight was set to 0.1 in the gen , spe , and onto settings, and to 0.01 in the plain
setting. For NELL, the regularization weight was set to 0.005 in the plain setting, to 0.001 in the
gen and spe settings, and to 0.05 in the onto setting.

5https://github.com/snap-stanford/KGReasoning
6https://tinyurl.com/66hbhppc
7Available at https://github.com/pminervini/KGReasoning/
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