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Abstract

Convolutional neural networks (CNN) can be manipulated to perform specific
behaviors when encountering a particular trigger pattern without affecting the
performance on normal samples, which is referred to as backdoor attack. The back-
door attack is usually achieved by injecting a small proportion of poisoned samples
into the training set, through which the victim trains a model embedded with the
designated backdoor. In this work, we demonstrate that backdoor neurons are
exposed by their pre-activation distributions, where populations from benign data
and poisoned data show significantly different moments. This property is shown to
be attack-invariant and allows us to efficiently locate backdoor neurons. On this
basis, we make several proper assumptions on the neuron activation distributions,
and propose two backdoor neuron detection strategies based on (1) the differential
entropy of the neurons, and (2) the Kullback-Leibler divergence between the be-
nign sample distribution and a poisoned statistics based hypothetical distribution.
Experimental results show that our proposed defense strategies are both efficient
and effective against various backdoor attacks. Source code is available here.

1 Introduction

Convolutional neural networks (CNNs) have achieved tremendous success during the past few years
in a wide range of areas. However, training a CNN from scratch involves a large amount of data and
expensive computational costs, which is sometimes infeasible. A more practical strategy is to obtain
pretrained models or utilize public datasets from a third party, which brings convenience but also
raises severe security problems into the deployment of models. For example, a malicious third party
may provide pretrained models embedded with a designated backdoor, such that the model will have
a predefined response to some specific pattern, which is also called the trigger. More realistically, the
attacker can inject only a small proportion of malicious data into the public dataset to mislead the
trained model, which is referred to as backdoor poisoning attacks [24]. For instance, the malicious
data can be created by patching a particular pattern into the benign data and changing the label to the
desired target. The correlation between the trigger and the specified target label will be learned by
the models during the training time. In this way, the infected model will misclassify the input to the
attack target when the pattern is patched, while behaving normally otherwise, as shown in Figure 1.

According to previous studies, it was empirically found that an infected model always possesses one
or more neurons that have high correlation with the trigger activation, and pruning these neurons can
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Figure 1: An overview of an infected learning system. The images with a white square are classified
as class 0. It is an empirical observation that the backdoor behaviors are always triggered by one or
more backdoor neurons.

significantly alleviate the backdoor behaviors, while retaining the model performance [41, 27, 7].
Nevertheless, how to precisely find out these backdoor neurons in an infected model is still a
challenging problem, and has attracted a lot of attentions from the community.

In this work, we take an inspection on the pre-activation distributions of infected models on each
layer. In general, the pre-activations in each neuron follow an unimodal distribution that can be
approximated by a Gaussian distribution. We demonstrate that backdoor neurons do not hold such
property. Instead, in a typical backdoor neuron, the pre-activation distributions of benign data and
poisoned data present significant different moments, and can be approximated by a mixture of two
Gaussian distributions. This property allows us to locate potential backdoor neurons through simple
statistical analysis on pre-activations. Specifically, in case the defender has access to the poisoned
dataset, the abnormal pre-activation distributions can be directly observed by forward propagating
the data. The mixture of benign and poisoned data, where the small proportion of poisoned points
being away from the benign mean, leads to a skewed, and even a bimodal distribution. Based on the
maximum entropy property of the Gaussian distribution, the skewness will cause a reduction on the
differential entropy, compared with a single Gaussian distribution with the same variance. Hence, after
standardizing the pre-activation distribution to be unit variance, the abnormal distributions should
have lower differential entropy. Those neurons could potentially separate benign and poisoned data.
As for another defense setting, in which only an infected model and a set of benign data are provided,
we are not able to observe the bimodal distributions since the poisoned data is not available. In this
case, we propose to rely on the recorded statistics in Batch Normalization (BN) layers. Specifically, if
the infected model is trained on poisoned data, the population statistics in backdoor neurons recorded
in the BN layer will be different from those of only benign data. More importantly, benign neurons
will not exhibit such mismatch in statistics, allowing for differentiation between benign and backdoor
neurons. Based on the differential entropy and the statistics discrepancy, we are able to locate and
prune potential backdoor neurons to recover the model flexibly under two defense settings.

In summary, our contributions include:

1. We take a deep inspection on the infected model, and summarize the law of pre-activation
distributions on poisoned dataset. We find that (1) the standardized entropy of backdoor
neurons can be significantly lower than benign neurons, and (2) the BN statistics in infected
model are mismatched with the benign sample statistics.

2. We propose to prune potential backdoor neurons based on either the differential entropy of
pre-activation distribution or the statistics discrepancy, depending on the defense settings.
Under certain assumptions, we claim that both the proposed indices can successfully separate
the benign neurons and backdoor neurons by an appropriate threshold.

3. We conduct extensive experiments to verify our assumptions and evaluate our proposed
methods, and achieve the state-of-the-art results under two different defense settings.

2 Related work

In this section, we briefly discuss recent works in backdoor attack and defense, and a specific branch
of related studies on distributional properties of poisoned features.
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2.1 Backdoor attacks

The most famous backdoor attack is introduced in [14], where the adversary injects a small set of
targeted label-flipped data with a specific trigger into the training set, leading to a misclassification
when predicting the samples with such trigger. To make the trigger pattern even more invisible to
human beings, the blending strategy is used in [6] to generate poison images, while the form of
natural reflection is utilized in trigger design in [30]. The input image is perturbed in [39] to keep
its content consistent with the target label such that the model better memorizes the trigger pattern,
and keep it imperceptible to human beings. Moreover, the multi-target and multi-trigger attacks are
proposed in [42, 32], and make the attack more flexible and covert. Recently, some sample-specific
trigger design strategies [26] are proposed, making the defense against such backdoor attack much
harder. Generally, the above attacks can be referred to as the poisoning based backdoor attacks.

Under some settings, the attackers can control the training process to inject the backdoor without
modifying the training data, referred as the non-poisoning based backdoor attacks. This is achieved
in [29, 35, 5] through targeted modification of the neurons’ weight in a network. Such attacks will
not be evaluated in our work due to its strong attack setting.

2.2 Backdoor defenses

Training stage defense. Under such setting, the defender has access to the training process, so that
they can detect and filter the poisoned data or add some restrictions to suppress the backdoor effect
in training. Since the poisoned data can be regarded as outliers, different strategies are applied in
[10, 12, 1, 38, 15], such as the robust statistics in feature space and input perturbation techniques
to filter them out of training data. Other methods aim at suppressing the backdoor effect during
training phase with strong data augmentation methods [2] [25] [34] [31] including CutMix [43], Flip,
ShrinkPad [25], CutOut and MaxUp [13], or differential privacy constraints [11, 18].

Model post-processing defense. Under some specific scenarios, the defenders are only given a
suspicious DNN model without access to the training process or the full training set. Therefore,
they must eliminate the backdoor threat with limited resources, such as a small set of clean data. A
straightforward way is to reconstruct the trigger, and then mitigate the model with the knowledge
of the reversed trigger [40]. Some try to find the relationship between backdoor behaviors and the
neurons in a DNN model. Different levels of stimulation to a neuron are introduced in [28] to see
how to determine the output activation change, if the model is attacked. Simple neuron pruning
strategies are applied in [7] to repair the model, while redundant neuron pruning and fine-tuning are
combined in [27] to erase the backdoor effect. Adversarial perturbations are added to the neurons
in [41] and precisely prunes the easily-perturbed neurons with more limited clean data requirement
and better performance. There are other fine-tuning based methods with the implementation of
knowledge distillation [23, 17]. Mode connectivity repair technique [44] is also explored to mitigate
the backdoored model. Recently, the K-Arm optimization [37] is applied in backdoor detection,
helping curtail the threat of backdoor attack.

2.3 Distributional properties in poisoned dataset

One branch of research on backdoor learning focuses specifically on using statistical differences in the
distribution of benign and poisoned samples to filter out malicious data. Activation clustering [4] uses
K-means to separate benign and poisoned samples in feature space. Spectral signatures [38] reveal
that feature vectors tend to leave strong signals in the top eigenvectors of their covariance matrix.
SPECTRE (Spectral Poison Excision Through Robust Estimation)[15] utilizes tools from robust
statistics to amplify the spectral signature by outlier-robust data whitening. Our work differentiated
from the above works from the following three aspects: 1) the above works focus on the penultimate
layer feature representation, while our work inspects deep into each layer 2) the above works take the
representation space from all neurons as a whole, while our finding indicates that the distributional
difference only exists in some neurons 3) the above works aim at filtering out poisoned samples for
retraining, while our methods directly repair the trained neural network by pruning potential backdoor
neurons.
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3 Preliminaries

3.1 Notations

Consider a multi-class classification problem with C classes. Let the original training set D =
{(xi, yi)}Ni=1 contains N i.i.d. sample images xi ∈ Rdc×dh×dw and the corresponding labels
yi ∈ {1, 2, ..., C} drawn from X × Y . Here, we denote by dc, dh and dw the number of channels,
the height and the width of images, respectively. In particular, we have dc = 3 for RGB images.

As in Section 2.1, the backdoor poisoning attack involves changes to the input images and the
corresponding labels on a subset Dp ⊆ D. In this work, we define the ratio ρ =

|Dp|
|D| as the poisoning

rate. We denote the poisoning function to the input images as δ(x). A dataset D is said to be
ρ-poisoned if the poisoning rate of the dataset is ρ.

Consider a neural network F (x; θ) with L layers. Denote

F (l) = f (l) ◦ ϕ ◦ f (l−1) ◦ ϕ ◦ · · · ◦ ϕ ◦ f (1),

for 1 ≤ l ≤ L, where f (l) is a linear function (e.g., convolution) in the l-th layer, and ϕ is a nonlinear
activation function applied element wise. In this work, we may denote F (x; θ) as F (x) or F for
simplicity.

We denote by W(l) ∈ Rdc′×dc×dh×dw the weight tensor of a convolutional layer. To do pruning,
we apply a mask M(l) ∈ {0, 1}dc′×dc×dh×dw starting with M(l) = 1dc′×dc×dh×dw

in each layer.
Pruning neurons on the network refers to getting a collection of indices I = {(l, k)i}Ii=1 and setting
M(l)

k = 0dc×dh×dw
if (l, k) ∈ I. The pruned network F−I has the same architecture as F but with

all the weight matrices of convolutional layers set to W(l) ⊙M(l), where ⊙ denotes the Hadamard
product.

3.2 Differential entropy

To measure the uncertainty of a discrete random variable Z, the entropy [36, 8] was defined as
H(Z) = −

∑
z∈Z p(z) log p(z). At the same time, as an extension of entropy, the differential

entropy was also introduced for a continuous random variable. More concretely, if Z is a continuous
random variable, then it was defined as

h(Z) = −
∫
Z

p(z) log p(z)dz. (1)

An important fact about the differential entropy is that, among all the real-valued distributions
supported on (−∞,∞) with a specified finite variance, the Gaussian distribution maximizes the
differential entropy [8]. In this work, the differential entropy (1) will be utilized to identify the
distributions that are far different from a Gaussian distribution.

3.3 Backdoor neurons

It was found that there exist one or more neurons that contribute the most to the backdoor behaviors
in a infected model [41, 27]. If some of or all of these neurons are pruned, the attack success rate
will be reduced greatly [41]. In this work, to better quantify the importance of neurons to backdoor
behaviors, we would like to introduce the sensitivity of neurons to the backdoor. We first introduce
the definition of backdoor loss on a specific poisoning function:
Definition 1. Given a model F and a poisoning function δ, the backdoor loss on a dataset D is
defined as:

Lbd(f) = E(x,y)∼D[DCE(y, f(δ(x))],

where DCE denotes the cross entropy loss.

Then:
Definition 2. Given a model F , the index of a neuron (l, k) and the backdoor loss Lbd, the sensitivity
of that neuron to the backdoor is defined as:

α(F, l, k) = Lbd(F )− Lbd(F−{(l,k)}), (2)
where F−{(l,k)} is the network after pruning the k-th neuron of the l-th layer.
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(c) Benign neuron
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(d) Backdoor neuron

Figure 2: In (a) and (b), we compare the pre-activation distributions in backdoor neurons and benign
neurons. In benign neurons, the pre-activation distributions on benign data and poisoned data are
nearly the same, while in backdoor neurons, they show a great difference. In (c) and (d), we plot the
empirical distributions with benign samples (in blue) and the BN statistics induced Gaussians (in
green). In backdoor neurons, the discrepancy between the empirical and BN-induced distribution
is large (all the neurons are selected from infected ResNet-18 trained on CIFAR-10, and use 1,000
images with (poisoned data) or without trigger (benign data) as the inputs).

The backdoor loss is high when the model is infected, and will be reduced when the backdoor effect
is alleviated.

Using the quantity defined in (2), we are now able to find the neurons that are mostly correlated with
the backdoor behaviors:
Definition 3. Given a model F and a threshold τ > 0, the set of backdoor neurons are defined as:

BF,τ = {(l, k) : α(F, l, k) > τ}. (3)

3.4 Pre-activation distribution

During the forward propagation of an input x, we denote x(l) = F (l)(x) ∈ Rd(l)
c ×d

(l)
h ×d(l)

w as the
output of the l-th layer. For the k-th neuron of the l-th layer, the pre-activation ϕ

(l)
k = ϕ(x

(l)
k ) is

defined as the maximum value of the k-th slice matrix of dimension d
(l)
h × d

(l)
w in x(l). The reason

we choose pre-activations instead of activations is that the distribution of activations after non-linear
function might be distorted. For example, ReLU (rectified linear unit) will cut out all negative values.

It is a common assumption that, for every neuron, the pre-activations before the non-linear function
follow a Gaussian distribution, if the network is randomly initialized and the number of neurons is
large enough [20]. This assumption is based on the central limit theorem under weak dependence
[3]. In a trained network, although this assumption may not strictly hold, the pre-activation of every
neuron can be still regarded as approximately following a Gaussian distribution. However, in this
work, for the first time, we observe a bimodal pre-activation distribution in backdoor neurons formed
by the benign data and poisoned data. This phenomenon is shown in Figure 2, where a typical
backdoor neuron is compared with the benign neurons. It can be seen that, after the model is infected,
the pre-activation distributions of benign neurons hardly change when the data is poisoned, while the
pre-activation distributions of backdoor neurons become significantly different.

4 Methodology

4.1 Basic assumptions

We now introduce two preliminarily assumptions on the pre-activation distribution of an infected
neural network.
Assumption 1. Given an infected model F , we have |BF,τ | > 0 for some threshold τ > 0.

This is a primary assumption that guarantees proper pruning of neurons can correct the network’s
predictions on poisoned samples to some extent. Hence, it is a prerequisite of good performance of
all the pruning-based defense methods.

The next assumption provides a precondition for our methods:
Assumption 2. Given a model F infected by a poisoning function δ with a ρ-poisoned dataset D, the
pre-activation of sample from D on each single neuron of F follow a Gaussian mixture distribution,
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that is:
ϕ

(l)
k ∼ (1− ρ)N (µ

(l)
k , σ

(l)2
k ) + ρN (µ̂

(l)
k , σ̂

(l)2
k ),

with

|µ(l)
k − µ̂

(l)
k |

{
< ϵ, if (l, k) /∈ BF,τ ,

≫ ϵ, if (l, k) ∈ BF,τ ,

and

|σ(l)2
k − σ̂

(l)2
k | < ϵ, ∀k /∈ BF,τ

where ϵ > 0 is a small enough value, µ(l)
k and σ

(l)2
k , µ̂(l)

k and σ̂
(l)2
k are the mean and variance of

{ϕ(F (l)(x)k) : x ∼ X}, {ϕ(F (l)(δ(x))k) : x ∼ X}, respectively.

This assumes that the mean value of pre-activation distribution of benign and poisoned samples
only significantly differentiated in backdoor neurons. This assumption is made based on empirical
observation, and our methods work only when this assumption holds.

4.2 Entropy-based pruning (EP)

Based on the given assumptions, standardizing the pre-activation distributions (by subtracting the
mean and dividing by the standard deviation) will maximize the differential entropy in benign
neurons, which approximately follow a standard Gaussian distribution (N (0, 1)). However, in
backdoor neurons, the mixture distributions resulting from differences in the moments of Gaussian
components cannot be Gaussian distributions, leading to a smaller differential entropy than that of a
standardized Gaussian distribution.

Corollary 1. Let ϕ̇(l)
k =

ϕ
(l)
k −µ

(l)
k

σ
(l)
k

be the standardized pre-activations, then the following inequality

is satisfied:
h(ϕ̇

(l)
k ) < h(ϕ̇

(l)
k′ ) ≤ h(Z), ∀k ∈ BF,τ , k

′ /∈ BF,τ ,

where Z ∼ N (0, 1) is the standardized Gaussian distribution.

This inequality gives a guarantee that with an appropriately chosen threshold, the backdoor neurons
can be well separated with the benign neurons.

4.3 BN statistics-based pruning (BNP)

BN layer involves using the statistics of a mini-batch to normalize the data in each layer for each
neuron. It is known to be able to smooth the optimization landscape, and has gradually become a
common setting of neural networks [19]. During inference, BN uses the fixed statistics obtained
by averaging the sample statistics of mini-batches during training time, including the mean and the
variance. If the model is trained on a poisoned dataset, BN will record the mean and the variance
of the poison-benign mixed data. Note that the mean and variance here are not defined on the
pre-activations ϕ(l)

k , but on x
(l)
k . Based on the above discussions, we know that the poisoned pre-

activations in backdoor neurons follow a different distribution from the benign samples. The recorded
statistics during training are actually that of the mixture distribution. Hence, we can expect that
the BN statistics of a trained backdoor neural network are biased. If we are able to access a small
set of benign data, we can calculate an approximation of the true statistics on benign data. Then
we calculate the Kullback-Leibler (KL) divergence [9] between the sample distribution and the BN
induced distribution as the measurement of the bias. By assuming both of the distributions follow
Gaussian distributions, we have a closed-form solution:

DKL(N (l)
sample,N

(l)
BN)k = log

σ̃
(l)
k

σ
(l)
k

+
σ
(l)2
k + (µ

(l)
k − µ̃

(l)
k )2

2σ̃
(l)2
k

− 1

2
,

where N (l)
sample = N (µ

(l)
k , σ

(l)2
k ), N (l)

BN = N (µ̃
(l)
k , σ̃

(l)2
k ), µ(l)

k and σ
(l)2
k are the statistics obtained

from benign samples, µ̃(l)2
k and σ̃

(l)
k are the BN statistics. Note that BN statistics is the mixture

statistics of benign and poisoned distributions. Thus, we have the following corollary:
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Corollary 2. According to Assumption 2, when ϵ → 0, the following inequality is satisfied:

DKL(N (l)
sample,N

(l)
BN)k > DKL(N (l)

sample,N
(l)
BN)k′ = 0, ∀k ∈ BF,τ , k

′ /∈ BF,τ ,

The corollary indicates that backdoor neurons should have larger KL divergences than benign neurons,
as illustrated in Figure 2(c).

4.4 Overview of the two pruning strategies

In Section 3.4, we reveal the discrepancy between the pre-activation distributions in backdoor neurons
and that in the benign neurons. This enables fast detecting the neurons that are more related to the
backdoor behaviours. The index we choose to detect the abnormal neurons depends on what kind of
data we are able to access.

Mixture training data In this case, the victim is given a poisoned training dataset with a specified
poisoning rate ρ. Our goal is to obtain a benign model based on the poisoned dataset. To achieve this,
we first train an infected model F on the poisoned dataset. The resulting model should have a certain
number of backdoor neurons based on empirical observation and assumption. Since ρ > 0 for the
dataset, all the neurons follow Gaussian mixture distributions, and we have h(ẋ

(l)
k ) < h(ẋ

(l)
k′ ) for all

k ∈ BF,τ , k
′ /∈ BF,τ . This implies that with an appropriate threshold τ∗h , we can perfectly separate

the benign neurons and backdoor neurons, which can be formulated as:

∃τ∗h , h(ẋ
(l)
k ) < τ∗h , ∀k ∈ BF,τ ,

h(ẋ
(l)
k′ ) > τ∗h , ∀k′ /∈ BF,τ .

Setting the threshold τ∗h is crucial to the solution, and it is a trade-off between the accuracy on
benign samples and that on the backdoored samples. Note that |B(l)

F,τ | << d
(l)
c . We can treat

the low entropy neurons as outliers in each layer, and set different thresholds for different layers.
Specifically, let h(l) = [h(x

(l)
1 ), h(x

(l)
2 ), . . . , h(x

(l)

d
(l)
c

)]T ∈ Rd(l)
c be a vector of differential entropy

of the l-th layer calculated from the poisoned dataset. Then we set τ (l)h = h̄(l) − uh · s(l)h , where

h̄(l) = 1

d
(l)
c

∑d(l)
c

k=1 h
(l)
k and s

(l)
h =

√
1

d
(l)
c

∑d
(l)
c

k=1(h
(l)
k − h̄(l))2 are the mean and standard deviation of

h(l), uh is a hyperparameter controlling how low the threshold is. Then we have a set of indices of
potential backdoor neurons Ih = {(l, k) : h(l)

k < τ
(l)
h }. Finally, we prune the infected model F using

Ih, which results in a final model F−Ih
.

Benign training data This is the case that the victim is given a trained poisoned model F with a
small set of benign data. Our goal is to utilize the benign data to clean up the poisoned model and
eliminate the backdoor threat. Similar to the pruning process based on differential entropy, we first
construct a vector of KL divergences of all neurons for each layer K(l) = [K

(l)
1 ,K

(l)
2 , . . . ,K

(l)

d
(l)
c

]T ∈

Rd(l)
c according to equation (4). We set τ (l)K = K̄(l) + uK · s(l)K , where K̄(l) = 1

d
(l)
c

∑d(l)
c

k=1 K
(l)
k

and s
(l)
K =

√
1

d
(l)
c

∑d
(l)
c

k=1(K
(l)
k − K̄(l))2 are the mean and standard deviation of K(l), uK is a

hyperparameter. The set of selected neurons is IK = {(l, k) : K(l)
k > τ

(l)
K } and the pruned model

can be represented as F−IK
.

5 Experiments

5.1 Implementation details

Datasets In this section, the experiments are conducted on two influential benchmarks, CIFAR-10
[21] and Tiny-ImageNet [22]. We use 90% of the data set for training, the rest of the data is used for
validating or recovering the poisoned model.
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Models We use ResNet-18 [16] as the baseline model to evaluate our proposed method, and
compare it with other methods. We train the network for 150 epochs on CIFAR-10 and 100 epochs
on Tiny-ImageNet with SGD optimizer. The initial learning rate is set to 0.1 and the momentum is
set to 0.9. We adopt the cosine learning rate scheduler to adjust the learning rate. The batch size is set
to 128 by default.

Attacks Our experiments are based on both the classical and the most advanced attack strategies,
including the BadNet [14], Clean Label Attack (CLA) [39], Reflection Backdoor (Refool) [30],
Warping-based poisoned Networks [33], Blended backdoor attack (Blended) [6], Input-aware back-
door attack (IAB) [32] and Sample Specific Backdoor Attack (SSBA) [26]. For BadNets, we test
both the All-to-All (A2A) attack and All-to-One (A2O) attack, i.e., the attack target labels are set to
yt = (y + 1) mod C, or one particular label yt = Ct, respectively. The target for A2O attacks of all
the attack strategies is set to class 0. The triggers for BadNets and CLA are set to randomly generated
patterns with size 3×3 for CIFAR-10 and 5×5 for Tiny-ImageNet. The poisoning rate is set to 10%
by default. Note that, due to the image size restraint, SSBA is only performed on Tiny-Imagenet.

Defenses We conduct experiments under two defense settings, one of which allows the defender to
access the poisoned training set, while the other only has a small clean data set. Both the defense
goals are to obtain a clean model without backdoor behaviors. We compare our approaches with the
l∞ pruning [7], fine-tuning (FT), fine-pruning (FP) [27], neural attention distillation (NAD) [23]
and adversarial neuron pruning (ANP) [41]. The number of benign samples allowed to access is
set to 500 (1%) for CIFAR-10 and 5000 (5%) for Tiny-ImageNet by default. We set the threshold
hyperparameter uh/uk to 3 on CIFAR-10 and 4 on Tiny-ImageNet of all tested attacks by default.

Evaluation metrics In this work, we use the clean accuracy (ACC) and attack success rate (ASR)
to evaluate the effectiveness of different methods. The ACC for a given model F is defined as:

ACC(F,Dtest) =
∑

(x,y)∈Dtest

I{argmax(F (x)) = y},

where I is the indicator function. The ASR is defined as:

ASR(F,Dtest) =
∑

(x,y)∈Dtest,y ̸=yt

I{argmax(F (δ(x))) = yt},

where yt is the attack target label. The ACC measures the model performance on benign samples,
while the ASR reflects the degree of backdoor behavior retainment in the model. Given an infected
model, our goal is to reduce the ASR, while keeping the ACC from dropping too much.

5.2 Experimental results

CIFAR-10 We show the results on CIFAR-10 in Table 1. The recently proposed NAD and ANP
perform significantly better than other defense methods, reducing the ASR to a very low level with a
slight drop on ACC. However, they also have a significant drop (3 ∼ 4%) on ACC when defending
CLA, which is the most robust backdoor attack in our experiments, and ANP even failed when
defending BadNets(A2A). Nevertheless, both of our methods successfully eliminate the backdoor
(ASR < 1%) with negligible loss on ACC. We even observe a little rise on ACC when defending
BadNets by EP. This phenomenon demonstrates that backdoor neurons may hurt the ACC in some
way, and thus the ACC will rise when the backdoor neurons are precisely pruned. Overall, our
methods achieve the most advanced defense results.

Tiny-ImageNet Tiny-ImageNet is a larger scale dataset with higher resolution images, and it is
harder to defend against the attacks performed on it. Note that the A2A attack is absent, since
we cannot successfully perform the attack due to the large number of its classes (up to 200). Our
experimental results show that all the defense methods suffer from the performance degradation
compared with the results in CIFAR-10, and they fail to defend against WaNet with a large ACC
drop but even unchanged ASR, especially the ANP and l∞ defense. This phenomenon shows that the
principles for finding backdoor neurons of both ANP and l∞ don’t work in such case. Nevertheless,
our methods totally remove the backdoor and the ACC are not even affected, which indicates that our
methods can precisely locate the backdoor neurons even on such large scale dataset.
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Table 1: Experimental results of the proposed approaches against different attacks compared with
other defense methods in CIFAR-10[21].

BadNets (A2O) BadNets (A2A) CLA WaNet Blended Refool IAB
Attacks ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
Origin 93.86 100.00 94.60 93.89 94.99 98.83 94.11 99.67 94.17 99.62 94.24 98.40 93.87 97.91

FT 92.22 2.16 92.03 60.76 92.88 95.73 92.93 9.37 93.9 90.27 91.68 17.78 91.78 9.52
FP 92.18 2.97 91.75 66.82 92.60 99.36 92.07 1.03 70.92 90.92 92.36 75.98 87.04 16.13
l∞ 92.12 100.00 93.67 6.67 92.75 98.76 93.48 99.74 86.99 99.77 91.19 98.47 88.37 88.48

NAD 93.36 2.43 92.18 2.06 91.36 15.31 93.08 3.05 92.72 1.61 91.64 6.74 92.11 19.45
ANP 93.47 3.53 90.29 86.22 91.13 11.76 94.12 0.51 93.66 5.03 91.71 26.96 93.52 10.61

EP (Ours) 93.88 0.86 94.49 0.61 94.42 0.91 93.79 2.80 93.67 2.24 93.35 8.90 93.17 0.94
BNP (Ours) 93.60 1.60 94.25 0.72 94.14 7.03 94.05 3.39 94.17 2.71 93.69 6.48 93.15 0.64

Table 2: Experimental results of the proposed approaches against different attacks compared with
other defense methods in Tiny-ImageNet[22].

BadNets (A2O) CLA WaNet Refool Blended IAB SSBA
Attacks ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
Origin 61.36 97.38 65.61 56.58 61.47 99.98 53.26 80.61 62.85 99.83 61.40 98.28 66.51 99.78

FT 46.93 99.84 61.19 63.20 54.28 99.96 47.09 91.77 56.83 29.12 52.39 99.10 52.39 33.19
FP 35.41 99.48 62.30 39.05 53.65 100.00 42.10 86.62 59.59 99.76 52.67 98.47 53.36 31.96
l∞ 53.13 90.39 59.15 23.12 42.01 99.84 46.84 81.19 56.33 99.85 54.81 86.97 49.35 99.98

NAD 44.20 90.13 62.80 17.35 53.40 99.98 51.06 70.63 57.35 55.60 53.32 98.85 52.52 25.08
ANP 53.85 4.02 59.69 3.64 54.82 86.98 50.67 0.21 62.49 0.61 61.39 4.67 60.98 1.01

EP (Ours) 60.68 0.86 64.47 0.10 60.53 0.02 51.29 17.07 60.67 0.69 61.26 0.60 64.2 0.11
BNP (Ours) 61.60 1.60 64.86 0.05 61.58 0.01 52.41 23.79 60.77 0.85 61.30 0.60 64.64 0.01

5.3 Ablation study

To be fair, we compare BNP with other re-training based methods using 500 benign samples in
Section 5.2. However, BNP doesn’t require re-training the model, and the samples are just used
for detecting the distribution discrepancy. As the statistical differences may be detected with much
fewer samples, we now study how the number of samples affects the effectiveness of BNP. We train
BadNets, CLA, Refool and Blended on CIFAR-10 with ρ = 10%, and use 10 to 500 benign samples
to recover the model using BNP. We record the changes of ACC and ASR with respect to the number
of benign samples. The results are shown in Section 5.3. The influence of the number of samples to
our methods comes from the randomness on estimating moments. As the number of samples grows,
the randomness is reduced and BNP has more stable performance, but the average performances are
not improved, except for Refool. Compared with other attacks, Refool clearly needs more samples
to reduce the ASR. A possible reason is that the mixture distribution in Refool has closer moments
and is harder to distinguish. Besides, we surprisingly find that BNP can recover BadNets, CLA and
Blended using only 10 benign samples. We also conduct experiments to show the high correlation
between the backdoor neurons and our proposed evaluation metrics, and the results are shown in
Appendix D.

6 Discussion

The proposed methods are superior to other existing defense methods in the following three aspects:
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Better performance As demonstrated in Section 5, both of the proposed methods achieve state-
of-the-art results. Moreover, according to the ablation study, the proposed BNP can successfully
defend most of the attacks within 10 benign samples, which shows the amazing effectiveness of our
proposed methods.

Higher efficiency The proposed methods are highly efficient. We record the running time of several
defense methods on 500 CIFAR-10 images with ResNet-18, and show the results in Table 3. It can be
seen that both of the proposed methods require less time than the baseline defense methods. Since
both methods require scanning on each neuron once, the computational complexity scale linearly
with the number of the neurons in the neural network. Therefore, the efficiency of our methods is
promised.

Table 3: The overall running time of different defense methods on 500 CIFAR-10 images with
ResNet-18.

Defense Method FT FP NAD ANP EP (ours) BNP (ours)
Runing Time (sec.) 12.35s 14.59s 22.08s 25.68s 10.69s 0.39s

More robust to hyperparameter choosing One of the most general problems in backdoor defense
is the choice of hyperparameters. Under realistic settings, the defenders can only perform defenses
without any prior knowledge about poison data, including poisoning rate and examples of poisoned
data. So the defenders should carefully tune the hyperparameters, or the ACC and ASR can change
suddenly even under small fluctuations of those hyperparameters. In comparison, both of the
proposed pruning strategies only require one universal hyperparameter u. Moreover, they show
reliable consistency against different attacks in the same dataset, only vary from different datasets,
which is inevitable. Besides, we leave a wide range of parameters to choose, so that the ACC remains
high while the ASR is controlled to a very small number, as shown in Section 5.3.

7 Conclusion

In this work, we take an inspection on the characteristics of an infected model, and find backdoor sen-
sitive neurons distinguishable by their pre-activations on poisoned dataset. Specifically, in backdoor
neurons, pre-activations from benign data and poisoned data form distribution with extraordinarily
different moments. This property makes it possible for defenders to efficiently locate the potential
backdoor neurons based on the distributional property of pre-activations. When direct access to the
poisoned dataset is available, we propose to measure the mixture property of pre-activations via
differential entropy to detect potential backdoor neurons. In another case, where defenders only have
access to a benign dataset, we propose to check abnormality of pre-activation distribution based on
the inconsistency of the recorded BN statistics and the sample statistics on the given benign dataset.
We then do pruning on potential backdoor neurons to recover the model. Experiments show that
the proposed defending strategies can efficiently locate the backdoor neurons, and greatly reduce
the backdoor threat with negligible loss of clean accuracy. Our approaches achieve superior results
compared with all other defense methods under various attacks on the tested datasets. The results shed
lights on the field of backdoor defense, and can be a guidance for designing more robust backdoor
attacks.
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