
Accelerating Adaptive Federated Optimization with
Local Gossip Communications

Yujia Wang
Pennsylvania State University

yjw5427@psu.edu

Pei Fang
Tongji University

greilfang@gmail.com

Jinghui Chen∗

Pennsylvania State University
jzc5917@psu.edu

Abstract

Recently, adaptive federated optimization methods, such as FedAdam and FedAMS-
Grad, have gained increasing attention for their fast convergence and stable perfor-
mance, especially in training models with heavy-tail stochastic gradient distribu-
tions. However, these adaptive federated methods suffer from the dilemma of local
steps, i.e., the convergence rate gets worse as the number of local steps increases in
partial participation settings, making it challenging to further improve the efficiency
of adaptive federated optimization. In this paper, we propose a novel method to
accelerate adaptive federated optimization with local gossip communications when
data is heterogeneous. Particularly, we aim to lower the impact of data dissimilarity
by gathering clients into disjoint clusters inside which they are connected with
local client-to-client links and are able to conduct local gossip communications.
We show that our proposed algorithm achieves a faster convergence rate as the
local steps increase thus solving the dilemma of local steps. Specifically, our
solution improves the convergence rate from O(

√
τ/
√
TM) in FedAMSGrad to

O(1/
√
TτM) in partial participation scenarios for nonconvex stochastic setting.

Extensive experiments and ablation studies demonstrate the effectiveness and broad
applicability of our proposed method.

1 Introduction

Federated Learning [22, 29] has become a crucial large-scale machine learning paradigm where
multiple clients jointly train a machine learning model coordinated by a central server. Unlike
traditional centralized training, where data is stored in a single central server, in federated learning,
training data are stored on each client and only the local trained models are iteratively exchanged and
synchronized to the central server. FedAvg [29] (also known as Local SGD [33]) has become one of
the most popular federated optimization methods, where each client locally performs multiple steps of
SGD updates then aggregates together for the global model update. Aside from the advantage of data
privacy protection, the design of multiple local update steps also intends to reduce the communication
between the server and clients. Compared with distributed learning [29, 33] where each local update
step is followed by server aggregation, federated learning can further reduce the communication
rounds. Recently, as the booming interests in training large-scale models such as BERT [8], GPT-3
[3] and ViT[9], adaptive federated optimization methods such as FedAdam [30], FedAGM [36] and
FedAMS [41] has also been proposed and attracted a lot of attention. Specifically, adaptive federated
optimization retains the multiple steps of SGD update on local clients but changes the global update of
FedAvg from one-step SGD to one-step adaptive gradient methods update. By introducing adaptivity
into federated learning, it achieves fast convergence, especially for heavy-tail stochastic gradient
noise distributions.

∗Corresponding author.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

While various adaptive federated optimization algorithms have been proposed, there still exist several
key bottlenecks in applying adaptive federated optimization in practice, such as (1) large client-to-
server communication overhead due to the limited bandwidth and repetitive transmission between
the server and clients; (2) intense sensitivity on data heterogeneity since nonidentical data distribution
on different clients introduce extra variance between clients and slow down the training process of
federated learning. What’s even worse, these two objectives may conflict with each other: while
increasing the number of local training steps and using partial participation strategies can certainly
save the communication costs between the server and clients, it has been shown that the variance
overhead term grows as the number of local steps increases in partial participation settings, which
leads to worse convergence rate in adaptive federated optimization [30, 41]. Such worse convergence
result is largely due to data heterogeneity, as in the i.i.d setting, the increasing of local steps can
indeed lead to a better convergence rate. In this work, we refer this problem as the dilemma of local
steps. Similar issues have also been shown in FedAvg that a larger number of local SGD steps may
cause over-fitting on local clients, also known as client-drift, which slows down the convergence or
leads to an unstable result [19]. This motivates us to study the following question:

Can we resolve the dilemma of local steps for adaptive federated optimizations? i.e., achieving a
faster convergence rate as the number of local steps increases under the non-i.i.d. setting?

Note that previous studies have shown that traditional variance reduction techniques [17, 10] can help
reduce the client-drift and improve the convergence rate in FedAvg by additionally computing and
communicating a control variate or a full-batch gradient [18, 19]. However, it still remains an open
problem how to apply such variance reduction techniques to adaptive federated optimization as it
requires precise characterization of each local SGD iteration, which is incompatible with adaptive
federated optimization, whose current analysis can only give the characterization of cumulative
gradient estimators between two communication rounds. Therefore, we take a different route here to
solve the dilemma of local steps in adaptive federated optimization: since the core idea of variance
reduction is to lower the impact of data dissimilarity between clients, we could obtain a similar effect
by enabling the local client-to-client communications similar to gossip averaging in decentralized
training [2, 26, 25] for reducing the dissimilarity variance between clients. Specifically, in this
paper, we propose a novel hybrid adaptive federated optimization method, HA-Fed, which benefits
from both adaptive federated optimization [30, 36, 41] and techniques in decentralized training
[26, 21, 25]. HA-Fed is structured by partitioning a global network into disjoint network clusters,
where clients in the same cluster are connected via locally gossip communication links. These locally
communications are fast and frequent, which incurs neglectable extra communication overhead
compared with client-to-server communication links.

Our contributions can be summarized as follows:

1. We propose a new hybrid adaptive federated optimization method, HA-Fed, which benefits
from the frequently local gossip communications to resolve the dilemma of local steps in
adaptive federated optimization methods. i.e., achieves faster convergence rate as the local
steps increases.

2. We show the theoretical convergence improvements for our proposed HA-Fed in the stochastic
nonconvex optimization settings. Specifically, we prove that HA-Fed achieves a faster
convergence rate than FedAMSGrad 2 on the non-dominant term in full participation scenarios.
Moreover, we show that in the more practical partial participation setting, HA-Fed improves
the convergence rate (dominant term) from O(

√
τ/
√
TM) to O(1/

√
TτM) w.r.t. global

communication rounds T , local update steps τ and the number of participation clients M .
3. Extensive experiments are conducted on several benchmarks dataset and show that our pro-

posed HA-Fed effectively saves the client-to-server communication overhead while achieving
faster convergence with heterogeneous data. Extensive ablation studies also show the broad
applicability of our proposed method.

Notation: We consider column vectors throughout this paper except special explanations. For
x,y ∈ Rd, denote

√
x,x2,x/y as the element-wise square root, square, and division of the vectors.

For vector x and matrix A, ∥ · ∥ abbreviates the ℓ2 norm of the vector and Frobenius norm of the

2The convergence rate of FedAMSGrad is obtained from the convergence analysis for FedAMS [41], where
FedAMSGrad gets a similar convergence to FedAMS. FedAMSGrad is also included in [36].

2

matrix, i.e., ∥x∥ = ∥x∥2 and ∥A∥ = ∥A∥F , and ∥A∥2 denotes the spectral norm of matrix A. We
denote 1 as vector with all elements equal to 1 with appropriate dimension, and I as the identity
matrix with appropriate dimension.

2 Related Work

Federated learning: Federated learning [22] has attracted growing interest recently due to the demand
for training models locally at edge devices and the requirements of privacy protection. Federated
optimization methods such as SGD-based optimization algorithm, FedAvg [29], also known as Local
SGD [33], have been widely used in federated learning. Aside from FedAvg, since adaptive gradient
methods such as Adam [20] and its variant AMSGrad [31] overcame the sensitivity to parameters and
slow to convergence issue of SGD, adaptive federated optimizations such as FedAdam[30], FedAGM
[36] and FedAMS [41] studied the corresponding adaptive optimization algorithms in federated
learning. Moreover, several works [14, 11, 19, 24, 43] addressed and focused on the data heterogeneity
issues of federated learning, where [19] proposed a federated learning variance reduction method that
overcomes the data heterogeneity, but it requires extra communication costs for variance reduction
operations. [12] considered heterogeneous communications for modern communication networks
that improve communication efficiency. Hierarchical federated learning algorithms [27, 1, 4] are
developed by aggregating client models to edge servers first before synchronizing them to the central
server.

Decentralized learning and other frameworks: Decentralized learning is a large-scale machine
learning paradigm without a central server. It has been firstly studied from gossip averaging techniques
[38, 2]. Decentralized (gossip) SGD algorithms [26, 25, 2, 34] are then proposed that consider client-
to-client communications after each step of SGD update on the client. [28] proved a tight lower
bound for decentralized training under the nonconvex setting. [35] proposes a leader-distributed SGD
algorithm that pulls workers to the currently best-performing model among all models, which also
utilizes inexpensive gossip communication. Moreover, recent studies generalized various distributed
SGD algorithms under unified frameworks [39, 21], where [39] included reducing communication
costs and decentralized training in i.i.d. settings, and [21] studied a general network topology-
changing gossip SGD methods that summarize several algorithms in distributed and federated
learning.

Communication-efficient federated learning: In terms of reducing the communication overhead
in federated learning, one of the common approaches is to save the communication bits when
synchronizing, such as the compressed and quantized FedAvg-based methods [32, 16, 15, 6]. Note
that the bit compression strategy is orthogonal to our hybrid adaptive federated learning framework
and can potentially be combined to further reduce communication overheads.

3 Preliminaries on Adaptive Federated Optimization

Firstly, let’s begin with the general federated learning problem under nonconvex stochastic optimiza-
tion settings. Suppose we have N local clients, and our goal is to minimize the following objective:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x), (3.1)

where x denotes the model parameters, d denotes the dimension of the model parameters x, fi(x) =
Eξ∼Difi(x, ξi) is the local nonconvex loss function corresponding to client i, and Di is the local data
distribution associated with client i. FedAvg [29] is a popular optimization algorithm to solve Eq.
3.1, with the sequential implementation of local SGD updates and global averaging.

Adaptive federated optimization is then proposed to incorporate adaptivity in federated optimization
methods by replacing the global averaging in FedAvg with one-step adaptive gradient optimization.
For example, FedAMSGrad is designed with multi-steps of local SGD updates and followed by one
step of global AMSGrad [31] update. Specifically, at global round t, the server broadcasts the model
xt to selected clients. Each client i conducts τ steps of local SGD updates with local learning rate ηl
and obtains the local model xi

t,τ . The model difference ∆i
t = xi

t,τ − xt for each client is aggregated
to the server and averaged to ∆t. The server updates the global model xt+1 by taking ∆t as a pseudo

3

gradient for calculating momentum mt and variance vt for AMSGrad optimizer, and performs one
step AMSGrad update with global learning rate η, i.e.,

mt = β1mt−1 + (1− β1)∆t,vt = β2vt−1 + (1− β2)∆
2
t ,

v̂t = max{v̂t−1,vt},xt+1 = xt + η
mt√
v̂t + ϵ

, (3.2)

the server obtains model xt+1 after one global round. Besides FedAdam and FedAMSGrad, there
are several adaptive federated optimization methods with slightly changes in update formulas, e.g.,
FedAdagrad and FedYogi [30], FedAGM [36] and FedAMS [41].

The convergence of FedAMSGrad is affected by several factors such as the number of local steps τ ,
global rounds T , and the number of participating clients M . In full participation settings, where M is
equal to the total number of clients N , FedAMSGrad enjoys a convergence rate ofO(1/

√
TτN). This

suggests that even for heterogeneous data, a larger number of local steps τ can help save the client-to-
server communication rounds and lead to faster convergence. However, previous study shows that
under more practical partial participation settings, FedAMSGrad only achieves a convergence rate of
O(
√
τ/
√
TM) with heterogeneous data. This suggests that while larger τ can reduce communication

frequency, it scarifies the convergence rate and requires more communication rounds to converge. We
refer to this problem as the dilemma of local steps.

The dilemma of local steps arises in partial participation settings since the heterogeneous data induces
a large variance term in the final convergence result, which is proportional to the number of local
steps τ and thus leads to a worse convergence rate. For full participation settings, it is fortunate
that this variance overhead only appears on the non-dominant term, thus it does not slow down the
overall convergence. While for partial participation settings, the larger τ amplifies the over-fitting
issue on local clients as fewer clients participate in each round of global training and becomes a
dominant term in the convergence result. Although variance reduction techniques [17, 10] can help
reduce the client-drift (or the dilemma of local steps) in the local iterations of FedAvg [19, 18], the
success of applying variance reduction techniques to FedAvg rely on the precise characteristic of
each local SGD iteration. However, as shown in Eq. 3.2, the global adaptive optimizer updates
via the cumulative model difference ∆t between two communication rounds, which makes how to
apply iterative variance reduction bounds to adaptive federated optimization an open problem. In the
following, we will present our attempt to resolve the dilemma of local steps by a new hybrid adaptive
federated optimization method.

4 Proposed Method

In this paper, we propose a hybrid adaptive federated optimization method (HA-Fed) where the
clients are partitioned into disjoint clusters inside which they can communicate by fast client-to-client
links, and clusters communicate with the central server with client-to-server communication links.
Specifically, assuming we have one central server and K disjoint clusters, each of which contains n
local clients and there are connected by client-to-client links (denoted by the adjacency matrix Wk).
Let’s denote the total number of clients as N = Kn. Our goal is to solve the following optimization
problem:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x) =
1

K

K∑
k=1

f̄k(x), (4.1)

where fi(x) = Eξ∼Difi(x, ξi) is the nonconvex loss function for the i-th client, and f̄k(x) :=
1
n

∑
i∈Vk

fi(x) is the average loss on cluster k. We consider Vk as the set of local clients in the
cluster k, and clients in cluster k are linked by a connected graph Gk3.

In order to accelerate FedAMSGrad under heterogeneous data settings, our HA-Fed starts from
FedAMSGrad and introduces intra-cluster gossip communications. Gossip communication is de-
signed for clients in a network to communicate with their neighbors without a central server, and it has
been a popular approach in decentralized learning [26, 21, 7]. Our proposed HA-Fed adds frequent
client-to-client gossip communication inside each cluster to leverage the over-fitting issue within the

3The connected graph implies there is a path from any client to any other client in the graph.

4

cluster. These gossip communications rely on inexpensive local client-to-client communications with-
out incurring extra client-to-server communication rounds, but at the same time, prevent over-fitting
on local clients since the model on each client sufficiently communicates with their neighbors.

Algorithm 1 summarizes the proposed HA-Fed in full participation scenarios. The major difference
between HA-Fed and FedAMSGrad lies in the local update step within each cluster (Line 9 in
Algorithm 1): at the s-th step of intra-cluster training for cluster k, after client i finishes their local
update and obtains xi

t,s+ 1
2

by one step SGD, we conduct one gossip averaging step within the cluster,

i.e., let each client communicate with its neighbors N i
k and aggregate the nearby local models with a

weighted matrix Wk. The rest part of the algorithm is similar to FedAMSGrad.

In order to further reduce client-to-server communication rounds, we also adopt partial participation
setting for HA-Fed4. Generally, in partial participation settings, the server samples a subset of m
clients in each cluster before each round starts and only broadcasts the current model to these m
selected clients and the selected clients will broadcast the received model to other clients within the
same cluster with client-to-client links. For global model updates, all selected clients send the model
difference ∆i

t to the central server, and the server aggregates them to ∆t. The rest of the partial
participation update is the same as the full participation scenarios.

Algorithm 1 HA-Fed:full participation
Input: initial point x1, global step size η, local step size ηl, β1, β2, ϵ, weighting matrix Wk for all
clusters k ∈ [K]

1: m0 ← 0, v0 ← 0
2: for t = 1 to T do
3: for each cluster k ∈ [K] in parallel do
4: for each client i ∈ Vk in parallel do
5: Receive model from the server: xi

t,0 = xt

6: for s = 0, ..., τ − 1 do
7: Compute local stochastic gradient: gi

t,s = ∇Fi(x
i
t,s; ξ

i
t,s)

8: Local update: xi
t,s+ 1

2

= xi
t,s − ηlg

i
t,s

9: Gossip communication: xi
t,s+1 =

∑
j∈N i

k
(Wk)i,jx

j

t,s+ 1
2

10: end for
11: Get the model difference: ∆i

t = xi
t,τ − xt

12: end for
13: end for
14: Server gets model difference: ∆t =

1
K

∑
k∈[K]

1
n

∑
i∈Vk

∆i
t

15: Update: mt = β1mt−1 + (1− β1)∆t

16: Update: vt = β2vt−1 + (1− β2)∆
2
t

17: v̂t = max(v̂t−1,vt) and V̂t = diag(v̂t + ϵ)
18: Server updates xt+1 = xt + η mt√

v̂t+ϵ

19: end for

In a nutshell, HA-Fed takes advantage of decentralized training to resolve the dilemma of local
steps in adaptive federated optimization while preserving the benefit of adaptive optimizations: The
server aggregation rule and update schemes follow standard adaptive federated optimization, which
enjoys nice convergence properties, especially for heavy-tail stochastic gradient noise distributions.
Meanwhile, the local gossip communications alleviate the impact of data dissimilarity between clients
on the final convergence rate. Of course, this design requires all clients within each cluster to stay
active and perform gossip communications. Yet we also want to emphasize that HA-Fed can also be
compatible with scenarios where not all clients are active at each iteration by simply adapting the
frequency of local gossip communications. We refer interested readers to Appendix F.3 for more
details.

4Due to the space limit, see details in Algorithm 2 in the Appendix.

5

5 Convergence Analysis

In this section, we provide the theoretical convergence analysis of the proposed HA-Fed method.
Before starting with the main theoretical results, let us first state the following assumptions:
Assumption 5.1 (Smoothness). Each loss function on the i-th client fi(x) is L-smooth, i.e., ∀x,y ∈
Rd,

∣∣fi(x)− fi(y)− ⟨∇fi(y),x− y⟩
∣∣ ≤ L

2 ∥x− y∥2.

Assumption 5.2 (Bounded Gradient). Each loss function on the i-th client fi(x) has G-bounded
stochastic gradient on ℓ2, i.e., for all ξ, we have ∥∇fi(x, ξ)∥ ≤ G.
Assumption 5.3 (Bounded Stochastic Variance). Each stochastic gradient on the i-th client has a
bounded local variance, i.e., for all x, i ∈ [m],we have E

[
∥∇fi(x, ξ)−∇fi(x)∥2

]
≤ σ2.

Assumption 5.1 also implies the L-gradient Lipschitz condition, i.e., ∥∇fi(x)−∇fi(y)∥ ≤ L∥x−y∥,
it is a standard assumption in nonconvex optimization problems [20, 31, 24, 43]. Assumption 5.2 is
usually adopted in studying adaptive gradient methods [20, 31, 45, 5]. Assumption 5.3 is frequently
stated in studying distributed and federated learning optimization problems [30, 43, 7, 40].
Assumption 5.4 (Bounded Inter-Client Variances). The variance between local client’s objective
function and the objective function on the corresponding cluster is bounded, i.e., for all x, k ∈ [K],
we have 1

n

∑
i∈Vk
∥∇fi(x) − ∇f̄k(x)∥2 ≤ σ2

k. The objective function on each cluster and the
global function has a bounded variance: for α ≥ 1 and σg ≥ 0, there is 1

K

∑
k∈[K] ∥∇f̄k(x)∥2 ≤

α2∥∇f(x)∥2 + σ2
g .

Assumption 5.4 represents the data heterogeneity in a cluster and between clusters. The similar
data heterogeneity assumption, which considers the variance between local clients, is common in
federated learning [30, 43] and decentralized learning [26, 25, 21].
Assumption 5.5 (Gossip Weighting Matrix). The local clients in cluster k are connected in the
graph Gk, and the corresponding weighting matrix Wk is a doubly stochastic matrix with the fact:
Wk ∈ [0, 1]n×n, Wk1 = 1, 1⊤Wk = 1⊤ and null(I −Wk) = span(1). We further assume the
spectral gap ρk: there exists ρk ∈ [0, 1) such that ∥Wk − 1

n11
⊤∥2 ≤ ρk.

Assumption 5.5 is usually assumed for decentralized learning framework [21, 7, 12]. Specifically,
ρk = 0 means the matrix Wk with all elements 1

n , corresponding to a fully connected graph Gk and
ρk → 1 means the matrix Wk tends to be elements with either 0 or 1, corresponding to a graph that is
nearly disconnected. Several works [26, 25] alternatively assume the spectral gap ρ of a weighting
matrix W as the second largest eigenvalue of a doubly stochastic matrix W , i.e., ρ = |λ2(W)|, and
this spectral gap holds the same role for revealing the connectivity of the graph.

5.1 Convergence Analysis for HA-Fed: Full Participation

We first study the convergence behaviour of HA-Fed under full participation scenarios.
Theorem 5.6 (HA-Fed full participation). Under Assumptions 5.1-5.5, if the local learning rate
satisfies ηl ≤ min

{ 4
√
ϵ

α
√

CC0τ(τ+ρ2
maxDτ,ρ)

, ϵ
2τC0Cβ,η

}
, then the iterates of Algorithm 1 satisfy

min
t∈[T]

E[∥∇f(xt)∥2] ≤ 8(β2η
2
l τ

2G2 + ϵ)
1
2

{
f0 − f∗
ηηlτT

+
Ψ

T
+Φ1 +Φ2

}
, (5.1)

where Ψ =
CβG

2d√
ϵ

+
2C2

βηηlτLG2d

ϵ , Φ1 =
CL2η2

l

4
√
ϵ

[
τ2σ2

g + τρ2maxDτ,ρσ̄
2
L + τσ2

(
1
n + ρ2max

)]
,

Φ2 = Cβ,η
ηl

2ϵN σ2, where Cβ = β1

1−β1
, Cβ,η =

(
(C2

β + 3)ηL+ 2
√
1− β2G

)
, where C and C0 are

numerical constants that are irrelevant to parameters, ρmax = maxk∈[K] ρk is the maximum spectral
gap of all K clusters, Dτ,ρ = min

{
1

1−ρmax
, τ
}

describes the density and connectivity of clusters,

and σ̄2
L = 1

K

∑K
k=1 σ

2
k is the average dissimilarity between local clients in the same cluster.

Remark 5.7. The convergence rate Eq. 5.1 is composed of four terms. The first and second terms are
related to T and vanish as T increases. The third term Φ1 represents the variance overhead introduced
by both stochastic and inter-client variances. The last term Φ2 represents the stochastic variance
from all N clients. Note that only Φ1 is related to the cluster connectivity ρmax while the other three

6

terms are identical to the corresponding term in the convergence rate of N -clients FedAMSGrad.
Specifically, the dependency of Φ1 for HA-Fed is Φ1 = O

(
η2l τ

2σ2
g + η2l ρ

2
maxτ

2σ̄2
L + η2l

(
1
n +

ρ2max

)
τσ2

)
, while the corresponding term Φ̃1 for FedAMSGrad is O(η2l τ2σ̃2

g + η2l τσ
2). When

ρmax = 0, Φ1 in HA-Fed becomes O
(
η2l τ

2σ2
g + η2l τ

σ2

n

)
, which is better than that of FedAMSGrad.

And when ρmax → 1, Φ1 in HA-Fed becomes O
(
η2l τ

2(σ2
g + σ̄2

L) + η2l τσ
2
)
, which matches the

results in FedAMSGrad5. In terms of the overall convergence rate, since Φ1 in HA-Fed has the
same order of dependency w.r.t. τ and ηl as in FedAMSGrad, suppose we pick the learning rates
η = Θ(

√
τN) and ηl = Θ(1/

√
Tτ2) and when T is sufficient large, i.e., T > τN , HA-Fed achieves

the same convergence rate of O(1/
√
TτN) as FedAMSGrad [41] and also same as other general

federated nonconvex optimization methods such as FedAvg [44, 43] and FedAdam [30].

5.2 Convergence Analysis for HA-Fed: Partial Participation

In such settings, we assume that only selected clients participate in each round of global synchro-
nization. We assume the sampling strategy is random sampling without replacement in each cluster.
Generally, at the beginning of global iteration t, the server samples a subset Skt for cluster k that
contains m clients, these M = Km clients receive the model from the server and synchronize their
model difference for the global update.
Theorem 5.8 (HA-Fed partial participation). Under Assumptions 5.1-5.5, if the local learning
rate satisfies ηl ≤ min

{
1

4C0Cβ,η(τ−1) ,
4
√
ϵ

2αL
√

C̃C0τ(τ+ρ2
maxDτ,ρ)

, 1

128α2C̃C0Cβ,ηρ2
maxDτ,ρ

(
n−m

m(n−1) +

1
τ2

)−1}
, then the iterates of Algorithm 1 in partial participation scenarios satisfy

min
t∈[T]

E[∥∇f(xt)∥2] ≤ 8(β2η
2
l τ

2G2 + ϵ)
1
2

{
f0 − f∗
ηηlτT

+
Ψ

T
+Φ1 +Φ2 +Φ3 +Φ4

}
, (5.2)

where Ψ =
CβG

2d√
ϵ

+
2C2

βηηlτLG2d

ϵ , Φ1 = CL2

4
√
ϵ
η2l

[
τ2σ2

g + τρ2maxDτ,ρσ̄
2
L + τσ2

(
1
n + ρ2max

)]
,

Φ2 = Cβ,η

[
1 +

(
n−m
m

)
ρ2max

]
ηl

ϵN σ2, Φ3 = C̃Cβ,η · n−m
m(n−1)ηlDτ,ρρ

2
max

[
σ2
g + σ̄2

L + σ2 +Dτ,ρ
σ2

τ2n

]
,

Φ4 = C̃Cβ,η ·η3l L2Dτ,ρρ
2
max

[
σ2
g+ σ̄2

L+σ2+Dτ,ρ
σ2

τ2n

]
, where C, C̃ and C0 are numerical constants

that are irrelevant to parameters, and ρmax, Dτ,ρ, σ̄
2
L, Cβ,η, Cβ are same defined as Theorem 5.6.

Remark 5.9. When ρmax = 0, i.e., clients in each cluster are fully connected, in such case, there
are Φ1 = O

(
η2l τ

2σ2
g + η2l τ

σ2

n

)
, Φ2 = O

(
ηlσ

2

N max{η, 1}
)

and Φ3 = Φ4 = 0 in Eq. 5.2, which
matches the result of fully participated HA-Fed with ρmax = 0. It is worth noting that although
partially participated HA-Fed aggregates M client models in each global round, since clients are fully
connected inside the clusters, picking a part of the clients (inside each cluster) for global aggregation
is the same as picking all the clients. Therefore, partially participated HA-Fed recovers to fully
participated HA-Fed under such a setting.
Remark 5.10. When ρmax → 1 and K = 1, i.e., all clients are tending to disconnected, HA-Fed
will reduce to partial participated FedAMSGrad with M clients. Under such cases, we have Dτ,ρ =

min
{

1
1−ρmax

, τ
}
= τ . By choosing same learning rates η = Θ(

√
τM) and ηl = Θ(1/

√
Tτ2) as

in FedAMSGrad, Φ3 = O
(√

τ√
TM

)
dominates the convergence rate of HA-Fed, which recovers the

convergence of partially participated FedAMSGrad.

Remark 5.9 and 5.10 implies that when clients are sparsely connected, the convergence of partial
participated HA-Fed still suffers from dilemma of local steps as in FedAMSGrad, while HA-Fed
indeed resolves the dilemma when clients are densely connected. Therefore, it is crucial to investigate
how cluster connectivity helps solve the dilemma of local steps. The following corollary gives a
precise characterization on condition of ρmax needed for solving the dilemma of local steps.
Corollary 5.11. Suppose all clusters satisfies ρmax ≤ 1

2
√
n−m

and K < n, then by choosing the

global learning rate η = Θ(
√
τM) and local learning rate ηl = Θ(1√

Tτ
), when T is sufficient

large, i.e., T > τM , then the convergence rate for HA-Fed in partial participation settings satisfies
mint∈[T] E[∥∇f(xt)∥2] = O

(
1√

TτM

)
.

5σ̃2
g is the global variance obtaining by a similar assumption on clients’ loss function , i.e., the loss function

on each client of FedAMSGard satisfies 1
N

∑N
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ σ̃2

g .

7

Remark 5.12. Corollary 5.11 shows that HA-Fed successfully resolves the dilemma of local steps:
larger number of local steps τ can now achieve a faster convergence rate if clusters satisfy certain
constraints. Note that when m = n, i.e., in the full participation setting, this ρmax ≤ 1

2
√
n−m

condition imposes no actual constraint on ρmax. When m becomes smaller, the requirements for
ρmax also get stronger, i.e., the local cluster needs to be more densely connected. Also, for a given
number of total clients N , the condition K < n implies the number of clients in each cluster is larger
than the number of clusters in the network, which ensures that each cluster has enough clients for
local gossip communications and thus can reduce the variance and resolve the dilemma of local steps
in the partial participation settings.

6 Experiments

In this section, we present the empirical evaluations for the HA-Fed algorithm. We mainly compare
HA-Fed with the adaptive federated optimization counterpart, FedAMSGrad, and also conduct several
ablation studies related to the algorithm framework and the intra-cluster topology.

Experimental Setup: We compare our proposed HA-Fed with FedAMSGrad, on CIFAR-10/CIFAR-
100 [23] using (1) ResNet-18 [13] model, and (2) ConvMixer6 model [37], and Fashion MNIST [42]
datasets using (1) ConvMixer model and (2) CNN model7. For HA-Fed, the global network topology
is set up with 32 total clients, and they are equally divided into 4 clusters where each cluster contains
8 clients. We set the default partial participation ratio as p = 0.25, i.e., 2 clients participated per
cluster per round. We adopt ring topology for all clusters by default with maximum spectral gap
ρmax = 0.805. For FedAMSGrad, we set the number of clients and the partial participation ratio
the same, i.e., 32 clients in total and 8 clients synchronize to the central server in each round. For
both methods, we conduct τ = 48 steps of local training with a batch size of 50. We search for the
best training hyper-parameter for both models. Due to the space limit, we leave the CIFAR-10 and
Fashion MNIST experiments as well as the other experimental details in Appendix F.

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
HA-Fed

0 100 200 300 400 500
#Rounds

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 A
cc

ur
ac

y

FedAMSGrad
HA-Fed

(a) ResNet-18

0 100 200 300 400 500
#Rounds

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
HA-Fed

0 100 200 300 400 500
#Rounds

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

ur
ac

y

FedAMSGrad
HA-Fed

(b) ConvMixer-256-8

Figure 1: The learning curves for HA-Fed and FedAMSGrad in training CIFAR-100 data on (a)
ResNet-18 model and (b) ConvMixer-256-8 model using ring topology for local communications.
Figure 1 shows the convergence result of HA-Fed and FedAMSGrad on training CIFAR-100 with
ResNet-18 and ConvMixer-256-8 model. We compare the training loss and test accuracy against
global rounds for both models. For the ResNet-18 model, HA-Fed achieves faster convergence than
FedAMSGrad in reducing training loss, and HA-Fed grows rapidly to obtain an overall higher test
accuracy. For the ConvMixer-256-8 model, HA-Fed again shows its faster convergence speed on
training loss; in the meantime, HA-Fed still holds a higher test accuracy compared to FedAMSGrad
under the same settings.

Now we study how the participation ratio p and network connectivity ρmax would affect the conver-
gence of our proposed HA-Fed algorithm. Figure 2(a) illustrates the ablation study on the participation
ratio p. Specifically, we test various values of p from p = {0.125, 0.25, 0.5, 1.0}. From Figure 2(a),
we observe that a larger participation ratio p slightly improves the convergence on training loss. This
is consistent with our theoretical convergence rate that increasing the number of participating clients
improves the convergence rate, but the improvement is slight compared to a large number of global
round T and local steps τ . Figure 2(b) then shows ablation study on clusters’ maximum spectral gap
ρmax. Specifically, we compare various of ρmax from ρmax = {0, 0.125, 0.599, 0.805} calculated

6ConvMixer shares similar ideas to vision transformer [9] to use patch embeddings to preserve locality and
similarly, and it is trained via adaptive gradient methods by default.

7See details for the CNN model in Appendix F.3.

8

0 100 200 300 400 500
#Rounds

10 2

10 1

Tr
ai

ni
ng

 L
os

s

p = 0.125
p = 0.25
p = 0.5
p = 1.0

(a) Ablation on the ratio p

0 100 200 300 400 500
#Rounds

10 2

10 1

Tr
ai

ni
ng

 L
os

s

max = 0.805
max = 0.599
max = 0.125
max = 0

(b) Ablation on ρmax

0 100 200 300 400 500
#Rounds

10 2

10 1

Tr
ai

ni
ng

 L
os

s

= 24
= 48
= 96

0 100 200 300 400 500
#Rounds

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Te
st

 A
cc

ur
ac

y

= 24
= 48
= 96

(c) Ablation on τ

Figure 2: The learning curves with (a) different participating ratio p, (b) different maximum spectral
gap ρmax of clusters in training CIFAR-100 data on ConvMixer-256-8 model and (c) different
numbers of local steps τ in training CIFAR-100 on ConvMixer-256-8 model.

by different network typologies. From Figure 2(b), we can observe that smaller ρmax contributes
to a faster convergence on training loss, which is shown as the red and green lines achieve faster
convergence on training loss than the orange and blue lines. This result matches the theoretical result
that ρmax holds the non-dominant term in the convergence of HA-Fed even for partial participation
scenarios. This suggests that without a dense network topology, HA-Fed can still take the benefit of
gossip communication to achieve the expected convergence result.

We further study how the number of local update steps τ would affect the convergence of our
proposed HA-Fed algorithm. Figure 2(c) shows the ablation study about the number of local steps
τ , we compare different τ from τ = {24, 48, 96}. We observe that a larger number of local steps
τ indeed helps accelerate convergence on training loss, as the green line (τ = 96) in the left plot
keeps the smallest training loss. From the right plot in Figure 2(c), larger τ generally achieves better
generalization performance with higher test accuracy. This result backup our theory and show that
HA-Fed achieves a faster convergence as the number of local steps increases, and HA-Fed indeed
resolves the dilemma of local steps.

7 Conclusions

In this paper, we propose a novel hybrid adaptive federated optimization algorithm, HA-Fed, that
overcomes the dilemma of local steps and achieves a faster convergence rate as the local training
step increases. HA-Fed mitigates the impact of data heterogeneity by adding inexpensive client-
to-client communications hence resolving the dilemma of local steps without extra client-to-server
communications. We present a completed theoretical convergence analysis for the proposed HA-
Fed. We prove that HA-Fed achieves a faster convergence rate than the previous adaptive federated
optimization method for both full and partial participation scenarios with heterogeneous data under
nonconvex stochastic settings. Experiments on several benchmarks and ablation studies verify our
theory.

References
[1] Mehdi Salehi Heydar Abad, Emre Ozfatura, Deniz Gunduz, and Ozgur Ercetin. Hierarchical

federated learning across heterogeneous cellular networks. In ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8866–8870.
IEEE, 2020.

[2] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE transactions on information theory, 52(6):2508–2530, 2006.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[4] Timothy Castiglia, Anirban Das, and Stacy Patterson. Multi-level local sgd: Distributed sgd for
heterogeneous hierarchical networks. In International Conference on Learning Representations,
2020.

9

[5] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing
the generalization gap of adaptive gradient methods in training deep neural networks. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2020.

[6] Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar, and Shuguang Cui.
Communication-efficient federated learning. Proceedings of the National Academy of Sci-
ences, 118(17), 2021.

[7] Yiming Chen, Kun Yuan, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin. Accelerating
gossip sgd with periodic global averaging. In International Conference on Machine Learning,
pp. 1791–1802. PMLR, 2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[10] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018.

[11] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning
in a heterogeneous environment. arXiv preprint arXiv:1906.06629, 2019.

[12] Yuanxiong Guo, Ying Sun, Rui Hu, and Yanmin Gong. Hybrid local sgd for federated learning
with heterogeneous communications. In International Conference on Learning Representations,
2021.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[14] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[15] Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C Eldar. Adaptive quantiza-
tion of model updates for communication-efficient federated learning. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3110–3114. IEEE, 2021.

[16] Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. Stochastic-sign sgd for
federated learning with theoretical guarantees. arXiv preprint arXiv:2002.10940, 2020.

[17] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

[18] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi,
Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic
algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[19] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A
unified theory of decentralized sgd with changing topology and local updates. In International
Conference on Machine Learning, pp. 5381–5393. PMLR, 2020.

10

[22] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[24] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[25] Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication-efficient local
decentralized sgd methods. arXiv preprint arXiv:1910.09126, 2019.

[26] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

[27] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. Client-edge-cloud hierarchical federated
learning. In ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6.
IEEE, 2020.

[28] Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In Interna-
tional Conference on Machine Learning, pp. 7111–7123. PMLR, 2021.

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273–1282. PMLR, 2017.

[30] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[31] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

[32] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and
quantization. In International Conference on Artificial Intelligence and Statistics, pp. 2021–
2031. PMLR, 2020.

[33] Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

[34] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. d2: Decentralized training over
decentralized data. In International Conference on Machine Learning, pp. 4848–4856. PMLR,
2018.

[35] Yunfei Teng, Wenbo Gao, Francois Chalus, Anna E Choromanska, Donald Goldfarb, and Adrian
Weller. Leader stochastic gradient descent for distributed training of deep learning models.
Advances in Neural Information Processing Systems, 32, 2019.

[36] Qianqian Tong, Guannan Liang, and Jinbo Bi. Effective federated adaptive gradient methods
with non-iid decentralized data. arXiv preprint arXiv:2009.06557, 2020.

[37] Asher Trockman and J Zico Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792,
2022.

[38] John Nikolas Tsitsiklis. Problems in decentralized decision making and computation. Technical
report, Massachusetts Inst of Tech Cambridge Lab for Information and Decision Systems, 1984.

[39] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
of local-update sgd algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021.
URL http://jmlr.org/papers/v22/20-147.html.

11

http://jmlr.org/papers/v22/20-147.html

[40] Yujia Wang, Lu Lin, and Jinghui Chen. Communication-compressed adaptive gradient method
for distributed nonconvex optimization. In International Conference on Artificial Intelligence
and Statistics, pp. 6292–6320. PMLR, 2022.

[41] Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning.
In Proceedings of the 39th International Conference on Machine Learning, pp. 22802–22838.
PMLR, 2022.

[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[43] Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker
participation in non-iid federated learning. arXiv preprint arXiv:2101.11203, 2021.

[44] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum sgd for distributed non-convex optimization. In International Conference on
Machine Learning, pp. 7184–7193. PMLR, 2019.

[45] Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On
the convergence of adaptive gradient methods for nonconvex optimization. arXiv preprint
arXiv:1808.05671, 2018.

A HA-Fed Algorithm for Partial Participation

In the following, we summarize the proposed HA-Fed in partial participation settings.

Algorithm 2 HA-Fed:partial participation
Input: initial point x1, global step size η, local step size ηl, β1, β2, ϵ, weighting matrix Wk for all
clusters k ∈ [K]

1: m0 ← 0, v0 ← 0
2: for t = 1 to T do
3: for each cluster k ∈ [K] in parallel do
4: Random sample a subset Skt of clients with |Skt | = m
5: for each client i ∈ Skt in parallel do
6: Receive model from the server xi

t,0 = xt

7: Intra-cluster broadcast: xj
t,0 = xt, j ∈ Vk

8: end for
9: for each client i ∈ Vk in parallel do

10: for s = 0, ..., τ − 1 do
11: Compute local stochastic gradient: gi

t,s = ∇Fi(x
i
t,s; ξ

i
t,s)

12: xi
t,s+ 1

2

= xi
t,s − ηlg

i
t,s

13: xi
t,s+1 =

∑
j∈N i

k
(Wk)i,jx

j

t,s+ 1
2

14: end for
15: Get the model difference: ∆i

t = xi
t,τ − xt

16: end for
17: end for
18: Collect model differences from selected clients: ∆t =

1
K

∑
k∈[K]

1
m

∑
i∈Sk

t
∆i

t

19: mt = β1mt−1 + (1− β1)∆t

20: vt = β2vt−1 + (1− β2)∆
2
t

21: v̂t = max(v̂t−1,vt) and V̂t = diag(v̂t + ϵ)
22: Server update xt+1 = xt + η mt√

v̂t+ϵ

23: end for

The proposed HA-Fed for partial participation settings is similar to full participation except for
the broadcast and synchronization steps (Line 5-8 and Line 18 in Algorithm 2). For the partial
participation setting, the server sends the current model xt to m selected clients in each cluster for

12

the broadcast step. Then these clients who received the model from the server will further broadcast
the model xt to their neighbors in the same cluster via fast client-to-client communication links. For
example, if 8 clients within one cluster are grouped with ring topology, and two clients are sampled
in each round, i.e., m = 2, then the partial participation setting needs 2 server-to-client broadcast
rounds and 6 much cheaper client-to-client broadcast rounds. In contrast, the full participation setting
needs 8 server-to-client broadcast rounds for the same cluster grouping strategy which is much more
expensive. Moreover, only the selected clients send the model difference ∆i

t to the server (Line 18
in Algorithm 2), which also reduces the client-to-server communication overhead. The rest of the
algorithm is the same as full participation scenarios.

B Preliminaries

We define the following auxiliary sequences, w.r.t. xt,s, xk
t,s. Firstly, we denote the average model

on cluster k as
x̄k
t,s+1 = x̄k

t,s − ηlḡ
k
t,s, (B.1)

where ḡk
t,s =

1
n

∑
i∈Vk

gi
t,s. We also define the global average model

x̄t,s+1 = x̄t,s − ηl
1

N

N∑
i=1

gi
t,s. (B.2)

We next define sequences related to model differences, we denote the average model difference on
cluster k as ∆̄k

t , and the average global model difference ∆̄t without sampling consideration.

∆̄k
t =

1

n

∑
i∈Vk

∆i
t =

1

n

∑
i∈Vk

(xi
t,τ − xt) = x̄k

t,τ − xt = x̄k
t,0 − ηl

τ−1∑
s=0

ḡk
t,s − xt = −ηl

τ−1∑
s=0

ḡk
t,s

∆̄t =
1

K

∑
k∈[K]

1

n

∑
i∈Vk

(xi
t,τ − xt) =

1

K

∑
k∈[K]

∆k
t = −ηl

1

K

1

n

τ−1∑
s=0

∑
k∈[K]

∑
i∈Vk

gi
t,s, (B.3)

recall the definition of ∆t

∆t =
1

K

∑
k∈[K]

1

m

∑
i∈Sk

t

∆i
t =

1

K

1

m

∑
k∈[K]

∑
i∈Sk

t

xi
t,τ − xt, (B.4)

note that for ∆̄t, we have the following result, which shows that ∆t in the algorithm is the unbiased
estimation of global average model difference ∆̄t.

ESt
[∆t] = ∆̄t =

1

K

∑
k∈[K]

1

n

n∑
i=1

xi
t,τ − xt =

1

N

N∑
i=1

xi
t,τ − xt. (B.5)

C Proof of Theorem 5.6: HA-Fed full participation

Proof of Theorem 5.6. For full participation cases, we have ∆̄t = ∆t. Similar to previous works
about adaptive methods [45, 5], we introduce a Lyapunov sequence zt: assume x0 = x1, for each
t ≥ 1, we have

zt = xt +
β1

1− β1
(xt − xt−1) =

1

1− β1
xt −

β1

1− β1
xt−1. (C.1)

For the difference of two adjacent element in sequence zt, we have

zt+1 − zt =
1

β1
(xt+1 − xt)−

β1

1− β1
(xt − xt−1)

=
1

1− β1
(ηV̂

−1/2
t mt)−

β1

1− β1
ηV̂

−1/2
t−1 mt−1

=
1

1− β1
ηV̂

−1/2
t

[
β1mt−1 + (1− β1)∆t

]
− β1

1− β1
ηV̂

−1/2
t−1 mt−1

= ηV̂
−1/2
t ∆t − η

β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1.

13

By Assumption 5.1, since f is L-smooth, taking conditional expectation at time t, we have

E[f(zt+1)]− f(zt)

≤ E[⟨∇f(zt), zt+1 − zt⟩] +
L

2
E[∥zt+1 − zt∥2]

≤ ηE
[〈
∇f(zt), V̂−1/2

t ∆t

〉]
− ηE

[〈
∇f(zt),

β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

〉]
+

η2L

2
E
[∥∥∥∥V̂−1/2

t ∆t −
β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥2]
= ηE

[〈
∇f(xt), V̂

−1/2
t ∆t

〉]
︸ ︷︷ ︸

I1

−ηE
[〈
∇f(zt),

β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

〉]
︸ ︷︷ ︸

I2

+
η2L

2
E
[∥∥∥∥V̂−1/2

t ∆t −
β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥2]︸ ︷︷ ︸
I3

+

+ ηE
[〈
∇f(zt)−∇f(xt), V̂

−1/2
t ∆t

〉]
︸ ︷︷ ︸

I4

, (C.2)

C.1 Bounding I1

We have

I1 = ηE
[〈
∇f(xt),

∆t√
v̂t + ϵ

〉]
= ηE

[〈
∇f(xt),

∆t√
β2v̂t−1 + ϵ

〉]
+ ηE

[〈
∇f(xt),

∆t√
v̂t + ϵ

− ∆t√
β2v̂t−1 + ϵ

〉]
. (C.3)

For the second term in Eq. C.3, we have

ηE
[〈
∇f(xt),

∆t√
v̂t + ϵ

− ∆t√
β2v̂t−1 + ϵ

〉]
≤ η∥∇f(xt)∥E

[∥∥∥∥ 1√
v̂t + ϵ

− 1√
β2v̂t−1 + ϵ

∥∥∥∥ · ∥∆t∥
]

≤ η
√
1− β2G

ϵ
E[∥∆t∥2], (C.4)

where the second inequality holds by Assumption 5.2, Lemma E.8 and Lemma E.10. For the first
term in Eq. C.3, recall that ∆t = −ηl

N

∑N
i=1

∑τ−1
s=0 g

i
t,s, we have

ηE
[〈
∇f(xt),

∆t√
β2v̂t−1 + ϵ

〉]
= ηE

[〈
∇f(xt)√
β2v̂t−1 + ϵ

,∆t

〉]

= −ηηl
τ−1∑
s=0

E
[〈

∇f(xt)√
β2v̂t−1 + ϵ

,
1

N

N∑
i=1

gi
t,s

〉]

= −ηηl
τ−1∑
s=0

E
[〈

∇f(xt)√
β2v̂t−1 + ϵ

,
1

N

N∑
i=1

∇fi(xi
t,s)

〉]
, (C.5)

14

where we have

− E
[〈

∇f(xt)√
β2v̂t−1 + ϵ

,
1

N

N∑
i=1

∇fi(xi
t,s)

〉]

= −1

2
E
[〈

∇f(xt)√
β2v̂t−1 + ϵ

,
1

N

N∑
i=1

∇fi(xi
t,s)

〉]

− 1

2
E
[〈

∇f(xt)√
β2v̂t−1 + ϵ

,
1

N

N∑
i=1

∇fi(xi
t,s)±

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

〉]

= −1

2
E
[〈

∇f(xt)
4
√

β2v̂t−1 + ϵ
,

1
4
√
β2v̂t−1 + ϵ

1

N

N∑
i=1

∇fi(xi
t,s)

〉]

− 1

2
E
[〈

∇f(xt)
4
√
β2v̂t−1 + ϵ

,
1

4
√
β2v̂t−1 + ϵ

(
1

N

N∑
i=1

∇fi(xi
t,s)±

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

)〉]
. (C.6)

Since we have the following inequalities, ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 and ⟨a, b⟩ ≤ 1
2∥a∥

2 +
1
2∥b∥

2, then we have

− E
[〈

∇f(xt)√
β2v̂t−1 + ϵ

,
1

N

N∑
i=1

∇fi(xi
t,s)

〉]

≤ −1

4
E
[∥∥∥∥ ∇f(xt)

4
√
β2v̂t−1 + ϵ

∥∥∥∥2 + ∥∥∥∥ 1
4
√
β2v̂t−1 + ϵ

1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2

−
∥∥∥∥ 1

4
√

β2v̂t−1 + ϵ

(
∇f(xt)−

1

N

N∑
i=1

∇fi(xi
t,s)

)∥∥∥∥2]− 1

4
E
[∥∥∥∥ ∇f(xt)

4
√

β2v̂t−1 + ϵ

∥∥∥∥2

+

∥∥∥∥ 1
4
√

β2v̂t−1 + ϵ

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2 − ∥∥∥∥ 1
4
√
β2v̂t−1 + ϵ

(
∇f(xt)−

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

)∥∥∥∥2]

+
1

4
E
[∥∥∥∥ ∇f(xt)

4
√

β2v̂t−1 + ϵ

∥∥∥∥2]+ 1

4
E
[∥∥∥∥ 1

4
√

β2v̂t−1 + ϵ

(
1

N

N∑
i=1

∇fi(xi
t,s)−

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

)∥∥∥∥2]

≤ − 1

4C0
E[∥∇f(xt)∥2]−

1

4C0
E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]− 1

4C0
E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
1

4
√
ϵ
E
[∥∥∥∥∇f(xt)−

1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]+ 1

4
√
ϵ
E
[∥∥∥∥∇f(xt)−

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
1

4
√
ϵ
E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)−

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2], (C.7)

where the second inequality holds by ∥x∥2

C0
≤ ∥x∥2√

β2v̂t−1+ϵ
≤ ∥x∥2

√
ϵ

. Bounding the last three terms

above are equal to bound the inter-cluster consensus error ∥xt − x̄k
t,s∥ and intra-cluster consensus

error ∥x̄k
t,s − xi

t,s∥.

15

Merging pieces together, we can finally bound I1 here.

I1 = ηE
[〈
∇f(xt),

∆t√
β2v̂t−1 + ϵ

〉]
+ ηE

[〈
∇f(xt),

∆t√
v̂t + ϵ

− ∆t√
β2v̂t−1 + ϵ

〉]

≤ ηηl
4C0

τ−1∑
s=0

[
− E[∥∇f(xt)∥2]− E

∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − ∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

τ−1∑
s=0

{
E
[∥∥∥∥∇f(xt)−

1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]+ E
[∥∥∥∥∇f(xt)−

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+ E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)−

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]}+
η
√
1− β2G

ϵ
E[∥∆t∥2]

≤ ηηl
4C0

τ−1∑
s=0

[
− E[∥∇f(xt)∥2]− E

∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − ∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

τ−1∑
s=0

{
E
[∥∥∥∥∇f(xt)±

1

K

K∑
k=1

∇f̄k(x̄k
t,s)−

1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]

+
η
√
1− β2G

ϵ
E[∥∆t∥2] + E

[∥∥∥∥∇f(xt)−
1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+ E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)−

1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]}

≤ ηηl
4C0

τ−1∑
s=0

[
− E[∥∇f(xt)∥2]− E

∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − ∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

τ−1∑
s=0

{
2L2

K

K∑
k=1

E[∥xt − x̄k
t,s∥2] +

2L2

N

K∑
k=1

∑
i∈Vk

E[∥x̄k
t,s − xi

t,s∥2]

+
L2

K

K∑
k=1

E[∥xt − x̄k
t,s∥2] +

L2

N

K∑
k=1

∑
i∈Vk

E[∥x̄k
t,s − xi

t,s∥2]
}
+

η
√
1− β2G

ϵ
E[∥∆t∥2]

≤ ηηl
4C0

τ−1∑
s=0

[
− E[∥∇f(xt)∥2]− E

∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − ∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

τ−1∑
s=0

{
3L2

K

K∑
k=1

E[∥xt − x̄k
t,s∥2] +

3L2

N

K∑
k=1

∑
i∈Vk

E[∥x̄k
t,s − xi

t,s∥2]
}

+
η
√
1− β2G

ϵ
E[∥∆t∥2]

≤ ηηl
4C0

τ−1∑
s=0

[
− E[∥∇f(xt)∥2]− E

∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − ∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]
+

ηηl
4
√
ϵ

[
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + 3L2τ2C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ 3L2τ2C1η
2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

]
+

η
√
1− β2G

ϵ
E[∥∆t∥2], (C.8)

where the last inequality holds by Lemma E.1 and E.2.

16

C.2 Bounding I2

The bound for I2 mainly follows by the update rule and definition of virtual sequence zt,

I2 = −ηE
[〈
∇f(zt),

β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

〉]
= −ηE

[〈
∇f(zt)−∇f(xt) +∇f(xt),

β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

〉]
, (C.9)

then by Assumption 5.1, we have

I2 ≤ ηE
[
∥∇f(xt)∥

∥∥∥∥ β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥]
+ ηLE

[
∥zt − xt∥

∥∥∥∥ β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥]
= ηE

[
∥∇f(xt)∥

∥∥∥∥ β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥]
+ η2LE

[∥∥∥∥ 1√
v̂t−1 + ϵ

β1

1− β1
mt−1

∥∥∥∥∥∥∥∥ β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥]
≤ η

β1

1− β1
ηlτG

2E
[∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥
1

]
+ η2

β2
1

(1− β1)2
Lη2l τ

2G2ϵ−1/2E
[∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥
1

]
,

(C.10)

where the last inequality holds by Assumption 5.2 and Lemma E.8 about bounding∇f(xt) and mt.

C.3 Bounding I3

We have the following result for bounding I3

I3 =
η2L

2
E
[∥∥∥∥V̂−1/2

t ∆t +
β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥2]
≤ η2LE

[∥∥V̂−1/2
t ∆t

∥∥2]+ η2LE
[∥∥∥∥ β1

1− β1

(
V̂

−1/2
t−1 − V̂

−1/2
t

)
mt−1

∥∥∥∥2]
≤ η2L

ϵ
E[∥∆t∥2] + η2L

β2
1

(1− β1)2
η2l τ

2G2E
[∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥2], (C.11)

where the first inequality follows by Cauchy-Schwarz inequality, and the second one follows by
Assumption 5.2 and Lemma E.8 about bounding∇f(xt) and mt.

C.4 Bounding I4

I4 = E
[〈
∇f(zt)−∇f(xt), ηV̂

−1/2
t ∆t

〉]
≤ E

[
∥∇f(zt)−∇f(xt)∥

∥∥∥ηV̂−1/2
t ∆t

∥∥∥]
≤ LE

[
∥zt − xt∥

∥∥∥ηV̂−1/2
t ∆t

∥∥∥]
≤ η2L

2
E
[∥∥∥∥ β1

1− β1
V̂

−1/2
t mt

∥∥∥∥2]+ η2L

2
E
[∥∥∥V̂−1/2

t ∆t

∥∥∥2]
≤ η2L

2ϵ

β2
1

(1− β1)2
E[∥mt∥2] +

η2L

2ϵ
E[∥∆t∥2], (C.12)

where the first inequality holds due to Young’s inequality, and the second one follows from Assump-
tion 5.1 and the definition of virtual sequence zt. By Lemma E.7, we have

T∑
t=1

E[∥mt∥2] ≤
T∑

t=1

E[∥∆t∥2]. (C.13)

17

Therefore, the summation of I4 term is bounded by

T∑
t=1

I4 ≤
(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ

) T∑
t=1

E[∥∆t∥2]. (C.14)

C.5 Merging pieces together

Summing I1 to I4 from t = 1 to T , we have

E[f(zT+1)]− f(z1) =

T∑
t=1

[I1 + I2 + I3 + I4]

≤ ηηl
4C0

T∑
t=1

[
− τE[∥∇f(xt)∥2]−

τ−1∑
s=0

E
∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − τ−1∑
s=0

∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

T∑
t=1

{
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + 3L2τ2C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ 3L2τ2C1η
2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

}
+

η
√
1− β2G

ϵ

T∑
t=1

E[∥∆t∥2]

+

(
η

β1

1− β1
ηlτG

2 + η2
β2
1

(1− β1)2
Lη2l τ

2G2ϵ−1/2

) T∑
t=1

E
[∥∥∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥∥∥
1

]

+
η2L

ϵ

T∑
t=1

E[∥∆t∥2] + η2L
β2
1

(1− β1)2
η2l τ

2G2
T∑

t=1

E
[∥∥∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥∥∥2]

+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ

) T∑
t=1

E[∥∆t∥2],

Merge the similar pieces, then we have

E[f(zT+1)]− f(z1)

≤ ηηl
4C0

T∑
t=1

[
− τE[∥∇f(xt)∥2]−

τ−1∑
s=0

E
∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − τ−1∑
s=0

∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

T∑
t=1

{
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + 3L2τ2C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ 3L2τ2C1η
2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

}
+

(
η

β1

1− β1
ηlτG

2 + η2
β2
1

(1− β1)2
Lη2l τ

2G2ϵ−1/2

) T∑
t=1

E
[∥∥∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥∥∥
1

]

+ η2L
β2
1

(1− β1)2
η2l τ

2G2
T∑

t=1

E
[∥∥∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥∥∥2]

+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

) T∑
t=1

E[∥∆t∥2],

18

Further apply Lemma E.9 and Lemma E.5, we have
E[f(zT+1)]− f(z1)

≤ ηηl
4C0

T∑
t=1

[
− τE[∥∇f(xt)∥2]−

τ−1∑
s=0

E
∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2 − τ−1∑
s=0

∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

T∑
t=1

{
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + 3L2τ2C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ 3L2τ2C1η
2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

}
+

(
η

β1

1− β1
ηlτG

2 + η2
β2
1

(1− β1)2
Lη2l τ

2G2ϵ−1/2

)
d√
ϵ
+ η2L

β2
1

(1− β1)2
η2l τ

2G2 · d
ϵ

+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

) T∑
t=1

{
η2l τ

N
σ2

+ η2l τ

τ−1∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]}, (C.15)

drop extra terms in the second line with the following condition on learning rate,

ηη2l τ
Cβ,η

2ϵ
≤ ηηl

4C0
⇒ η ≤ ϵ

2τC0Cβ,η
, (C.16)

where Cβ,η =
(
ηL

β2
1

(1−β1)2
+ 3ηL+ 2

√
1− β2G

)
= O(max{η, 1}), merge the similar items,

E[f(zT+1)]− f(z1)

≤ −
[
ηηlτ

4C0
− ηηl

4
√
ϵ
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)α

2

] T∑
t=1

E[∥∇f(xt)∥2]

+
ηηl
4
√
ϵ

T∑
t=1

{
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)σ

2
g + 3L2τ2C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ 3L2τ2C1η
2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

}
+ η

β1

1− β1
ηlτG

2 d√
ϵ
+ 2η2L

β2
1

(1− β1)2
η2l τ

2G2 · d
ϵ

+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

)
Tη2l τ

N
σ2, (C.17)

note that we need the following requirement for local learning rate ηl:

ηl ≤
4
√
ϵ

α
√
6C0C1τ(τ + ρ2maxDτ,ρ)

. (C.18)

Thus we have
ηηlτ

8C0T

T∑
t=1

E[∥∇f(xt)∥2]

≤ E[f(zT+1)]− f(zT)

T
+ η

β1

1− β1
ηlτG

2 d

T
√
ϵ
+ 2η2L

β2
1

(1− β1)2
η2l τ

2G2 · d

Tϵ

+
ηηl
4
√
ϵ

(
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)σ

2
g

+ 3L2τ2C1ρ
2
maxDτ,ρη

2
l σ̄

2
L + 3L2τ2C1η

2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

)
+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

)
η2l τ

N
σ2, (C.19)

19

since we have Dτ,ρ ≤ τ and the maximum spectral gap satisfies ρmax ≤ 1,

3L2τ2C1ρ
2
maxDτ,ρη

2
l σ̄

2
L + 3L2τ2C1η

2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρρ
2
max)η

2
l

σ2

n

= 3C1L
2η2l

(
τ2ρ2max(Dτ,ρσ̄

2
L + σ2) + (τ2 +D2

τ,ρρ
2
max)

σ2

n

)
≤ 3C1L

2η2l

(
τ2ρ2maxDτ,ρσ̄

2
L + τ2ρ2maxσ

2 + (τ2 + τ2ρ2max)
σ2

n

)
≤ 6C1L

2η2l

(
τ2ρ2maxDτ,ρσ̄

2
L + τ2σ2

(
1

n
+ ρ2max

))
,

and

3L2τC1η
2
l (τ + ρ2maxDτ,ρ)σ

2
g ≤ 6L2τ2C1η

2
l σ

2
g ,

hence with a universal constant C, we have the following derivation for iterations,

1

T

T∑
t=1

E[∥∇f(xt)∥2]

≤ 8C0

{
E[f(zT+1)]− f(zT)

ηηlτT
+

1

T

(
CβG

2d√
ϵ

+
2C2

βηηlτLG
2d

ϵ

)
+

CL2η2l
4
√
ϵ

[
τ2σ2

g +

(
τρ2maxDτ,ρσ̄

2
L + τσ2

(
1

n
+ ρ2max

))]
+ Cβ

ηl
2ϵN

σ2

}
, (C.20)

C is a constant irrelevant to parameters ρmax = maxk∈[K] ρk, Dτ,ρ = min
{

1
1−ρmax

, τ
}

, σ̄2
L =

1
K

∑K
k=1 σ

2
k Cβ = β1

1−β1
and Cβ,η =

(
ηL

β2
1

(1−β1)2
+ 3ηL+ 2

√
1− β2G

)
= O(max{η, 1}).

D Proof of Theorem 5.8: HA-Fed partial participation

Proof of Theorem 5.8. From Section B, we know that ∆t is an unbiased estimation of ∆̄t, thus the
main difference between full participation and partial participation lies in the second order momentum
estimation of model difference ∆t, i.e., E[∥∆t∥2]. Hence with a different bounded E[∥∆t∥2] in
Section E.4 for partial participation, we have the following result starting from L-smooth expansion
like Eq. C.2,

E[f(zt+1)]− f(zt) ≤ I ′1 + I ′2 + I ′3 + I ′4, (D.1)

where I ′i corresponds to the similar term of Ii in Eq. C.2.

By the result of Lemma E.1 and E.2, and the bound for model difference ∆t in partial participation
settings in Section E.4, we can obtain the bound for I ′1. The bound for I ′2 I

′
3 and I ′4 is obtained by the

similar approach, and the derivation for them is similar to full participation settings, here we omit the
derivation for bounding I ′2 I

′
3 and I ′4.

20

Merging I ′1 to I ′4 together, we obtain the following result,

E[f(zT+1)]− f(z1)

≤ ηηl
4C0

T∑
t=1

{
− τE[∥∇f(xt)∥2]−

τ−1∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]− τ−1∑
s=0

E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]}

+
ηηl
4
√
ϵ

T∑
t=1

[
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + 3L2τ2C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ 3L2τ2C1η
2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

]
+

(
η

β1

1− β1
ηlτG

2 + η2
β2
1

(1− β1)2
Lη2l τ

2G2ϵ−1/2

) T∑
t=1

E
[∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥
1

]
+ η2L

β2
1

(1− β1)2
η2l τ

2G2
T∑

t=1

E
[∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥2]
+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

) T∑
t=1

E[∥∆t∥2],

then substituting the bound of ∆t in Lemma E.6, we have

E[f(zT+1)]− f(z1)

≤ −ηηlτ

4C0

T∑
t=1

E[∥∇f(xt)∥2]−
ηηl
4C0

T∑
t=1

τ−1∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]

− ηηl
4C0

T∑
t=1

τ−1∑
s=0

E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,s)

∥∥∥∥2]

+
ηηl
4
√
ϵ

T∑
t=1

[
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + 3L2τ2C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ 3L2τ2C1η
2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

]
+

(
η

β1

1− β1
ηlτG

2 + η2
β2
1

(1− β1)2
Lη2l τ

2G2ϵ−1/2

) T∑
t=1

E
[∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥
1

]
+ η2L

β2
1

(1− β1)2
η2l τ

2G2
T∑

t=1

E
[∥∥V̂−1/2

t−1 − V̂
−1/2
t

∥∥2]
+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

) T∑
t=1

{
2η2l τ

N
σ2

+ 2η2l (τ − 1)

τ−2∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]+ 4η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2]

+ 8

(
n−m

m(n− 1)
+ η2l L

2

)(
1

N

K∑
k=1

E[∥Xk,⊥
t,τ−1∥2]

)
+

2η2l σ
2

N

(
n−m

m
· ρ2max

)}
, (D.2)

we need the following constraint on local learning rate ηl

2Cβ,ηηη
2
l (τ − 1) ≤ ηηl

4C0
, 4Cβ,ηηη

2
l ≤

ηηl
4C0

⇒ η ≤ 1

8C0Cβ,η(τ − 1)
, η ≤ 1

16C0Cβ,η
, (D.3)

21

where Cβ,η =
(

ηL
2ϵ

β2
1

(1−β1)2
+ ηL

2ϵ + ηL
ϵ +

√
1−β2G

ϵ

)
= O(max{η, 1}), and by applying Lemma E.4,

then we have

E[f(zT+1)]− f(z1)

≤ −ηηlτ

4C0

T∑
t=1

E[∥∇f(xt)∥2] +
ηηl
4
√
ϵ
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)α

2
T∑

t=1

E[∥∇f(xt)∥2]

+
ηηl
4
√
ϵ

T∑
t=1

{
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)σ

2
g

+ 3L2τ2C1ρ
2
maxDτ,ρη

2
l σ̄

2
L + 3L2τ2C1η

2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

}
+ η

β1

1− β1
ηlτG

2 d√
ϵ
+ 2η2L

β2
1

(1− β1)2
η2l τ

2G2 · d
ϵ

+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

)[
2Tη2l τ

N
σ2 +

2Tη2l σ
2

N

(
n−m

m
ρ2max

)]
+ 8T

(
n−m

m(n− 1)
+ η2l L

2

)(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

)
·
[
τC1η

2
l Dτ,ρρ

2
max(α

2E∥∇f(xt)∥2 + σ2
g)

+ τC1η
2
l Dτ,ρρ

2
maxσ̄

2
L + τC1η

2
l ρ

2
maxσ

2 + C1D
2
τ,ρτ

−1ρ2maxη
2
l

σ2

n

]
, (D.4)

we further need the requirement of ηl, which is same as the requirement in full participation settings

ηηl
4
√
ϵ
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)α

2 + 8

(
n−m

m(n− 1)
+ η2l L

2

)
Cβ,ηητC1η

2
l Dτ,ρρ

2
maxα

2 ≤ ηηlτ

8C0
,

⇒ 1

4
√
ϵ
3L2τC1η

2
l (τ + ρ2maxDτ,ρ)α

2 + 8

(
n−m

m(n− 1)
+

1

τ2

)
Cβ,ηC1ηlDτ,ρρ

2
maxα

2 ≤ 1

8C0
,

⇒ ηl ≤
4
√
ϵ√

12L2C0C1τ(τ + ρ2maxDτ,ρ)α2
, ηl ≤

1

128C0Cβ,ηC1Dτ,ρρ2maxα
2

(
n−m

m(n− 1)
+

1

τ2

)−1

(D.5)

thus we have

ηηlτ

8C0T

T∑
t=1

E[∥∇f(xt)∥2]

≤ E[f(zT+1)]− f(zT)

T
+ η

β1

1− β1
ηlτG

2 d

T
√
ϵ
+ 2η2L

β2
1

(1− β1)2
η2l τ

2G2 · d

Tϵ

+
ηηl
4
√
ϵ
·

T∑
t=1

{
3L2τ2C1η

2
l (τ + ρ2maxDτ,ρ)σ

2
g

+ 3L2τ2C1ρ
2
maxDτ,ρη

2
l σ̄

2
L + 3L2τ2C1η

2
l σ

2ρ2max + 3L2C1

(
τ2 +D2

τ,ρ · ρ2max

)
η2l

σ2

n

)
+

(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

)[
2η2l τ

N
σ2 +

2η2l σ
2

N

(
n−m

m
ρ2max

)]
+ 8

(
n−m

m(n− 1)
+ η2l L

2

)(
η2L

2ϵ

β2
1

(1− β1)2
+

η2L

2ϵ
+

η2L

ϵ
+

η
√
1− β2G

ϵ

)
·
[
τC1η

2
l Dτ,ρρ

2
maxσ

2
g + τC1η

2
l Dτ,ρρ

2
maxσ̄

2
L + τC1η

2
l ρ

2
maxσ

2 + C1D
2
τ,ρτ

−1ρ2maxη
2
l

σ2

n

]
,

(D.6)

22

since there is Dτ,ρ ≤ τ and ρmax ≤ 1, thus we have

1

T

T∑
t=1

E[∥∇f(xt)∥2]

≤ 8C0

{
E[f(zT+1)]− f(zT)

ηηlτT
+

1

T

(
CβG

2d√
ϵ

+
2C2

βηηlτLG
2d

ϵ

)
+

1

4
√
ϵ

[
C · L2τ(τ +Dτ,ρ)η

2
l σ

2
g + C · L2η2l

(
τρ2maxDτ,ρσ̄

2
L + τσ2

(
1

n
+ ρ2max

))]
+

(
ηL

ϵ

β2
1

(1− β1)2
+

3ηL

ϵ
+

2
√
1− β2G

ϵ

)[
ηl
N

σ2 +
ηlσ

2

N

(
n−m

m
ρ2max

)]
+ 4

(
n−m

m(n− 1)
+ η2l L

2

)(
ηL

ϵ

β2
1

(1− β1)2
+

3ηL

ϵ
+

2
√
1− β2G

ϵ

)
·
[
C1ηlDτ,ρρ

2
maxσ

2
g + C1ηlDτ,ρρ

2
maxσ̄

2
L + C1ηlρ

2
maxσ

2 + C1D
2
τ,ρτ

−2ρ2maxηl
σ2

n

]}
, (D.7)

where C is a constant irrelevant to parameters and ρmax = maxk∈[K] ρk, Dτ,ρ = min
{

1
1−ρmax

, τ
}

,

Cβ = β1

1−β1
and σ̄2

L = 1
K

∑K
k=1 σ

2
k. This concludes the proof.

Proof of Corollary 5.11. Further apply the constraint of
n−m

m(n− 1)
Dτ,ρρ

2
max ≤

1

N
, (D.8)

where the condition Eq. D.8 implies that the spectral gap ρmax satisfies

ρ2max ≤
1

4(n−m)
. (D.9)

With the condition of Eq. D.9, there is ρmax ≤ 1
2 hence when τ ≥ 2, there is 1

1−ρmax
≤ τ , also

assume K ≤ n− 1,
n−m

m(n− 1)
Dτ,ρρ

2
max =

n−m

m(n− 1)

1

1− ρmax
ρ2max

≤ 2
n−m

m(n− 1)
ρ2max

≤ 2
n−m

m(n− 1)

1

4(n−m)

≤ 1

M
. (D.10)

Also by choosing a constant C̃, we have

1

T

T∑
t=1

E[∥∇f(xt)∥2]

≤ 8C0

{
E[f(zT+1)]− f(zT)

ηηlτT
+

1

T

(
CβG

2d√
ϵ

+
2C2

βηηlτLG
2d

ϵ

)
+

CL2η2l
4
√
ϵ

[
τ(τ +Dτ,ρ)σ

2
g +

(
τρ2maxDτ,ρσ̄

2
L + τσ2

(
1

n
+ ρ2max

))]
+

(
ηL

ϵ

β2
1

(1− β1)2
+

3ηL

ϵ
+

2
√
1− β2G

ϵ

)[
ηl
N

σ2 +
ηlσ

2

N

(
n−m

m
ρ2max

)]
+

1

N

(
ηL

ϵ

β2
1

(1− β1)2
+

3ηL

ϵ
+

2
√
1− β2G

ϵ

)
C̃ηl

[
σ2
g + σ̄2

L + σ2 +Dτ,ρ
σ2

τ2n

]
+ C̃L2Dτ,ρρ

2
max

(
ηL

ϵ

β2
1

(1− β1)2
+

3ηL

ϵ
+

2
√
1− β2G

ϵ

)
η3l

[
σ2
g + σ̄2

L + σ2 +Dτ,ρ
σ2

τ2n

]}
(D.11)

23

By adopting learning rates η = Θ(
√
τM), ηl = Θ

(
1√
Tτ

)
then we concludes the proof.

E Supporting Lemmas

E.1 Lemma for inter-cluster consensus error

Lemma E.1. For local learning rate which satisfying the condition ηl ≤ 1
8τL , denote Cτ = 1 + 3

2 ·
1

4τ−1 , recall the definition for x̄ in Eq. B.1, the inter-cluster model difference after s local steps
satisfies

1

K

K∑
k=1

E∥x̄k
t,s+1 − xt∥2

≤ Cτ
1

K

K∑
k=1

E∥x̄k
t,s − xt∥2 + 8τη2l (α

2E[∥∇f(xt)∥2] + σ2
g) + η2l

σ2

n
. (E.1)

Proof. Note that the following proof is similar to Lemma 3 in [30].

E∥x̄k
t,s+1 − xt∥2 = E∥x̄k

t,s − xt − ηlḡ
k
t,s∥2

= E∥x̄k
t,s − xt − ηl(ḡ

k
t,s −∇f̄k(x̄k

t,s) +∇f̄k(x̄k
t,s)−∇f̄k(xt) +∇f̄k(xt))∥2

≤ (1 + γ)E∥x̄k
t,s − xt∥2 + η2l E∥ḡk

t,s −∇f̄k(x̄k
t,s)∥2

+ 2(1 + γ−1)η2l E[∥∇f̄k(x̄k
t,s)−∇f̄k(xt)∥2] + 2(1 + γ−1)η2l E[∥∇f̄k(xt)∥2]

≤ (1 + γ)E∥x̄k
t,s − xt∥2 + η2l

σ2

n
+ 2(1 + γ−1)η2l L

2E∥x̄k
t,s − xt∥2 + 2(1 + γ−1)η2l E[∥∇f̄k(xt)∥2]

≤ [(1 + γ) + 2(1 + γ−1)η2l L
2] · E∥x̄k

t,s − xt∥2 + η2l
σ2

n
+ 2(1 + γ−1)η2l E[∥∇f̄k(xt)∥2], (E.2)

where the first equality holds by Eq. B.2. The first inequality holds due to gi
t,s is an unbiased

estimator of ∇fi(xi
t,s) and Young’s inequality. The second inequality holds by Assumption 5.1 and

5.3, also the independency with gi
t,s and gj

t,s for i ̸= j.

Averaging Eq. E.2 over k = 1, ...,K clusters, we have

1

K

K∑
k=1

E∥x̄k
t,s+1 − xt∥2

≤ [(1 + γ) + 2(1 + γ−1)η2l L
2]

1

K

K∑
k=1

E∥x̄k
t,s − xt∥2

+ 2(1 + γ−1)η2l
1

K

K∑
k=1

E[∥∇f̄k(xt)∥2] + η2l
σ2

n

≤ [(1 + γ) + 2(1 + γ−1)η2l L
2]

1

K

K∑
k=1

E∥x̄k
t,s − xt∥2

+ 2(1 + γ−1)η2l (α
2E[∥∇f(xt)∥2] + σ2

g) + η2l
σ2

n
, (E.3)

24

where the second inequality holds by Assumption 5.4. Choosing γ = 1
4τ−1 with the condition of

ηl ≤ 1
8τL , we have

1

K

K∑
k=1

E∥x̄k
t,s+1 − xt∥2

≤
(
1 +

1

4τ − 1
+

1

2(4τ − 1)

)
1

K

K∑
k=1

E∥x̄k
t,s − xt∥2 + 8τη2l (α

2E[∥∇f(xt)∥2] + σ2
g) + η2l

σ2

n

= Cτ
1

K

K∑
k=1

E∥x̄k
t,s − xt∥2 + 8τη2l (α

2E[∥∇f(xt)∥2] + σ2
g) + η2l

σ2

n
, (E.4)

where Cτ = 1 + 3
2 ·

1
4τ−1 . This concludes the proof.

E.2 Lemma for intra-cluster consensus error

Lemma E.2. The intra-cluster consensus error
∑n

i=1 ∥x̄k
t,s − xi

t,s∥2, also known as ∥Xk,⊥
t,s ∥2F , has

the following upper bound,

1

N
E

K∑
k=1

∥Xk,⊥
t,s+1∥2

≤
(

max
k∈[K]

ρ2k(1 + ζ−1
k) + η2l · 4L2 max

k∈[K]
{ρ2k(1 + ζk)}

)
1

N

K∑
k=1

E∥Xk,⊥
t,s ∥2

+ η2l max
k∈[K]

{ρ2k(1 + ζk)} · 4L2E∥x̄k
t,s − xt∥2 + η2l max

k∈[K]
{ρ2k(1 + ζk)} · 4(α2E∥∇f(xt)∥2 + σ2

g)

+ η2l
1

K

K∑
k=1

ρ2k(1 + ζk)4σ
2
k + η2l σ

2ρ2max, (E.5)

where ζk is some constant related to the Young’s inequality, and it could be uniformly chosen for all
k = 1, ...,K.

Proof. By definition we have Xk = (x1
t,s, ...,x

n
t,s)

′ and Xk,⊥
t,s = Xk

t,s(In−J), where J = 1
n1n ·1′

n.
Thus we have

n∑
i=1

∥x̄k
t,s − xi

t,s∥2 = ∥(x1
t,s, ...,x

n
t,s)(In − J) · In · (In − J)(x1

t,s, ...,x
n
t,s)

′∥F

= ∥Xk
t,s

′(In − J) · (In − J)Xk
t,s∥F

= ∥Xk,⊥
t,s

′ ·Xk,⊥
t,s ∥F

= ∥Xk,⊥
t,s ∥2F , (E.6)

Recall the update rule of HA-Fed, there is Xk,⊥
t,s+1 = (Wk − J)(Xk,⊥

t,s − ηlG
k
t,s), then we have

E∥Xk,⊥
t,s+1∥2 = E(E(∥(Wk − J)(Xk,⊥

t,s − ηlG
k
t,s)∥2|Ft,s−1))

= E(E(∥(Wk − J)(Xk,⊥
t,s − ηl∇F (Xk

t,s) + ηl∇F (Xk
t,s)− ηlG

k
t,s)∥2|Ft,s−1))

= E(E(∥(Wk − J)(Xk,⊥
t,s − ηl∇F (Xk

t,s))∥2|Ft,s−1))

+ η2l E(E(∥(Wk − J)(∇F (Xk
t,s)−Gk

t,s)∥2|Ft,s−1))

≤ E(∥(Wk − J)(Xk,⊥
t,s − ηl∇F (Xk

t,s))∥2) + η2l ρ
2
knσ

2

≤ ρ2k(1 + ζ−1
k) · E∥Xk,⊥

t,s ∥2 + ρ2k(1 + ζk)η
2
l E∥∇F (Xk

t,s))∥2 + η2l ρ
2
knσ

2, (E.7)

where the ∇Fk(X
k) ∈ Rn×d is associated to cluster k by stacking ∇fi(xi) for i ∈ Vk row-wise.

The third equality is due to the unbiasedness of stochastic gradient. The first inequality holds by

25

Assumption 5.3 and ∥∇F (Xk
t,s)−Gk

t,s∥F =
∑n

i=1 ∥∇fi(xi
t,s)− gi

t,s∥2. For the Frobenius norm,
there is ∥AB∥F ≤ ∥A∥2∥B∥F . The second inequality holds by Young’s inequality with some
parameter ζk > 0 and ∥AB∥F ≤ ∥A∥2∥B∥F as well. For∇Fk(X

k
t,s), by definition, we have

∥∇Fk(X
k
t,s)∥2F =

∑
i∈Vk

∥∇fi(xi
t,s)∥2

=
∑
i∈Vk

∥∇fi(xi
t,s)−∇fi(x̄k

t,s) +∇fi(x̄k
t,s)−∇f̄k(x̄k

t,s) +∇f̄k(x̄k
t,s)−∇f̄k(xt) +∇f̄k(xt)∥2

≤
∑
i∈Vk

[
4∥∇fi(xi

t,s)−∇fi(x̄k
t,s)∥2 + 4∥∇fi(x̄k

t,s)−∇f̄k(x̄k
t,s)∥2 + 4∥∇f̄k(x̄k

t,s)−∇f̄k(xt)∥2

+ 4∥∇f̄k(xt)∥2
]

≤
∑
i∈Vk

[
4∥∇fi(x̄k

t,s)−∇f̄k(x̄k
t,s)∥2 + 4L2∥xi

t,s − x̄k
t,s∥2 + 4L2∥x̄k

t,s − xt∥2 + 4∥∇f̄k(xt)∥2
]

≤ 4L2∥Xk,⊥
t,s ∥2 + 4L2n∥x̄k

t,s − xt∥2 + 4n∥∇f̄k(xt)∥2 + 4nσ2
k, (E.8)

where the first inequality holds by Cauchy inequality, and the last inequality holds by Assumption
5.4. Averaging Eq. E.8 over k = 1, ...,K, we have the following iteration

1

N

K∑
k=1

E∥Xk,⊥
t,s+1∥2

≤ 1

N

K∑
k=1

ρ2k(1 + ζ−1
k) · E∥Xk,⊥

t,s ∥2 +
1

N

K∑
k=1

ρ2k(1 + ζk)η
2
l E∥∇F (Xk

t,s))∥2 + η2l σ
2 1

K

K∑
k=1

ρ2k

≤ 1

N

K∑
k=1

ρ2k(1 + ζ−1
k) · E∥Xk,⊥

t,s ∥2 + η2l
1

N

K∑
k=1

ρ2k(1 + ζk) · 4L2E∥Xk,⊥
t,s ∥2

+ η2l
1

K

K∑
k=1

ρ2k(1 + ζk) · 4L2E∥x̄k
t,s − xt∥2 + η2l

1

K

K∑
k=1

ρ2k(1 + ζk) · 4E∥∇f̄k(xt)∥2

+ η2l
1

K

K∑
k=1

ρ2k(1 + ζk) · 4σ2
k + η2l σ

2ρ2max

≤
(

max
k∈[K]

ρ2k(1 + ζ−1
k) + η2l · 4L2 max

k∈[K]
{ρ2k(1 + ζk)}

)
1

N

K∑
k=1

E∥Xk,⊥
t,s ∥2

+ η2l max
k∈[K]

{ρ2k(1 + ζk)} · 4L2E∥x̄k
t,s − xt∥2 + η2l max

k∈[K]
{ρ2k(1 + ζk)} · 4(α2E∥∇f(xt)∥2 + σ2

g)

+ η2l
1

K

K∑
k=1

ρ2k(1 + ζk)4σ
2
k + η2l σ

2ρ2max. (E.9)

This concludes the proof.

E.3 Lemma for summation of intra-cluster and inter-cluster consensus errors

Lemma E.3. If the local learning rate satisfies the condition: ηl ≤ 1
8τL , the for all local round

s = 0, ..., τ − 1, there is

1

N

K∑
k=1

E∥Xk,⊥
t,s ∥2 +

1

K

K∑
k=1

E∥x̄k
t,s − xt∥2

≤ (s+ 1)C1η
2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + (s+ 1)C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ (s+ 1)C1η
2
l σ

2ρ2max + (s+ 1)C1

(
1 +

D2
τ,ρ

τ2
· ρ2max

)
η2l

σ2

n
, (E.10)

26

where C1 is a constant independent to parameters.

Proof. Denote an auxiliary vector

Mt,s =

(
1

N

K∑
k=1

E∥Xk,⊥
t,s ∥2,

1

K

K∑
k=1

E∥x̄k
t,s − xt∥2

)T

. (E.11)

From Lemma E.1 and E.2, we have the following inequality which is defined element-wise for
s = 0, ..., τ − 1

Mt,s+1 ≤ G ·Mt,s +Bt,s, (E.12)

where

G =

(
maxk∈[K] ρ

2
k(1 + ζ−1

k) + η2l ρL · 4L2 η2l ρL · 4L2

0 Cτ

)
(E.13)

Bt,s =

(
4ρLη

2
l (α

2E∥∇f(xt)∥2 + σ2
g) + 4ρLη

2
l σ̄

2
L + η2l σ

2ρ2max

8τη2l (α
2E∥∇f(xt)∥2 + σ2

g) + η2l
σ2

n

)
=

(
b(1)

b(2)

)
. (E.14)

Consider the eigen-decomposition of matrix G,

G =

(
1 − 4η2

l ρLL2

λ1−λ2

0 1

)
·
(
λ1 0
0 λ2

)
·

(
1

4η2
l ρLL2

λ1−λ2

0 1

)
, (E.15)

where we assume λ1 ≤ λ2, thus we have

GjB =

(
1 − 4η2

l ρLL2

λ1−λ2

0 1

)(
λj
1 0

0 λj
2

)(
1

4η2
l ρLL2

λ1−λ2

0 1

)(
b(1)

b(2)

)

=

(
λj
1(b

(1) +
4η2

l ρLL2

λ1−λ2
b(2))− 4η2

l ρLL2

λ1−λ2
λj
2b

(2)

λj
2b

(2)

)
. (E.16)

Therefore the sum of two elements has the following result

(1, 1)GjBt,s−j = λj
1b

(1) + λj
2b

(2) +
λj
2 − λj

1

λ2 − λ1
4η2l ρLL

2b(2)

≤ λj
2(b

(1) + b(2)) +
λj
2 − λj

1

λ2 − λ1
4η2l ρLL

2b(2). (E.17)

Therefore, we have the following result
s∑

j=0

(1, 1)GjBt,s−j ≤
s∑

j=0

(
λj
2(b

(1)
t,s−j + b

(2)
t,s−j) +

λj
2 − λj

1

λ2 − λ1
η2l · 4ρLL2b

(2)
t,s−j

)
. (E.18)

Since λ2 ≥ Cτ > 1, we have

λj
2 − λj

1

λ2 − λ1
= λl−1

2

l−1∑
s=0

(
λ1

λ2

)s

≤ λj−1
2 min

{
λ2

λ2 − λ1
, l

}
≤ λj

2 min

{
1

λ2 − λ1
, l

}
, (E.19)

thus we have
s∑

j=0

(1, 1)GjBt,s−j ≤
s∑

j=0

λj
2(b

(1)
t,s−j + b

(2)
t,s−j) +

s∑
l=0

(
λj
2 min

{
1

λ2 − λ1
, l

}
η2l · 4ρLL2b

(2)
t,s−j

)
.

(E.20)

By the definition of ρL = maxk∈[k] ρ
2
k(1 + ζk) and by the Gershgorin’s theorem, since ηl > 0, we

have the upper bound for λ2,

λ2 ≤ max

{
max
k∈[K]

ρ2k(1 + ζ−1
k) + η2l ρL · 8L2, Cτ

}
< max

{
max
k∈[K]

ρ2k(1 + ζ−1
k) +

ρL
(4τ − 1)2τ

, 1 +
3

2(4τ − 1)

}
, (E.21)

27

where the last inequality holds by the bound of η2l ≤ 1
64τ2L2 < 1

16τ(4τ−1)L2 . Define a distance
constant Dτ,ρ = min

{
τ, 1

1−ρmax

}
. Next we consider two cases: small or dense communication

network with ρmax ≤ 1− 1
τ and large and sparse communication network with ρmax > 1− 1

τ .
Case 1: For ρmax ≤ 1− 1

τ , i.e., 1
1−ρmax

≤ τ , thus we have Dτ,ρ = 1
1−ρmax

. Let ζk = ρk

1−ρk
, then

we have

max
k∈[k]

ρ2k(1 + ζ−1
k) = ρmax, ρL = max

k∈[k]

{
ρ2k

1− ρk

}
=

ρ2max

1− ρmax
= ρ2maxDτ,ρ, (E.22)

where the middle part of the second equality holds by the monotonically increasing of x2

1−x . Then the
bound for λ2 is formalized as

λ2 ≤ max

{
ρmax +

ρ2max

(1− ρmax)2τ(4τ − 1)
, 1 +

3

2(4τ − 1)

}
≤ max

{
1− 1

τ
+

(1− 1
τ)

2

2(τ − 1)
, 1 +

3

2(4τ − 1)

}
< 1 +

2

4τ − 1
, (E.23)

where the second inequality holds by ρmax ≤ 1− 1
τ . Then by s ≤ τ and λ2 ≥ 1 (just by the definition

of matrix G can get this result), we can obtain the following bound
s∑

j=0

λj
2b

1
s−j ≤

((
1 +

2

4τ − 1

)τ)
·

s∑
j=0

b
(1)
j ≤ 3 ·

s∑
j=0

b
(1)
j . (E.24)

We also have

ρmax + η2l ρL4L
2 ≤ ρmax +

ρmax

(1− ρmax)(4τ − 1)4τ
≤ 1− 1

τ
+

(1− 1
τ)

2

4(4τ − 1)
≤ Cτ , (E.25)

where the second inequality holds by the upper bound for ρmax. By the definition of matrix G, we
bound the difference of λ2 − λ1,

λ2 − λ1 = Cτ − ρmax − η2l ρL4L
2

≥ Cτ −
(
ρmax +

ρmax

(1− ρmax)(4τ − 1)4τ

)
≥ Cτ −

(
ρmax + ρmax ·

1− 1
τ

4(4τ − 1)

)
≥ 1 +

1

4τ − 1
−
(
ρmax + ρmax ·

1

4τ − 1

)
= (1− ρmax)

(
1 +

1

4τ − 1

)
≥ 1− ρmax. (E.26)

where the first and second inequality hold by the defined notations. Then we have
s∑

j=0

(1, 1)GjBt,s−j ≤
s∑

j=0

λj
2(b

(1)
t,s−j + b

(2)
t,s−j) +

s∑
j=0

(
λj
2 min

{
1

λ2 − λ1
, j

}
η2l · 4ρLL2b2t,s−j

)

≤
s∑

j=0

3(b
(1)
t,j + b

(2)
t,j) +

s∑
j=0

3η2l · 4ρLL2b
(2)
t,j

(
min

{
1

λ2 − λ1
, τ

})

≤
s∑

j=0

3(b
(1)
t,j + b

(2)
t,j) +

s∑
j=0

3η2l ·D2
τ,ρρ

2
max4L

2b
(2)
t,j

≤
s∑

j=0

3(b
(1)
t,j + b

(2)
t,j) +

s∑
j=0

12

16τ(4τ − 1)
·D2

τ,ρρ
2
maxb

(2)
t,j

≤
s∑

j=0

3(b
(1)
t,j + b

(2)
t,j) +

s∑
j=0

1

τ2
·D2

τ,ρ · ρ2maxb
(2)
t,j , (E.27)

28

then by the definition of b(1) and b(2), we have
s∑

j=0

(1, 1)GjBt,s−j

≤
s∑

j=0

3

(
(4ρLη

2
l + 8τη2l)(α

2E∥∇f(xt)∥2 + σ2
g) + 4ρLη

2
l σ̄

2
L + η2l σ

2ρ2max + η2l
σ2

n

)

+

s∑
j=0

D2
τ,ρ

τ2
· ρ2max

(
8τη2l (α

2E∥∇f(xt)∥2 + σ2
g) + η2l

σ2

n

)

= (s+ 1)

[(
3(4ρLη

2
l + 8τη2l) +

D2
τ,ρ

τ2
· ρ2max8τη

2
l

)
(α2E∥∇f(xt)∥2 + σ2

g) + 12ρLη
2
l σ̄

2
L

+ 3η2l σ
2ρ2max +

(
3η2l +

D2
τ,ρ

τ2
· ρ2maxη

2
l

)
σ2

n

]
≤ (s+ 1)

[(
12ρ2maxDτ,ρη

2
l + 8τη2l + 8η2l Dτ,ρ · ρ2max

)
(α2E∥∇f(xt)∥2 + σ2

g) + 12ρ2maxDτ,ρη
2
l σ̄

2
L

+ 3η2l σ
2ρ2max +

(
3η2l +

D2
τ,ρ

τ2
· ρ2maxη

2
l

)
σ2

n

]
≤ (s+ 1)C1η

2
l (τ + ρ2maxDτ,ρ)(α

2E∥∇f(xt)∥2 + σ2
g) + (s+ 1)C1ρ

2
maxDτ,ρη

2
l σ̄

2
L

+ (s+ 1)C1η
2
l σ

2ρ2max + (s+ 1)C1

(
1 +

D2
τ,ρ

τ2
· ρ2max

)
η2l

σ2

n
, (E.28)

where C1 is some universal constant. The inequality holds by ρL = ρ2maxDτ,ρ and Dτ,ρ ≤ τ .
Case 2: In this case we have ρmax > 1− 1

τ , which means Dτ,ρ = τ . Let ζk = (4τ − 1), thus we
have

max
k∈[K]

ρ2k(1 + ζ−1
k) = ρ2max(1 + (4τ − 1)−1), ρL = 4τρ2maxDτ,ρ. (E.29)

The upper bound for λ2 has the form of

λ2 ≤ max

{
max
k∈[K]

ρ2k(1 + ζ−1
k) + η2l ρL · 8L2, Cτ

}
≤ max

{
ρ2max(1 + (4τ − 1)−1) +

2ρ2max

4τ − 1
, 1 +

3

2(4τ − 1)

}
≤ 1 +

3

4τ − 1
. (E.30)

By the fact of min
{

1
λ2−λ1

, l
}
≤ τ = Dτ,ρ, we have

s∑
j=0

(1, 1)GjBt,s−j ≤
s∑

j=0

λj
2(b

(1)
t,s−j + b

(2)
t,s−j) +

s∑
j=0

(
λj
2 min

{
1

λ2 − λ1
, l

}
η2l · 4ρLL2b2t,s−j

)

≤
s∑

j=0

3(b
(1)
t,j + b

(2)
t,j) +

s∑
j=0

η2l · 16ρmaxDτ,ρL
2b

(2)
l · 3Dτ,ρ

≤
s∑

j=0

3(b
(1)
t,j + b

(2)
t,j) +

s∑
j=0

16ρmaxDτ,ρb
(2)
l ·

3

16

Dτ,ρ

τ2

=

s∑
j=0

3(b
(1)
t,j + b

(2)
t,j) +

s∑
j=0

3ρmaxb
(2)
l ·

D2
τ,ρ

τ2
, (E.31)

where the above inequalities hold by the fact that ρL = 4τρ2max = 4Dτ,ρρ
2
max and the constraint

on step size ηl. Thus we can get a similar upper bound as Eq. E.28 in Case 1. This concludes the
proof.

29

Lemma E.4. With the similar condition in Lemma E.3, we have the corresponding bound for the
intra-cluster consensus error ∥Xk,⊥

t,s ∥2F ,

1

N

K∑
k=1

E[∥Xk,⊥
t,s ∥2] ≤ (s+ 1)C1η

2
l Dτ,ρρ

2
max(α

2E[∥∇f(xt)]∥2 + σ2
g) + (s+ 1)C1η

2
l Dτ,ρρ

2
maxσ̄

2
L

+ (s+ 1)C1η
2
l ρ

2
maxσ

2 + (s+ 1)C1η
2
l

D2
τ,ρ

τ2
· ρ2max

σ2

n
. (E.32)

Proof. With the same definition of the auxiliary vector Mt,s and the matrix G and Bt,s in the proof
of Lemma E.3, there is

Mt,s =

(
1

N

K∑
k=1

E[∥Xk,⊥
t,s ∥2],

1

K

K∑
k=1

E[∥x̄k
t,s − xt∥2]

)⊤

,

Mt,s = Gs+1Mt,0 +

s∑
j=0

GjBt,s−j =

s∑
j=0

GjBt,s−j , (E.33)

hence we have

1

N

K∑
k=1

E[∥Xk,⊥
t,s ∥2] = (1, 0) ·Mt,s = (1, 0) ·

s∑
j=0

GjBt,s−j

=

s∑
j=0

[
λj
1b

(1)
t,j +

λj
2 − λj

1

λ2 − λ1
4η2l ρLL

2b
(2)
t,j

]

≤
s∑

j=0

[
λj
2b

(1)
t,j +

λj
2 − λj

1

λ2 − λ1
4η2l ρLL

2b
(2)
t,j

]

≤
s∑

j=0

[
λj
2b

(1)
t,j +

λj
2 − λj

1

λ2 − λ1
4η2l ρLL

2b
(2)
t,j

]
, (E.34)

with the similar proof techniques as in Lemma E.3, there is

1

N

K∑
k=1

E[∥Xk,⊥
t,s ∥2] ≤

s∑
j=0

[
3b

(1)
t,j +

1

τ2
D2

τ,ρρ
2
maxb

(2)
t,j

]

≤
s∑

j=0

[
12ρLη

2
l (α

2E[∥∇f(xt)]∥2 + σ2
g) + 12ρLη

2
l σ̄

2
L + 3η2l σ

2ρ2max

+
D2

τ,ρ

τ2
ρ2max

(
8τη2l (α

2E[∥∇f(xt)]∥2 + σ2
g) + η2l

σ2

n

)]
≤ (s+ 1)C1η

2
l Dτ,ρρ

2
max(α

2E[∥∇f(xt)]∥2 + σ2
g) + (s+ 1)C1η

2
l Dτ,ρρ

2
maxσ̄

2
L

+ (s+ 1)C1η
2
l ρ

2
maxσ

2 + (s+ 1)C1η
2
l

D2
τ,ρ

τ2
· ρ2max

σ2

n
. (E.35)

E.4 Lemmas for model difference ∆t

E.4.1 Full participation

Lemma E.5. The global model difference ∆t =
∑K

k=1

∑
i∈Vk

∆i
t in full participation cases satisfy

E[∥∆t∥2] ≤
η2l τ

N
σ2 + η2l τ

τ−1∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]. (E.36)

30

Proof. Under full participation case, we have ∆t = −ηl
∑τ−1

s=0
1
K

∑
k∈[K]

1
n

∑
i∈Vk

gi
t,s =

−ηl
∑τ−1

s=0
1
N

∑N
i=1 g

i
t,s

E[∥∆t∥2] = E
[∥∥∥∥ηl τ−1∑

s=0

1

N

N∑
i=1

gi
t,s

∥∥∥∥2]

= η2l E
[∥∥∥∥ 1

N

τ−1∑
s=0

N∑
i=1

gi
t,s

∥∥∥∥2]

= η2l E
[∥∥∥∥ τ−1∑

s=0

(
1

N

N∑
i=1

gi
t,s −

1

N

N∑
i=1

∇fi(xi
t,s)

)
+

τ−1∑
s=0

1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]

≤ η2l τ

N
σ2 + η2l τ

τ−1∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]. (E.37)

where the inequalities holds by the fact of gi
t,s is the unbiased estimator of ∇fi(xi

t,s) and by
Assumption 5.3. This concludes the proof.

E.4.2 Partial participation

There is a corresponding Lemma about model difference ∆t for the partial participation settings.

Lemma E.6. The global model difference ∆t =
∑K

k=1

∑
i∈cSt

∆i
t in partial participation settings

satisfies

E[∥∆t∥2]

≤ 2η2l τ

N
σ2 + 2η2l (τ − 1)

τ−2∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]+ 4η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2]

+ 8

(
n−m

m(n− 1)
+ η2l L

2

)(
1

N

K∑
k=1

E[∥Xk,⊥
t,τ−1∥2]

)
+

2η2l σ
2

N

(
n−m

m
· ρ2max

)
. (E.38)

Proof. Recall the definition in B, there are x̄t,s = 1
N

∑N
i=1 x

i
t,s (without consideration of client

sampling) and the intra-cluster average x̄k
t,s+1 = x̄k

t,s − ηlx̄
k
t,s+1, where x̄k

t,s+1 = 1
n

∑
i∈Vk

gi
t,s.

Consider the partial participation in the last step bfore the communication round, there is x̄t+1 =
1
K

∑K
k=1

1
m

∑
i∈Sk

t
xi
t,τ = 1

Np

∑K
k=1

∑
i∈Sk

t
xi
t,τ and by Algorithm 2, there is x̄t+1 − xt = ∆t.

For the model difference ∆t, we have

E[∥∆t∥2] = E
[∥∥∥∥ 1

K

K∑
k=1

1

m

∑
i∈Sk

t

xi
t,τ − xt

∥∥∥∥2]

= E
[∥∥∥∥ 1

K

K∑
k=1

1

m

∑
i∈Sk

t

xi
t,τ ∓ x̄t,τ−1 ∓ · · · ∓ x̄t,1 − xt

∥∥∥∥2]

≤ 2E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Sk

t

xi
t,τ − x̄t,τ−1

∥∥∥∥2]+ 2E
[∥∥∥∥x̄t,τ−1 ∓ · · · ∓ x̄t,1 − xt

∥∥∥∥2], (E.39)

31

where the inequality holds by Cauchy-Schwarz inequality. For the first term in Eq. E.39, we have

E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Sk

t

xi
t,τ − x̄t,τ−1

∥∥∥∥2]

= E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Sk

t

(∑
j∈Vk

(Wk)i,j(x
j
t,τ−1 − ηlg

j
t,τ−1)

)
− x̄t,τ−1

∥∥∥∥2]

= E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(x
j
t,τ−1 − ηlg

j
t,τ−1)

)
− x̄t,τ−1

∥∥∥∥2]

= E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(x
j
t,τ−1 − ηl∇fi(xj

t,τ−1))

)
− x̄t,τ−1

∥∥∥∥2]

+ η2l E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(∇fi(xj
t,τ−1)− gj

t,τ−1)

)∥∥∥∥2]. (E.40)

For the first term in Eq. E.40, we have

E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(x
j
t,τ−1 − ηl∇fj(xj

t,τ−1))

)
− x̄t,τ−1

∥∥∥∥2]

= E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(x
j
t,τ−1 − ηl∇fj(xj

t,τ−1)− x̄k
t,τ−1)

)∥∥∥∥2]

≤ 2E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j
(
xj
t,τ−1 − x̄k

t,τ−1 − ηl∇fj(xj
t,τ−1) + ηl∇f̄k(x̄k

t,τ−1)
))∥∥∥∥2]

+ 2E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,jηl∇f̄k(x̄k
t,τ−1)

)∥∥∥∥2]

≤ 2E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j
(
xj
t,τ−1 − x̄k

t,τ−1 − ηl∇fj(xj
t,τ−1) + ηl∇f̄k(x̄k

t,τ−1)
))∥∥∥∥2]

+ 2η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2], (E.41)

where the first equation holds because

x̄t,τ−1 =
1

N

K∑
k=1

∑
i∈Vk

xi
t,τ−1 =

1

K

K∑
k=1

x̄k
t,τ−1 =

1

K

K∑
k=1

1

m

∑
i∈Vk

I(i ∈ Skt)x̄k
t,τ−1

=
1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)x̄k
t,τ−1 =

1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
∑
j∈Vk

(Wk)i,jx̄
k
t,τ−1, (E.42)

and the second inequality holds by the similar relationship

1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,jηl∇f̄k(x̄k
t,τ−1)

))

=
1

Np

K∑
k=1

npηl∇f̄k(x̄k
t,τ−1) =

1

K

K∑
k=1

ηl∇f̄k(x̄k
t,τ−1). (E.43)

32

Denotes yk,i
t =

∑
j∈Vk

(Wk)i,j
(
xj
t,τ−1 − x̄k

t,τ−1 − ηl∇fj(xj
t,τ−1) + ηl∇f̄k(x̄k

t,τ−1)
)

E
[∥∥∥∥ n∑

i=1

∑
i∈Vk

I{i ∈ Stk}y
k,i
t

∥∥∥∥2] = E
[∥∥∥∥ K∑

k=1

∑
i∈Vk

P{i ∈ Stk}y
k,i
t

∥∥∥∥2]

= E
[
P{i ∈ Stk}

K∑
k=1

∑
i∈Vk

∥∥yk,i
t

∥∥2 + P{i ̸= j ∈ Stk}
K∑

k=1

∑
i ̸=j∈Vk

(
yk,i
t

)′(
yj
t

)
+ P{i ∈ Stk, j ∈ Stl |k ̸= l ∈ [K]}

∑
k ̸=l

∑
i∈Vk

∑
j∈Vl

(
yi,k
t

)′(
yj,l
t

)]

= E
[
m

n

K∑
k=1

∑
i∈Vk

∥∥yk,i
t

∥∥2 + m(m− 1)

n(n− 1)

K∑
k=1

∑
i ̸=j∈Vk

(
yk,i
t

)′(
yk,j
t

)
+

m2

n2

∑
k ̸=l

∑
i∈Vk

∑
j∈Vl

(
yi,k
t

)′(
yj,l
t

)]

= E
[
m(m− 1)

n(n− 1)

∥∥∥∥ K∑
k=1

∑
i∈Vk

yk,i
t

∥∥∥∥2 + m(n−m)

n(n− 1)

K∑
k=1

∑
i∈Vk

∥∥yk,i
t

∥∥2
+

m(n−m)

n2(n− 1)

∑
k ̸=l

∑
i∈Vk

∑
j∈Vl

(
yi,k
t

)′(
yj,l
t

)]

≤ E
[
m(m− 1)

n(n− 1)

∥∥∥∥ K∑
k=1

∑
i∈Vk

yk,i
t

∥∥∥∥2 + m(n−m)

n(n− 1)

K∑
k=1

∑
i∈Vk

∥∥yk,i
t

∥∥2
+

m(n−m)

n2(n− 1)

∑
k ̸=l

∑
i∈Vk

∑
j∈Vl

(
1

2

∥∥yi,k
t

∥∥2 + 1

2

∥∥yj,l
t

∥∥2)], (E.44)

where the third equation holds by the probability of random sampling with replacement, i.e., P{i ∈
Stk} = m

n ,P{i ̸= j ∈ Stk} =
m(m−1)
n(n−1) ,P{i ∈ S

t
k, j ∈ Stl |k ̸= l ∈ [K]} = m2

n2 . The forth equation
holds by ⟨a, b⟩ = 1

2 [∥a∥
2 + ∥b∥2−∥a− b∥2], 1

2

∑
i ̸=j ∥ai− aj∥2 =

∑n
i=1 n∥ai∥2−∥

∑n
i=1 ai∥2,

and ∥
∑K

k=1

∑
i∈Vk

yk,i
t ∥2 =

∑K
k=1 ∥

∑
i∈Vk

yk,i
t ∥2 +

∑
k ̸=l

∑
i∈Vk

∑
j∈Vl
⟨yk,i

t yl,j
t ⟩. The last

inequality holds by a′b ≤ 1
2∥a∥

2 + 1
2∥b∥

2. Re-organize the last item,

m(n−m)

n2(n− 1)

∑
k ̸=l

∑
i∈Vk

∑
j∈Vl

(
1

2

∥∥yi,k
t

∥∥2 + 1

2

∥∥yj,l
t

∥∥2) =
m(n−m)

n2(n− 1)
(K − 1)n

K∑
k=1

∑
i∈Vk

∥yk,i
t ∥2,

(E.45)

then we have

E
[∥∥∥∥ ∑

k∈[K]

n∑
i=1

I{i ∈ Stk}y
k,i
t

∥∥∥∥2]

≤ E
[
m(m− 1)

n(n− 1)

∥∥∥∥ K∑
k=1

∑
i∈Vk

yk,i
t

∥∥∥∥2 + m(n−m)

n(n− 1)

K∑
k=1

∑
i∈Vk

∥∥yk,i
t

∥∥2
+

m(n−m)

n2(n− 1)
(K − 1)n

K∑
k=1

∑
i∈Vk

∥∥yi
t

∥∥2]

= E
[
m(m− 1)

n(n− 1)

∥∥∥∥ K∑
k=1

∑
i∈Vk

yk,i
t

∥∥∥∥2 + Km(n−m)

n(n− 1)

K∑
k=1

∑
i∈Vk

∥∥yk,i
t

∥∥2]. (E.46)

33

By the definition of yk,i
t , we have

∥∥∥∥ K∑
k=1

∑
i∈Vk

yk,i
t

∥∥∥∥2 =

∥∥∥∥ K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j
(
xj
t,τ−1 − x̄k

t,τ−1 − ηl∇fj(xj
t,τ−1) + ηl∇f̄k(x̄k

t,τ−1)
)∥∥∥∥2

= η2l

∥∥∥∥ K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j
(
∇f̄k(x̄k

t,τ−1)−∇fj(x
j
t,τ−1)

)∥∥∥∥2

= η2l

∥∥∥∥ K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j
(
∇fj(x̄k

t,τ−1)−∇fj(x
j
t,τ−1)

)∥∥∥∥2

≤ η2l NL2
K∑

k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j∥x̄k
t,τ−1 − xj

t,τ−1∥2

≤ η2l NL2
K∑

k=1

∑
i∈Vk

∥x̄k
t,τ−1 − xi

t,τ−1∥2

= η2l NL2
K∑

k=1

∥Xk,⊥
t,τ−1∥2, (E.47)

where the second equation holds by
∑

i∈Vk

∑
j∈Vk

(Wk)i,jx̄
k
t,τ−1 =∑

i∈Vk

∑
j∈Vk

(Wk)i,jx̄
k
t,τ−1, the third equation holds by

∑
i∈Vk

∑
j∈Vk

(Wk)i,j∇f̄k(x̄k
t,τ−1) =∑

i∈Vk

∑
j∈Vk

(Wk)i,j∇fj(x̄k
t,τ−1), the first inequality holds by L-smoothness and Cauchy-Schwarz

inequality, the second inequality holds by the assumption of doubly stochastic weighting matrix, and
the last inequality is due to the previous definition of Xk,⊥

t,τ−1. By the definition of yk,i
t , we also have

K∑
k=1

∑
i∈Vk

∥yk,i
t ∥2 =

K∑
k=1

∑
i∈Vk

∥∥∥∥ ∑
j∈Vk

(Wk)i,j
(
xj
t,τ−1 − x̄k

t,τ−1 − ηl∇fj(xj
t,τ−1) + ηl∇f̄k(x̄k

t,τ−1)
)∥∥∥∥2

≤
K∑

k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j

∥∥∥∥xj
t,τ−1 − x̄k

t,τ−1 − ηl∇fj(xj
t,τ−1) + ηl∇f̄k(x̄k

t,τ−1)

∥∥∥∥2

≤
K∑

k=1

∑
j∈Vk

(
2∥xj

t,τ−1 − x̄k
t,τ−1∥2 + 2η2l ∥∇fj(x

j
t,τ−1)−∇f̄k(x̄k

t,τ−1)∥2
)

≤
K∑

k=1

∑
i∈Vk

2∥xi
t,τ−1 − x̄k

t,τ−1∥2 +
K∑

k=1

∑
i∈Vk

2η2l L
2∥xi

t,τ−1 − x̄k
t,τ−1∥2

=

K∑
k=1

2(1 + η2l L
2)∥Xk,⊥

t,τ−1∥2, (E.48)

where the first inequality holds by the fact of 0 ≤ (Wk))i,j ≤ 1 and∥w11a1 + w12a2 + · · · +
w1nan∥2 = w2

11∥a1∥2+w2
12∥a2∥2+ · · ·+w2

1n∥an∥2 ≤ w11∥a1∥2+w12∥a2∥2+ · · ·+w1n∥an∥2.
The second inequality holds by Cauchy-Schwarz inequality, the third one holds by L-smoothness
(Assumption 5.5) and the double-stochasticity of matrix Wk. Hence for (E.41), we have the following

34

result

E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(x
j
t,τ−1 − ηl∇fj(xj

t,τ−1))

)
− x̄t,τ−1

∥∥∥∥2]

≤ 2η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2]

+
2

(Np)2

(
m(m− 1)

n(n− 1)
η2l NL2 +

Km(n−m)

n(n− 1)
2(1 + η2l L

2)

) K∑
k=1

E[∥Xk,⊥
t,τ−1∥2]

≤ 2η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2]

+

(
m− 1

Km(n− 1)
2η2l L

2 +
n−m

Kmn(n− 1)
4(1 + η2l L

2)

) K∑
k=1

E[∥Xk,⊥
t,τ−1∥2]

≤ 2η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2]+ 4

N

(
n−m

m(n− 1)
+ η2l L

2

) K∑
k=1

E[∥Xk,⊥
t,τ−1∥2], (E.49)

where the last inequality holds with the constraint on the learning rate ηl ≤ 1
8τL .

For the second term in Eq. E.40, we perform the similar strategies related to the client sampling and
weighted gossip mixing (corresponding to Eq. E.46)

η2l E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(∇fi(xj
t,τ−1)− gj

t,τ−1)

)
︸ ︷︷ ︸

ek,i
t

∥∥∥∥2]

=
η2l

(Np)2
E
[
m(m− 1)

n(n− 1)

∥∥∥∥ K∑
k=1

∑
i∈Vk

ek,it

∥∥∥∥2 + m(n−m)

n(n− 1)

K∑
k=1

∑
i∈Vk

∥∥ek,it

∥∥2
+

2m(n−m)

n2(n− 1)

∑
k ̸=l

∑
i∈Vk

∑
j∈Vl

(
ei,kt
)′(

ej,lt

)]

=
η2l

(Np)2
E
[
m(m− 1)

n(n− 1)

∥∥∥∥ K∑
k=1

∑
i∈Vk

ek,it

∥∥∥∥2 + m(n−m)

n(n− 1)

K∑
k=1

∑
i∈Vk

∥∥ek,it

∥∥2], (E.50)

where the second equation holds by the stochastic gradient noise is zero mean and independent
distributed. By the independency of (∇fi(xj

t,τ−1)− gj
t,τ−1) and the double-stochasticity of Wk, i.e.,

Wk1 = 1 and 1⊤Wk = 1⊤, we have

E
[∥∥∥∥ K∑

k=1

∑
i∈Vk

ek,it

∥∥∥∥2] = E
[∥∥∥∥ K∑

k=1

∑
i∈Vk

(∑
j∈Vk

(Wk)i,j(∇fi(xj
t,τ−1)− gj

t,τ−1)

)∥∥∥∥2]

= E
[∥∥∥∥ K∑

k=1

∑
i∈Vk

(∇fi(xj
t,τ−1)− gj

t,τ−1)

∥∥∥∥2]
= Nσ2, (E.51)

35

and
K∑

k=1

∑
i∈Vk

E[∥ek,it ∥2] =
K∑

k=1

∑
i∈Vk

E
[∥∥∥∥(∑

j∈Vk

(Wk)i,j(∇fi(xj
t,τ−1)− gj

t,τ−1)

)∥∥∥∥2]

=

K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)
2
i,jσ

2

=

K∑
k=1

∥Wk∥2σ2. (E.52)

For the Frobenius norm ∥Wk∥2, by the fact of the Frobenius norm of a matrix is equal to L− 2 norm
its singular values, denote the singular values of Wk as dk,1 ≤ dk,2 ≤ · · · ≤ dk,n = 1, we have

K∑
k=1

∥Wk∥2σ2 =

K∑
k=1

σ2
n∑

i=1

(dik)
2 ≤

K∑
k=1

σ2(1 + (n− 1)ρ2k) ≤ Kσ2(1 + (n− 1)ρ2max). (E.53)

Summarize the items, we have

η2l E
[∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Skt)
(∑

j∈Vk

(Wk)i,j(∇fi(xj
t,τ−1)− gj

t,τ−1)

)
︸ ︷︷ ︸

ek,i
t

∥∥∥∥2]

≤ η2l
(Np)2

m(m− 1)

n(n− 1)
Nσ2 +

η2l
(Np)2

m(n−m)

n(n− 1)
Kσ2(1 + (n− 1)ρ2max)

=
η2l
Np

m− 1

n− 1
σ2 +

η2l
Np

n−m

n(n− 1)
σ2 +

η2l
Np

n−m

n
σ2ρ2max

=
η2l
N

σ2 +
η2l
N

n−m

m
σ2ρ2max. (E.54)

Therefore, we have the following result,
E[∥x̄t+1 − x̄t,τ−1∥2]

≤ 2η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2]+ 4

(
n−m

m(n− 1)
+ η2l L

2

)(
1

N

K∑
k=1

E[∥Xk,⊥
t,τ−1∥2]

)
+

η2l σ
2

N

(
1 +

n−m

m
· ρ2max

)
. (E.55)

For the remaining part in Eq. E.39, we have

E
[∥∥∥∥x̄t,τ−1 ± · · · ± x̄t,1 − xt

∥∥∥∥2]
= E

[∥∥∥∥ηl τ−2∑
s=0

ḡt,s

∥∥∥∥2]

= E
[∥∥∥∥ ηlN

τ−2∑
s=0

N∑
i=1

gi
t,s

∥∥∥∥2]

= E
[∥∥∥∥ ηlN

τ−2∑
s=0

N∑
i=1

(gi
t,s ±∇fi(xi

t,s))

∥∥∥∥2]

= E
[∥∥∥∥ ηlN

τ−2∑
s=0

N∑
i=1

(gi
t,s −∇fi(xi

t,s))

∥∥∥∥2]+ E
[∥∥∥∥ ηlN

τ−2∑
s=0

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]

≤ η2l (τ − 1)

N
σ2 + η2l (τ − 1)

τ−2∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2], (E.56)

36

where the forth equation holds since the stochastic noise (gi
t,s −∇fi(xi

t,s)) is zero mean Hence for
partial participation, the model difference ∆ satisfies

E[∥∆t∥2]

≤ 2η2l τ

N
σ2 + 2η2l (τ − 1)

τ−2∑
s=0

E
[∥∥∥∥ 1

N

N∑
i=1

∇fi(xi
t,s)

∥∥∥∥2]+ 4η2l E
[∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄k
t,τ−1)

∥∥∥∥2]

+ 8

(
n−m

m(n− 1)
+ η2l L

2

)(
1

N

K∑
k=1

E[∥Xk,⊥
t,τ−1∥2]

)
+

2η2l σ
2

N

(
n−m

m
· ρ2max

)
. (E.57)

E.5 Additional Supporting Lemmas

Lemma E.7 (Lemma for momentum term in the update rule). The first order momentum terms mt

in Algorithm 1 and 2 hold the following relationship w.r.t. model difference ∆t:

T∑
t=1

E[∥mt∥2] ≤
T∑

t=1

E[∥∆t∥2]. (E.58)

Proof. By the updating rule, we have

E[∥mt∥2] = E
[∥∥∥∥(1− β1)

t∑
u=1

βt−u
1 ∆u

∥∥∥∥2]

≤ (1− β1)
2

d∑
i=1

E
[(t∑

u=1

βt−u
1 ∆u,i

)2]

≤ (1− β1)
2

d∑
i=1

E
[(t∑

u=1

βt−u
1

)(t∑
u=1

βt−u
1 ∆2

u,i

)]

≤ (1− β1)

t∑
u=1

βt−u
1 E[∥∆u∥2], (E.59)

summing over t = 1, ..., T , we have

T∑
t=1

E[∥mt∥2] = (1− β1)

T∑
t=1

t∑
u=1

βt−u
1 E[∥∆u∥2]

= (1− β1)

T∑
u=1

T∑
t=u

βt−u
1 E[∥∆u∥2]

≤ (1− β1)

T∑
u=1

1

1− β1
E[∥∆u∥2]

=

T∑
u=1

E[∥∆u∥2]. (E.60)

This concludes the proof.

Lemma E.8. Under Assumptions 5.2, for HA-Fed, we have ∥∇f(x)∥ ≤ G, ∥∆t∥ ≤ ηlτG, ∥mt∥ ≤
ηlτG and ∥vt∥ ≤ η2l τ

2G2.

Proof. Since f has G-bounded stochastic gradients, for any x and ξ, we have ∥∇f(x, ξ)∥ ≤ G, we
have

∥∇f(x)∥ = ∥Eξ∇f(x, ξ)∥ ≤ Eξ∥∇f(x, ξ)∥ ≤ G.

37

For HA-Fed, the model difference ∆̄k
t on cluster k satisfies,

∆̄k
t = x̄k

t,τ − xt = −ηl
τ−1∑
s=0

ḡk
t,s,

therefore, ∥∥∆̄k
t

∥∥ =

∥∥∥∥ηl τ−1∑
s=0

ḡk
t,s

∥∥∥∥ =

∥∥∥∥ηl τ−1∑
s=0

1

K

∑
i∈Vk

gi
t,s

∥∥∥∥ ≤ ηlτG,

for the global model difference ∆t,

∥∆t∥ =
∥∥∥∥ 1

K

∑
k∈[K]

∆̄k
t

∥∥∥∥ ≤ ηlτG.

Thus we can obtain the bound for momentum mt and variance vt,

∥mt∥ =
∥∥∥∥(1− β1)

t∑
τ=1

βt−τ
1 ∆t

∥∥∥∥ ≤ ηlτG, ∥vt∥ =
∥∥∥∥(1− β2)

t∑
τ=1

βt−τ
2 ∆2

t

∥∥∥∥ ≤ η2l τ
2G2.

This concludes the proof.

Lemma E.9. For the variance difference sequence V̂
−1/2
t−1 − V̂

−1/2
t , we have

T∑
t=1

∥∥∥∥V̂−1/2
t−1 − V̂

−1/2
t

∥∥∥∥
1

≤ d√
ϵ
,

T∑
t=1

∥∥∥∥V̂−1/2
t−1 − V̂

−1/2
t

∥∥∥∥2 ≤ d

ϵ
(E.61)

Proof. The proof of Lemma E.9 is exactly the same as the proof of Lemma C.2 in [41].

Lemma E.10. For the element-wise difference, Wt = 1√
vt+ϵ

− 1√
β2vt−1+ϵ

, we have ∥Wt∥ ≤
√
1−β2

ϵ ∥∆t∥.

Proof. The proof of Lemma E.9 is exactly the same as the proof of Lemma C.1 in [41].

F Additional Experiments

F.1 Simulation Study

We conduct the simulation study with synthetic data to verify the dilemma of local steps. The
synthetic data is generated by Gaussian distribution and is heterogeneous among clients. We generate
a simple set of data for 2 clients in the 2 dimensional space, in which there is assigned 10 data sample
(x

(k)
i , y

(k)
i) corresponding to client k. For each client k, x(k)

i has mean µk and covariance matrix Σ,
i.e., x(k)

i ∼ N (µk,Σ). The mean µk varies from each client, thus data on each client are generating
from different distributions. Specifically, we set µ1 = (1, 0) and µ2 = (0, 1), and labels of two
clients are setup with y

(1)
i = 0 and y

(2)
i = 1. For both FedAMSGrad and HA-Fed, we simulate the

full participation setting and use full batch gradients for better illustration. We perform two groups
of comparison: (1) data sample x

(k)
i has covariance matrix I2, and we train the data on a simple

multilayer-perceptron that has a hidden layer of 10 units; (2) x(k)
i has a smaller covariance matrix

0.5 · I2, and we train the data on a simple multilayer-perceptron that has a hidden layer of 4 units; for
both groups of comparison, we use ReLu activation function after the input layer.

Figure 3 shows the comparison of local training loss and global training loss for FedAMSGrad and
our proposed HA-Fed algorithms. The local training loss is calculated during the training process,
which reflects the average training loss on each clients with the local updated model. The global
training loss is calculated in each global round after the local updates, it merges the training data
among clients and calculates the training loss with all data samples. For example, suppose we have
N local client and each of which corresponds to a local loss function fi, i = 1, ..., N . Denote wi

38

0 25 50 75 100 125 150 175 200
#Rounds

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ca

l T
ra

in
in

g
Lo

ss

2 local steps
10 local steps

0 25 50 75 100 125 150 175 200
#Rounds

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Gl
ob

al
 Tr

ai
ni

ng
 L

os
s

2 local steps
10 local steps

(a) FedAMSGrad

0 25 50 75 100 125 150 175 200
#Rounds

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ca

l T
ra

in
in

g
Lo

ss

2 local steps
10 local steps

0 25 50 75 100 125 150 175 200
#Rounds

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Gl
ob

al
 Tr

ai
ni

ng
 L

os
s

2 local steps
10 local steps

(b) HA-Fed

0 25 50 75 100 125 150 175 200
#Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ca

l T
ra

in
in

g
Lo

ss

2 local steps
10 local steps

0 25 50 75 100 125 150 175 200
#Rounds

0.3

0.4

0.5

0.6

0.7

Gl
ob

al
 Tr

ai
ni

ng
 L

os
s

2 local steps
10 local steps

(c) FedAMSGrad

0 25 50 75 100 125 150 175 200
#Rounds

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ca

l T
ra

in
in

g
Lo

ss

2 local steps
10 local steps

0 25 50 75 100 125 150 175 200
#Rounds

0.2

0.3

0.4

0.5

0.6

0.7

Gl
ob

al
 Tr

ai
ni

ng
 L

os
s

2 local steps
10 local steps

(d) HA-Fed

Figure 3: The comparison of local training loss and global training loss for FedAMSGrad and HA-Fed.
(a)(b) is the comparison for group (1), (c)(d) is the comparison for group (2).

as the local model on client i, ξi ∼ Di is the data sample on client i with distribution Di, then the
local training loss is calculated by flocal =

1
N

∑N
i=1 fi(wi; ξi). Moreover, after each round of local

updates, we aggregate the temporary local models w′ = 1
N

∑N
i=1 wi, together with the training data

ξ′ =
⋃N

i=1 ξi from all clients, the global training loss is calculated by fglobal = f(w′; ξ′), where
f = 1

N

∑N
i=1 fi. The comparison between local and global training losses can reflect whether there

exists over-fitting issues on local clients, if the local training loss decrease rapidly but the global
training loss keeps a large value, it means the training with heterogeneous data causes over-fitting in
clients.

From plot (a) and (c) in Figure 3, they show that FedAMSGrad with a larger number of local steps
has higher global training loss compared to a smaller number of local steps. We observe that when
local steps increase from τ = 2 (orange) to τ = 10 (red), FedAMSGrad gets worse in reducing
global training loss though it improves the convergence to a locally optimal point. This shows that
FedAMSGrad faces the dilemma of local steps, i.e., the convergence rate gets worse as the number
of local steps increases. In contrast, plot (b) and (d) in Figure 3 show that our proposed HA-Fed
effectively overcome this issue. For HA-Fed, the global training loss further decreases as the number
of local steps increases from τ = 2 to τ = 10. This observation provides the empirical evidence that
verifies our theory and shows that our proposed HA-fed can indeed overcome the dilemma of local
steps in adaptive federated optimization methods.

F.2 Non-i.i.d. Sampling and Hyperparameter Settings

Non-i.i.d. data sampling For the non-i.i.d. data sampling, we sort the training data by labels, and
divide the data by labels. For CIFAR-10 [23] dataset, for each label, we divide the data into 20 shards
size of 250. Hence we get 200 shards of size 250 in total, and each client is randomly assigned six
shards. For CIFAR-100 [23] dataset, it includes 100 labels. For each label, we divide the data into 20
shards size of 25. Hence we get 2000 shards of size 25 in total, and each client is randomly assigned
60 shards. For Fashion MNIST [42] dataset, we similarly divide the data into 20 shards size of 300
for each label, and each client is randomly assigned six shards as well. The similar non-i.i.d. data
sampling strategy is adopted in [29, 43, 14].

Hyperparameter Settings We conduct detailed hyperparameter searches to find the best hyper-
parameter for both FedAMSGrad and HA-Fed algorithms. We grid over the local learning rate
ηl ∈ {0.001, 0.01, 0.1, 1.0}, and the global learning rate η ∈ {0.0001, 0.0005, 0.001, 0.01, 0.1} for
two methods. For the global AMSGrad optimizer, we set β1 = 0.9, β1 = 0.99, and we search the
best ϵ from {10−10, 10−8, 10−6, 10−4, 10−2}.
Specifically, for the ResNet-18 model on CIFAR-10 dataset, we set the local learning rate ηl = 0.1
and the global learning rate η = 0.0005 for FedAMSGrad and ηl = 0.1, η = 0.001 for HA-Fed, set

39

ϵ = 10−8 for both methods. For training ConvMixier-256-8 model on CIFAR-10 dataset, we set
ηl = 0.1, η = 0.001 for FedAMSGrad, and ηl = 0.1, η = 0.01 for HA-Fed, set ϵ = 10−8 for both
methods. For training ResNet-18 model on CIFAR-100 dataset, we set ηl = 0.1, η = 0.001 and
ϵ = 10−8 for both methods. For training ConvMixer-256-8 model on CIFAR-100 dataset, we set
ηl = 1.0, η = 0.01 and ϵ = 10−8 for both methods. For training ConvMixer-256-8 model on Fashion
MNIST dataset, we set ηl = 0.1, η = 0.0005 for FedAMSGrad, ηl = 0.1, η = 0.001 for HA-Fed,
and we set ϵ = 10−8 for both methods. For the CNN experiments on Fashion MNIST dataset, we set
ηl = 0.1, η = 0.01 and ϵ = 10−8 for both two methods.

For training CIFAR-10 data on ConvMixer-256-8 model with Decentralized AMSGrad, we set the
local learning rate ηl = 0.001 and ϵ = 10−8. We set ηl = 0.1, η = 0.01 and ϵ = 10−8 for FedAdam,
ηl = 0.01, η = 1.0 for FedAvg, and ηl = 0.1, η = 0.01 and ϵ = 10−8 for FedYogi.

All the experiments are set up with 32 total clients in the network, which are equally divided into 4
clusters. The partial participation ratio is set to p = 0.25 except Decentralized AMSGrad, and the
intra-cluster topology is ring topology by default. For both FedAMSGrad and HA-Fed, we conduct
τ = 48 of local training steps with a batch size of 50.

F.3 Additional Experiments

In this section, we present additional empirical experiments for 1) our proposed HA-Fed and FedAMS-
Grad algorithm in training CNN, and ConvMixer-256-8 model [37] on Fashion MNIST [42] dataset,
where the CNN model 8 contains around 29 thousand trainable parameters; 2) HA-Fed and FedAMS-
Grad in training ResNet-18[13] and ConvMixer-256-8 model [37] on CIFAR-10[23] dataset; 3)
comparisons between our proposed HA-Fed and several federated learning baselines; 4) comparisons
between HA-Fed and Decentralized AMSGrad; 5) extensions where some clients are inactive in some
local iterations.

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
HA-Fed

0 100 200 300 400 500
#Rounds

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

FedAMSGrad
HA-Fed

(a) CNN

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
HA-Fed

0 100 200 300 400 500
#Rounds

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

FedAMSGrad
HA-Fed

(b) ConvMixer-256-8

Figure 4: The learning curves for HA-Fed and FedAMSGrad in training Fashion MNIST data on (a)
CNN model and (b) ConvMixer-256-8 model using ring topology for intra-cluster communications.

Figure 4 shows the empirical convergence result for HA-Fed and FedAMSGrad on training Fashion-
MNIST with CNN and ConvMixer-256-8 model. We compare the training loss and test accuracy
against global rounds for two algorithms. Plot (a) in Figure 4 shows that HA-Fed (purple) achieves
faster convergence than FedAMSGrad when training the CNN model to reduce training losses and
obtain high test accuracy. For the ConvMixer-256-8 model (Figure (b)), HA-Fed again shows its faster
convergence in reducing training loss, and HA-Fed maintains a similar test accuracy as FedAMSGrad.

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
HA-Fed

0 100 200 300 400 500
#Rounds

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

FedAMSGrad
HA-Fed

(a) ResNet-18

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
HA-Fed

0 100 200 300 400 500
#Rounds

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

FedAMSGrad
HA-Fed

(b) ConvMixer-256-8

Figure 5: The learning curves for HA-Fed and FedAMSGrad in training CIFAR-10 data on (a) ResNet-
18 model and (b) ConvMixer-256-8 model using ring topology for intra-cluster communications.

8The CNN model has two 5 × 5 convolution layers, where the first has 16 channels, the second has 32
channels, each followed with a 2× 2 max pooling step.

40

Figure 5 shows the empirical convergence result for HA-Fed and FedAMSGrad on training CIFAR-10
with ResNet-18 and ConvMixer-256-8 model. We compare the training loss and test accuracy against
global rounds for both models. For the ResNet-18 model, HA-Fed achieves faster convergence than
FedAMSGrad in reducing training loss, and HA-Fed obtains an overall higher and stabler result in
test accuracy. For the ConvMixer-256-8 model, HA-Fed again shows its faster convergence speed on
training loss, in the meantime, HA-Fed still holds a higher test accuracy compared to FedAMSGrad
under the same settings.

Moreover, Table 1 present the average test accuracy after three runs with different random seeds, and
it shows that our proposed HA-Fed holds a higher accuracy than FedAMSGrad for all three datasets,
with particular a stabler result for most of the experiments. These results empirically demonstrate the
effectiveness and efficiency of our proposed HA-Fed method.

CIFAR-10
ResNet-18 Test Accuracy (%) ConvMixer-256-8 Test Accuracy (%)

FedAMSGrad 79.72± 3.31 FedAMSGrad 73.96± 3.02
HA-Fed 84.38± 0.33 HA-Fed 76.60± 2.35

CIFAR-100
ResNet-18 Test Accuracy (%) ConvMixer-256-8 Test Accuracy (%)

FedAMSGrad 56.34± 0.79 FedAMSGrad 61.97± 0.35
HA-Fed 57.12± 0.47 HA-Fed 62.40± 0.22

Fashion MNIST
CNN Test Accuracy (%) ConvMixer-256-8 Test Accuracy (%)

FedAMSGrad 88.79± .16 FedAMSGrad 83.54± 3.36
HA-Fed 89.25± .22 HA-Fed 84.49± 1.57

Table 1: The test accuracy (with mean and standard error) results with three random seeds for training
CIFAR-10, CIFAR-100 and Fashion MNIST datasets.

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
FedAdam
FedAvg
FedYogi
HA-Fed

0 100 200 300 400 500
#Rounds

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

FedAMSGrad
FedAdam
FedAvg
FedYogi
HA-Fed

Figure 6: The learning curves for HA-Fed and several federated learning baselines in training CIFAR-
10 data on ConvMixer-256-8 model.
Figure 6 shows the empirical convergence result of our HA-Fed and several federated learning
baselines, including FedAvg, FedYogi, FedAdam and FedAMSgrad on training CIFAR-10 with
ConvMixer-256-8 model. Our proposed HA-Fed shows its advantage in reducing training loss
also with obtaining better test accuracy. Specifically, HA-Fed achieves nearly 10x smaller training
loss after 500 global rounds, and HA-Fed achieves an accuracy of over 76% when training the
ConvMixer-256-8 model, while FedAdam, FedYogi and FedAvg only achieve around 70%.

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

FedAMSGrad
HA-Fed
Decentralized AMSGrad

0 100 200 300 400 500
#Rounds

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

FedAMSGrad
HA-Fed
Decentralized AMSGrad

Figure 7: The learning curves for HA-Fed, FedAMSGrad and Decentralized AMSGrad in training
CIFAR-10 data on ConvMixer-256-8 model.
Figure 7 shows the empirical convergence result of our HA-Fed with FedAMSgrad, one adaptive
federated optimization method, and Decentralized AMSGrad, one adaptive decentralized optimization

41

method, on training CIFAR-10 with ConvMixer-256-8 model. Our proposed HA-Fed shows its
advantage in reducing training loss also with obtaining better test accuracy. HA-Fed also achieves
nearly 10× smaller training loss, and achieves significantly better accuracy than Decentralized
AMSGrad.

0 100 200 300 400 500
#Rounds

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

pc = 0.25
pc = 0.5
pc = 1

0 100 200 300 400 500
#Rounds

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

pc = 0.25
pc = 0.5
pc = 1

Figure 8: The learning curves for HA-Fed when cluster partial active cases in training CIFAR-10
data on ConvMixer-256-8 model.

Figure 8 shows the empirical convergence result of adaption algorithms based on HA-Fed in training
CIFAR-10 with the ConvMixer-256-8 model. This adaption is to mimic the setting in that not all
clients are active in each iteration. We assume that in each local iteration, each client is active (i.e.,
performs local model training) with probability pc, and is inactive (i.e., stays idle and does not involve
any computation) with probability 1 − pc. We simulate two cases with active rate pc = 1/2 with
gossip communicating in every 4 local steps and pc = 1/4 with gossip communicating in every 8
local steps, and our original proposed HA-Fed can be seen as the case with pc = 1 with gossip after
each local step. Figure 8 shows that in such client partial active settings, HA-Fed can still achieve a
similar convergence rate and test accuracy. The client who actives in each round of computing shows
its advantage at an earlier stage, while all those three clients’ active rates pc can achieve test accuracy
over 78% after 500 global rounds.

42

	Introduction
	Related Work
	Preliminaries on Adaptive Federated Optimization
	Proposed Method
	Convergence Analysis
	Convergence Analysis for HA-Fed: Full Participation
	Convergence Analysis for HA-Fed: Partial Participation

	Experiments
	Conclusions
	HA-Fed Algorithm for Partial Participation
	Preliminaries
	Proof of Theorem 5.6: HA-Fed full participation
	Bounding I1
	Bounding I2
	Bounding I3
	Bounding I4
	Merging pieces together

	Proof of Theorem 5.8: HA-Fed partial participation
	Supporting Lemmas
	Lemma for inter-cluster consensus error
	Lemma for intra-cluster consensus error
	Lemma for summation of intra-cluster and inter-cluster consensus errors
	Lemmas for model difference t
	Full participation
	Partial participation

	Additional Supporting Lemmas

	Additional Experiments
	Simulation Study
	Non-i.i.d. Sampling and Hyperparameter Settings
	Additional Experiments

