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Abstract
We address the problem of uncertainty quantifi-
cation in time series forecasting by exploiting
observations at correlated sequences. Relational
deep learning methods leveraging graph repre-
sentations are among the most effective tools for
obtaining point estimates from spatiotemporal
data and correlated time series. However, the
problem of exploiting relational structures to es-
timate the uncertainty of such predictions has
been largely overlooked in the same context. To
this end, we propose a novel distribution-free ap-
proach based on the conformal prediction frame-
work and quantile regression. Despite the recent
applications of conformal prediction to sequen-
tial data, existing methods operate independently
on each target time series and do not account
for relationships among them when constructing
the prediction interval. We fill this void by in-
troducing a novel conformal prediction method
based on graph deep learning operators. Our
approach, named Conformal Relational Predic-
tion (COREL), does not require the relational
structure (graph) to be known a priori and can be
applied on top of any pre-trained predictor. Addi-
tionally, COREL includes an adaptive component
to handle non-exchangeable data and changes in
the input time series. Our approach provides ac-
curate coverage and achieves state-of-the-art un-
certainty quantification in relevant benchmarks.

1. Introduction
Many recent advancements in deep learning methods for
time series forecasting rely on learning from large collec-
tions of (related) time series (Benidis et al., 2022; Liang
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et al., 2024). In many application domains, such time series
are characterized by a rich spatiotemporal dependency struc-
ture that can be exploited by introducing inductive biases in
the forecasting architecture (Cini et al., 2023a), to steer the
learning procedure toward the most plausible models. Ac-
counting for the existing dependencies, usually represented
as a graph, allows the resulting models to obtain accurate
predictions with a reduced sample complexity (Jin et al.,
2023; Cini et al., 2023a). Besides the accuracy of the point
estimates, the reliability of the forecasts is a critical aspect of
the problem and a key element to enable effective decision-
making in many applications (Makridakis, 1996; Petropou-
los et al., 2022). Uncertainty quantification methods (Smith,
2024; Vovk et al., 2005) can improve reliability by provid-
ing confidence intervals on the forecasting error magnitude,
allowing for making more informed decisions (Hyndman
and Athanasopoulos, 2018). This is particularly true for
risk-sensitive applications such as healthcare (Makridakis
et al., 2019) and load forecasting (Gasparin et al., 2022).
In this context, inter-series (spatiotemporal) dynamics offer
both a challenge and an opportunity. Indeed, while these
dependencies can lead to wide prediction intervals (PIs) if
overlooked, they may also provide additional knowledge to
reduce uncertainty (Zambon and Alippi, 2022).

Existing probabilistic forecasting frameworks often rely on
strong distributional assumptions and major modifications
of the base point predictor (Benidis et al., 2022; Salinas
et al., 2020). As such, they cannot be used to quantify un-
certainty given a pre-trained forecasting model. In such
a setting, conformal prediction (CP) (Vovk et al., 2005;
Angelopoulos et al., 2023) methods are particularly appeal-
ing. CP is an uncertainty quantification framework that
estimates confidence intervals with marginal coverage guar-
antees from observed prediction residuals. One of the main
assumptions of standard CP methods is that of exchange-
ability between the data used to estimate the confidence
intervals and the test data points, i.e., the assumption that
their joint probability distribution is invariant to the ordering
of the associated sequence of random variables (Angelopou-
los et al., 2024). Although this assumption does not usually
hold when operating on time series (Barber et al., 2023),
several methods have successfully adapted CP to estimate
forecast uncertainty (Stankeviciute et al., 2021; Xu and Xie,
2023a;b; Jensen et al., 2022; Auer et al., 2023). Never-
theless, existing CP approaches operate on each (possibly
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multivariate) time series independently and cannot account
for dependencies among correlated time series.

In this paper, we propose Conformal Relational Predic-
tion (COREL), a novel CP approach leveraging graph
representations and graph deep learning (GDL) for quan-
tifying uncertainty in correlated time series forecasting.
In our framework, a spatiotemporal graph neural net-
work (STGNN) (Jin et al., 2023; Cini et al., 2023a) is trained
on a calibration set to approximate the quantile function of
the distribution of prediction residuals. Relationships among
time series, assumed to be sparse, are learned end-to-end
from the observed residuals owing to a graph structure learn-
ing module integrated into the processing. Our approach
estimates the error quantile function for each time series
at each time step, by conditioning the shared uncertainty
quantification model on past observations at neighboring
nodes (as defined by the learned graph structure). Finally,
an adaptive component is added to handle potential non-
stationarities by relying on a small set of parameters specific
to each time series. Our approach can be applied to the resid-
uals generated by any point forecasting model, even those
that completely disregard potential relationships among the
input time series.

Our main novel contributions can be summarized as follows.

• The first application of GDL to CP for time series;

• A novel, sound, and effective CP method able to quan-
tify uncertainty from observations across a collection
of correlated time series;

• A family of graph-based architectures to estimate un-
certainty that shares most of the learnable parameters
among the processed time series, while including node-
level parameters that dynamically adapt to changes in
each target sequence.

Empirical results show that COREL achieves state-of-the-art
performance compared to existing CP approaches for time
series in several datasets and under different scenarios.

2. Preliminaries
This section introduces the problem settings and the prelim-
inary concepts that serve as foundations for our approach.

2.1. Problem Formulation

Consider a collection of N correlated time series. Denote
by xit ∈ R the scalar target variable associated with the
i-th time series at time step t; Xt ∈ RN×1 indicates the
N stacked target variables w.r.t. the entire time series col-
lection. Xt:t+T indicates the sequence within time interval
[t, t + T ); conversely, with the shorthand X<t refers to

observations up to time step t (excluded). Time series are
assumed to be homogenous, i.e., all the variables (observ-
ables) describe the same physical quantity (e.g., temperature
or energy consumption). Analogously, Ut ∈ RN×du indi-
cates the du-dimensional exogenous covariates associated
with each time series. We assume that the i-th time series is
generated by a stochastic time-invariant process such as

xit ∼ p
(
xit|X<t,U<t

)
. (1)

Let us hypothesize the existence of a sparse predictive
causality à la Granger (Granger, 1969), i.e., we assume
that the values of a single time series are related to the val-
ues of a (small) subset of other time series in the collection.
The extension of the framework to collections of multivari-
ate time series is orthogonal to the proposed approach (e.g.,
see Feldman et al. 2023); we focus on the univariate case to
maintain a contained scope. The problem of dealing with
non-stationary processes will be discussed in Sec. 3.4.

Forecasting We are interested in a model that pro-
duces point forecasts by predicting the unknown H-steps-
ahead (H ≥ 0) observation Xt+H given a window W ≥ 1
of past observations Xt−W :t and the associated exogenous
variables Ut−W :t as

X̂t+H = Fθ(Xt−W :t,Ut−W :t). (2)

Fθ denotes a generic parametric model family, i.e., a simple
recurrent neural network (RNN) for univariate time series.
Given a trained model, our objective is to build a confidence
interval around predictions X̂t+H . Note that the following
easily extends to multi-step predictions X̂t:t+H , but we
focus on forecasting the single time step H to simplify the
presentation and discussion.

Uncertainty quantification Our objective is to estimate
PIs, Cα

i,t(X̂t+H), such that

P
(
xit+H ∈ Cα

i,t

(
X̂t+H

))
≥ 1− α, (3)

where α is the desired confidence level. If the interval
satisfies Eq. 3, we say that the PI achieves marginal coverage
1 − α. Similarly, we say that the PI provides conditional
coverage 1− α if

P
(
xit+H ∈ Cα

i,t

(
X̂t+H

) ∣∣∣X<t,U<t

)
≥ 1− α. (4)

Conditional coverage provides stronger guarantees and it is
often harder to achieve (Angelopoulos et al., 2024). In the
following, we will omit the dependence of the interval on the
forecasts and simply write Cα

i,t. Among uncertainty quan-
tification methods, we are interested in post-hoc approaches
that can build confidence intervals for any given pre-trained
point predictor Fθ without requiring any modification of the
base forecasting architecture.
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2.2. Conformal Prediction

As anticipated in Sec. 1, standard CP methods (Vovk et al.,
2005; Angelopoulos et al., 2023) are a class of distribution-
free uncertainty quantification techniques that build PIs from
empirical quantiles of conformal scores. In the forecasting
setting, we consider as conformal scores the prediction resid-
uals,

rit = xit − x̂it, (5)

and use Rt to denote residuals w.r.t. the entire time series
collection. Under appropriate assumptions, CP methods can
build valid and informative PIs (Angelopoulos et al., 2023;
Barber et al., 2023). Split conformal prediction (SCP) (Vovk
et al., 2005) is arguably the most common approach and
exploits scores computed on a calibration set that is disjoint
from the training data (i.e., a post-hoc approach).

As mentioned, most standard CP methods rely on the as-
sumption that calibration and test data are exchangeable,
which allows the procedure to treat them symmetrically and
obtain valid (marginal) coverage guarantees (Angelopoulos
et al., 2024). Since this assumption does not hold when
dealing with time series data, there have been several recent
results extending the CP framework beyond exchangeabil-
ity (Tibshirani et al., 2019; Stankeviciute et al., 2021; Gibbs
and Candes, 2021; Xu and Xie, 2023a). In particular, Bar-
ber et al. (2023) showed that approximate coverage can be
achieved by reweighting the residuals to account for the
lack of exchangeability between calibration and test set.
Auer et al. (2023) learn such a reweighting scheme through
an attention-based architecture. Differently, Xu and Xie
(2023b) introduce SPCI, a method based on fitting a quan-
tile random forest (Meinshausen and Ridgeway, 2006) on
the most recent prediction residuals at each time step. Sim-
ilar to SPCI, our approach relies on quantile regression to
build PIs but differently from existing methods, it exploits
observations in arbitrary sets of time series by relying on
GDL operators.

2.3. Quantile Regression

Quantile regression (Koenker and Hallock, 2001) is an es-
tablished statistical framework that consists of learning a
model of the quantile function (the inverse c.d.f.) of a
target distribution from observations. In particular, given
y ∼ p(y|x) and observations (x1, y1), . . . , (xN , yN ), a
standard approach to estimate the α-quantile is to train a
model by minimizing the so-called pinball loss

ℓα(q̂α(x), y) =

{
(1− α)(q̂α(x)− y), q̂α(x) ≥ y

α(y − q̂α(x)), q̂α(x) < y
(6)

where q̂α(x) is the estimate of the α-quantile w.r.t. x.

Quantile networks Quantile regression has been incorpo-
rated in several probabilistic forecasting architectures (Beni-

dis et al., 2022). The simplest approach consists of using a
multi-output network to predict a set of quantiles of interest
and interpolate among them to approximate the entire quan-
tile function (Wen et al., 2017). More complex approaches
rely on, e.g., splines (Gasthaus et al., 2019). Conversely,
implicit quantile networks (IQNs) (Dabney et al., 2018; Os-
trovski et al., 2018; Gouttes et al., 2021) approximate the
quantile function by being trained to minimize the loss in
Eq. 6 given the quantile level α as input and sampling a
random α for each sample in a mini-batch.

2.4. Graph Deep Learning for Time Series Forecasting

Graph neural networks (GNNs) (Bacciu et al., 2020; Bron-
stein et al., 2021) process graph-structured data by incor-
porating the graph topology as an inductive bias, e.g., by
relying on message-passing layers (Gilmer et al., 2017).
STGNNs (Jin et al., 2023; Cini et al., 2023a) leverage
message-passing layers within sequence modeling archi-
tectures to process spatiotemporal data and collections of
time series where dependencies are represented as a (possi-
bly dynamic) graph. We consider as reference architectures
time-then-space (TTS) models (Gao and Ribeiro, 2022; Cini
et al., 2023a) where each time series in the collection is pro-
cessed independently from the others by a temporal encoder
whose output is then fed into a stack of GNN layers. In
particular, we adopt the following template architecture:

hi,0t = SEQENC
(
xit−W :t,u

i
t−W :t

)
, (7)

H l+1
t = GNNl(H l

t ,A), , l = 0, . . . , L− 1 (8)

ŷit = READOUT
(
hi,Lt

)
, (9)

where A ∈ RN×N is the graph adjacency matrix and ŷit a
generic node-level prediction associated with the problem at
hand. SEQENC(·) and GNNl(·) denote, respectively, any se-
quence modeling architecture, e.g., an RNN, and any GNN
layer, e.g., based on message-passing. Representations can
then be mapped into predictions Ŷt by using any readout
block, e.g., a multilayer perceptron (MLP). STGNNs have
been used as forecasting architecture (Yt = Xt+H ) with
great success. In the following, we will exploit this frame-
work as a backbone for estimating the residual quantile dis-
tribution. We refer to Sec. 4 and Jin et al. (2023) for more
discussion on the application of STGNNs in the context of
time series analysis.

3. Conformal Relational Prediction
Our objective is to build PIs by exploiting relational depen-
dencies across the residuals of the target time series. We
model the dependencies as edges of a graph and learn them
under the assumption that the relational structure is sparse,
which reduces the computational costs and act as an induc-
tive bias on the structure learning architecture. By relying on
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Figure 1: Overview of COREL. Past residuals are used as input to a hybrid global-local graph-based quantile network.

such representation, we can leverage GDL methods for time
series to process the data. In particular, we train a STGNN
on the residuals of the calibration set to predict the quantiles
of the error distribution. Conditioning the prediction on
the recent history of related time series allows for taking
the dependency structure of the data into account when es-
timating uncertainty: a key aspect in applying conformal
prediction to non-exchangeable data (Barber et al., 2023).
Compared to existing methods (Xu and Xie, 2023b; Auer
et al., 2023) that only capture temporal dependencies, our
approach allows for modeling spatiotemporal dependencies
among different time series. Sec. 3.1 presents the details of
the proposed conformal inference procedure by assuming
that the relational structure at each time step is defined by
an adjacency matrix A ∈ RN×N (Sec. 3.1). We then show
how to learn the graph structure directly from data and make
the model adaptive in Sec. 3.2 and Sec. 3.4, respectively.
Finally, we discuss the theoretical properties of the approach
in Sec. 3.3. Fig. 1 shows an overview of the architecture.

3.1. Relational Quantile Predictor

Consider a standard SCP setup, where the training data are
split into training and calibration sets. For the moment, we
disregard possible nonstationarities in the data considering
the problem setup introduced in Sec. 2.1 and encode spatial
dependencies in the adjacency matrix A ∈ RN×N . While
the training set is used to fit the point predictor Fθ, we use
the prediction residuals in the calibration set (Rcal) to learn
the quantile function of the error distribution at each step.

Relational quantile regression We implement the quan-
tile regressor as a hybrid global-local STGNN, which mixes
global (shared) parameters with local, target-specific com-
ponents (Smyl, 2020). Sharing most learnable parameters
across all time series reduces sample complexity, while lo-
cal parameters allow for tailoring the processing to each
series. Specifically, we keep all processing blocks shared
and associate a learnable node embedding vi ∈ Rdv with
each time series (Cini et al., 2023b). More specifically, our
model is a quantile network (see Sec. 2.3) composed of the

following processing layers:

hi,0t = ENC
(
rit−1,v

i
)
, (10)

Zt = STGNN
(
H0

≤t,A
)
, (11)

q̂i,αt+H = QDEC
(
α,zit,v

i
)
, (12)

where rit−1 are prediction residuals (Eq. 5) and q̂α,it+H is the
predicted α-quantile at time step t + H for the i-th time
series. ENC( · ) denotes any encoding layer, e.g., a linear
transformation or an MLP. For the STGNN block, several
designs are possible (e.g., see Jin et al. 2023); the one we
follow is the template in Sec. 2.4. QDEC( · ) is a readout
mapping the representations at each node to the prediction
of the quantile of specified level α. We refer to the family
of quantile networks defined in Eq. 10–12 as relational
quantile predictors (RelQPs) and use the notation

Q̂α
t = Qψ (α,V ;Rt−W :t,A) , (13)

where Qψ indicates the shared (global) part of the network
and Q̂α

t ∈ RN denotes the predicted α-quantiles at time
step t w.r.t. the full time series collection. Note that the
framework can easily accommodate further inputs at the en-
coding block (e.g., we can condition the regression on X<t

and U<t). The model is trained by minimizing the pinball
loss (Eq. 6) at each time step in the calibration set w.r.t. the
full-time series collection. Through the message-passing
layers, the residuals of each time series contribute to esti-
mating the quantiles of the error distribution at neighboring
nodes. In practice, we restrict the input of the regressor to
the most recent observations rather than considering the full
sequence (the window length here can also be different from
the one used by the point predictor).

Building the confidence intervals Given the trained quan-
tile network Qψ , we build the PIs for each target (test) time
step as

Ĉα
i,t =

[
x̂it+H + q̂

i,α/2
t , x̂it+H + q̂

i,1−α/2
t

]
, (14)
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or

β̂i = argmin
βi

∣∣∣q̂i,1−α/2+βi

t − q̂
i,α/2+β
t

∣∣ (15)

Ĉα
i,t =

[
x̂it+H + q̂

i,α/2+β̂i

t , x̂it+H + q̂
i,1−α/2+β̂i

t

]
, (16)

where Ĉα
i,t indicates the estimated PI. While both Eq. 14

and Eq. 16 correspond to the same confidence level, the PI
in Eq. 16 can be narrower, at the expense of the additional
computation needed to obtain β̂ (Xu and Xie, 2023a). In
practice, one can choose between the two approaches given
computational constraints and the difference in performance
observed on a validation set. Note that Ĉα

i,t can provide
only approximate coverage, as it is subject to approximation
errors of the true quantile function. Sec. 3.3 will discuss
this aspect in detail. A potential drawback of COREL is that
residuals cannot be assumed exchangeable in most practi-
cal scenarios. The error distribution can be non-stationary,
making it difficult to obtain any coverage guarantee. To
mitigate the problem, Sec. 3.4 discusses an efficient and
scalable approach to make the framework adaptive by updat-
ing local components of the architecture over time. Finally,
it is worth noting that the use of relational components in
COREL relies on the actual presence of the associated depen-
dencies in the data. In practical applications, the presence of
spatiotemporal correlations in the residuals can be verified
through ad-hoc statistical tests (Zambon and Alippi, 2022;
2023), whose outcome can support the adoption of COREL.

3.2. Learning the Relational Structure

Assuming the dependency structure across time series to be
unknown, we integrate a graph learning module into the ar-
chitecture to derive the operational graph topology directly
from the residuals. To do so, we adopt a probabilistic struc-
ture learning framework (Niculae et al., 2023; Cini et al.,
2023c; Manenti et al., 2024). In particular, we associate each
edge with a score ϕij and learn a distribution over K-NN
graphs parametrized by the matrix Φ ∈ RN×N (Cini et al.,
2023c; Kazi et al., 2022). Notably, we consider graphs ob-
tained by sampling, for each i-th node, K elements without
replacement from the categorical distribution

Φ = Eξ (R<t,V , . . . ) (17)

Mi = Categorical

(
exp{ϕik}∑N
j=1 exp{ϕij}

; k ∈ {1, . . . , N}

)
,

(18)

where Eξ(·) is a generic trainable encoder with parameters ξ.
In practice, sampling can be done efficiently by exploiting
the GumbelTopK trick (Kool et al., 2019) and scores Φ can
be parametrized directly as Φ = ξ.

End-to-end learning To propagate gradients through the
sampling, we rely on the continuous relations introduced by

Xie and Ermon (2019) paired with a straight-through gradi-
ent estimator (Bengio et al., 2013) to obtain discrete samples.
Optionally, we sparsify the gradients by backpropagating
only through a random subset of the zero entries of A (more
details are provided in App. D). As already mentioned, dif-
ferent parametrizations and gradient estimators for subset
samplers exist and can be considered. Furthermore, if the
sparsity assumption is deemed unrealistic for the problem at
hand, other distributions (e.g., based on Bernoulli random
variables) can be considered (Cini et al., 2023c).

3.3. Theoretical Analysis and Further Discussion

We start the discussion by providing an intuitive bound on
the approximate coverage provided by COREL.

Proposition 3.1. Let P ct+H(xit+H) = pt+H(xit+H |
X<t,U<t) and P cψ(x

i
t+H) = pψ(xt+H | X<t,U<t) be

the true conditional data-generating distribution at the test
point t+H and the probability distribution associated with
the learned quantile function Qψ , respectively. Then

P ct+H

(
xit+H ∈ Ĉα

i,t(X̂t+h)
)
≥ 1− α− TV

(
P cψ, P

c
t+H

)
where TV ( · ) denotes the total variation function.

The proof relies on the properties of the total variation of
probability measures and can be found in App. A. Here,
differently from the problem settings introduced in Sec. 2.1,
we do not assume the process to be time-invariant. Prop. 3.1
links the conditional coverage gap to the approximation er-
ror in estimating the quantile function of the residuals. The
bound provided in Prop. 3.1 shares similarities with the one
in (Barber et al., 2023), which bounds the miscoverage gap
for CP from weighted empirical quantiles. Prop. 3.1 can
be seen as an analogous result that holds when estimates
obtained from empirical quantiles are replaced with a para-
metric function approximation. By making assumptions
on the expressivity of the quantile regressor in Eq. 13 and
on the stationarity process (e.g., by assuming a strongly
mixing process), we can expect the total variation between
the learned and true distribution to shrink asymptotically as
the size of the calibration set increases. Moreover, in this
case, monitoring the coverage gap on a validation set offers
an estimate of the actual miscoverage on test data. Simi-
lar analyses have been carried out for recently introduced
CP methods for time series (Xu and Xie, 2023b; Lee et al.,
2025); we refer the reader to these related works. If we
instead expect the process to be non-stationary, Qψ has to
be updated over time to keep the coverage gap contained.
Within this context, the next section discusses a simple and
sample-efficient approach to make COREL adaptive. Fi-
nally, the computational complexity of COREL will depend
on the STGNN used to implement the RelQP and the num-
ber of edges sampled while learning the relational structure.
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For example, the cost of a forward pass for a standard TTS
STGNN with window size W and a graph with E edges
would scale as O(WN + E) (Cini et al., 2023a).

3.4. Adaptation

The RelQP model introduced in Sec. 3.1 can yield arbitrarily
large coverage gaps in the presence of distribution shifts
from the calibration set where the model is trained. Adopt-
ing a re-training approach, such as in Xu and Xie (2023b),
would be impractical due to the higher sample complex-
ity entailed by the deep learning approach that we adopt.
Therefore, to mitigate this issue while keeping the computa-
tional complexity under control, we update only the local
components of the model over time, i.e., the learnable node
embeddings V (Cini et al., 2023b). This allows for keeping
most of the learnable parameters fixed and fine-tuning only
a small number of weights for each node. Empirically, we
show that this procedure can effectively improve the quality
of the uncertainty estimates.

4. Related Work
The problem of quantifying forecast uncertainty is central
in fundamental and applied research in time series fore-
casting (Hyndman and Athanasopoulos, 2018; Petropoulos
et al., 2022). Among deep learning approaches (Benidis
et al., 2022), many generative architectures have been pro-
posed as means to obtain probabilistic forecasts (Salinas
et al., 2020; Rangapuram et al., 2018; de Bézenac et al.,
2020; Rasul et al., 2021). Most related to our approach are
those methods that exploit quantile regression (Wen et al.,
2017; Gasthaus et al., 2019; Kan et al., 2022; Gouttes et al.,
2021). Similarly to COREL, these quantile regression tech-
niques do not usually require strong assumptions on the data
distribution.

Uncertainty quantification in STGNNs Regarding prob-
abilistic graph-based forecasting architecture, the existing
literature is limited (Jin et al., 2023; Cini et al., 2023a).
Wu et al. (2021) investigate the combination of STGNNs
with standard uncertainty quantification techniques for deep
learning. Pal et al. (2021) use an STGNN to implement
a state-space model and quantify uncertainty within a
Bayesian framework. Wen et al. (2023) propose a probabilis-
tic predictor based on combining STGNNs with a diffusion
model (Ho et al., 2020). Zambon et al. (2023) introduce
a framework for designing probabilistic graph state-space
models that can process collections of time series. However,
all these methods cannot operate on top of an existing pre-
trained model and require training an ad-hoc forecasting
model. Conversely, COREL is trained, within a CP frame-
work, on predicting the quantiles of the error distribution
of any existing model, rather than on forecasting the target
variable.

Conformal prediction Related work on CP for time series
has been already discussed in Sec. 2.2 and Sec. 3. Related
to our method, Mao et al. (2024) propose a CP approach
for (static) spatially correlated data. Jiang et al. (2024) pro-
pose to quantify the uncertainty in predicting power outages
by fitting a quantile random forest (Meinshausen and Ridge-
way, 2006) on time series from neighboring geographical
units. COREL can be framed among the CP methods that
learn a model of conformal scores distribution (Xu and Xie,
2023b; Lee et al., 2024). Differently from existing methods
that operate on each time series separately, the estimates are
conditioned on errors at both the target time series as well
as at neighboring nodes. To the best of our knowledge, no
previous CP method has been designed to specifically oper-
ate on collections of correlated time series and exploit graph
deep learning operators. CP methods for multivariate time
series do exist (Xu et al., 2024; Sun and Yu, 2024; Feldman
et al., 2023), but operate on a single multidimensional time
series. Moreover, although global-local models are popular
among forecasting architectures (Smyl, 2020; Benidis et al.,
2022), COREL is the first CP architecture of this kind. Fi-
nally, CP methods have also been applied to static graphs
and used to quantify the uncertainty of GNNs, both in induc-
tive (Zargarbashi et al., 2023) and transductive (Huang et al.,
2024) settings. These methods often assume node/edge ex-
changeability (Zargarbashi et al., 2023; Huang et al., 2024)
or are limited to node classification (Clarkson, 2023) or link
prediction (Zhao et al., 2024). Recently, Davis et al. (2024)
proposed a CP method for node classification with GNNs
in dynamic networks.

5. Experiments

We validate COREL across three experimental settings. In
the first one (Sec. 5.1), we compare it against state-of-the-art
CP methods operating on the residuals produced by differ-
ent forecasting models. Then, we analyze COREL in a
controlled environment (synthetic dataset). Finally, we as-
sess the effectiveness of the procedure described in Sec. 3.4
in adaptively improving the PIs. We implement COREL
as an RNN followed by two message-passing layers. To
approximate the quantile function, we train the model by
minimizing the pinball loss over a discrete set of quantiles,
similarly to Wen et al. (2017). PIs are constructed as in
Eq. 14; App. G.2 shows results for the alternative construc-
tion in Eq. 16. To learn the graph, we directly parametrize
the score matrix Φ by associating a learnable parameter
with each of its entries. We use as metrics: 1) the differ-
ence between the specified confidence level 1− α and the
observed coverage on the test set (∆Cov), 2) the width of
the PI (PI-Width), and 3) the Winkler score (Winkler, 1972),
which is computed as the width of the PI plus penalty for
each observation outside of the predicted interval propor-
tional to the actual error (Winkler). Note that balancing
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Metric SCP NexCP SeqCP SPCI HopCPT CORNN COREL

M
E

T
R

-L
A

R
N

N ∆Cov -1.28 -1.00 -6.93 -1.24±0.01 -1.46±0.11 -0.49±0.53 -1.29±0.21

PI-Width 20.69 25.23 19.52 19.84±0.01 16.62±0.10 19.48±0.43 14.38±0.22

Winkler 40.80 41.33 50.12 37.95±0.01 25.63±0.19 30.24±0.18 23.78±0.20

T
R

A
N

S
F ∆Cov -1.18 -0.97 -6.98 -1.13±0.00 -1.22±0.56 -0.55±0.61 -1.02±0.63

PI-Width 20.81 25.30 19.44 19.86±0.01 16.66±0.13 19.38±0.64 14.17±0.43

Winkler 40.55 41.64 49.90 37.74±0.01 25.37±0.33 30.33±0.18 23.65±0.19

ST
G

N
N ∆Cov -0.99 -0.62 -13.60 -0.87±0.00 -0.13±0.27 -0.34±0.49 -0.92±0.31

PI-Width 17.30 22.20 12.87 16.38±0.01 15.75±0.19 16.20±0.24 14.65±0.24

Winkler 34.94 34.49 40.36 33.66±0.01 22.80±0.28 28.74±0.12 24.70±0.16

C
E

R
-E

R
N

N ∆Cov -3.46 0.11 -3.57 -3.45±0.00 -4.37±0.32 -2.24±0.34 -3.60±0.35

PI-Width 2.60 3.26 2.75 2.39±0.00 1.97±0.03 1.96±0.02 1.83±0.03

Winkler 5.69 5.48 5.79 5.29±0.00 3.87±0.07 3.84±0.01 3.71±0.04

T
R

A
N

S
F ∆Cov -3.35 0.10 -3.53 -3.26±0.01 -3.95±0.60 -2.04±0.32 -3.97±0.24

PI-Width 2.52 3.16 2.67 2.33±0.00 2.01±0.09 1.94±0.03 1.80±0.02

Winkler 5.60 5.36 5.69 5.20±0.00 3.88±0.12 3.82±0.02 3.67±0.02

ST
G

N
N ∆Cov -4.30 0.08 -3.83 -4.17±0.01 -5.06±0.15 -2.13±0.83 -4.99±0.61

PI-Width 2.28 3.00 2.42 2.09±0.00 1.79±0.01 1.85±0.04 1.77±0.05

Winkler 5.11 4.87 4.99 4.76±0.00 3.49±0.02 3.72±0.02 3.76±0.04

A
Q

I

R
N

N ∆Cov 5.09 -0.63 -3.21 1.79±0.01 0.01±2.62 -2.06±1.52 -2.78±0.60

PI-Width 118.06 82.04 74.73 103.88±0.03 90.35±13.04 71.61±1.82 68.13±1.30

Winkler 148.61 131.18 135.59 143.10±0.01 133.24±8.31 113.11±0.77 107.67±0.94

T
R

A
N

S
F ∆Cov 5.07 -0.66 -3.17 1.60±0.01 -2.34±1.19 -1.93±0.44 -1.81±1.67

PI-Width 118.50 81.15 75.08 104.11±0.01 80.37±2.09 73.25±0.95 72.25±3.16

Winkler 150.33 132.08 137.62 145.14±0.02 129.85±3.14 112.71±0.44 108.71±1.38

ST
G

N
N ∆Cov 4.48 -0.32 -2.94 2.64±0.01 -0.78±1.34 -1.52±0.51 -2.00±1.54

PI-Width 111.68 80.01 71.92 99.90±0.03 79.39±3.38 70.17±0.80 68.24±2.65

Winkler 143.39 127.98 130.86 137.09±0.03 121.26±2.48 109.65±0.30 108.45±1.52

Table 1: Performance comparison for α = 0.1. ∆Cov values are color-coded: green (0-2%), yellow (2-3%), orange (3-4%),
red (>4%). The lowest Winkler score for each scenario is shown in bold.

coverage and PI width is the main challenge. More details
and results are provided in the appendix.

5.1. Time Series Forecasting Benchmarks

We consider the following datasets, each coming from a dif-
ferent application domain: METR-LA from the traffic fore-
casting literature (Li et al., 2018); a collection of air quality
measurements from different Chinese cities (AQI) (Zheng
et al., 2015); a collection of energy consumption profiles
acquired from smart meters within the CER smart meter-
ing project (CER-E) (Commission for Energy Regulation,
2016; Cini et al., 2022). We follow the preprocessing steps
of previous works (Li et al., 2018; Wu et al., 2019; Cini
et al., 2023b) and adopt 40%/40%/20% splits for train-
ing, calibration, and testing, respectively. For each dataset,
we first train 3 different baseline models: a simple RNN
with gated recurrent unit (GRU) cells (Cho et al., 2014), a

decoder-only Transformer (Vaswani et al., 2017), and a
simple TTS STGNN obtained by following the template
in Sec. 2.4. The latter uses a pre-defined graph that models
the dependencies across the time series. After training, we
evaluate each baseline on the calibration set and save the
associated residuals, which are then used as input to the
different CP methods. More details on the datasets and base
models are provided in App. C.

Baselines We compared COREL against the following
baselines: 1) SCP, the standard split CP; 2) SeqCP, where,
analogously to Xu and Xie (2023a), we compute empirical
quantiles using only the most recent K residuals at each time
step; 3) NexCP (Barber et al., 2023), which computes empir-
ical quantiles by assigning exponentially decaying weights
to past residuals; 4) SPCI (Xu and Xie, 2023b), which esti-
mates the residuals’ quantile function from the last few steps
of each time series with a random forest; 5) HopCPT which
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reweights past residuals by learning attention scores with a
Modern Hopfield Network (Ramsauer et al., 2021). These
baselines are representative of the current state-of-the-art in
CP for time series forecasting; in particular, SPCI (based
on quantile regression) and HopCPT (based on reweighting)
are representative of the main recent paradigms. Note that a
comparison with non-post-hoc methods would be problem-
atic, as results heavily depend on the base predictors being
used. We also include in our comparison a model called
CORNN, where we use the same architecture as COREL
but remove message-passing layers and node embeddings.
CORNN is an ablation of the introduced designs. Except
for HopCPT, which uses a custom procedure (Auer et al.,
2023), model selection is performed on a validation set by
optimizing the Winkler score.

Results Tab. 1 reports the results across the datasets and
the base prediction models. The first observation is that
COREL outperforms the competitors in terms of Winkler
score in almost all cases. We observed a few exceptions
only when the baseline is itself an STGNN, as it is already
expected to take care of modeling spatiotemporal dependen-
cies. However, note that the STGNN base model has access
to a pre-defined graph, which is not always available in prac-
tical applications. In terms of coverage, COREL achieves
good results, with the exception of some cases in the CER-E
dataset. However, we note that our model selection pri-
oritized the Winkler score which emphasizes the width of
the prediction bands besides the coverage. CORNN, the
simplified version of our approach, obtains good overall
performance and is competitive against the state-of-the-art
but, despite providing good coverage, it is outperformed by
COREL in most scenarios in terms of Winkler score. Among
the competitors, HopCPT provides competitive results in
METR-LA and CER-E but with a larger coverage gap. Ex-
cept for SeqCP, the other baselines obtain good coverage in
most settings at the expense of drastically wider PIs. Re-
garding computational scalability, note that COREL shares
most of the learnable parameters among time series and that
its training can be efficiently parallelized on a GPU. Further-
more, besides learnable node embeddings V , COREL relies
only on a short window of the most recent observations as an
input at each time step. Conversely, SPCI requires training
a different model for each time series, and HopCPT requires
computing attention scores w.r.t. the entire calibration set at
each time step.

5.2. Controlled Environment

We evaluated the behavior of COREL in a controlled envi-
ronment by simulating a diffusion process on a graph. In
particular, the experiment relied on the GPVAR benchmark
introduced by Zambon and Alippi (2022), with a setup analo-
gous to (Cini et al., 2023b). Data were generated recursively

Table 2: Performance on GPVAR.

GPVAR-RNN GPVAR-STGNN
Models ∆Cov PI-Width Winkler ∆Cov PI-Width Winkler

SCP -0.02 1.67 2.14 -0.02 1.32 1.66
CORNN -0.1±0.2 1.63±0.01 2.04±0.00 0.0±0.0 1.32±0.00 1.66±0.00

COREL 0.0±0.1 1.33±0.00 1.67±0.00 0.1±0.1 1.32±0.01 1.66±0.00

w/ true A -0.1±0.1 1.32±0.00 1.66±0.00 0.0±0.2 1.32±0.01 1.66±0.00

from the auto-regressive polynomial graph filter:

Ht =

L∑
l=1

Q∑
q=1

Θq,lA
l−1Xt−q,

Xt+1 = a⊙ tanh (Ht) + b⊙ tanh (Xt−1) + ηt, (19)

where parameters Θ ∈ RQ×L, a ∈ R, b ∈ R are kept fixed
across nodes and ηt ∼ N (0, σ2I) with σ = 0.4. We ran
the simulation on a graph with 60 nodes and with a topol-
ogy analogous to previous works (Cini et al., 2023b); more
details are provided in App. C. We use both a RNN and
STGNN as base point predictors. As shown by Zambon and
Alippi (2022), STGNNs can obtain a forecasting accuracy
near the theoretical optimum in this dataset, which results
in uncorrelated residuals. As such, we would expect stan-
dard SCP to be sufficient when using an STGNN as base
model. The objective of this experiment is to show that
COREL is effectively able to capture and leverage existing
spatiotemporal dependencies.

Results We compare COREL against standard SCP and
the CORNN variant. Moreover, we also compare perfor-
mance against COREL with access to the true graph used
to generate the data. Results are shown in Tab. 2. When
using an RNN as a point predictor (GPVAR-RNN) COREL
significantly outperforms both standard SCP and CORNN.
Furthermore, COREL achieves results that closely match
those obtained with direct access to the ground truth graph,
which shows the effectiveness of the proposed architecture
in capturing latent relational dependencies. Note that, given
the injected Gaussian noise with σ = 0.4, the theoretical
optimum PI width to obtain (asymptotically) 90% marginal
coverage is 1.315. COREL achieves essentially perfect cov-
erage with PI width close to the theoretical optimum, while
CORNN requires a substantially higher PI width to ob-
tain similar coverage. Finally, results obtained by using an
STGNN as baseline (GPVAR-STGNN) show (as expected)
that the standard SCP is sufficient when the point-predictor
captures all the relevant dependencies. We provide a visual-
ization of the learned graph in App. G.1.
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Table 3: Adaptation results for CER-E for a reference COREL model. (α = 0.1).

RNN Transformer STGNN
∆Cov PI-Width Winkler ∆Cov PI-Width Winkler ∆Cov PI-Width Winkler

W/o adapt. -3.44 ± 0.40 1.84 ± 0.02 3.71 ± 0.03 -3.08 ± 0.15 1.84 ± 0.02 3.69 ± 0.04 -4.07 ± 0.47 1.80 ± 0.03 3.78 ± 0.03

W/ adapt. -2.70 ± 0.27 1.85 ± 0.01 3.49 ± 0.02 -2.42 ± 0.20 1.85 ± 0.01 3.49 ± 0.04 -3.06 ± 0.25 1.81 ± 0.02 3.58 ± 0.02

5.3. Adaptation

In this experiment, we evaluate how effectively the adapta-
tion technique proposed in Sec. 3.4 provides accurate PIs
over time. We focused on the CER-E dataset where the
calibration set does not cover a full year, which likely in-
troduces a shift at test time given the seasonality of energy
consumption. We used COREL with a fixed hyperparameter
configuration across scenarios and trained on the calibration
set. Embeddings are updated every M time steps by run-
ning the training procedure on the latest observations and
keeping all the parameters frozen except for the embeddings.
More details on the hyperparameters are provided in App. B.
In practice, this is done by splitting the test set into K = 6
folds and then iteratively fine-tuning the model on each fold.
This procedure simulates a real-world scenario where new
data become available over time and are used for fine-tuning.
Results, reported in Tab. 3, show that this adaptation scheme
improves performance by reducing the coverage gap and
providing more accurate PIs.

6. Conclusion

In this paper, we introduced Conformal Relational Predic-
tion (COREL), a novel CP method for correlated time series.
COREL exploits graph-based neural operators to implement
an uncertainty quantification architecture that can operate on
top of any pre-trained point predictor. Furthermore, our ap-
proach does not require the relational structure to be known
in advance. Results show that the proposed method com-
pares favorably against the state-of-the-art in several rele-
vant scenarios.

Limitations and future work We believe that COREL
constitutes an important step toward effective spatiotempo-
ral CP methods. There are several directions for future work
to explore, such as applying the framework to heteroge-
neous time series. Future work should focus on mitigating
challenges arising from learning in non-stationary environ-
ments, e.g., by developing methods and coverage guaran-
tees under specific assumptions about the non-stationarity
of the data-generating process. Applications of COREL to
very large time series collections and combinations thereof
with scalable graph-based architectures (Chiang et al., 2019;
Cini et al., 2023c) are an additional direction. Finally, while
COREL accounts for dependencies w.r.t. past observations at

correlated time series, it provides separate PIs for each time
series. It would then be interesting to extend the framework
with components that model the joint probability distribu-
tion of the time series.
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Appendix

A. Proof of Prop. 3.1
As stated in Prop. 3.1, let P ct+H and P cψ indicate the probability distributions associated with the true data distribution at
t +H and with the learned quantile function Qψ, respectively. It follows from the definition of total variation distance
TV (P,Q) := supB |P (B)−Q(B)|, that for any event B

|P ct+H(B)− P cψ(B)| ≤ TV (P cψ, P
c
t+H) =⇒ (20)

P ct+H(B) ≥ P cψ(B) − TV (P cψ, P
c
t+H). (21)

For Ĉα
i,t in both Eq. 14 and Eq. 16 we have by construction that

P cψ

(
xit+H ∈ Ĉα

i,t

)
= 1− α. (22)

Then, putting together Eq. 21 and Eq. 22 we obtain

P ct+H

(
xit+H ∈ Ĉα

i,t(X̂t+h)
)
≥ 1− α− TV

(
P cψ, P

c
t+H

)
.

Hence, the proof is complete.

B. Hardware and software platforms
Benchmarks have been developed with Python (Van Rossum and Drake, 2009) and the following open-source libraries:

• Numpy (Harris et al., 2020);

• PyTorch (Paszke et al., 2019);

• PyTorch Lightning (Falcon and The PyTorch Lightning team, 2019);

• PyTorch Geometric (Fey and Lenssen, 2019);

• Torch Spatiotemporal (Cini and Marisca, 2022).

Experiments were conducted on a server equipped with AMD EPYC 7513 CPUs and NVIDIA RTX A5000 GPUs. The code
for reproducing the computational experiments is available at https://github.com/andreacini/corel. For the
HopCPT, SPCI, NexCP, and SeqCP baselines we use the open-source implementation made available by Auer et al. (2023)1.
In our setup for the experiment in Sec. 5.1, considering the METR-LA dataset and the baselines that require fitting a model,
training and testing require ≈ 3 days for SPCI, ≈ 11 hours for HopCPT, and ≈ 5 minutes for COREL.

C. Datasets
We considered several datasets from different application domains, real-world scenarios and a simulated controlled
environment. For the real world datasets we followed the pre-processing steps adopted by Cini et al. (2023b).

Air Quality Monitoring The AQI (Zheng et al., 2015) dataset consists of 8,760 hourly measurements of pollutant
PM2.5 from 437 monitoring stations in China. We use a window of W = 24 time steps and predict the 3-time-step-ahead
observations. For the STGNN base model, we build an adjacency matrix using a thresholded Gaussian kernel computed
from pairwise geographic distances (Shuman et al., 2013).

Traffic Forecasting We considered the METR-LA (Li et al., 2018) traffic forecasting dataset, consisting of 34,272
timesteps of measurements from 207 loop detectors sampled at 5-minute intervals in the Los Angeles County Highways. We
use a window of 12 time steps and predict the 12-time-step-ahead observations. For the STGNN base model, we followed
previous works (Wu et al., 2019) and built an adjacency matrix using a thresholded Gaussian kernel applied to geographic
distances.

1https://github.com/ml-jku/HopCPT
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Electric Load Forecasting We selected the CER-E dataset (Commission for Energy Regulation, 2016; Cini et al., 2022),
comprising 25,728 timesteps of energy consumption readings aggregated at 30-minute intervals from 485 smart meters
monitoring small and medium-sized enterprises. We use a window of 48 time steps and predict the 5-time-step-ahead
observations. For the STGNN base model, we built the adjacency matrix by extracting a 10-nearest neighbor graph from
week-wise correntropy similarities between time series, following previous work (Cini et al., 2022).

GPVAR For the GPVAR dataset, we generate synthetic data with 40,000 timesteps over an undirected network of 60
nodes connected in a community graph structure by following the system model in Eq. 19 (Zambon and Alippi, 2022). The
parameters of the spatiotemporal process are set as

Θ =

[
2.5 −2.0 −0.5
1.0 3.0 0.0

]
, a = b = 0.5, σ = 0.4. (23)

We used an input window of 5 time steps to predict the next observation. For the STGNN base model, we used the same
community graph structure as the adjacency matrix.

Base models We trained three base models (point predictors) for each dataset: a RNN with GRU cells (1 layer with hidden
size 32), a decoder-only Transformer (hidden size 32, feed-forward size 64, 2 attention heads, 3 layers, dropout 0.1), and
a STGNN following the template in Sec. 2.4 (hidden size 32, node embedding size 16, 1 layer GRU, 2 message-passing
layers). All models were trained by minimizing the MAE loss using the Adam optimizer for 200 epochs with batch size 32,
using 40% of the data for training, 40% for calibration, and 20% for testing. We also use the first 25% of the calibration data
as a validation set for early stopping. Input features were scaled using standard scaling across time series.

D. Additional details on COREL implementation
Architecture As discussed in Sec. 3 and Sec. 5, we implemented COREL as TTS model with a single-layer GRU followed
by 2 message passing layers analogous to those in (Satorras et al., 2022). As a readout, we used an MLP mapping the learned
representations to predictions of 39 equally spaced quantiles. For the CORNN baseline, we used the same architecture but
removed the message passing layers and node embeddings V and allowed the GRU to have more than one layer.

Latent graph learning module The graph learning module was implemented as described in Sec. 3.2 by parametrizing Φ
with a matrix of N ×N learnable parameters. To allow for sampling less neighbors than the specified neighborhood size
K, we followed previous works (Cini et al., 2023c) and modified the sampling procedure by introducing a set of dummy
nodes then discarded from the sampled graph before message passing. We use dummy nodes in the GPVAR experiment
only. To allow for sparse message-passing operations we use a straight-through gradient estimator (Bengio et al., 2013) and
backpropagate gradients only through the sampled edges for each node, plus 10% of the remaining ones. In the GPVAR
experiment, we simply propagate gradients w.r.t. the entire adjacency matrix.

Covariates Besides residuals, we use as additional covariates datetime encodings whenever available, plus the value of
the target time series w.r.t. the time steps in the input window.

E. Evaluation metrics
For a prediction interval Ĉα

i = [x̂i + q̂
α/2
i , x̂i + q̂

1−α/2
i ] and true value xi, evaluation is conducted for a desired confidence

level α using three key metrics.

Coverage gap ∆Covi measures the difference between the achieved coverage and the target coverage 1− α, and is given
by

∆Covi = 100
(
1(xi ∈ Ĉα

i )− (1− α)
)
, (24)

where 1 denotes the indicator function.

Prediction interval width Quantifies the width of the prediction intervals, and is given by

PI-Widthi = q̂
1−α/2
i − q̂

α/2
i . (25)
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Winkler Score Combines interval width with a penalty for predictions that fail to capture the true value, with misses
penalized by a factor of 2

α . The Winkler score is given by

Wi =


(q̂

1−α/2
i − q̂

α/2
i ) + 2

α (q̂
α/2
i − xi) if xi < q̂

α/2
i ,

(q̂
1−α/2
i − q̂

α/2
i ) if q̂α/2i ≤ xi ≤ q̂

1−α/2
i ,

(q̂
1−α/2
i − q̂

α/2
i ) + 2

α (xi − q̂
1−α/2
i ) if xi > q̂

1−α/2
i .

(26)

All the metrics are then averaged over all nodes and time steps within the specified set.

F. Hyperparameters and experimental setup
Hyperparameters were tuned separately for each combination of base predictor and dataset on a validation set.

COREL For COREL we tuned the number of neurons in the STGNN with a small grid search on 10% of the calibration
data. We used the same model selection procedure for CORNN but also tuned the number of GRU layers. For the
experiments on real-world data, the model was trained for a maximum of 100 epochs on the calibration set. Each epoch
consisted of a maximum of 50 mini-batches of size 64. We used the Adam optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.003 and reduced by 75% every 20 epochs. We used a fixed number of K = 20 neighbors for the graph
learning module. For the GPVAR experiment in Sec. 5.2, we fixed the number of neurons to 16 for each layer and used an
embedding size of 8. For the adaptation experiment in Sec. 5.3, we use a reference configuration with 64 neurons in each
encoder/decoder layers and an embedding size of 32. We train the entire model on the full calibration set and use adaptation
at test time. In particular, at test time, we fine-tune the node embeddings every M time steps, where M corresponds to 1

6
of the test set length. For fine-tuning, we fit the embeddings by running 25 epochs of maximum 10 batches each by using
samples from the last M steps with a fixed learning rate of 0.001.

HopCPT For HopCPT we followed the model selection procudere described in (Auer et al., 2023). The model was trained
for 3000 epochs using a batch size of 4 time series. We adopted the paper’s AdamW optimizer configuration with standard
parameters (β1 = 0.9, β2 = 0.999, ϵ = 0.01) and tuned the model by running the same hyperparameter configurations
searched by (Auer et al., 2023). All the remaining hyperparameters were set accordingly to the original paper.

SeqCP SeqCP, similarly to (Xu and Xie, 2023a), employs a sliding window approach to conformal prediction, assigning
equal weights to observations within the most recent K time steps and zero weights to older observations. The window size
K was treated as a hyperparameter and tuned over the values {200, 150, 125, 100, 75, 50, 25, 10}.

NexCP NexCP implements conformal prediction using exponentially decaying weights controlled by a parameter ρ.
Rather than using a fixed window of historical observations, it assigns weights that decay exponentially with time, giving
more recent observations higher importance. The decay parameter ρ was tuned over the values {0.999, 0.995, 0.993, 0.99,
0.98, 0.95, 0.9}.

SPCI As already mentioned, we used the SPCI (Xu and Xie, 2023b) implementation provided by Auer et al. (2023) and
followed an analogous protocol for training the mode. In particular, SPCI was run using a fixed window length of 100 time
steps for all experiments, corresponding to the longest setting in the original paper. The computational demands of SPCI
were substantial, as separate quantile random forests had to be trained for each combination of node and target coverage
level, making extensive hyperparameter tuning impractical. To further manage the computational costs, we trained each
SPCI model only once on the calibration data, rather than implementing the time-adaptive approach where models are
re-trained as new observations become available.

G. Additional results
G.1. Qualitative analysis of the learned graph on GPVAR

Fig. 2 provides a comparison of the graph learned on GPVAR by COREL in Sec. 5.2. In particular, the rightmost figure is
obtained by taking the top-K scores associated to each row2. The figure shows that the learned graph includes true edges

2The figure does not show edge scores associated to dummy nodes; see App. D
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(a) True adjacency matrix (b) Learned adjacency matrix

Figure 2: Comparison between (a) the true graph and (b) the graph structure learned by COREL in GPVAR.

plus additional links. Note that perfectly recovering the ground truth graph is not required to achieve optimal performance
here.

G.2. Optimization of the PI width

Here, we show how the width of the PI can be reduced by searching for an appropriate quantile offset β. Specifically, we
perform the optimization described in Eq. 16, which identifies pairs of quantiles yielding the same coverage 1− α while
achieving the smallest interval width. We summarize our results in Tab. 4. As we can see, the procedure consistently finds
intervals with a smaller width at the price of slightly reducing the coverage, whether using COREL or the CORNN variant.

Table 4: Changes in ∆ Cov and PI-Width when optimizing β (α = 0.1).

RNN Transformer STGNN
∆Cov PI-Width ∆Cov PI-Width ∆Cov PI-Width

M
E

T
R

-L
A

CORNN -0.70 ± 0.20 19.69 ± 0.27 -0.52 ± 0.56 19.07 ± 0.42 -0.67 ± 0.47 16.02 ± 0.13

β optim. -0.80 ± 0.28 17.71 ± 0.28 -0.96 ± 0.35 17.16 ± 0.46 -0.88 ± 0.44 14.98 ± 0.17

COREL
-1.25 ± 0.80 14.24 ± 0.53 -0.97 ± 0.51 14.43 ± 0.38 -1.31 ± 0.48 14.36 ± 0.20

β optim. -1.49 ± 0.56 13.23 ± 0.46 -1.26 ± 0.42 13.47 ± 0.35 -1.44 ± 0.45 13.46 ± 0.20

C
E

R
-E CORNN -2.09 ± 0.56 1.93 ± 0.01 -1.70 ± 0.37 1.99 ± 0.02 -2.45 ± 0.41 1.85 ± 0.03

β optim. -2.63 ± 0.65 1.82 ± 0.01 -2.28 ± 0.31 1.88 ± 0.02 -3.10 ± 0.52 1.78 ± 0.03

COREL
-3.86 ± 0.53 1.83 ± 0.02 -3.81 ± 0.30 1.83 ± 0.02 -4.87 ± 0.51 1.79 ± 0.04

β optim. -4.16 ± 0.59 1.75 ± 0.02 -4.10 ± 0.21 1.75 ± 0.02 -5.13 ± 0.51 1.72 ± 0.03

A
Q

I CORNN -1.45 ± 0.61 73.88 ± 1.17 -1.08 ± 0.22 74.02 ± 0.74 -1.50 ± 0.63 70.42 ± 0.94

β optim. -1.90 ± 0.54 70.17 ± 1.22 -1.10 ± 0.25 70.95 ± 0.68 -1.38 ± 0.62 68.24 ± 0.85

COREL
-2.40 ± 1.97 70.44 ± 2.69 -3.54 ± 1.80 68.31 ± 4.49 -2.61 ± 1.92 67.76 ± 3.12

β optim. -2.83 ± 1.86 67.35 ± 2.31 -4.19 ± 1.96 65.20 ± 4.20 -3.22 ± 2.45 65.32 ± 3.43
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