
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POC: PREVENTING THE OVER-COLLAPSE OF
CLASSES FOR CLASS-INCREMENTAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural network-based classification models often suffer from catastrophic
forgetting during class-incremental learning (CIL). Previous studies reveal that it
results from the overlap between seen and future classes after being mapped by
model to its feature space through extracting the features. In this paper, we analyze
that this overlap mainly results from the over-collapse of seen classes, where the
model tends to map originally separated one seen class and its adjacent regions in
input space to be mixed in the feature space, making them indistinguishable. To this
end, we propose a two-step framework to Prevent the Over-Collapse (POC). During
training, POC first learns and applies a set of transformations to the training samples
of seen classes. Based on our theoretical analysis, the transformation results will
locate in the adjacent regions of the seen classes in the input space so that we can
let them represent the adjacent regions. Then, the model’s optimization objective is
modified to additionally classify between the seen classes and the adjacent regions,
separating them in model’s feature space so that preventing the over-collapse. To
retain the model’s generalization on the seen classes, a deterministic contrastive loss
that makes the separate features of seen classes and adjacent regions close is further
introduced. Since POC uses the adjacent regions exclusively for classification, it
can be easily adopted by existing CIL methods. Experiments on CIFAR-100 and
ImageNet demonstrate that POC effectively increases the last/average incremental
accuracy of six SOTA CIL methods by 3.5%/3.0% on average respectively.

1 INTRODUCTION

Over the past few years, incremental learning (IL) has attracted extensive attention to facilitate a
model learning from a sequence of tasks. Within class-incremental learning (CIL), each task centers
on image classification and introduces new classes. The primary goal of CIL is to develop a unified
classification model that maps an input into a feature space by extracting its features and then classifies
it among all of the encountered classes with the features. However, if the model is solely fine-tuned
for each new task, it will suffer from a severe problem known as catastrophic forgetting, where its
knowledge of the old tasks fades and the performance degrades greatly (McCloskey & Cohen, 1989).

Various approaches have emerged to address catastrophic forgetting, broadly categorized into three
groups: replay-based (Bang et al., 2021; Iscen et al., 2020; Lin et al., 2023; Rolnick et al., 2019;
Tiwari et al., 2022), regularization-based (Aljundi et al., 2018; 2019; Jung et al., 2020; Sun et al.,
2023), and architecture-based (Aljundi et al., 2017; Douillard et al., 2022; Li et al., 2019; Pham et al.,
2021; Yoon et al., 2018) methods. Despite their efficacy in CIL, the primary optimization objective of
existing methods, typically a classification loss among the seen classes, has overlooked the necessity
of learning a representation compatible with future classes. Specifically, as depicted in Figure 1(a),
their optimization objective will lead to the over-collapse of seen classes, where the model will map
originally separated one seen class and its adjacent regions in the input space to be mixed in the
feature space in order to improve model’s generalization on the seen class. Although this phenomenon
is observed, analyzed and desired in other classification tasks (Li et al., 2018; Fawzi et al., 2018),
its effect is not considered within the CIL scenario yet. However, as shown in Figure 1(a) and our
experiments, the over-collapse will increase the risk of overlap between the areas covered by the seen
and future classes after being mapped into model’s feature space, making them indistinguishable. As
stated by Masana et al. (2022), this overlap can result in knowledge forgetting of seen classes since
the model will misidentify the samples of seen classes belonging to future classes after learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Baseline POC

Seen Class

Input Space Input Space

Feature Space Feature Space

Future Class Adjacent Region

(a) (b)

F t S

Figure 1: Illustration of POC. In (a), a base-
line model will map originally separated one
seen class and its adjacent regions in the input
space to be mixed in the feature space, lead-
ing to the over-collapse of the seen class. The
areas covered by the seen and future classes in
model’s feature space will then overlap, caus-
ing catastrophic forgetting. Contrastingly, in
(b), POC produces samples in the adjacent re-
gions by transformations and trains the model
to classify between adjacent regions and seen
class, preventing the over-collapse.

In this paper, we propose a two-step framework to
Prevent the Over-Collapse (POC) to bolster CIL per-
formance. During training, POC learns and applies
a set of transformations to the training samples of
seen classes. Based on our theoretical analysis and
findings of prior works (Tack et al., 2020), the trans-
formation results will locate in adjacent regions of
seen classes in input space so that we can let them
represent adjacent regions. Then, the model is ex-
panded with another classifier and its optimization
objective is modified to additionally classify between
seen classes and adjacent regions, separating them in
model’s feature space. In this way, the over-collapse
is prevented so that future classes are protected from
overlap, avoiding catastrophic forgetting. During test-
ing, the expanded classifier is masked, enabling the
model to classify between seen classes without intro-
ducing extra computation burden. Since the adjacent
regions are exclusively leveraged for classification,
POC can be easily adopted by existing CIL methods
to improve their performance. Moreover, because
the adjacent regions are semantically similar to their
original classes, classifying between them without ad-
ditional constraints can make them distant in model’s
feature space (Elsayed et al., 2018) and harm the
model’s generalization. Therefore, a deterministic
contrastive loss is introduced to make the adjacent
regions close to their original classes in the feature
space. In this way, the generalization of the model on
the seen classes is protected, improving performance.

In summary, our contributions are three-fold:

• We analyze the over-collapse phenomenon and its negative effect for class-incremental
learning (CIL). Therefore, we propose to Prevent the Over-Collapse (POC) to protect future
classes from overlapping with seen classes in model’s feature space for CIL.

• POC can be easily adopted by existing CIL methods to improve their performance. Moreover,
a deterministic contrastive loss protecting the generalization of the model on the seen classes
is introduced for POC, further improving its effectiveness.

• Experiments on CIFAR-100 and ImageNet show that POC increases the last/average incre-
mental accuracy of six SOTA CIL methods by 3.5%/3.0% on average respectively.

2 RELATED WORK

2.1 CLASS-INCREMENTAL LEARNING

Class-incremental learning (CIL) strives to enable a unified model to learn sequentially from different
image classification tasks while retaining knowledge from previous ones (Hung et al., 2019; Singh
et al., 2020; Wang et al., 2022; Yan et al., 2021; Zhou et al., 2021). Generally, the methods fall into
three categories: (1) replay-based; (2) regularization-based; (3) architecture-based.

Replay-based methods (Bang et al., 2021; Hou et al., 2018; Wu et al., 2019) offer an intuitive solution
by storing samples from previous tasks in a memory buffer. When learning new tasks, the stored
samples are amalgamated with new data to train the model. Initially, Riemer et al. (2018) used an
equal proportion of new and stored samples to calculate the loss. Douillard et al. (2020) and Hou
et al. (2018) further utilized stored samples to calculate a distillation loss for knowledge transfer.

To mitigate memory usage for storing samples, regularization-based methods (Lopez-Paz & Ranzato,
2017; Wang et al., 2021) augment the classification loss with a regularization term, preventing
crucial parameters from changing too much. For instance, Aljundi et al. (2018) quantified parameter

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

importance for old tasks, then regularized alterations of significant parameters. Alternatively, Li &
Hoiem (2017) employed knowledge distillation to maintain logits of new samples on old classes.

Architecture-based methods offer an alternative approach by modifying the model or maximizing
feature distance across different tasks, making different tasks mutually independent. In the work
of Rajasegaran et al. (2019) and Serra et al. (2018), upon the arrival of a new task, a specifc part of the
model is trained and then fixed. In the work of Chaudhry et al. (2020), Tang et al. (2021) and Xiang
& Shlizerman (2023), the authors designed special losses to maximize the distance across tasks.

A shared problem of the aforementioned methods is their exclusive emphasis on enhancing discrimi-
nation among the seen classes during current task learning. However, this singular focus will lead to
the over-collapse of seen classes, causing catastrophic forgetting. Instead, with seen classes, our POC
produces samples in their adjacent regions and trains the model to classify between them and the
seen classes. This strategy can prevent the over-collapse, making the model adaptable to future tasks.

While similar to FACT (Zhou et al., 2022) and IL2A (Zhu et al., 2021) in generating extra data
for training, our POC differs in key aspects. Their foundational principle is to train the model to
classify between seen and future classes in advance. It is based on assumption that positions of future
classes can be predicted with the seen classes using mixup. However, future classes vary a lot and are
unpredictable. Differently, POC aims to enhance the feature’s discrimination by producing samples
in adjacent regions of seen classes and training the model to classify between these regions and seen
classes. In this way, the over-collapse is prevented and the future classes will be naturally protected
from overlapping, regardless of their actual positions. Detailed experiments are in Section 4.2.2.

2.2 OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution (OOD) detection (Bai et al., 2021; Cai & Fan, 2022; Jeong & Kim, 2020) aims at
predicting whether a sample aligns with the training data. In a specific approach (Cai & Fan, 2022;
Golan & El-Yaniv, 2018; Mohseni et al., 2021; Tack et al., 2020), researchers pre-trained a model to
predict the geometric transformation on input samples. It was shown that the transformed samples
are OOD-like, while similar to their original samples (Tack et al., 2020). It inspires us to learn a set
of transformations whose application results are adjacent to the seen classes. By classifying them
from the seen classes, their features will be separated so that the over-collapse will be prevented.

3 METHODOLOGY

This section provides a comprehensive overview of our proposed POC. Section 3.1 briefly formulates
the CIL problem alongside existing methods, followed by the motivation of POC. Section 3.2 details
the framework of POC, emphasizing its approach to learn a set of transformations to produce samples
locating in so that representative of adjacent regions of seen classes in input space and modify model’s
optimization objective to additionally classify between seen classes and adjacent regions, separating
them after being mapped by model into its feature space. This strategy prevents the over-collapse and
protects future classes from overlapping with seen classes in model’s feature space.

3.1 PROBLEM STATEMENT AND MOTIVATION

In CIL, a model will learn from T tasks and should classify an input among all seen classes at any
time step. Specifically, when learning from task t, Lt new classes Ct={cti}

Lt
i=1 are introduced and the

model has only access to the new training dataset, while the evaluation is performed on the union of
the testing datasets encountered so far. In general, the model consists of two primary components: a
feature extractor f :X→Rd that maps an input into a feature space by extracting its features and a
classifier Φ:Rd→RL̃t that calculates the probability distribution over seen classes with the extracted
features, where L̃t=

∑t
i=1 Li. CIL aims to obtain better performance after learning T tasks.

Most of the existing CIL methods can be formulated into the following paradigm. Given the training
samples {{(xi,j , yi)}Nij=1}

L̃t
i=1, where yi ∈ ∪tk=1{C

k} since there can be a memory buffer storing a
subset of samples from the old tasks, a classification loss LCls is calculated:

LCls =

L̃t∑
i=1

Ni∑
j=1

L(Φ(f(xi,j)), yi), (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Original Images

Step 1: Adjacent Region Labeling Step 2: Collapse Prevention

Transform
Transform

Loss

Deterministic

Contrastive

Loss

Bird

Modified

Classification

Loss

Test

Train

C
la

ssifier

Φ

Params{θi}i=1
n

F
eatu

re

E
x

tracto
r C
la

ssifier

 Φ

Figure 2: Overview of our POC. During training, it operates in two steps “Adjacent Region Labeling”
and “Collapse Prevention”. First, a set of transformations are learned and applied to training samples
of seen classes to produce samples locating in so that representative of their adjacent regions in the
input space. Then, the model is expanded with another classifier and its classification loss is modified
to additionally classify between the seen classes and adjacent regions, preventing the over-collapse.
A deterministic contrastive loss is introduced to preserve model’s generalization. During testing, the
expanded classifier is masked to leverage the original model to classify among the seen classes.

where L represents a classification criterion, e.g. cross-entropy loss. Additionally, a regularization
loss LReg may be employed to preserve important parameters or transfer knowledge. These two losses
are combined to optimize the model. However, as stated in Section 1 and shown in experiments, this
training paradigm will lead to over-collapse so that seen and future classes will overlap after being
mapped into model’s feature space, which will result in catastrophic forgetting (Masana et al., 2022).

Drawing from our observation, we propose to first produce samples locating in so that representative
of n adjacent regions of the seen classes in input space {{{(x̂i,k,m, li,k)}Mi,k

m=1}nk=1}
L̃t
i=1. Subsequently,

we modify the classification loss to be LMod_Cls to incorporate classification between these adjacent
regions and the seen classes, separating them in model’s feature space to prevent the over-collapse:

LMod_Cls =

L̃t∑
i=1

Ni∑
j=1

L(Φ(f(xi,j)), yi) +

L̃t∑
i=1

n∑
k=1

Mi,k∑
m

L(Φ(f(x̂i,k,m)), li,k), (2)

3.2 PREVENT THE OVER-COLLAPSE

With the above purpose, we propose POC that can be easily adopted by the CIL methods to help
address the problem and improve their performance. As illustrated in Figure 2, POC works in two
steps “Adjacent Region Labeling” and “Collapse Prevention” during training. In the first step, POC
learns and applies a set of transformations to the training samples of seen classes to produce samples
in and representative of their adjacent regions in the input space. In the second step, the model is
expanded with another classifier and its optimization objective is modified to additionally classify
between the adjacent regions and the seen classes, separating them in model’s feature space so that
preventing the over-collapse. Furthermore, to protect the generalization of the model on the seen
classes, we introduce a deterministic contrastive loss that makes the separate features of the seen
classes and adjacent regions close. During testing, the expanded classifier is masked, allowing the
original model to classify inputs among seen classes without introducing additional inference costs.

3.2.1 ADJACENT REGION LABELING

To prevent the over-collapse, an intuitive first step is to generate samples in the adjacent regions of the
seen classes in the input space and let them represent the adjacent regions. Initially, we experimented
with applying mixup, rotation and other transformations to the training samples of seen classes to
generate desired samples. However, we found that the resulting samples were too distant from or close
to the original ones, unable to represent the adjacent regions and leading to suboptimal performance.
Inspired by out-of-distribution (OOD) detection works (Cai & Fan, 2022; Golan & El-Yaniv, 2018;
Mohseni et al., 2021; Tack et al., 2020), we propose to learn a new set of transformations to generate
suitable samples. To substantiate this approach, we begin by proving that affine transformations have
the capability to generate OOD samples through the following proposition:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 3.1. Denote the distribution of images {x} as Pr(x). For ∀0 < β < max(Pr(x)), 0 <
δ < 1, ∃Aa ∈{A|A is the matrix of one affine transformation}, s.t. P (Pr(Aax) ≤ β) ≥ δ.

Proof. Given in Appendix A.1.

Second, we demonstrate that applying rotations to images results in transformed outputs whose
distance from the original distribution is bounded by an upper limit.
Proposition 3.2. Denote the probability distribution of images {x} from a specific class as P (x). For
∀A ∈{Ar|Ar is the matrix of one rotation transformation},W(P (Ax), P (x)) ≤ δ, whereW is the
Wasserstain distance and δ signifies a constant upper bound.

Proof. Given in Appendix A.2.

However, when directly using rotations, since some rotated samples, such as a rotated pen, have the
same semantic as their original samples, the distribution of the rotated samples can overlap with that
of the original samples. In this way, less adjacent regions are covered, reducing the effectiveness of
POC as shown in Section 4.2.4 and C.1. Moreover, classifying the overlapped region into different
classes is improper and is harmful for model training. To take advantages of rotations according to
Proposition 3.2 and according to Proposition 3.1, we propose to learn a set of affine transformations
whose parameter matrices are denoted as follows:

{θi}ni=1 =

{(
pi,1 pi,2 pi,3
pi,4 pi,5 pi,6

)}n
i=1

.

We then calculate a transform loss LTrans to make the transformations similar to but not the same as
the rotations so that the transformed results will be OOD while close to original samples:

LTrans =

n∑
i=1

(

2∑
j=1

3∑
k=1

(θi − θ̂i)j,k),

s.t. {θ̂i}ni=1 =

{(
cos 2πi

n − sin 2πi
n 0

sin 2πi
n cos 2πi

n 0

)}n
i=1

. (3)

Complemented by the modified classification loss detailed in Section 3.2.2, LTrans will optimize
the parameters of transformations to make the transformed results locate in and representative of
adjacent regions of seen classes in the input space, quantitatively shown in Section 4.2.4. Our
experiments in Section C.3 underscore that the acquired transformations significantly enhance POC’s
performance compared to mixup and other transformations. Based on these parameters, the learned
transformations are then applied to the training samples of the seen classes, generating a set of new
samples {{{(xi,j,k, yi,k)}Nij=1}

L̃t
i=1}nk=1, where xi,j,k is produced by applying k-th transformation

to xi,j and yi,k is a generated new class. In this way, {{(xi,j,k, yi,k)}Nij=1}nk=1 are considered as n
labeled adjacent regions of class yi in input space produced with its training samples {(xi,j , yi)}Nij=1.

3.2.2 COLLAPSE PREVENTION

With the labeled adjacent regions, to prevent the over-collapse, a direct solution is then training the
model to classify between adjacent regions and seen classes. Therefore, besides Φ, we introduce
another classifier Φ:Rd → RnL̃t , which also takes the extracted features of f as input and calculates
the probability over the adjacent regions. With the transformed training samples labeling adjacent
regions and additional classifier, the classification loss LCls will be modified to be LMod_Cls as follows:

LMod_Cls =
n

n+ 1

∑
i,j

L(Φ ◦ Φ(f(xi,j)), yi) +
1

n+ 1

∑
i,j,k 6=0

L(Φ ◦ Φ(f(xi,j,k)), yi,k), (4)

where ◦ means concatenating the outputs of two classifiers. LMod_Cls will substitute LCls to train the
model to make the seen classes and their adjacent regions separated in the feature space, preventing
the over-collapse. During testing, the classifier Φ is masked so that only Φ is used to calculate the
probability distribution over the original seen classes, without introducing additional cost.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2.3 DETERMINISTIC CONTRASTIVE LOSS

The proposed two steps separate the features of seen classes and adjacent regions without constraining
their distance, which will make the model map the seen classes and adjacent regions to be distant
from each other in the feature space for better classification. However, since the training samples
cannot completely represent their classes, an actual testing sample can locate in the adjacent regions
produced with training samples. In this way, the model’s generalization on the seen classes will be
impeded because the model will map these testing samples to be far from the training samples in
the feature space, crossing the classification boundary and leading to wrong classification result. To
this end, we introduce a deterministic contrastive loss that makes the features of the seen classes
and adjacent regions close. In addition, to maintain the diversity of transformations to cover more
adjacent regions, the features of adjacent regions are kept away from each other. Specifically, for
each training sample x, after applying the transformations to it, we can get a set of results {xi}ni=0,
where xi is produced by i-th transformation and x0 equals x. With the feature extractor f , we can
further get the features of these results {f(xi)}ni=0 and define the similarity between two results:

sim(xi, xj) = exp(ψ(f(xi), f(xj))/τ), (5)

where ψ(a, b) = a·b
||a||||b|| calculates the cosine similarity between the inputs and τ is a temperature

parameter adjusting the scale. With the defined similarity, the deterministic contrastive loss for one
training sample is calculated as follows and then averaged over all samples:

LDCL = −
n∑
i=1

log
sim(xi, x0)

sim(xi, x0) +
∑
j 6=i sim(xi, xj)

. (6)

3.2.4 TOTAL OBJECTIVE

During training, we aggregate the aforementioned optimization objectives to form the total loss LTotal:

LTotal = LMod_Cls + LReg + λ1LTrans + λ2LDCL, (7)

where λ1 and λ2 are hyperparameters used to balance the scale of different losses. The model is then
optimized with LTotal, preventing the over-collapse and protecting the future classes from overlapping
with the seen classes in model’s feature space to make the model compatible with future tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND EVALUATION METRICS

In line with prior works, we choose CIFAR-100 (Krizhevsky et al., 2009), ImageNet-100 and
ImageNet (Deng et al., 2009) for evaluation in experiments. ImageNet-100 is a subset of ImageNet
with 100 random classes chosen according to the same principle of LUCIR (Hou et al., 2019). We
use two metrics to evaluate the performance of one method, which are the last accuracy and the
average incremental accuracy. Denoting the model’s classification accuracy after learning from task t
as At, then the last accuracy is defined as AT . For average incremental accuracy, it is calculated as
1
T
∑T
t=1At, indicating the performance of the model along the whole learning procedure. The data

unit of the reported results is “%”.

To further quantify the distance between the seen and future classes and the generalization of the
model on the seen classes, we define another two metrics named inter-class distance (ICD) and
intra-class generalization (ICG). After task t and before learning from task t+1, we collect the training
samples of the seen and newly introduced classes and the testing samples of the seen classes. Then
we use the feature extractor f to obtain the features of each sample and calculate the mean of the
features for each class. Assuming that the means of the features for the seen classes and new classes
are {µi,train}L̃ti=1, {µi,test}L̃ti=1 and {ηi}Lt+1

i=1 respectively, then the ICD and ICG are defined as follows:

ICD =
1

Lt+1

Lt+1∑
i=1

max({ψ(ηi, µj,train)}L̃tj=1), (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance analysis of POC on CIFAR-100 under 6 task settings. “B” and “C” represent
the class number of the first task and the following tasks respectively. The experiments are run for 3
times and the mean and variance of average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 64.1±0.9 61.2±0.7 55.9±0.3 59.4±0.5 57.6±0.3 48.5±0.2
w/ POC 66.8(+2.7)±0.7 63.5(+2.3)±0.6 59.6(+3.7)±0.4 63.8(+4.4)±0.3 59.2(+1.6)±0.3 53.1(+4.6)±0.2

CwD 67.2±0.2 62.8±0.1 59.7±0.2 64.3±0.4 61.2±0.5 53.6±0.3
w/ POC 69.6(+2.4)±0.4 65.4(+2.6)±0.3 62.3(+2.6)±0.5 68.3(+4.0)±0.2 66.1(+4.9)±0.4 59.1(+5.5)±0.2
PODNet 64.6±0.7 63.2±1.1 59.8±0.5 54.9±0.4 53.2±0.4 50.5±0.2
w/ POC 68.2(+3.6)±0.8 67.2(+4.0)±1.0 63.1(+3.3)±0.7 60.6(+5.7)±0.7 58.3(+5.1)±0.4 53.5(+3.0)±0.5
MEMO 70.2±0.5 69.0±0.7 61.4±0.3 69.5±0.5 67.3±0.8 63.2±0.4
w/ POC 71.8(+1.6)±0.6 70.4(+1.4)±0.4 63.5(+2.1)±0.5 70.9(+1.4)±0.6 69.3(+2.0)±0.4 64.8(+1.6)±0.6
LODE 68.7±0.6 64.6±0.8 58.5±0.4 66.2±0.5 64.4±0.3 59.2±0.5

w/ POC 70.0(+1.3)±0.5 66.1(+1.5)±0.7 60.5(+2.0)±0.7 68.4(+2.2)±0.3 65.8(+1.4)±0.6 62.4(+3.2)±0.4
MRFA 68.0±0.4 66.4±0.6 60.3±0.8 67.8±0.8 65.7±0.6 61.3±0.7
w/ POC 69.2(+1.2)±0.4 68.1(+1.7)±0.5 62.7(+2.4)±0.5 69.6(+1.8)±0.6 67.5(+1.8)±0.4 63.6(+2.3)±0.8

Table 2: Performance analysis of POC on ImageNet-100 under 6 task settings. “B” and “C” represent
the class number of the first task and the following tasks respectively and the last accuracy/average
incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 61.4/71.5 55.1/67.2 41.1/56.8 48.0/61.5 42.6/55.7 34.3/48.9
w/ POC 64.0/73.7(+2.6/2.2) 57.6/68.3(+2.5/1.1) 47.7/61.8(+6.6/5.0) 51.5/65.2(+3.5/3.7) 46.4/59.3(+3.8/3.6) 36.9/51.5(+2.6/2.6)

CwD 60.4/71.6 55.8/68.2 40.3/56.3 48.2/62.9 44.6/58.5 34.3/51.1
w/ POC 62.3/73.2(+1.9/1.6) 57.4/69.4(+1.6/1.2) 44.7/59.8(+4.4/3.5) 51.2/64.4(+3.0/1.5) 47.1/60.6(+2.5/2.1) 38.9/53.1(+4.6/2.0)
PODNet 62.3/73.4 57.4/71.6 42.9/59.7 45.8/63.0 41.7/59.8 32.4/50.0
w/ POC 63.8/75.0(+1.5/1.6) 62.3/72.8(+4.9/1.2) 48.6/63.7(+5.7/4.0) 49.1/64.8(+3.3/1.8) 48.2/62.1(+6.5/2.3) 36.6/55.1(+4.2/5.1)
MEMO 66.2/76.8 64.5/76.4 52.7/64.0 53.6/67.1 48.4/60.8 40.3/53.2
w/ POC 67.4/77.9(+1.2/1.1) 66.5/77.8(+2.0/1.4) 55.9/66.5(+3.2/2.5) 55.4/68.2(+1.8/1.1) 50.7/62.5(+2.3/1.7) 42.4/54.7(+2.1/1.5)
LODE 64.5/73.6 59.4/71.0 45.8/60.4 50.6/63.5 45.3/59.5 37.2/52.1

w/ POC 66.1/75.1(+1.6/1.5) 61.7/73.1(+2.3/2.1) 50.4/63.8(+4.6/3.4) 53.4/65.7(+2.8/2.2) 48.3/62.3(+3.0/2.8) 40.5/53.4(+3.3/1.3)
MRFA 65.1/74.8 61.4/73.2 47.3/61.6 51.8/64.9 46.1/60.0 38.5/52.6
w/ POC 66.4/76.0(+1.3/1.2) 63.3/74.9(+1.9/1.7) 50.6/64.4(+3.3/2.8) 54.1/66.6(+2.3/1.7) 48.7/62.1(+2.6/2.1) 41.1/54.3(+2.6/1.7)

ICG =
1

L̃t

L̃t∑
i=1

ψ(µi,train, µi,test), (9)

where ψ(a, b) = a·b
||a||||b|| calculates the cosine similarity between the inputs. ICD measures the

distance between each newly introduced class and its closest seen class, signifying the extent of
overlap between them within model’s feature space. A higher ICD value indicates increased overlap
between new and seen classes. ICG assesses the distance between training and testing samples of
each seen class, reflecting the model’s generalization capacity on the seen classes. A higher ICG
value signifies improved model generalization.

4.1.2 MODELS AND TRAINING

We incorporate our POC into six state-of-the-art CIL methods, which are LUCIR (Hou et al., 2019),
CwD (based on LUCIR) (Shi et al., 2022), PODNet (Douillard et al., 2020), MEMO (Zhou et al.,
2023), LODE (Liang & Li, 2023) and MRFA (based on FOSTER (Wang et al., 2022)) (Zheng
et al., 2024). The classification models employed on CIFAR-100, ImageNet-100 and ImageNet are
ResNet-32, ResNet-18 and ResNet-18. The hyperparameters n, τ , λ1 and λ2 are set to be 3, 2, 10, 0.1
respectively. On CIFAR-100 and ImageNet-100, the methods will be evaluated across 6 task settings,
whose class numbers of the first task and the following tasks are: (1) 50, 10; (2) 50, 5; (3) 50, 1; (4)
20, 10; (5) 20, 5; (6) 20, 1. As for ImageNet, 3 task settings are explored: (1) 500, 100; (2) 100, 100;

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Performance analysis of POC on ImageNet under 3 task settings. “B” and “C” represent
the class number of the first task and the following tasks respectively and the last accuracy/average
incremental accuracy are reported.

Method
Class Number Settings

B=500, C=100 B=100, C=100 B=10, C=10

LUCIR 49.4/57.9 42.3/54.8 21.6/30.4
w/ POC 50.8/59.0(+1.4/1.1) 43.8/57.3(+1.5/2.5) 23.2/33.6(+1.6/3.2)

CwD 50.8/58.6 42.8/56.2 22.4/31.3
w/ POC 52.4/59.8(+1.6/1.2) 44.8/57.6(+2.0/1.4) 24.5/34.0(+2.1/2.7)
MEMO 58.4/69.8 56.2/67.3 40.8/50.7
w/ POC 59.6/70.9(+1.2/1.1) 57.2/68.6(+1.0/1.3) 42.0/52.4(+1.2/1.7)

Table 4: Performance analysis of POC on CIFAR-100 with different sizes of memory buffer. “B”,
“C” and “M” represents the class number of the first task, the following tasks and the size of memory
buffer for each class respectively. The last accuracy/average incremental accuracy are reported.

Method
Class Number and Memory Buffer Size Settings

B = 50, C = 10 B = 20, C = 10
M = 10 M = 20 M = 50 M = 10 M = 20 M = 50

LUCIR 49.2/59.8 52.6/62.0 57.2/64.7 39.2/53.9 45.8/57.8 50.5/61.5
w/ POC 54.0/63.1(+4.8/3.3) 57.4/65.6(+4.8/3.6) 60.8/68.1(+3.6/3.4) 45.3/58.9(+6.1/5.0) 49.7/61.6(+3.9/3.8) 55.1/65.4(+4.6/3.9)

CwD 54.4/64.5 58.2/66.7 63.0/70.0 45.7/58.2 51.2/62.5 57.6/67.0
w/ POC 57.5/67.0(+3.1/2.5) 61.1/69.6(+2.9/2.9) 65.7/72.6(+2.7/2.6) 51.6/64.0(+5.9/5.8) 55.6/67.1(+4.4/4.6) 61.9/71.2(+4.3/4.2)
PODNet 43.5/56.6 48.7/60.3 56.0/64.9 32.6/49.3 38.7/53.9 46.5/59.4
w/ POC 49.2/62.4(+5.7/5.8) 53.1/64.3(+4.4/4.0) 61.2/69.6(+5.2/4.7) 36.7/54.0(+4.1/4.7) 42.6/58.4(+3.9/4.5) 50.9/63.9(+4.4/4.5)
MEMO 56.8/63.9 60.1/66.0 64.4/70.7 52.4/63.2 58.7/67.7 62.3/70.6
w/ POC 58.7/65.5(+1.9/1.6) 61.2/67.2(+1.1/1.2) 65.9/71.5(+1.5/0.8) 54.9/65.3(+2.5/2.1) 60.0/69.1(+1.3/1.4) 63.6/71.8(+1.3/1.2)
LODE 52.2/64.5 57.3/66.3 61.6/69.7 48.2/61.6 53.5/65.7 59.2/69.6

w/ POC 53.3/65.9(+1.1/1.4) 59.1/67.4(+1.8/1.1) 62.8/70.8(+1.2/1.1) 49.8/64.8(+1.6/3.2) 57.0/69.0(+3.5/3.3) 63.7/73.7(+4.5/4.1)
MRFA 54.6/64.8 58.2/66.5 63.1/70.2 50.4/62.4 55.3/66.5 60.7/70.2
w/ POC 55.9/66.5(+1.3/1.7) 59.8/67.9(+1.6/1.4) 64.4/71.5(+1.3/1.3) 52.4/64.8(+2.0/2.4) 57.9/68.5(+2.6/2.0) 63.9/72.9(+3.2/2.7)

(3)10, 10. The models will be trained for 160 epochs on CIFAR-100 while the training epoch will be
100 on ImageNet-100 and ImageNet.

4.2 EXPERIMENTAL RESULTS

4.2.1 COMPARISON WITH STATE-OF-THE-ARTS

We first compare the performance of LUCIR, CwD, PODNet, MEMO, LODE and MRFA before and
after adopting POC to prove its effectiveness. The experiments on CIFAR-100 will run for 3 times
with the random seed being 0, 42, 1993 and the mean and variance of the results will be reported.
Employing a memory buffer size of 20 for each class, results are detailed in Tables 1, 2, and 3. Across
all task and dataset settings, POC consistently enhances the performance of these six CIL methods.

We then evaluate the performance of the methods on CIFAR-100 under task settings (1) and (4), with
different sizes of memory buffer that are 10, 20, 50 for each class. To accelerate the experiments, the
random seed is fixed to be 1993 and the training epoch is set to be 100. The results in Table 4 reveal
that POC also helps improve the performance of CIL methods with different buffer sizes.

We note that LUCIR, PODNet, LODE and MRFA are replay-based methods. CwD is a regularization-
based method and MEMO is an architecture-based method. The improved performance of all
methods with POC proves that our POC can be adapted by different categories of methods, showing
the effectiveness and universality of our POC framework.

4.2.2 COMPARISON WITH SIMILAR WORK

In Section 2.1, we analyze the difference between our POC and FACT (Zhou et al., 2022), IL2A (Zhu
et al., 2021). We point out that predicting the future classes with the seen classes through mixup is
difficult. In this section, we design experiments to show that. First, we define Overlap between two

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Comparison between IL2A and POC to show that POC performs better and prove that their
principles are different. “B” and “C” represent the class number of the first and the following tasks
and the last accuracy/average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 52.6/62.0 50.1/59.9 45.2/55.9 45.8/57.8 42.4/54.5 36.4/48.3
w/ IL2A 56.3/64.4 53.2/61.5 48.6/57.8 48.6/60.2 45.3/55.9 39.4/50.6
w/ POC 57.4/65.6 54.6/62.3 50.9/59.7 49.7/61.6 46.6/57.4 42.0/53.1

w/ POC+IL2A 58.5/66.7 56.3/63.4 52.2/61.4 50.8/62.7 47.7/58.2 43.1/54.3

Table 6: Ablation study on CIFAR-100 to show that the deterministic contrastive loss (DCL) helps
improve the performance of POC. “B” and “C” represent the class number of the first and the
following tasks and the last accuracy/average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 52.6/62.0 50.1/59.9 45.2/55.9 45.8/57.8 42.4/54.5 36.4/48.3
w/ POC (no DCL) 56.5/64.7 52.8/61.2 49.6/57.6 48.7/60.3 45.2/56.0 40.0/51.1

w/ POC 57.4/65.6 54.6/62.3 50.9/59.7 49.7/61.6 46.6/57.4 42.0/53.1
CwD 58.2/66.7 53.7/62.7 50.7/59.9 51.2/62.5 47.9/59.4 42.9/53.8

w/ POC (no DCL) 60.2/68.2 54.1/63.8 51.8/61.2 53.9/65.4 50.7/62.4 44.9/56.7
w/ POC 61.1/69.6 54.9/64.6 52.9/62.4 55.6/67.1 52.5/64.2 46.8/59.1
MEMO 60.1/66.0 60.6/65.9 56.8/61.8 58.7/67.7 59.2/67.8 55.2/63.5

w/ POC (no DCL) 60.8/66.8 61.2/66.4 57.4/62.3 59.5/68.4 60.1/68.2 56.4/64.3
w/ POC 61.2/67.2 61.9/67.4 58.5/63.8 60.0/69.1 60.8/68.9 57.3/65.1

distributions Ci, Cj :

dintra(Ci) =
1

Ni

Ni∑
j

d(xij ,
1

Ni

Ni∑
k

xik), dinter(Ci, Cj) = d(
1

Ni

Ni∑
k

xik,
1

Nj

Nj∑
l

xjl)

Overlap(Ci, Cj) = dinter(Ci, Cj)− (dintra(Ci) + dintra(Cj)), (10)

where xij is the j-th sample from distribution Ci. d is the Euclidean distance. The higher the
Overlap(Ci, Cj) is, the more separate the distribution Ci and Cj are. We train a ResNet-32 on
CIFAR-100 under task setting (1) and calculate the average Overlap between the newly introduced
classes and the mixup results of the seen classes. The values of Overlap during the whole training
procedure are 0.23, 0.35, 0.37, 0.28, 0.25 after normalization. These positive values indicate that the
newly introduced classes and the mixup results of the seen classes are separate.

We then compare the performance of POC and IL2A to show that our POC helps the CIL methods
obtain better performance. To accelerate the experiments, the random seed is fixed to be 1993 and the
training epoch is set to be 100. We adopt LUCIR with IL2A and POC respectively and the results in
Table 5 show that POC performs better than IL2A. Moreover, when adding IL2A and POC to LUCIR
simultaneously, the performance could further increase, proving the different principle of IL2A and
POC. Since FACT is not a plug-and-play method, we do not compare with LUCIR+FACT.

4.2.3 EFFECT OF DETERMINISTIC CONTRASTIVE LOSS

In this section, we assess POC’s performance on CIFAR-100 without deterministic contrastive loss
(DCL), with random seed and training epoch to be 1993 and 100. The results in Table 6 reveal that
excluding DCL leads to performance degradation across all 6 task settings, highlighting its necessity.

Furthermore, our analysis of ICD, ICG in Figure 3 under task settings (1) and (4) demonstrates
that ICD will be high without POC, which quantitatively shows the over-collapse and overlapping
problem. Regardless of DCL, POC consistently lowers ICD, preventing future and seen classes
from overlapping in model’s feature space. However, without DCL, a decline in ICG indicates the
compromised model generalization on seen classes, showing DCL’s role in preserving it.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) B=50, C=10

(b) B=20, C=10

Figure 3: Illustration to show that POC protects the future classes from overlapping. The deterministic
contrastive loss (DCL) protects the generalization on the seen classes.

Table 7: Analysis on CIFAR-100 showcasing the enhanced performance of POC with learnable
transformation parameters. “B” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 1 C = 10 C = 1

LUCIR 52.6/62.0 45.2/55.9 45.8/57.8 36.4/48.3
Fixed 56.5/64.8 49.7/57.6 49.0/60.2 40.5/52.3

Learnable 57.4/65.6 50.9/59.7 49.7/61.6 42.0/53.1

4.2.4 EFFECT OF LEARNABLE TRANSFORMATION

In Section 3.2.1, we emphasize the efficacy of learnable parameters {θi}ni=1 by making the trans-
formations in POC adaptable and similar to rotations. This section conducts an evaluation when
employing fixed parameters as rotations and setting random seed/training epoch to be 1993/100:

{θi}ni=1 =

{(
cos 2πi

n − sin 2πi
n 0

sin 2πi
n cos 2πi

n 0

)}n
i=1

. (11)

The results with LUCIR as the baseline are in Table 7 and more results are supplemented in Sec-
tion C.1. The results underscore the enhanced performance of POC when employing learnable
transformations. Part of the rational behind this phenomenon has been stated in Section 3.2.1. In
addition, with the help of modified classification loss, transformations that can generate samples
without overlapping with the original samples while close to the original samples will be learned,
increasing the effectiveness of POC. As a proof, we calculate the average Overlap as in Section 4.2.2
between seen class and one of its transformed results. After learning 5 classes on CIFAR-100, the
Overlap increases from -0.17 to 0.06 when changing the direct rotations to learnable transformations,
indicating that the transformed results and seen class changes from overlapped to separated while the
transformed results are still close to the seen class so that representative of their adjacent regions.

5 CONCLUSION

In this paper, we analyze the over-collapse problem and propose a framework to Prevent the Over-
Collapse (POC) for CIL. POC learns and applies a set of transformations to the seen classes to
produce samples in adjacent regions. Then the model’s optimization objective is modified to classify
between the adjacent regions and the seen classes to prevent the over-collapse. We also introduce a
deterministic contrastive loss to preserve the model’s generalization on the seen classes. Extensive
experiments show the POC’s effectiveness in improving the performance of existing CIL methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3366–3375, 2017.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 139–154, 2018.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–11263,
2019.

Donghyeon Baek, Youngmin Oh, Sanghoon Lee, Junghyup Lee, and Bumsub Ham. Decomposed
knowledge distillation for class-incremental semantic segmentation. Advances in Neural Informa-
tion Processing Systems, 35:10380–10392, 2022.

Haoyue Bai, Fengwei Zhou, Lanqing Hong, Nanyang Ye, S-H Gary Chan, and Zhenguo Li. Nas-ood:
Neural architecture search for out-of-distribution generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 8320–8329, 2021.

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8218–8227, 2021.

Jinyu Cai and Jicong Fan. Perturbation learning based anomaly detection. In Advances in Neural
Information Processing Systems, volume 35, 2022.

Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual learning in low-rank
orthogonal subspaces. Advances in Neural Information Processing Systems, 33:9900–9911, 2020.

Jinpeng Chen, Runmin Cong, Yuxuan Luo, Horace Ip, and Sam Kwong. Saving 100x storage:
prototype replay for reconstructing training sample distribution in class-incremental semantic
segmentation. Advances in Neural Information Processing Systems, 36, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009.

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet:
Pooled outputs distillation for small-tasks incremental learning. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 86–102, 2020.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
for continual learning with dynamic token expansion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9285–9295, 2022.

Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large margin
deep networks for classification. Advances in neural information processing systems, 31, 2018.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano Soatto. Empirical
study of the topology and geometry of deep networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3762–3770, 2018.

Dan Andrei Ganea, Bas Boom, and Ronald Poppe. Incremental few-shot instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1185–1194, 2021.

Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. Advances
in Neural Information Processing Systems, 31, 2018.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong learning via
progressive distillation and retrospection. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 437–452, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pp. 831–839, 2019.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. Advances in Neural
Information Processing Systems, 32, 2019.

Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient incremental
learning through feature adaptation. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 699–715, 2020.

Taewon Jeong and Heeyoung Kim. Ood-maml: Meta-learning for few-shot out-of-distribution
detection and classification. Advances in Neural Information Processing Systems, 33:3907–3916,
2020.

Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
importance based adaptive group sparse regularization. Advances in neural information processing
systems, 33:3647–3658, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International Conference
on Machine Learning, pp. 3925–3934. PMLR, 2019.

Yu Li, Lizhong Ding, and Xin Gao. On the decision boundary of deep neural networks. arXiv
preprint arXiv:1808.05385, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Huiwei Lin, Baoquan Zhang, Shanshan Feng, Xutao Li, and Yunming Ye. Pcr: Proxy-based
contrastive replay for online class-incremental continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24246–24255, 2023.

Yuyang Liu, Yang Cong, Dipam Goswami, Xialei Liu, and Joost van de Weijer. Augmented box
replay: Overcoming foreground shift for incremental object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 11367–11377, 2023.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in Neural Information Processing Systems, 30, 2017.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
De Weijer. Class-incremental learning: survey and performance evaluation on image classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Qijie Mo, Yipeng Gao, Shenghao Fu, Junkai Yan, Ancong Wu, and Wei-Shi Zheng. Bridge past
and future: Overcoming information asymmetry in incremental object detection. In European
Conference on Computer Vision, pp. 463–480, 2025.

Sina Mohseni, Arash Vahdat, and Jay Yadawa. Shifting transformation learning for out-of-distribution
detection. arXiv preprint arXiv:2106.03899, 2021.

Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. Advances
in Neural Information Processing Systems, 34:16131–16144, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jathushan Rajasegaran, Munawar Hayat, Salman H Khan, Fahad Shahbaz Khan, and Ling Shao.
Random path selection for continual learning. Advances in Neural Information Processing Systems,
32, 2019.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference.
In International Conference on Learning Representations, 2018.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi Feng, Philip HS Torr, Song Bai, and
Vincent YF Tan. Mimicking the oracle: an initial phase decorrelation approach for class incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16722–16731, 2022.

Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder, Lawrence Carin, and Piyush Rai. Cal-
ibrating cnns for lifelong learning. Advances in Neural Information Processing Systems, 33:
15579–15590, 2020.

Zhicheng Sun, Yadong Mu, and Gang Hua. Regularizing second-order influences for continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 20166–20175, 2023.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. Advances in Neural Information Processing Systems,
33:11839–11852, 2020.

Shixiang Tang, Dapeng Chen, Jinguo Zhu, Shijie Yu, and Wanli Ouyang. Layerwise optimization by
gradient decomposition for continual learning. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition, pp. 9634–9643, 2021.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 99–108, 2022.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and
compression for class-incremental learning. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 398–414, 2022.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pp. 184–193, 2021.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 374–382, 2019.

Jinlin Xiang and Eli Shlizerman. Tkil: Tangent kernel optimization for class balanced incremental
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3529–3539, 2023.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3014–3023, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018.

Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Multi-layer rehearsal feature
augmentation for class-incremental learning. In Forty-first International Conference on Machine
Learning, 2024.

Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Co-transport for class-incremental learning. In
Proceedings of the 29th ACM International Conference on Multimedia, pp. 1645–1654, 2021.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9046–9056, 2022.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: To-
wards memory-efficient class-incremental learning. In International Conference on Learning
Representations, 2023.

Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu. Class-incremental learning via dual
augmentation. Advances in Neural Information Processing Systems, 34:14306–14318, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF PROPOSITION 3.1

We assume that the probability distribution of {x} corresponds to a multi-variant Gaussian distribution.
Then the concrete formulation of Pr(x) is:

Pr(x) =
1

(2π)
n
2 |Σ| 12

e−
(x−µ)TΣ−1(x−µ)

2 , (12)

where µ and Σ are the expectation and variance. n is the dimension of x.

We reversely prove the following proposition, which is equal to Proposition 3.1:

Proposition A.1. For ∀0 < β < max(Pr(x)), 0 < δ < 1, ∃Aa ∈{A|A is the matrix of one affine
transformation}, s.t. P (Pr(Aax) ≥ β) ≤ 1− δ.

In order to prove the Proposition A.1, we first prove the following proposition:

Proposition A.2. For a reversable matrix A, if λmin(ATΣ−1A) ≥ −8 log((2π)
n
2 |Σ|

1
2 β

2π|Σ|
1
n n
√

(1−δ)2
, then

P (Pr(Ax) ≥ β) ≤ 1− δ. λmin returns the minimum eigenvalue of the input matrix.

Proof. For a reversable matrix A, we have the following equation:

P (Pr(Ax) ≥ β) = P (
1

(2π)
n
2 |Σ| 12

e−
(Ax−µ)TΣ−1(Ax−µ)

2 ≥ β) (13)

= P (e−
(Ax−µ)TΣ−1(Ax−µ)

2 ≥ (2π)
n
2 |Σ| 12 β) (14)

= P (− (Ax− µ)TΣ−1(Ax− µ)

2
≥ log((2π)

n
2 |Σ| 12 β)) (15)

= P ((Ax− µ)TΣ−1(Ax− µ) ≤ −2 log((2π)
n
2 |Σ| 12 β)) (16)

= P ((x−A−1µ)TATΣ−1A(x−A−1µ) ≤ −2 log((2π)
n
2 |Σ| 12 β)) (17)

Next, we prove two lemmas and a corollary.

Lemma A.3. For ∀A ∈ Rn×n, s.t AT = A, ∀x ∈ Rn, s.t ||x||2 = 1, we have xTAx ≥ λmin(A),
where λmin returns the minimum eigenvalue of the input matrix.

Proof. ∵A = AT ∴ we haveA = PTΛP , where PTP = I , Λ is a diagonal matrix and the elements
on the diagonal are the eigenvalues of A, xTAx = xTPTΛPx

Denote Px as y, we have ||y||22 = yT y = xTPTPx = xTx = 1. Therefore, we have the following
equation and inequation:

xTAx = yTΛy (18)

= Σni=1Λiiy
2
i (19)

≥ min(Aii)Σ
n
i=1y

2
i (20)

= λmin(A) (21)

Corollary A.4. For ∀A ∈ Rn×n, s.t AT = A, ∀x ∈ Rn, we have xTAx ≥ λmin(A)||x||22, where
λmin returns the minimum eigenvalue of the input matrix.

Proof. We have xTAx = ||x||22(x
||x||2)TA(x

||x||2) ∵ || x
||x||2 ||2 = 1. According to Lemma A.3,

xTAx ≥ λmin(A)||x||22
Lemma A.5. If Σ is a positive-definite matrix, then for ∀A, s.t A is reversable, ATΣA is a positive-
definite matrix

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. For any x 6= −→0 , xTATΣAx = (Ax)TΣ(Ax). ∵ A is reversable ∴ Ax 6= −→0

∵ Σ is positive-definite, Ax 6= −→0 ∴ xTATΣAx = (Ax)TΣ(Ax) > 0 ∴ ATΣA is positive-
definite

Back to Equ. (15), according to Corollary A.4, (x − A−1µ)TATΣ−1A(x − A−1µ) ≥
λmin(ATΣ−1A)||(x−A−1µ)||22
∴ If x satisfies (x−A−1µ)TATΣ−1A(x−A−1µ) ≤ −2 log((2π)

n
2 |Σ| 12 β),

then x must satisfies λmin(ATΣ−1A)||(x−A−1µ)||22 ≤ −2 log((2π)
n
2 |Σ| 12 β)

∴

P (Pr(Ax) ≥ β) = P ((x−A−1µ)TATΣ−1A(x−A−1µ) ≤ −2 log((2π)
n
2 |Σ| 12 β)) (22)

≤ P (λmin(ATΣ−1A)||x−A−1µ||22 ≤ −2 log((2π)
n
2 |Σ| 12 β)) (23)

(24)

∵ Σ is positive-definite ∴ Σ−1 is positive-definite. According to Lemma A.5, ATΣ−1A is
positive-definite

∴ λmin(ATΣ−1A) > 0 and we can have the following equation and inequation:

P (Pr(Ax) ≥ β) ≤ P (λmin(ATΣ−1A)||x−A−1µ||22 ≤ −2 log((2π)
n
2 |Σ| 12 β)) (25)

= P (||x−A−1µ||22 ≤
−2 log((2π)

n
2 |Σ| 12 β)

λmin(ATΣ−1A)
) (26)

=

˛
ζ

Pr(x)dx (27)

where ζ = {x|||x − A−1µ||22 ≤ −2 log((2π)
n
2 |Σ|

1
2 β)

λmin(ATΣ−1A)
} ⊆ {x||xi − (A−1µ)i| ≤√

−2 log((2π)
n
2 |Σ|

1
2 β)

λmin(ATΣ−1A)
} = ψ

∴

P (Pr(Ax) ≥ β) ≤
˛
ζ

Pr(x)dx (28)

≤ 1

(2π)
n
2 |Σ| 12

˛
ζ

dx (29)

≤ 1

(2π)
n
2 |Σ| 12

˛
ψ

dx (30)

=
2n

(2π)
n
2 |Σ| 12

√
−2 log((2π)

n
2 |Σ| 12 β)

λmin(ATΣ−1A)

n

(31)

≤ 1− δ (∵ λmin(ATΣ−1A) ≥ −8 log((2π)
n
2 |Σ| 12 β

2π|Σ| 1n n
√

(1− δ)2
) (32)

According to Proposition A.2, if we can prove the following proposition, then Proposition A.1
holds.
Proposition A.6. {A|A is a matrix of one affine transformation}∩{A|λmin(ATΣ−1A) ≥
−8 log((2π)

n
2 |Σ|

1
2 β

2π|Σ|
1
n n
√

(1−δ)2
}6= φ

Proof. ∵ Σ is positive-definite ∴ Σ−1 is positive-definite. Σ−1 = PTΛP , where PTP = I , Λ is a
diagonal matrix and the elements on the diagonal are the eigenvalues of Σ−1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Denote the minimum eigenvalue of Σ−1 as λ and −8 log((2π)
n
2 |Σ|

1
2 β

2π|Σ|
1
n n
√

(1−δ)2
as b. If A = PTRP2, where

PT2 P2 = I , R is a diagonal matrix and the elements on the diagonal are the same and bigger than√
b
λ , then

ATΣ−1A = PT2 RPP
TΛPPTRP2 (33)

= PT2 RΛRP2 (34)

where RΛR is a diagonal matrix and the elements on the diagonal are bigger than b.

∴ {A|A = PTRP2, P
T
2 P2 = I,R = kI, k ≥

√
b
λ}⊆{A|λmin(ATΣ−1A) ≥ −8 log((2π)

n
2 |Σ|

1
2 β

2π|Σ|
1
n n
√

(1−δ)2
}

We next prove the following proposition:

Proposition A.7. {A|A = PTRP2, P
T
2 P2 = I,R = kI, k ≥

√
b
λ}={A|A

TA = kI, k ≥ b
λ}

Proof. If A ∈ {A|A = PTRP2, P
T
2 P2 = I,R = kI, k ≥

√
b
λ}, then

ATA = PT2 RPP
TRP2 (35)

= PT2 RRP2 (36)

= k2PT2 P2 (37)

= k2I ∈ {A|ATA = kI, k ≥ b

λ
} (∵ k ≥

√
b

λ
) (38)

If A ∈{A|ATA = kI, k ≥ b
λ}, let R =

√
kI , P2 = R−1PA, then

PT2 P2 = ATPTR−1R−1PA (39)

=
1

k
ATPTPA (40)

=
1

k
ATA (41)

= I (42)

∴ A ∈{A|A = PTRP2, P
T
2 P2 = I,R = kI, k ≥

√
b
λ}

Go back to Proposition A.6. According to Proposition A.7, {A|ATA = kI, k ≥
b
λ}⊆{A|λmin(ATΣ−1A) ≥ −8 log((2π)

n
2 |Σ|

1
2 β

2π|Σ|
1
n n
√

(1−δ)2
}. It is easy to construct a matrix A of affine transfor-

mation, which satisfies A ∈ {A|ATA = kI, k ≥ b
λ}. Therefore, Proposition A.6 holds. Further-

more, Proposition A.2 and 3.1 holds.

A.2 PROOF OF PROPOSITION 3.2

We assume that the probability distribution of {x} corresponds to a multi-variant Gaussian distribution
and its expectation and variance are µ and Σ. Then the probability distribution of {Ax} is also a
multi-variant Gaussian distribution and its expectation and variance are Aµ and ATΣA. Then we
have the following equation and inequation:

W(P (Ax), P (x)) = ||Aµ− µ||22 + Tr(ATΣA+ Σ− 2[(ATΣA)
1
2 Σ(ATΣA)

1
2]

1
2) (43)

= ||Aµ− µ||22 + Tr(ATΣA) + Tr(Σ)− 2Tr([(ATΣA)
1
2 Σ(ATΣA)

1
2]

1
2)
(44)

We next prove the following proposition and lemma:

Proposition A.8. For ∀A, Tr([(ATΣA)
1
2 Σ(ATΣA)

1
2]

1
2) ≥ 0

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. According to Lemma A.5, ATΣA is a positive-definite matrix. Suppose that ATΣA =
PTΛP , where PTP = I , Λ is a diagonal matrix and the elements on the diagonal are bigger than 0.

∵ (PTΛ
1
2P)2=PTΛ

1
2PPTΛ

1
2P=PTΛP ∴ (ATΣA)

1
2 = PTΛ

1
2P ∴ (ATΣA)

1
2 =[(ATΣA)

1
2]T

∴ (ATΣA)
1
2 Σ(ATΣA)

1
2 is also a positive-definite matrix.

Suppose that (ATΣA)
1
2 Σ(ATΣA)

1
2 =PT2 Λ2P2, then [(ATΣA)

1
2 Σ(ATΣA)

1
2]

1
2 =PT2 Λ

1
2
2 P2

Tr([(ATΣA)
1
2 Σ(ATΣA)

1
2]

1
2) = Tr(PT2 Λ

1
2
2 P2) (45)

= Tr(Λ
1
2
2 P2P

T
2) (46)

= Tr(Λ
1
2
2) ≥ 0 (47)

Lemma A.9. For ∀A,B, s.t.AT = A,BT = B, the following inequation holds: Tr(AB) ≤
1
2 (Tr(A2) + Tr(B2))

Proof. ∵ ∀A,B, Tr[(A+B)(A+B)T] + Tr[(A−B)(A−B)T] = 2[Tr(AAT) + Tr(BBT)]

∴ ∀A,B,Tr[(A+B)(A+B)T] ≤ 2[Tr(AAT) + Tr(BBT)]

When AT = A,BT = B, Tr[(A + B)(A + B)T] = Tr[A2 + B2 + AB + BA] = Tr[A2] +
Tr[B2] + 2Tr[AB]

∴ Tr(AB) ≤ 1
2 (Tr(A2) + Tr(B2))

According to Proposition A.8 and Equ. (42), we have:

W(P (Ax), P (x)) = ||Aµ− µ||22 + Tr(ATΣA) + Tr(Σ)− 2Tr([(ATΣA)
1
2 Σ(ATΣA)

1
2]

1
2)

(48)

≤ ||Aµ− µ||22 + Tr(ATΣA) + Tr(Σ) (49)

= ||Aµ− µ||22 + Tr(ΣAAT) + Tr(Σ) (50)

≤ ||Aµ− µ||22 +
1

2
(Tr(Σ2) + Tr(AATAAT)) + Tr(Σ) (∵ LemmaA.9)

(51)

∵ A is a matrix of rotation transformation ∴ Ai,j ≥ 0,∀i,Σnj=1Ai,j = 1

∴

0 ≤ (AAT)i,j = Σnk=1Ai,kA
T
k,j (52)

≤
√

(Σnk=1A
2
i,k)(Σnk=1(ATk,j)

2) (53)

≤
√

(Σnk=1Ai,k)2(Σnk=1A
T
k,j)

2 (54)

= 1 (55)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

∴

W(P (Ax), P (x)) ≤ ||Aµ− µ||22 +
1

2
(Tr(Σ2) + Tr(AATAAT)) + Tr(Σ) (56)

≤ ||Aµ− µ||22 +
1

2
(Tr(Σ2) + n2) + Tr(Σ) (∵ 0 ≤ (AATAAT)i,j ≤ n)

(57)

≤ ||Aµ||22 + ||µ||22 +
1

2
(Tr(Σ2) + n2) + Tr(Σ) (58)

= Σni=1(Σnj=1Ai,jµj)
2 + ||µ||22 +

1

2
(Tr(Σ2) + n2) + Tr(Σ) (59)

≤ Σni=1((Σnj=1A
2
i,j)(Σ

n
j=1µ

2
j)) + ||µ||22 +

1

2
(Tr(Σ2) + n2) + Tr(Σ) (60)

≤ Σni=1||µ||22 + ||µ||22 +
1

2
(Tr(Σ2) + n2) + Tr(Σ) (∵ Ai,j ≥ 0,∀i,Σnj=1Ai,j = 1)

(61)

Inequation (51) and (58) hold because of Cauchy inequation. Therefore, Proposition 3.2 holds.

B DETAILS OF MODELS AND TRAINING

We employ ResNet-32 for CIFAR-100 and ResNet-18 for ImageNet-100, ImageNet as our classifi-
cation models, adhering to the conventional methodology. These models process inputs through a
sequence of convolutional layers to extract features, subsequently reshaping them into vectors using
global max-pooling. The resultant vector serves as input for a fully connected network, responsible
for calculating probabilities across seen classes. This setup defines the convolutional layers with
max-pooling as the feature extractor f and the fully connected network as the classifier Φ used in
determining deterministic contrastive loss. For CIFAR-100 and ImageNet-100 under task settings
(3) and (6) of the main manuscript, to mitigate overfitting on the subsequent tasks, we reset the
training epochs to 20 and the learning rate to 0.01 at the beginning of task 2. The training batch size
on CIFAR-100, ImageNet-100 and ImageNet are 128, 32 and 32 respectively. All experiments are
finished on GeForce RTX 3090 GPUs. On CIFAR-100, ImageNet-100 and ImageNet, one run of
experiment needs 8 hours, 5 days and 15 days respectively.

C COMPLEMENTARY EXPERIMENTS

This section supplements additional experiments not featured in the main manuscript. To accelerate
the experiments, in all experiments, the random seed is fixed to be 1993 and the training epoch is
set to be 100. In Section C.1, we assess POC’s performance when fixing transformation parameters
to be rotations, emphasizing the benefits of learnable parameters. In Section C.2, we investigate
whether the performance increases when the produced samples are regarded as positive and have the
same labels as their original classes. Section C.3 analyze the performance of POC using different
transformation types. Section C.4 presents experiments where adjacent regions are solely constrained
to be close to original classes, affirming the importance of maintaining diverse transformations.
Section C.5 showcases experiments where adjacent regions receive identical labels, highlighting the
superior performance achieved by assigning distinct labels. In Section C.6, we explore how varying
the number of transformations impacts POC’s performance. In Section C.7, we integrate our POC
into the models for other incremental learning tasks to show that POC is compatible and generalizable
to other tasks. Section C.8 investigates the sensitivity of POC’s performance to hyperparameters λ1

and λ2. Lastly, Section C.9 discusses the training costs of POC.

C.1 EFFECT OF LEARNABLE TRANSFORMATION

In Section 3.2.1, we emphasize the efficacy of learnable parameters {θi}ni=1 by making the transfor-
mations in POC adaptable and similar to rotations. And in Section 4.2.4, the performance of POC
with LUCIR as the baseline is evaluated when the transformations are fixed to be rotations. Following

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Analysis on CIFAR-100 showcasing the enhanced performance of POC with learnable
transformation parameters. “B” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

CwD 58.2/66.7 53.7/62.7 50.7/59.9 51.2/62.5 47.9/59.4 42.9/53.8
Fixed 59.6/68.3 54.1/63.6 51.6/61.2 53.9/65.2 50.3/62.5 45.1/56.4

Learnable 61.1/69.6 54.9/64.6 52.9/62.4 55.6/67.1 52.5/64.2 46.8/59.1
PODNet 48.7/60.3 48.9/59.8 49.3/59.9 38.7/53.9 36.1/51.0 36.1/50.3

Fixed 51.8/62.4 51.7/62.1 50.9/61.6 41.2/57.0 39.5/54.8 37.8/51.4
Learnable 53.1/64.3 53.3/63.8 52.3/63.3 42.6/58.4 41.0/56.5 39.5/53.6
MEMO 60.1/66.0 60.6/65.9 56.8/61.8 58.7/67.7 59.2/67.8 55.2/63.5
Fixed 60.6/66.5 61.2/66.4 57.6/62.9 59.4/68.2 59.9/68.4 56.2/64.3

Learnable 61.2/67.2 61.9/67.4 58.5/63.8 60.0/69.1 60.8/68.9 57.3/65.1
LODE 57.3/66.3 51.3/60.6 49.2/58.7 53.5/65.7 50.0/63.5 48.5/59.3
Fixed 58.3/66.9 52.4/61.2 50.2/59.6 55.6/67.3 51.0/64.0 49.4/60.5

Learnable 59.1/67.4 53.8/62.0 51.3/60.4 57.0/69.0 52.1/64.6 50.2/62.1
MRFA 58.2/66.5 55.7/63.4 52.4/60.5 55.3/66.5 53.2/64.6 51.1/61.2
Fixed 59.0/67.1 56.4/64.5 53.3/61.7 56.8/67.8 54.9/65.6 52.5/63.0

Learnable 59.8/67.9 57.3/65.9 54.7/62.6 57.9/68.5 56.3/66.5 53.7/64.1

Table 9: Analysis on ImageNet-100 showcasing the enhanced performance of POC with learnable
transformation parameters. “B” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

CwD 60.4/71.6 55.8/68.2 40.3/56.3 48.2/62.9 44.6/58.5 34.3/51.1
Fixed 61.2/72.4 56.6/68.9 42.9/58.2 50.0/63.8 45.9/59.6 37.3/52.0

Learnable 62.3/73.2 57.4/69.4 44.7/59.8 51.2/64.4 47.1/60.6 38.9/53.1
PODNet 62.3/73.4 57.4/71.6 42.9/59.7 45.8/63.0 41.7/59.8 32.4/50.0

Fixed 63.1/74.2 60.7/72.2 46.8/62.1 47.4/64.0 46.6/61.1 35.4/53.4
Learnable 63.8/75.0 62.3/72.8 48.6/63.7 49.1/64.8 48.2/62.1 36.6/55.1
MEMO 66.2/76.8 64.5/76.4 52.7/64.0 53.6/67.1 48.4/60.8 40.3/53.2
Fixed 66.7/77.3 65.7/77.1 54.5/65.3 54.6/67.9 49.6/61.7 41.5/54.0

Learnable 67.4/77.9 66.5/77.8 55.9/66.5 55.4/68.2 50.7/62.5 42.4/54.7
LODE 64.5/73.6 59.4/71.0 45.8/60.4 50.6/63.5 45.3/59.5 37.2/52.1
Fixed 65.3/74.6 60.6/72.3 48.8/62.5 52.4/64.8 46.9/60.7 39.2/52.8

Learnable 66.1/75.1 61.7/73.1 50.4/63.8 53.4/65.7 48.3/62.3 40.5/53.4
MRFA 65.1/74.8 61.4/73.2 47.3/61.6 51.8/64.9 46.1/60.0 38.5/52.6
Fixed 65.8/75.2 62.3/74.0 48.5/63.1 52.7/65.7 46.9/60.9 39.4/53.4

Learnable 66.4/76.0 63.3/74.9 50.6/64.4 54.1/66.6 48.7/62.1 41.1/54.3

the setting of Section 4.2.4, this section conducts an evaluation of performance when changing the
baseline to CwD, PODNet, MEMO, LODE and MRFA to further support our motivation.

The results in Table 8, 9 and 10 underscore the enhanced performance of POC when employing learn-
able transformations. According to the results, when the transformations are fixed, the last/average
incremental accuracy of baseline methods will increase 1.4/1.3, 1.6/1.1, 0.9/1.1 on CIFAR-100,
ImageNet-100 and ImageNet in average respectively. However, when setting the transformations
learnable, the last/average incremental accuracy of baseline methods will increase 2.6/2.6, 2.9/2.1,
1.7/1.8 in average on CIFAR-100, ImageNet-100 and ImageNet. It shows that the performance

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Analysis on ImageNet showcasing the enhanced performance of POC with learnable
transformation parameters. “B” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.

Method
Class Number Settings

B=500, C=100 B=100, C=100 B=10, C=10

LUCIR 49.4/57.9 42.3/54.8 21.6/30.4
Fixed 50.3/58.6 43.2/56.2 22.6/32.4

Learnable 50.8/59.0 43.8/57.3 23.2/33.6
CwD 50.8/58.6 42.8/56.2 22.4/31.3
Fixed 51.8/59.4 44.1/57.1 23.6/32.8

Learnable 52.4/59.8 44.8/57.6 24.5/34.0
MEMO 58.4/69.8 56.2/67.3 40.8/50.7
Fixed 59.1/70.5 56.9/68.2 41.5/51.8

Learnable 59.6/70.9 57.2/68.6 42.0/52.4

gain will increase by 185%/200%, 181%/190%, 188%/163% when setting transformations learn-
able, showing the efficacy of learnable parameters. Further to the explanation in Section 4.2.4, the
rationale behind lies in the adaptability afforded by learnable parameters. By enabling learnable
transformations, the loss optimization process gains flexibility in shaping the feature space and
transforming parameters. Consequently, the model learns transformations capable of generating more
representative adjacent regions of seen classes in the input space, resulting in improved performance.

C.2 EFFECT OF SAMPLE LABEL SETTING

In the original POC, the samples produced by learnable transformations are considered as negative
samples of seen classes and have different labels. It is possible that the performance improves
because the model has seen multiple augmented samples. Therefore, we report and compare the
performance when the produced samples are considered as positive samples and have the same labels
as their original classes. Following the setting of Section 4.2.1, we report the performance of different
baselines when the produced samples are considered positive. The results in Table 11 and 12 show
that the performance gain is lower than that when the produced samples are regarded as negative.

We further analyze the Inter-Class Distance (ICD) and Intra-Class Generalization (ICG) when the
produced samples are considered as positive samples. The results illustrated in Figure 4 indicates that
when the produced samples are considered positive, both ICG and ICD will increase. This results
from that when produced samples are considered positive, since the rotated samples have similar
distribution with original ones as shown in Section 4.2.4 and the transform loss LTrans makes the
transformations similar to rotations, the transformations will converge to rotations to minimize both
LMod_Cls and LTrans so that LTotal is minimized. Therefore, the situation will be the same as that when
training with rotation augmentation so that the decision boundary of one class will extend more
broadly. Although it can increase the model’s generalization, the over-collapse is more severe as
well so that the overlapping between seen and future classes is worsen. Under the combined effect,
the performance gain is minor. Instead, the original design of POC both prevents over-collapse and
protects the generalization so that it obtains better performance.

C.3 EFFECT OF TRANSFORMATION TYPE

As outlined in Section 3.2.1, we confine the transformations in POC to be similar to rotations. In
this section, using LUCIR as the baseline method and CIFAR-100 for evaluation, we make the
transformations resemble other alternatives, including identical, mixup, cutmix, flip, Gaussian blur
and Gaussian noise, to assess their efficacy. The results in Table 13 demonstrate varying performance
among different transformations, with rotation notably enhancing POC’s performance.

We also conduct a comparative analysis of Inter-Class Distance (ICD) and Intra-Class Generalization
(ICG) among diverse transformation types, visualized in Figure 5. The findings reveal that rotations
strike a better balance between ICD and ICG, resulting in enhanced overall performance for POC.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11: Analysis on CIFAR-100 to show that regarding samples produced by learnable transforma-
tions as negative to their original classes helps POC obtain better performance. “B” and “C” represent
the class number of the first task and the following tasks respectively. The experiments are run for 3
times and the mean and variance of average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 64.1±0.9 61.2±0.7 55.9±0.3 59.4±0.5 57.6±0.3 48.5±0.2
Positive 64.9±1.0 61.8±0.8 56.7±0.3 60.5±0.7 58.2±0.2 49.6±0.5
Negative 66.8±0.7 63.5±0.6 59.6±0.4 63.8±0.3 59.2±0.3 53.1±0.2

CwD 67.2±0.2 62.8±0.1 59.7±0.2 64.3±0.4 61.2±0.5 53.6±0.3
Positive 68.0±0.4 63.8±0.1 60.6±0.4 65.1±0.5 62.1±0.3 54.7±0.4
Negative 69.6±0.4 65.4±0.3 62.3±0.5 68.3±0.2 66.1±0.4 59.1±0.2
PODNet 64.6±0.7 63.2±1.1 59.8±0.5 54.9±0.4 53.2±0.4 50.5±0.2
Positive 65.2±0.6 63.7±1.1 60.5±0.7 56.0±0.6 54.0±0.6 51.2±0.4
Negative 68.2±0.8 67.2±1.0 63.1±0.7 60.6±0.7 58.3±0.4 53.5±0.5
MEMO 70.2±0.5 69.0±0.7 61.4±0.3 69.5±0.5 67.3±0.8 63.2±0.4
Positive 70.8±0.7 69.6±0.6 62.0±0.5 70.0±0.5 67.9±0.5 63.7±0.4
Negative 71.8±0.6 70.4±0.4 63.5±0.5 70.9±0.6 69.3±0.4 64.8±0.6
LODE 68.7±0.6 64.6±0.8 58.5±0.4 66.2±0.5 64.4±0.3 59.2±0.5

Positive 69.2±0.7 65.1±0.5 58.9±0.5 67.0±0.6 64.8±0.4 59.7±0.6
Negative 70.0±0.5 66.1±0.7 60.5±0.7 68.4±0.3 65.8±0.6 62.4±0.4
MRFA 68.0±0.4 66.4±0.6 60.3±0.8 67.8±0.8 65.7±0.6 61.3±0.7
Positive 68.5±0.5 66.8±0.5 60.8±0.7 68.4±0.7 66.2±0.6 62.0±0.5
Negative 69.2±0.4 68.1±0.5 62.7±0.5 69.6±0.6 67.5±0.4 63.6±0.8

Table 12: Analysis on ImageNet-100 to show that regarding samples produced by learnable trans-
formations as negative to their original classes helps POC obtain better performance. “B” and
“C” represent the class number of the first task and the following tasks respectively and the last
accuracy/average incremental accuracy are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 61.4/71.5 55.1/67.2 41.1/56.8 48.0/61.5 42.6/55.7 34.3/48.9
Positive 62.1/72.3 55.8/67.6 42.1/57.7 48.9/62.3 43.4/56.6 34.8/49.4
Negative 64.0/73.7 57.6/68.3 47.7/61.8 51.5/65.2 46.4/59.3 36.9/51.5

CwD 60.4/71.6 55.8/68.2 40.3/56.3 48.2/62.9 44.6/58.5 34.3/51.1
Positive 60.9/72.2 56.3/68.6 40.8/56.5 49.0/63.7 45.3/59.1 34.9/51.7
Negative 62.3/73.2 57.4/69.4 44.7/59.8 51.2/64.4 47.1/60.6 38.9/53.1
PODNet 62.3/73.4 57.4/71.6 42.9/59.7 45.8/63.0 41.7/59.8 32.4/50.0
Positive 62.8/73.8 57.9/72.3 43.7/60.4 46.4/63.9 42.2/60.4 32.9/50.7
Negative 63.8/75.0 62.3/72.8 48.6/63.7 49.1/64.8 48.2/62.1 36.6/55.1
MEMO 66.2/76.8 64.5/76.4 52.7/64.0 53.6/67.1 48.4/60.8 40.3/53.2
Positive 66.7/77.3 65.0/76.8 53.4/64.6 54.3/67.7 49.1/61.7 40.8/53.9
Negative 67.4/77.9 66.5/77.8 55.9/66.5 55.4/68.2 50.7/62.5 42.4/54.7
LODE 64.5/73.6 59.4/71.0 45.8/60.4 50.6/63.5 45.3/59.5 37.2/52.1

Positive 64.8/74.0 59.7/71.5 46.3/60.8 51.0/64.0 45.9/59.9 37.8/52.6
Negative 66.1/75.1 61.7/73.1 50.4/63.8 53.4/65.7 48.3/62.3 40.5/53.4
MRFA 65.1/74.8 61.4/73.2 47.3/61.6 51.8/64.9 46.1/60.0 38.5/52.6
Positive 65.7/75.2 61.7/73.6 47.9/62.3 52.3/65.3 46.6/60.5 38.9/53.2
Negative 66.4/76.0 63.3/74.9 50.6/64.4 54.1/66.6 48.7/62.1 41.1/54.3

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) B=50, C=10

(b) B=20, C=10

Figure 4: Illustration to show that regarding samples produced by learnable transformations as
positive to their original classes increases model’s generalization while overlapping is more severe.

Table 13: Analysis on CIFAR-100 to show that resembling different transformation types influences
the performance a lot. “B” and “C” represent the class number of the first task and the following
tasks respectively and the last accuracy/average incremental accuracy are reported.

Transform
Type

Class Number Settings
B = 50 B = 20

C = 10 C = 1 C = 10 C = 1

Baseline 52.6/62.0 45.2/55.9 45.8/57.8 36.4/48.3
Identical 53.2/62.5 45.7/56.2 45.8/58.2 37.0/48.8
Mixup 55.8/64.2 48.3/57.2 47.4/60.0 40.6/51.8
Cutmix 55.3/63.7 47.6/56.4 46.9/59.3 40.2/51.2

Flip 53.7/63.4 45.6/56.2 46.3/58.6 37.0/49.2
Noise 53.5/62.8 46.3/56.8 46.7/59.0 37.4/50.2
Blur 52.7/62.7 46.0/56.3 46.5/58.6 37.2/49.7

Rotation 57.4/65.6 50.9/59.7 49.7/61.6 42.0/53.1

C.4 EFFECT OF TRANSFORMATION DIVERSITY

In deterministic contrastive loss (DCL), the adjacent regions are kept away from each other to keep
transformations diversified. This section aims to demonstrate the essentiality of maintaining this
diversity. To showcase the significance of diversity preservation, we modify the DCL as follows:

LDCL = −
n∑
i=1

sim(xi, x0). (62)

Initially, following the modification of the DCL, we evaluate the performance of POC using LUCIR
as the baseline method, and the results on CIFAR-100 are presented in Table 14. These findings
highlight that maintaining diversified transformations enhances POC performance.

Moreover, we conduct an in-depth analysis of Inter-Class Distance (ICD) and Intra-Class General-
ization (ICG) during the training process. These results, depicted in Figure 6, underscore a crucial
insight: while forgoing diversity may improve model generalization on seen classes, it leads to
decreased distance between future and seen classes.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 5: Illustration to show that different transformation types have different influences on the
inter-class distance and intra-class generalization along the training procedure. The class number of
the first task and the following tasks are 50 and 10 respectively.

Table 14: Analysis on CIFAR-100 to show the necessity of keeping the transformations diversified
for POC. “B” and “C” represent the class number of the first and the following tasks and the last
accuracy/average incremental accuracy are reported.

Diversity
Class Number Settings

B = 50 B = 20
C = 10 C = 1 C = 10 C = 1

Baseline 52.6/62.0 45.2/55.9 45.8/57.8 36.4/48.3
No 56.7/64.9 50.3/58.7 48.9/61.2 40.5/51.8

Keep 57.4/65.6 50.9/59.7 49.7/61.6 42.0/53.1

(a) B=50, C=10

(b) B=20, C=10

Figure 6: Illustration to show that keeping the transformations in POC diversified can protect the
future classes from overlapping with the seen classes better.

C.5 EFFECT OF DIFFERENT LABELS

In the main manuscript, for one seen class, the labeled adjacent regions are assigned with dif-
ferent labels for classification. This section assesses performance when adjacent regions labeled
by one seen class are assigned with the same label. Specifically, for the labeled adjacent regions
{{{(xi,j,k, yi,k)}Nij=1}

L̃t
i=1}nk=1, we set yi,k to equal yi,l and then calculates the classification loss.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 15: Analysis on CIFAR-100 to show that assigning the adjacent regions with different labels
leads to better performance of POC. “B” and “C” represent the class number of the first task and the
following tasks respectively and the last accuracy/average incremental accuracy are reported.

Label
Assign

Class Number Settings
B = 50 B = 20

C = 10 C = 1 C = 10 C = 1

Baseline 52.6/62.0 45.2/55.9 45.8/57.8 36.4/48.3
Same 56.7/65.2 48.7/57.6 47.8/59.8 38.6/48.6

Different 57.4/65.6 50.9/59.7 49.7/61.6 42.0/53.1

Table 16: Analysis on CIFAR-100 to show that transformation number has influence on the final
performance. “B” and “C” represent the class number of the first task and the following tasks
respectively and the last accuracy/average incremental accuracy are reported.

Transform
Number

Class Number Settings
B = 50 B = 20

C = 10 C = 1 C = 10 C = 1

1 55.0/63.4 46.3/55.0 47.0/58.5 35.0/46.8
5 56.7/65.1 50.5/59.4 49.5/60.7 39.3/50.8
7 56.8/64.9 49.5/59.2 48.5/60.0 38.7/50.9
3 57.4/65.6 50.9/59.7 49.7/61.6 42.0/53.1

Table 15 presents the performance of POC with LUCIR as the baseline on CIFAR-100 under task
settings (1), (3), (4), and (6). The findings demonstrate that assigning different labels to adjacent
regions yields superior performance.

C.6 EFFECT OF TRANSFORMATION NUMBER

This section assesses the impact of the number of transformations under task settings (1), (3), (4),
and (6), utilizing LUCIR as the baseline method. In Section 4.2.1, the number of transformations
is set to be 3 and here we compare the performance of POC on CIFAR-100 when the number
is 1, 5, 7. The findings, listed in Table 16, highlight that POC achieves superior performance
when the transformation number is 3. This suggests that an excessively small or large number of
transformations does not yield optimal results.

We further compare the Inter-Class Distance (ICD) and Intra-Class Generalization (ICG) among
different transformation numbers and the results are illustrated in Figure 7. The findings indicate
that while a larger number of transformations may enhance generalization on seen classes, it simul-
taneously diminishes the separation between future and seen classes within the feature space. This
indicates the significance of selecting an optimal transformation number.

It is noteworthy that the ICD decreases as the number of transformations decreases. We analyze the
reason is that when the transformation number decreases, less transformed results will push each
other away due to DCL so that they will be less compact. In details, when the transformation number
decreases, the transformed result of the seen class by one transformation will be affected by fewer
other results through DCL, which pushes different results away from each other. Therefore, one
transformed result can be less compact and can cover more adjacent regions. When the number is 1,
DCL only constrains the transformed result to be close to the seen class. Therefore, the transformed
result will surround the seen class to minimize the distance. In this way, training the model to classify
between the seen class and more adjacent regions will decrease ICD.

To consolidate our analysis, we calculate the average cosine similarity between two samples from
one transformation result of one seen class. We find that after learning 6 tasks, the average cosine
similarity decreases from 0.89 to 0.8 when transformation number decreases from 7 to 1, indicating a
less compact distribution of transformation results.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) B=50, C=10

(b) B=20, C=10

Figure 7: Illustration to show that different transformation numbers have different influences on the
inter-class distance and intra-class generalization along the training procedure. “B” and “C” represent
the class number of the first task and the following tasks.

Table 17: Performance analysis on PASCAL-VOC 2007 to show that POC is generalizable to
incremental object detection task and the mAP is reported.

Method
Class Number Settings

10-5 5-5 10-2 15-1 10-1
1-10 11-20 1-20 1-5 6-20 1-20 1-10 11-20 1-20 1-15 16-20 1-20 1-10 11-20 1-20

ABR 68.7 67.1 67.9 64.7 56.4 58.4 67.0 58.1 62.6 68.7 56.7 65.7 62.0 55.7 58.9
w/ POC 69.8 68.6 69.2 66.2 58.6 60.5 68.1 59.4 63.8 69.6 58.4 66.8 63.3 57.8 60.6

BPF 69.1 68.2 68.7 60.6 63.1 62.5 68.7 56.3 62.5 71.5 53.1 66.9 62.2 48.3 55.2
w/ POC 70.1 69.4 69.8 61.9 65.3 64.5 69.7 58.4 64.1 72.2 56.6 68.3 63.5 50.6 57.1

C.7 GENERALIZATION ABILITY ANALYSIS

Since our POC only modifies the optimization objective of the classification model, it can be directly
integrated into other incremental learning tasks that take classification as a subtask. Therefore,
we supplement experiments when POC is integrated into 2 incremental object detection methods,
2 incremental semantic segmentation methods and 1 few-shot incremental instance segmentation
method to show the generalization ability of POC. We only integrate POC into the classification
branch of these methods, and do not apply the learnable transformations to the “background” category
in these tasks since it is a collection of multiple classes.

For the incremental object detection task, we use ABR (Liu et al., 2023) and BPF (Mo et al., 2025) as
baseline methods. The mean average precision (mAP) at a 0.5 IoU threshold on the PASCAL-VOC
2007 dataset is reported for comparison. In each incremental setting (A-B), A represents the number
of classes in the initial stage, while B indicates the number of classes introduced at each subsequent
stage. The results in Table 17 demonstrate improved mAP values across all settings after incorporating
POC, highlighting its effectiveness for incremental object detection.

For the incremental semantic segmentation task, we adopt DKD (Baek et al., 2022) and STAR (Chen
et al., 2024) as baseline methods. Consistent with the referenced papers, the mean Intersection over
Union (mIoU) on the PASCAL-VOC 2012 dataset is reported. In each incremental setting (A-B), A
denotes the number of classes in the first stage, and B represents the number of newly introduced
classes in each subsequent stage. Table 18 shows improved mIoU values across all configurations
after applying POC, underscoring its effectiveness in incremental semantic segmentation.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 18: Performance analysis on PASCAL-VOC 2012 to show that POC is generalizable to
incremental semantic segmentation task and the mIoU is reported.

Method
Class Number Settings

19-1 15-5 15-1 10-1 5-3
1-19 20 1-20 1-15 16-20 1-20 1-15 16-20 1-20 1-10 11-20 1-20 1-5 6-20 1-20

DKD 78.0 57.7 77.0 79.1 60.6 74.7 78.8 52.4 72.5 74.0 56.7 65.8 69.8 60.2 62.9
w/ POC 79.3 58.6 78.2 80.2 61.6 75.7 80.0 54.3 73.8 75.2 58.6 67.3 71.0 62.4 64.7
STAR 77.8 56.4 76.8 79.7 61.8 75.4 79.5 55.6 73.8 74.3 57.9 66.5 71.9 62.9 65.5

w/ POC 78.7 57.2 77.6 81.7 62.7 77.1 80.4 57.6 75.1 75.6 59.2 67.8 73.4 64.8 67.4

Table 19: Performance analysis on COCO to show that POC is generalizable to few-shot incremental
instance segmentation task. The AP and AP50 are reported.

Shots Method
Overall Base Novel

AP AP50 AP AP50 AP AP50

1
iMTFA 20.1 30.6 25.9 39.3 2.8 4.7
w/ POC 22.2 33.6 27.8 42.4 5.2 7.3

5
iMTFA 18.2 27.1 22.5 33.2 5.1 8.6
w/ POC 20.9 30.0 25.3 36.4 7.7 10.6

10
iMTFA 17.8 26.4 21.8 32.0 5.8 9.8
w/ POC 20.1 29.1 24.1 34.7 7.9 12.4

Table 20: Sensitivity analysis of hyper-parameters λ1 and λ2 in POC on CIFAR-100 under task
setting (1). The last accuracy/average incremental accuracy are reported.

λ1
λ2

0.01 0.1 1 10

1 56.5/65.1 56.9/64.9 55.7/64.4 54.2/63.1
10 56.1/64.3 57.4/65.6 56.8/65.1 54.1/62.7

For the few-shot incremental instance segmentation task, we use iMTFA (Ganea et al., 2021) as the
baseline method. Following the referenced work, we report both AP and AP50 on the COCO dataset,
considering 60 base classes and 20 novel classes. The results include performances with K=1, 5, and
10 shots per novel class. As shown in Table 19, POC leads to improved AP and AP50 values across
all scenarios, further validating its effectiveness for few-shot incremental instance segmentation.

C.8 HYPERPARAMETER SENSITIVITY ANALYSIS

Based on the experimental results, the hyperparameters λ1 and λ2 should have a significant impact on
the final performance of POC since both transform loss and DCL are crucial components. Therefore,
in this section, we conduct experiments to show the sensitivity of the final performance to the
hyperparameters. With LUCIR as the baseline method as CIFAR-100 as the evaluation dataset, we
choose λ1 and λ2 from {1,10} and {0.01, 0.1, 1, 10} respectively. The performance of LUCIR with
POC is listed in Table 20, showing its sensitivity to hyperparameters.

C.9 TRAINING COST ANALYSIS

During training, since the model is also trained to classify the augmented samples, the training cost
will increase. Here, we design experiments to see whether the training cost will increase a lot. We
mainly use the training time to represent training costs. With the same training settings as in Section
4.2.1, we report the GPU days of different methods on CIFAR-100 and ImageNet-100 using one
GeForce RTX 3090 GPU. According to the results in Table 21 and Table 22, although the training
time increases after adopting our POC, the difference is minor. Furthermore, when the dataset is
larger, the proportion of increased time is smaller. This takes advantages of the parallel computing

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 21: Analysis of training time on CIFAR-100. The GPU days are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 0.23 0.26 0.31 0.27 0.32 0.39
w/ POC 0.28 0.29 0.34 0.29 0.36 0.42

CwD 0.24 0.27 0.33 0.27 0.33 0.40
w/ POC 0.29 0.29 0.34 0.36 0.36 0.43
PODNet 0.25 0.27 0.34 0.29 0.35 0.42
w/ POC 0.28 0.30 0.37 0.32 0.38 0.45
MEMO 0.26 0.31 0.40 0.30 0.35 0.49
w/ POC 0.30 0.34 0.43 0.33 0.38 0.52
LODE 0.23 0.26 0.32 0.27 0.32 0.40

w/ POC 0.28 0.29 0.34 0.29 0.36 0.42
MRFA 0.24 0.27 0.33 0.28 0.33 0.41
w/ POC 0.29 0.30 0.36 0.32 0.36 0.45

Table 22: Analysis of training time on ImageNet-100. The GPU days are reported.

Method
Class Number Settings

B = 50 B = 20
C = 10 C = 5 C = 1 C = 10 C = 5 C = 1

LUCIR 5.14 5.36 6.52 5.83 6.48 7.70
w/ POC 5.28 5.64 6.83 5.96 6.72 8.13

CwD 5.23 5.47 6.62 5.90 6.56 7.75
w/ POC 5.38 5.74 6.95 6.03 6.78 8.19
PODNet 6.05 6.37 7.14 6.83 7.08 8.45
w/ POC 6.32 6.74 7.48 7.28 7.49 8.92
MEMO 6.18 6.74 7.53 6.95 7.42 9.43
w/ POC 6.43 6.97 7.98 7.24 7.83 10.23
LODE 5.17 5.43 6.58 5.86 6.53 7.72

w/ POC 5.34 5.69 6.90 5.98 6.75 8.15
MRFA 5.74 5.98 6.93 6.24 6.78 8.16
w/ POC 5.98 6.14 7.21 6.74 7.12 8.46

ability of GPU. Although the batch size increases because of the augmented samples, the parallel
computing ensures that the computing time will not increase propositionally to the batch size.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D VISUALIZATION RESULTS

This section presents visual representations of the feature distributions for both seen and future
classes, aiming to qualitatively demonstrate the efficacy of POC. Using LUCIR with and without
POC, we train the model on the initial 5/10 classes of CIFAR-100. Before learning from the following
5 future classes, we visualize the features pertaining to the seen and subsequent 5 classes using
T-SNE (van der Maaten & Hinton, 2008). Figure 8 vividly illustrates that with POC integration,
future classes are effectively safeguarded from overlapping with seen classes within the model’s
feature space, demonstrating consistent outcomes across both task settings.

Figure 8: Illustration of feature distribution for LUCIR with/without POC through T-SNE (van der
Maaten & Hinton, 2008). “B” and “C” represent the class number of the first task and the following
one task in CIFAR-100. The round points represent the samples from the seen classes and the cross
points represent that from the new classes. It is shown that under both task settings, POC can help
protect the future classes from overlapping with the seen classes in model’s feature space, avoiding
catastrophic forgetting.

29

	Introduction
	Related Work
	Class-Incremental Learning
	Out-of-Distribution Detection

	Methodology
	Problem Statement and Motivation
	Prevent the Over-Collapse
	Adjacent Region Labeling
	Collapse Prevention
	Deterministic Contrastive Loss
	Total Objective

	Experiments
	Experimental Setup
	Datasets and Evaluation Metrics
	Models and Training

	Experimental Results
	Comparison with State-of-the-Arts
	Comparison with Similar Work
	Effect of Deterministic Contrastive Loss
	Effect of Learnable Transformation

	Conclusion
	Proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	Details of Models and Training
	Complementary Experiments
	Effect of Learnable Transformation
	Effect of Sample Label Setting
	Effect of Transformation Type
	Effect of Transformation Diversity
	Effect of Different Labels
	Effect of Transformation Number
	Generalization Ability Analysis
	Hyperparameter Sensitivity Analysis
	Training Cost Analysis

	Visualization Results

