Under review as a conference paper at ICLR 2025

POC: PREVENTING THE OVER-COLLAPSE OF
CLASSES FOR CLASS-INCREMENTAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural network-based classification models often suffer from catastrophic
forgetting during class-incremental learning (CIL). Previous studies reveal that it
results from the overlap between seen and future classes after being mapped by
model to its feature space through extracting the features. In this paper, we analyze
that this overlap mainly results from the over-collapse of seen classes, where the
model tends to map originally separated one seen class and its adjacent regions in
input space to be mixed in the feature space, making them indistinguishable. To this
end, we propose a two-step framework to Prevent the Over-Collapse (POC). During
training, POC first learns and applies a set of transformations to the training samples
of seen classes. Based on our theoretical analysis, the transformation results will
locate in the adjacent regions of the seen classes in the input space so that we can
let them represent the adjacent regions. Then, the model’s optimization objective is
modified to additionally classify between the seen classes and the adjacent regions,
separating them in model’s feature space so that preventing the over-collapse. To
retain the model’s generalization on the seen classes, a deterministic contrastive loss
that makes the separate features of seen classes and adjacent regions close is further
introduced. Since POC uses the adjacent regions exclusively for classification, it
can be easily adopted by existing CIL methods. Experiments on CIFAR-100 and
ImageNet demonstrate that POC effectively increases the last/average incremental
accuracy of six SOTA CIL methods by 3.5%/3.0% on average respectively.

1 INTRODUCTION

Over the past few years, incremental learning (IL) has attracted extensive attention to facilitate a
model learning from a sequence of tasks. Within class-incremental learning (CIL), each task centers
on image classification and introduces new classes. The primary goal of CIL is to develop a unified
classification model that maps an input into a feature space by extracting its features and then classifies
it among all of the encountered classes with the features. However, if the model is solely fine-tuned
for each new task, it will suffer from a severe problem known as catastrophic forgetting, where its
knowledge of the old tasks fades and the performance degrades greatly (McCloskey & Cohen, [1989).

Various approaches have emerged to address catastrophic forgetting, broadly categorized into three
groups: replay-based (Bang et al., [2021; [Iscen et al., 2020; Lin et al., 2023} [Rolnick et al.| [2019;
Tiwari et al.| 2022), regularization-based (Aljundi et al 2018} [2019} |Jung et al.| 2020; [Sun et al.|
2023)), and architecture-based (Aljundi et al., 2017} |Douillard et al., [2022; [Li et al., 2019} |Pham et al.,
2021} Yoon et al., 2018)) methods. Despite their efficacy in CIL, the primary optimization objective of
existing methods, typically a classification loss among the seen classes, has overlooked the necessity
of learning a representation compatible with future classes. Specifically, as depicted in Figure [Ifa),
their optimization objective will lead to the over-collapse of seen classes, where the model will map
originally separated one seen class and its adjacent regions in the input space to be mixed in the
feature space in order to improve model’s generalization on the seen class. Although this phenomenon
is observed, analyzed and desired in other classification tasks (Li et al., 2018} |[Fawzi et al.| [2018]),
its effect is not considered within the CIL scenario yet. However, as shown in Figure Eka) and our
experiments, the over-collapse will increase the risk of overlap between the areas covered by the seen
and future classes after being mapped into model’s feature space, making them indistinguishable. As
stated by |Masana et al.| (2022)), this overlap can result in knowledge forgetting of seen classes since
the model will misidentify the samples of seen classes belonging to future classes after learning.
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In this paper, we propose a two-step framework to
Prevent the Over-Collapse (POC) to bolster CIL per-
formance. During training, POC learns and applies Baseling LROIC
a set of transformations to the training samples of
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seen classes in input space so that we can let them Y
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panded with another classifier and its optimization
objective is modified to additionally classify between
seen classes and adjacent regions, separating them in
model’s feature space. In this way, the over-collapse
is prevented so that future classes are protected from
overlap, avoiding catastrophic forgetting. During test- Feature Space Feature Space
ing, the expanded classifier is masked, enabling the @ ®)

model to classify between seen classes without intro-
ducing extra computation burden. Since the adjacent
regions are exclusively leveraged for classification,
POC can be easily adopted by existing CIL methods
to improve their performance. Moreover, because
the adjacent regions are semantically similar to their
original classes, classifying between them without ad-
ditional constraints can make them distant in model’s
feature space (Elsayed et al.| 2018) and harm the
model’s generalization. Therefore, a deterministic
contrastive loss is introduced to make the adjacent
regions close to their original classes in the feature
space. In this way, the generalization of the model on
the seen classes is protected, improving performance.

Figure 1: Illustration of POC. In (a), a base-
line model will map originally separated one
seen class and its adjacent regions in the input
space to be mixed in the feature space, lead-
ing to the over-collapse of the seen class. The
areas covered by the seen and future classes in
model’s feature space will then overlap, caus-
ing catastrophic forgetting. Contrastingly, in
(b), POC produces samples in the adjacent re-
gions by transformations and trains the model
to classify between adjacent regions and seen
class, preventing the over-collapse.

In summary, our contributions are three-fold:

* We analyze the over-collapse phenomenon and its negative effect for class-incremental
learning (CIL). Therefore, we propose to Prevent the Over-Collapse (POC) to protect future
classes from overlapping with seen classes in model’s feature space for CIL.

* POC can be easily adopted by existing CIL methods to improve their performance. Moreover,
a deterministic contrastive loss protecting the generalization of the model on the seen classes
is introduced for POC, further improving its effectiveness.

» Experiments on CIFAR-100 and ImageNet show that POC increases the last/average incre-
mental accuracy of six SOTA CIL methods by 3.5%/3.0% on average respectively.

2 RELATED WORK

2.1 CLASS-INCREMENTAL LEARNING

Class-incremental learning (CIL) strives to enable a unified model to learn sequentially from different
image classification tasks while retaining knowledge from previous ones (Hung et al.| 2019} Singh
et al.,[2020; |Wang et al.} [2022; Yan et al.,[2021}; |Zhou et al.l 2021). Generally, the methods fall into
three categories: (1) replay-based; (2) regularization-based; (3) architecture-based.

Replay-based methods (Bang et al., 2021} Hou et al.| 2018 [Wu et al., | 2019)) offer an intuitive solution
by storing samples from previous tasks in a memory buffer. When learning new tasks, the stored
samples are amalgamated with new data to train the model. Initially, Riemer et al.| (2018) used an
equal proportion of new and stored samples to calculate the loss. [Douillard et al.|(2020) and [Hou
et al.|(2018) further utilized stored samples to calculate a distillation loss for knowledge transfer.

To mitigate memory usage for storing samples, regularization-based methods (Lopez-Paz & Ranzato|
2017; Wang et al., [2021)) augment the classification loss with a regularization term, preventing
crucial parameters from changing too much. For instance, Aljundi et al.|(2018) quantified parameter
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importance for old tasks, then regularized alterations of significant parameters. Alternatively, |Li &
Hoiem|(2017) employed knowledge distillation to maintain logits of new samples on old classes.

Architecture-based methods offer an alternative approach by modifying the model or maximizing
feature distance across different tasks, making different tasks mutually independent. In the work
of Rajasegaran et al.|(2019) and Serra et al.[(2018)), upon the arrival of a new task, a specifc part of the
model is trained and then fixed. In the work of |Chaudhry et al.| (2020), Tang et al.| (2021)) and | Xiang
& Shlizerman| (2023)), the authors designed special losses to maximize the distance across tasks.

A shared problem of the aforementioned methods is their exclusive emphasis on enhancing discrimi-
nation among the seen classes during current task learning. However, this singular focus will lead to
the over-collapse of seen classes, causing catastrophic forgetting. Instead, with seen classes, our POC
produces samples in their adjacent regions and trains the model to classify between them and the
seen classes. This strategy can prevent the over-collapse, making the model adaptable to future tasks.

While similar to FACT (Zhou et al.| [2022) and IL2A (Zhu et al.l 2021) in generating extra data
for training, our POC differs in key aspects. Their foundational principle is to train the model to
classify between seen and future classes in advance. It is based on assumption that positions of future
classes can be predicted with the seen classes using mixup. However, future classes vary a lot and are
unpredictable. Differently, POC aims to enhance the feature’s discrimination by producing samples
in adjacent regions of seen classes and training the model to classify between these regions and seen
classes. In this way, the over-collapse is prevented and the future classes will be naturally protected
from overlapping, regardless of their actual positions. Detailed experiments are in Section[d.2.2]

2.2 OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution (OOD) detection (Bai et al.| 2021} (Cai & Fan, |2022;|Jeong & Kim, [2020) aims at
predicting whether a sample aligns with the training data. In a specific approach (Cai & Fanl 2022
Golan & El-Yaniv, [2018}; Mohseni et al., [2021; Tack et al.| 2020), researchers pre-trained a model to
predict the geometric transformation on input samples. It was shown that the transformed samples
are OOD-like, while similar to their original samples (Tack et al., [ 2020). It inspires us to learn a set
of transformations whose application results are adjacent to the seen classes. By classifying them
from the seen classes, their features will be separated so that the over-collapse will be prevented.

3 METHODOLOGY

This section provides a comprehensive overview of our proposed POC. Section [3.1]briefly formulates
the CIL problem alongside existing methods, followed by the motivation of POC. Section [3.2] details
the framework of POC, emphasizing its approach to learn a set of transformations to produce samples
locating in so that representative of adjacent regions of seen classes in input space and modify model’s
optimization objective to additionally classify between seen classes and adjacent regions, separating
them after being mapped by model into its feature space. This strategy prevents the over-collapse and
protects future classes from overlapping with seen classes in model’s feature space.

3.1 PROBLEM STATEMENT AND MOTIVATION

In CIL, a model will learn from 7 tasks and should classify an input among all seen classes at any

time step. Specifically, when learning from task ¢, L, new classes C'={ct} fztl are introduced and the
model has only access to the new training dataset, while the evaluation is performed on the union of
the testing datasets encountered so far. In general, the model consists of two primary components: a
feature extractor f:X'—R? that maps an input into a feature space by extracting its features and a

classifier ®:R?—RL¢ that calculates the probability distribution over seen classes with the extracted
features, where LFZE:l L;. CIL aims to obtain better performance after learning 7 tasks.
Most of the existing CIL methods can be formulated into the following paradigm. Given the training

samples {{(z; ;, yi)};y:il}f:tl, where y; € UL_ {C"} since there can be a memory buffer storing a
subset of samples from the old tasks, a classification loss Ly is calculated:

L: N;
Law =Y > L®(f(xi)),vi), (D

i=1 j=1
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Figure 2: Overview of our POC. During training, it operates in two steps “Adjacent Region Labeling”
and “Collapse Prevention”. First, a set of transformations are learned and applied to training samples
of seen classes to produce samples locating in so that representative of their adjacent regions in the
input space. Then, the model is expanded with another classifier and its classification loss is modified
to additionally classify between the seen classes and adjacent regions, preventing the over-collapse.
A deterministic contrastive loss is introduced to preserve model’s generalization. During testing, the
expanded classifier is masked to leverage the original model to classify among the seen classes.

where L represents a classification criterion, e.g. cross-entropy loss. Additionally, a regularization
loss Lge; may be employed to preserve important parameters or transfer knowledge. These two losses
are combined to optimize the model. However, as stated in Sectionm and shown in experiments, this
training paradigm will lead to over-collapse so that seen and future classes will overlap after being
mapped into model’s feature space, which will result in catastrophic forgetting (Masana et al., 2022).

Drawing from our observation, we propose to first produce samples locating in so that representative

of n adjacent regions of the seen classes in input space {{{(&; k,m., L, k)}n]\f:’i 31}t . Subsequently,
we modify the classification loss to be L4 cis to incorporate classification between these adjacent
regions and the seen classes, separating them in model’s feature space to prevent the over-collapse:

Zt N; Zt n Mi,k
Ltoacis = D > L@ (i) y) + DD D LO(f (Fikm)s L), (2)
i=1 j=1 i=1k=1 m

3.2 PREVENT THE OVER-COLLAPSE

With the above purpose, we propose POC that can be easily adopted by the CIL methods to help
address the problem and improve their performance. As illustrated in Figure 2} POC works in two
steps “Adjacent Region Labeling” and “Collapse Prevention” during training. In the first step, POC
learns and applies a set of transformations to the training samples of seen classes to produce samples
in and representative of their adjacent regions in the input space. In the second step, the model is
expanded with another classifier and its optimization objective is modified to additionally classify
between the adjacent regions and the seen classes, separating them in model’s feature space so that
preventing the over-collapse. Furthermore, to protect the generalization of the model on the seen
classes, we introduce a deterministic contrastive loss that makes the separate features of the seen
classes and adjacent regions close. During testing, the expanded classifier is masked, allowing the
original model to classify inputs among seen classes without introducing additional inference costs.

3.2.1 ADJACENT REGION LABELING

To prevent the over-collapse, an intuitive first step is to generate samples in the adjacent regions of the
seen classes in the input space and let them represent the adjacent regions. Initially, we experimented
with applying mixup, rotation and other transformations to the training samples of seen classes to
generate desired samples. However, we found that the resulting samples were too distant from or close
to the original ones, unable to represent the adjacent regions and leading to suboptimal performance.
Inspired by out-of-distribution (OOD) detection works (Ca1 & Fan, 2022} |Golan & El-Yaniv, 2018
Mohseni et al.| [2021}; [Tack et al., 2020), we propose to learn a new set of transformations to generate
suitable samples. To substantiate this approach, we begin by proving that affine transformations have
the capability to generate OOD samples through the following proposition:
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Proposition 3.1. Denote the distribution of images {x} as P,.(z). For V0 < 8 < max(P,.(x)),0 <
§ < 1, 3A, €{A|A is the matrix of one affine transformation}, s.t. P(P.(Aqx) < ) > 6.

Proof. Given in Appendix O

Second, we demonstrate that applying rotations to images results in transformed outputs whose
distance from the original distribution is bounded by an upper limit.

Proposition 3.2. Denote the probability distribution of images {x} from a specific class as P(x). For
VA €{A,|A, is the matrix of one rotation transformation}, W(P(Ax), P(x)) < §, where W is the
Wasserstain distance and ¢ signifies a constant upper bound.

Proof. Given in Appendix [A.2] O

However, when directly using rotations, since some rotated samples, such as a rotated pen, have the
same semantic as their original samples, the distribution of the rotated samples can overlap with that
of the original samples. In this way, less adjacent regions are covered, reducing the effectiveness of
POC as shown in Section4.2.4]and [C.1] Moreover, classifying the overlapped region into different
classes is improper and is harmful for model training. To take advantages of rotations according to
Proposition [3.2]and according to Propoesition 3.1} we propose to learn a set of affine transformations
whose parameter matrices are denoted as follows:

n
gyn  — J(Pi1 Piz Pi3 .
{0k {(Pm pis Pis) .,

We then calculate a transform loss Ltpans to make the transformations similar to but not the same as
the rotations so that the transformed results will be OOD while close to original samples:

n 2 3
Lrans = Z(Z Z(el - 9i)j,k)7
i=1 j=1k=1
271 s 2mE n
N 2mi g 2mi
st {0} = { <C~Os 21 bann? ) } : )
! sin < cos =t 0)f._,

Complemented by the modified classification loss detailed in Section @ LTyans Will optimize
the parameters of transformations to make the transformed results locate in and representative of
adjacent regions of seen classes in the input space, quantitatively shown in Section Our
experiments in Section [C.3|underscore that the acquired transformations significantly enhance POC’s
performance compared to mixup and other transformations. Based on these parameters, the learned
transformations are then applied to the training samples of the seen classes, generating a set of new

samples {{{(x: j k, Yi k) jy:il}f:’fl}zzl, where x; ; . is produced by applying k-th transformation
to x; ; and y; 1, is a generated new class. In this way, {{(z; j r. ylk)}jvzl}};:l are considered as n
labeled adjacent regions of class y; in input space produced with its training samples {(z; ;, yl)}jv: 1

3.2.2 COLLAPSE PREVENTION

With the labeled adjacent regions, to prevent the over-collapse, a direct solution is then training the
model to classify between adjacent regions and seen classes. Therefore, besides ®, we introduce

another classifier ®:R¢ — R™Lt which also takes the extracted features of f as input and calculates
the probability over the adjacent regions. With the transformed training samples labeling adjacent
regions and additional classifier, the classification loss L¢js will be modified to be Lyoq_cis as follows:

n — 1 =
Ly cis = = Z L(@o®(f(wis))yi) + -7 Z L(@o®(f(2ijk)),yik), (&)
7 i,7,k#0
where o means concatenating the outputs of two classifiers. Lyioq_c1s Will substitute Lcys to train the
model to make the seen classes and their adjacent regions separated in the feature space, preventing
the over-collapse. During testing, the classifier ® is masked so that only ® is used to calculate the
probability distribution over the original seen classes, without introducing additional cost.
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3.2.3 DETERMINISTIC CONTRASTIVE LOSS

The proposed two steps separate the features of seen classes and adjacent regions without constraining
their distance, which will make the model map the seen classes and adjacent regions to be distant
from each other in the feature space for better classification. However, since the training samples
cannot completely represent their classes, an actual testing sample can locate in the adjacent regions
produced with training samples. In this way, the model’s generalization on the seen classes will be
impeded because the model will map these testing samples to be far from the training samples in
the feature space, crossing the classification boundary and leading to wrong classification result. To
this end, we introduce a deterministic contrastive loss that makes the features of the seen classes
and adjacent regions close. In addition, to maintain the diversity of transformations to cover more
adjacent regions, the features of adjacent regions are kept away from each other. Specifically, for
each training sample x, after applying the transformations to it, we can get a set of results {x;}7_,
where x; is produced by i-th transformation and x( equals x. With the feature extractor f, we can
further get the features of these results { f(z;)}, and define the similarity between two results:

sim(xi, ;) = exp(¢(f(2:), f(x;))/7), (5)

where 1(a,b) = —%Y calculates the cosine similarity between the inputs and 7 is a temperature
[alll]6]]

parameter adjusting the scale. With the defined similarity, the deterministic contrastive loss for one
training sample is calculated as follows and then averaged over all samples:

n .
sim(z;, zg)
LpcL = — E :1 .
- i=1 % sim(zi, 20) + 34, sim(i, 2)

(6)

3.2.4 ToOTAL OBJECTIVE

During training, we aggregate the aforementioned optimization objectives to form the total loss Lot
Lol = LMod_cts + Lreg + A1 Lvans + A2LpeL, @)

where A\ and )\, are hyperparameters used to balance the scale of different losses. The model is then
optimized with Ly, preventing the over-collapse and protecting the future classes from overlapping
with the seen classes in model’s feature space to make the model compatible with future tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP
4.1.1 DATASETS AND EVALUATION METRICS

In line with prior works, we choose CIFAR-100 (Krizhevsky et al., 2009), ImageNet-100 and
ImageNet (Deng et al.,[2009) for evaluation in experiments. ImageNet-100 is a subset of ImageNet
with 100 random classes chosen according to the same principle of LUCIR (Hou et al.|[2019). We
use two metrics to evaluate the performance of one method, which are the last accuracy and the
average incremental accuracy. Denoting the model’s classification accuracy after learning from task ¢
as A, then the last accuracy is defined as .A7. For average incremental accuracy, it is calculated as
% Zthl A, indicating the performance of the model along the whole learning procedure. The data
unit of the reported results is “%”.

To further quantify the distance between the seen and future classes and the generalization of the
model on the seen classes, we define another two metrics named inter-class distance (ICD) and
intra-class generalization (ICG). After task ¢ and before learning from task ¢+1, we collect the training
samples of the seen and newly introduced classes and the testing samples of the seen classes. Then
we use the feature extractor f to obtain the features of each sample and calculate the mean of the
features for each class. Assuming that the means of the features for the seen classes and new classes

are { ui7train}f:f1, { ui,test}f:tl and {m}f:ﬁl respectively, then the ICD and ICG are defined as follows:

Liya
1 L
ICD = max iy Wi train) }it1 ), 8
Lim ; i, e )}J—l) @®)
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Table 1: Performance analysis of POC on CIFAR-100 under 6 task settings. “B” and “C” represent
the class number of the first task and the following tasks respectively. The experiments are run for 3
times and the mean and variance of average incremental accuracy are reported.

Class Number Settings
Method B =50 B =20
C=10 C=5 C=1 C=10 C=5 C=1

LUCIR 64.1£0.9 61.2+0.7 55.9+0.3 59.4+0.5 57.6+£0.3 48.5+0.2
w/POC | 66.8(+2.7)£0.7 63.5(+2.3)£0.6 59.6(+3.7)+0.4 | 63.8(+4.4)£0.3 59.2(+1.6)+0.3 53.1(+4.6)+0.2

CwD 67.2+£0.2 62.8+0.1 59.7+0.2 64.3+0.4 61.2+0.5 53.6+0.3
w/POC | 69.6(+2.4)£0.4 65.4(+2.6)+0.3 62.3(+2.6)+0.5 | 68.3(+4.0)£0.2 66.1(+4.9)+0.4 59.1(+5.5)+0.2
PODNet 64.6+0.7 63.2+1.1 59.840.5 54.9+0.4 53.2+0.4 50.5+0.2
w/POC | 68.2(+3.6)+0.8 67.2(+4.0)+1.0 63.1(+3.3)+0.7 | 60.6(+5.7)+0.7 58.3(+5.1)10.4 53.5(+3.0)+0.5
MEMO 70.2+0.5 69.0+0.7 61.4+0.3 69.5+0.5 67.3+£0.8 63.2+0.4
w/POC | 71.8(+1.6)£0.6 70.4(+1.4)£0.4 63.5(+2.1)10.5 | 70.9(+1.4)£0.6 69.3(+2.0)+0.4 64.8(+1.6)+0.6
LODE 68.7+£0.6 64.6+0.8 58.5+0.4 66.2+0.5 64.4+0.3 59.2+0.5
w/POC | 70.0(+1.3)£0.5 66.1(+1.5)£0.7 60.5(+2.0)+0.7 | 68.4(+2.2)£0.3 65.8(+1.4)+0.6 62.4(+3.2)+-0.4
MRFA 68.0+£0.4 66.4+0.6 60.3+0.8 67.8+0.8 65.7£0.6 61.3+0.7
w/POC | 69.2(+1.2)£0.4 68.1(+1.7)£0.5 62.7(+2.4)+0.5 | 69.6(+1.8)£0.6 67.5(+1.8)+0.4 63.6(+2.3)+0.8

Table 2: Performance analysis of POC on ImageNet-100 under 6 task settings. “B” and “C” represent
the class number of the first task and the following tasks respectively and the last accuracy/average
incremental accuracy are reported.

Class Number Settings
Method B =50 B=20
C=10 C=5 C=1 Cc=10 Cc=5 Cc=1
LUCIR 61.4/71.5 55.1/67.2 41.1/56.8 48.0/61.5 42.6/55.7 34.3/48.9
w/POC | 64.0/73.7(+2.6/2.2) 57.6/68.3(+2.5/1.1) 47.7/61.8(+6.6/5.0) | 51.5/65.2(+3.5/3.7) 46.4/59.3(+3.8/3.6) 36.9/51.5(+2.6/2.6)
CwD 60.4/71.6 55.8/68.2 40.3/56.3 48.2/62.9 44.6/58.5 34.3/51.1
W/POC | 62.3/73.2(+1.9/1.6) 57.4/69.4(+1.6/1.2) 44.7/59.8(+4.4/3.5) | 51.2/64.4(+3.0/1.5) 47.1/60.6(+2.5/2.1) 38.9/53.1(+4.6/2.0)
PODNet 62.3/73.4 57.4/71.6 42.9/59.7 45.8/63.0 41.7/59.8 32.4/50.0
W/ POC | 63.8/75.0(+1.5/1.6) 62.3/72.8(+4.9/1.2) 48.6/63.7(+5.7/4.0) | 49.1/64.8(+3.3/1.8) 48.2/62.1(+6.5/2.3) 36.6/55.1(+4.2/5.1)
MEMO 66.2/76.8 64.5/76.4 52.7/64.0 53.6/67.1 48.4/60.8 40.3/53.2
W/ POC | 67.4/77.9(+1.2/11)  66.5/77.8(+2.0/1.4)  55.9/66.5(+3.2/2.5) | 55.4/68.2(+1.8/1.1) 50.7/62.5(+2.3/1.7) 42.4/54.7(+2.1/1.5)
LODE 64.5/73.6 59.4/71.0 45.8/60.4 50.6/63.5 45.3/59.5 37.2/52.1
W/ POC | 66.1/751(+1.6/1.5) 61.7/73.1(+2.3/2.1)  50.4/63.8(+4.6/3.4) | 53.4/65.7(+2.8/2.2) 48.3/62.3(+3.0/2.8) 40.5/53.4(+3.3/1.3)
MRFA 65.1/74.8 61.4/73.2 47.3/61.6 51.8/64.9 46.1/60.0 38.5/52.6
w/POC | 66.4/76.0(+1.3/1.2) 63.3/749(+1.9/1.7)  50.6/64.4(+3.3/2.8) | 54.1/66.6(+2.3/1.7) 48.7/62.1(+2.6/2.1) 41.1/54.3(+2.6/1.7)
1 L.
ICG = = Z '(/}(/Ji,lraim Mi,test)a &)
L iH
where ¥(a,b) = W calculates the cosine similarity between the inputs. ICD measures the

distance between each newly introduced class and its closest seen class, signifying the extent of
overlap between them within model’s feature space. A higher ICD value indicates increased overlap
between new and seen classes. ICG assesses the distance between training and testing samples of
each seen class, reflecting the model’s generalization capacity on the seen classes. A higher ICG
value signifies improved model generalization.

4.1.2 MODELS AND TRAINING

We incorporate our POC into six state-of-the-art CIL methods, which are LUCIR (Hou et al.l 2019),
CwD (based on LUCIR) (Shi et al.,|[2022), PODNet (Douillard et al.,|[2020), MEMO (Zhou et al.|
2023), LODE (Liang & Li, 2023) and MRFA (based on FOSTER (Wang et al., 2022)) (Zheng
et al.| 2024)). The classification models employed on CIFAR-100, ImageNet-100 and ImageNet are
ResNet-32, ResNet-18 and ResNet-18. The hyperparameters n, 7, A1 and A5 are set to be 3, 2, 10, 0.1
respectively. On CIFAR-100 and ImageNet-100, the methods will be evaluated across 6 task settings,
whose class numbers of the first task and the following tasks are: (1) 50, 10; (2) 50, 5; (3) 50, 1; (4)
20, 105 (5) 20, 5; (6) 20, 1. As for ImageNet, 3 task settings are explored: (1) 500, 100; (2) 100, 100;
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Table 3: Performance analysis of POC on ImageNet under 3 task settings. “B”” and “C” represent
the class number of the first task and the following tasks respectively and the last accuracy/average
incremental accuracy are reported.

Method Class Number Settings
B=500, C=100 B=100, C=100 B=10, C=10

LUCIR 49.4/57.9 42.3/54.8 21.6/30.4
w/POC | 50.8/59.0(+1.4/1.1) | 43.8/57.3(+1.5/2.5) | 23.2/33.6(+1.6/3.2)

CwD 50.8/58.6 42.8/56.2 22.4/31.3
w/POC | 52.4/59.8(+1.6/1.2) | 44.8/57.6(+2.0/1.4) | 24.5/34.0(+2.1/2.7)
MEMO 58.4/69.8 56.2/67.3 40.8/50.7
w/POC | 59.6/70.9(+1.2/1.1) | 57.2/68.6(+1.0/1.3) | 42.0/52.4(+1.2/1.7)

Table 4: Performance analysis of POC on CIFAR-100 with different sizes of memory buffer. “B”,
“C” and “M” represents the class number of the first task, the following tasks and the size of memory
buffer for each class respectively. The last accuracy/average incremental accuracy are reported.

Class Number and Memory Buffer Size Settings
Method B=50,C=10 B=20,C=10
M=10 M=20 M =50 M=10 M=20 M =50

LUCIR 49.2/59.8 52.6/62.0 57.2/64.7 39.2/53.9 45.8/57.8 50.5/61.5
w/POC | 54.0/63.1(+4.8/3.3) 57.4/65.6(+4.8/3.6)  60.8/68.1(+3.6/3.4) | 45.3/58.9(+6.1/5.0) 49.7/61.6(+3.9/3.8)  55.1/65.4(+4.6/3.9)

CwD 54.4/64.5 58.2/66.7 63.0/70.0 45.7/58.2 51.2/62.5 57.6/67.0
w/POC | 57.5/67.0(+3.1/2.5) 61.1/69.6(+2.9/2.9)  65.7/72.6(+2.7/2.6) | 51.6/64.0(+5.9/5.8) 55.6/67.1(+4.4/4.6) 61.9/71.2(+4.3/4.2)
PODNet 43.5/56.6 48.7/60.3 56.0/64.9 32.6/49.3 38.7/53.9 46.5/59.4
w/POC | 49.2/62.4(+5.7/5.8) 53.1/64.3(+4.4/4.0)  61.2/69.6(+5.2/4.7) | 36.7/54.0(+4.1/4.7) 42.6/58.4(+3.9/4.5)  50.9/63.9(+4.4/4.5)
MEMO 56.8/63.9 60.1/66.0 64.4/70.7 52.4/63.2 58.7/67.7 62.3/70.6
w/POC | 58.7/65.5(+1.9/1.6) 61.2/67.2(+1.1/1.2)  65.9/71.5(+1.5/0.8) | 54.9/65.3(+2.5/2.1)  60.0/69.1(+1.3/1.4)  63.6/71.8(+1.3/1.2)
LODE 52.2/64.5 57.3/66.3 61.6/69.7 48.2/61.6 53.5/65.7 59.2/69.6
w/POC | 53.3/65.9(+1.1/1.4) 59.1/67.4(+1.8/1.1) 62.8/70.8(+1.2/1.1) | 49.8/64.8(+1.6/3.2) 57.0/69.0(+3.5/3.3) 63.7/73.7(+4.5/4.1)
MRFA 54.6/64.8 58.2/66.5 63.1/70.2 50.4/62.4 55.3/66.5 60.7/70.2
w/POC | 55.9/66.5(+1.3/1.7) 59.8/67.9(+1.6/1.4) 64.4/71.5(+1.3/1.3) | 52.4/64.8(+2.0/2.4) 57.9/68.5(+2.6/2.0)  63.9/72.9(+3.2/2.7)

(3)10, 10. The models will be trained for 160 epochs on CIFAR-100 while the training epoch will be
100 on ImageNet-100 and ImageNet.

4.2 EXPERIMENTAL RESULTS

4.2.1 COMPARISON WITH STATE-OF-THE-ARTS

We first compare the performance of LUCIR, CwD, PODNet, MEMO, LODE and MRFA before and
after adopting POC to prove its effectiveness. The experiments on CIFAR-100 will run for 3 times
with the random seed being 0, 42, 1993 and the mean and variance of the results will be reported.
Employing a memory buffer size of 20 for each class, results are detailed in Tables and[3] Across
all task and dataset settings, POC consistently enhances the performance of these six CIL methods.

We then evaluate the performance of the methods on CIFAR-100 under task settings (1) and (4), with
different sizes of memory buffer that are 10, 20, 50 for each class. To accelerate the experiments, the
random seed is fixed to be 1993 and the training epoch is set to be 100. The results in Table 4] reveal
that POC also helps improve the performance of CIL methods with different buffer sizes.

We note that LUCIR, PODNet, LODE and MRFA are replay-based methods. CwD is a regularization-
based method and MEMO is an architecture-based method. The improved performance of all
methods with POC proves that our POC can be adapted by different categories of methods, showing
the effectiveness and universality of our POC framework.

4.2.2 COMPARISON WITH SIMILAR WORK

In Section@ we analyze the difference between our POC and FACT (Zhou et al.;[2022), IL2A (Zhu
et al.,2021). We point out that predicting the future classes with the seen classes through mixup is
difficult. In this section, we design experiments to show that. First, we define Overlap between two
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Table 5: Comparison between IL2A and POC to show that POC performs better and prove that their
principles are different. “B” and “C” represent the class number of the first and the following tasks
and the last accuracy/average incremental accuracy are reported.
Class Number Settings
Method B =50 B =20
C=10 C=5 C=1 C=10 C=5 C=1
LUCIR 52.6/62.0 50.1/59.9 45.2/55.9 | 45.8/57.8 42.4/54.5 36.4/48.3
w/ TL2A 56.3/64.4 53.2/61.5 48.6/57.8 | 48.6/60.2 45.3/55.9 39.4/50.6
w/ POC 57.4/65.6  54.6/623  50.9/59.7 | 49.7/61.6  46.6/57.4  42.0/53.1
w/POC+IL2A | 58.5/66.7 56.3/63.4 52.2/61.4 | 50.8/62.7 47.7/58.2 43.1/54.3

Table 6: Ablation study on CIFAR-100 to show that the deterministic contrastive loss (DCL) helps
improve the performance of POC. “B” and “C” represent the class number of the first and the
following tasks and the last accuracy/average incremental accuracy are reported.

Class Number Settings
Method B =50 B =20
C=10 C=5 C=1 C=10 C=5 C=1

LUCIR 52.6/62.0 50.1/59.9 45.2/55.9 | 45.8/57.8 42.4/54.5 36.4/48.3
w/ POC (no DCL) | 56.5/64.7 52.8/61.2 49.6/57.6 | 48.7/60.3 45.2/56.0 40.0/51.1
w/ POC 57.4/65.6 54.6/62.3 50.9/59.7 | 49.7/61.6 46.6/57.4 42.0/53.1
CwD 58.2/66.7  53.7/62.7  50.7/59.9 | 51.2/62.5 47.9/59.4 42.9/53.8
w/ POC (no DCL) | 60.2/68.2 54.1/63.8 51.8/61.2 | 53.9/65.4 50.7/62.4 44.9/56.7
w/ POC 61.1/69.6 54.9/64.6 52.9/62.4 | 55.6/67.1 52.5/64.2 46.8/59.1
MEMO 60.1/66.0  60.6/65.9 56.8/61.8 | 58.7/67.7 59.2/67.8 55.2/63.5
w/ POC (no DCL) | 60.8/66.8 61.2/66.4 57.4/62.3 | 59.5/68.4 60.1/68.2 56.4/64.3
w/ POC 61.2/67.2 61.9/67.4 58.5/63.8 | 60.0/69.1 60.8/68.9 57.3/65.1

distributions Cj, Cj:

N; N;
1 1 <= . 1 <& .
dlntrd z Zd ]7 Zl'k inter Czac) (ﬁzm’]z,ﬁz‘r{)
Yk 7o
Overlap(CZ-, C]) = dinler(Ci7 Cg) - (dintra(ci) + dintra(Cj))a (10)

where :(’; is the j-th sample from distribution C;. d is the Euclidean distance. The higher the
Owverlap(C;, Cj) is, the more separate the distribution C; and C; are. We train a ResNet-32 on
CIFAR-100 under task setting (1) and calculate the average Overlap between the newly introduced
classes and the mixup results of the seen classes. The values of Overlap during the whole training
procedure are 0.23, 0.35, 0.37, 0.28, 0.25 after normalization. These positive values indicate that the
newly introduced classes and the mixup results of the seen classes are separate.

We then compare the performance of POC and IL2A to show that our POC helps the CIL methods
obtain better performance. To accelerate the experiments, the random seed is fixed to be 1993 and the
training epoch is set to be 100. We adopt LUCIR with IL2A and POC respectively and the results in
Table[5]show that POC performs better than IL2A. Moreover, when adding IL2A and POC to LUCIR
simultaneously, the performance could further increase, proving the different principle of IL2A and
POC. Since FACT is not a plug-and-play method, we do not compare with LUCIR+FACT.

4.2.3 EFFECT OF DETERMINISTIC CONTRASTIVE LOSS

In this section, we assess POC’s performance on CIFAR-100 without deterministic contrastive loss
(DCL), with random seed and training epoch to be 1993 and 100. The results in Table [6| reveal that
excluding DCL leads to performance degradation across all 6 task settings, highlighting its necessity.

Furthermore, our analysis of ICD, ICG in Figure |3| under task settings (1) and (4) demonstrates
that ICD will be high without POC, which quantitatively shows the over-collapse and overlapping
problem. Regardless of DCL, POC consistently lowers ICD, preventing future and seen classes
from overlapping in model’s feature space. However, without DCL, a decline in ICG indicates the
compromised model generalization on seen classes, showing DCL’s role in preserving it.
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Figure 3: Illustration to show that POC protects the future classes from overlapping. The deterministic
contrastive loss (DCL) protects the generalization on the seen classes.

Table 7: Analysis on CIFAR-100 showcasing the enhanced performance of POC with learnable
transformation parameters. “B” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.

Class Number Settings
Method B =50 B=20
C=10 C=1 C=10 C=1
LUCIR | 52.6/62.0 45.2/55.9 | 45.8/57.8 36.4/48.3
Fixed 56.5/64.8 49.7/57.6 | 49.0/60.2 40.5/52.3
Learnable | 57.4/65.6 50.9/59.7 | 49.7/61.6 42.0/53.1

4.2.4 EFFECT OF LEARNABLE TRANSFORMATION

In Section [3.2.1) we emphasize the efficacy of learnable parameters {6;}" ; by making the trans-
formations in POC adaptable and similar to rotations. This section conducts an evaluation when
employing fixed parameters as rotations and setting random seed/training epoch to be 1993/100:

n cos 2T _gin2m g\ )"
{91'}1:1:{(- 2mi 21t . (11)

sin =—— COS .
n n i=1

The results with LUCIR as the baseline are in Table [7]and more results are supplemented in Sec-
tion [C.I] The results underscore the enhanced performance of POC when employing learnable
transformations. Part of the rational behind this phenomenon has been stated in Section [3.2.1] In
addition, with the help of modified classification loss, transformations that can generate samples
without overlapping with the original samples while close to the original samples will be learned,
increasing the effectiveness of POC. As a proof, we calculate the average Overlap as in Section[4.2.2]
between seen class and one of its transformed results. After learning 5 classes on CIFAR-100, the
Overlap increases from -0.17 to 0.06 when changing the direct rotations to learnable transformations,
indicating that the transformed results and seen class changes from overlapped to separated while the
transformed results are still close to the seen class so that representative of their adjacent regions.

5 CONCLUSION

In this paper, we analyze the over-collapse problem and propose a framework to Prevent the Over-
Collapse (POC) for CIL. POC learns and applies a set of transformations to the seen classes to
produce samples in adjacent regions. Then the model’s optimization objective is modified to classify
between the adjacent regions and the seen classes to prevent the over-collapse. We also introduce a
deterministic contrastive loss to preserve the model’s generalization on the seen classes. Extensive
experiments show the POC’s effectiveness in improving the performance of existing CIL methods.

10
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A PROOFS

A.1 PROOF OF PROPOSITION[3.T]

We assume that the probability distribution of {x} corresponds to a multi-variant Gaussian distribution.
Then the concrete formulation of P,.(x) is:
1 =) T2 )
P(a) = —— e 7, (12)
(2m) 5 [x|?
where 1, and X are the expectation and variance. n is the dimension of x.

We reversely prove the following proposition, which is equal to Proposition 3.1:

Proposition A.1. For V0 < f < max(P.(z)),0 < § < 1, A, €{A|A is the matrix of one affine
transformation}, s.t. P(P.(Aqxz) > ) <1—4.

In order to prove the Proposition A.1, we first prove the following proposition:
n 1
Proposition A.2. For a reversable matrix A, if Apin(ATS71A) > —8log(@m) 2 [B[2 8 4p oy

= 2nmE /(=02

P(P,(Az) > ) <1 — 0. A\pin returns the minimum eigenvalue of the input matrix.

Proof. For a reversable matrix A, we have the following equation:

P(P.(Az) > ) = P(mewmgww) > 8) 03
— PR S onEnjig) (14)
Az — TE* Az — n 1
= p(- A AT ) 5 g (2mt 3t ) (15)
= P((Az — p)"x 7 (Az — ) < —2log((2m) ¥ [S]2 8)) (16)

= P((w— A7) TATS T A(w — A7) < —2l0g((2m)3[828))  (17)
Next, we prove two lemmas and a corollary.

Lemma A.3. For VA € R™*" 5.t AT = A, Vz € R™, s.t||z||a = 1, we have 27 Az > \ppin(A),
where \pin, returns the minimum eigenvalue of the input matrix.

Proof. - A= AT - .wehave A = PTAP, where PTP =1, Aisa diagonal matrix and the elements
on the diagonal are the eigenvalues of A, 27 Az = 7 PTAPx

Denote Px as y, we have ||y||2 = yTy = 27 PT Pz = 27

equation and inequation:

z = 1. Therefore, we have the following

2T Az = yT Ay (18)
=25 Niiy; (19)

> min(A;) X0 y? (20)

= Anin(A) (21

O

Corollary A.4. For VA € R, 5.t AT = A, Vo € R", we have 17 Ax > \pnin(A)||2]|3, where
Amin returns the minimum eigenvalue of the input matrix.

Proof. We have 27 Ax = Hng(II;Hz)TA(H;Ih) "l ll2 = 1. According to Lemma ,
2T Az > Npin (A) 2|3 O

Lemma A.5. If Y is a positive-definite matrix, then for VA, s.t A is reversable, AT A is a positive-
definite matrix
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Proof. For any x # 0, 2T ATS Az = (Az)TS(Az). - Aisreversable .. Ax # [
"+ ¥ is positive-definite, Az # T - 2TATSAr = (Az)TS(Az) > 0 . ATSA is positive-
definite O

Back to Equ. (15), accordlng to Corollary A4} (z — A"')TATS A(x — A~ ) >
)\mzn(A x- 1A)H( )HQ
- f z satisfies (z — AL p)TATS T A(z — A~ tp) < —2log((2m) 2 2|2 8),

then 2 must satisfies Ay (ATSLA)||(z — A~1p)]|2 < —2log((27) % |2 8)

P(P.(Az) > B) = P((z — A7 )T AT A(w — A~y < —mog((zw)%mﬁm) (22)
< Pnin(ATS T A)|lz — A7 ]|} < —2log((27) % |22 8)) (23)
(24)

- X is positive-definite .-, £7! is positive-definite. According to Lemma ATY 1A is
positive-definite

)\mm(ATE_lA) > 0 and we can have the following equation and inequation:

P(P,(Az) > B) < PMmin(ATS 71 A)||o — A7 |3 < —2log((27) 2 2 )) (25)
_ —2log((2m) 2|%|2 )
=P(llz — A )2 <
= %Pr(x)dx 27)
¢
where ¢ = {z|llz — A7} < ‘foi(TT§'2‘2B)} C A{z)jm — (A7) <
—2log((2m) 3 |23
\EETIEIE
P(P,(Az) > B) < 515 Py(2)da (28)
¢
1
< ﬁ?gdm (29)
(2m)=2|X]2 J¢
1
(2m)2 X2 Jy
on o log((2m 2813 8)
_ A og(( 7;) & ) 31)
(2m) 3|23 Amin(ATS-TA)
_ —8log((2m) %
<1-=0 (. Apin(ATS71A) > - 32
O

According to Propesition [A:2] if we can prove the following proposition, then Proposition
holds.

Pr0p051t10n A6 {A|A is a matrix of one affine transformation}N{A|Xpin(ATS71A) >

~slog((2n) ¥zl 5
27T|E‘7L Y/ (1-6)2 }7& ¢

Proof. " ¥ is positive-definite .-, ¥~ is positive-definite. ¥~! = PTAP, where PTP =1, Aisa
diagonal matrix and the elements on the diagonal are the eigenvalues of X1,

16
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Denote the minimum eigenvalue of >~1as \and %\}%} as b. If A = PTRP,, where

PI P, = I, R is a diagonal matrix and the elements on the diagonal are the same and bigger than
%, then

ATY"'A = PTRPPTAPPTRP; (33)

= P/ RARP; (34)

where RAR is a diagonal matrix and the elements on the diagonal are bigger than b.

. _ pT Tp _ — > /b (AT —1 fSlog((%) 2128
.o {A|A P RP27P2 P2 I,R k‘[)k - \/:}7{A‘)\mzn(A E A) — QTFIZ‘ n/(l 5) }

We next prove the following proposition:

Proposition A.7. {A|A = PTRP,, PIPy =1, R =kI,k > \/g}:{AmTA =kl k> 2}

Proof. 1 A€ {A|A=PTRPy, PYP, =T, R=kI k> \/g}, then

ATA = PTRPPTRP; (35)
= Py RRP; (36)
= k?PI'p, (37
=k?T € {A|ATA = kI, k> g} (k> g) (38)

If A e{A|ATA=kI,k> 2}, let R=VkI, P, = R™'PA, then

PP, = ATPTR'R'PA (39)

1
= EATPTPA (40)

1

=-ATA 41

A 41
=1 (42)
. A€{A|A=P"RPy, PfP,=I.R=kLk >/} 0
Go back to Proposition - According to Proposition {A|ATA = kILk >
Q}C{A|)\mm(ATE’1A) > %{}Uiﬁ} It is easy to construct a matrix A of affine transfor-
mation, which satisfies A € {A|ATA = kI, k > )\} Therefore, Propos1t10n-h01ds Further-
more, Proposntlon@]and@]holds O

A.2 PROOF OF PROPOSITION[3.2]

We assume that the probability distribution of {2} corresponds to a multi-variant Gaussian distribution
and its expectation and variance are p and X. Then the probability distribution of { Az} is also a
multi-variant Gaussian distribution and its expectation and variance are Ay and AT X A. Then we
have the following equation and inequation:

W(P(Az), P(z)) = ||Ap — p||2 + Tr(ATSA+ % — 2[(ATSA)2 5 (ATSA)=)?) (43)
= ||[Ap — p||2 + Tr(ATSA) + Tr(2) — 2Tr([(ATSA) 22 (ATSA)2)2)
(44)

We next prove the following proposition and lemma:
Proposition A.8. For VA, Tr([(ATSA):£(ATSA)z]z) > 0

17
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Proof. According to Lemma ATY A is a positive-definite matrix. Suppose that ATXA =
PTAP, where PT P = I, A is a diagonal matrix and the elements on the diagonal are bigger than 0.

- (PTA2P)2=PTAz PPTA: P=PTAP - (ATSA)z = PTAzP - (ATSA)2=](ATSA)z2]T
(ATSA)22(ATSA)? is also a positive-definite matrix.

1

Suppose that (ATSA) 2 S(ATSA)3 =PI Ay Py, then [(ATSA) I S(ATSA)3=PIAZ P,

Tr([(ATSA)RS(ATSA)3]}) = Tr(PTAZ Py) (45)
— Tr(A P,PY) (46)

= Tr(AZ) >0 (47)

0

Lemma A.9. For VA, B,s.t.AT = A BT = B, the following inequation holds: Tr(AB) <
L(Tr(A?) +Tr(B?))

Proof. *-VA, B, Tr[(A+ B)(A+ B)T] + Tr[(A — B)(A— B)T] = 2[Tr(AAT) + Tr(BBT)]
VA, B,Tr[(A+ B)(A+ B)T] < 2[Tr(AAT) + Tr(BBT)]

When AT = A, BT = B, Tr[(A+ B)(A+ B)T] = Tr[A%? + B?> + AB + BA|] = Tr[A?] +
Tr[B?] + 2Tr[AB]

- Tr(AB) < 1(Tr(A?) + Tr(B?)) O

According to Proposition and Equ. (42), we have:

W(P(Az), P(z)) = ||Ap — pl|2 + Tr(ATSA) + Tr(S) — 2Tr([(ATSA) 22 (ATSA)2]3)

(48)
< ||Ap = ull3 + Tr(ATSA) + Tr(%) (49)
= [[Ap — pll3 + Tr(ZAAT) + Tr(%) (50)

< | A — pl + 5(Tr(S?) + Tr(AATAAT)) +Tr(S) (- LemmdA.0)
(51

" A is a matrix of rotation transformation .-, 4; ; > 0,Vi,X7_1A; ; =1

0 < (AAT);; = S Ai kAL (52)
< /(S 4205 (AT)2) (53)
< \/(2221141',1@)2(2?:114{,]-)2 (54)
=1 (55)
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W(P(A2), P(a)) < || A~ pl} + 5 (Tr(S%) + Tr(AAT AAT)) 4 Tr(5) (56)
<||Ap — pl3 + %(Tr(22) +n%) +Tr(E) (0< (AATAAT), ; <n)

(57)

< 1AW+ 1l + 5 (Tr(S?) + n2) + Tr(S) (58)

= D (S Ay il 5 (Tr(52) +n?) + Tr(2) (59)

1
< ()AL (Bfoapd)) + [pl3 + 5(Tr(2?) +n?) + Tr(S) (60)

1 A
ST + a3 + 5 (Tr(E2) +0) + Tr(S) (- Aiy > 0,¥i, 3572, Ai
(61)

Inequation (51) and (58) hold because of Cauchy inequation. Therefore, Proposition [3.2) holds.

B DETAILS OF MODELS AND TRAINING

We employ ResNet-32 for CIFAR-100 and ResNet-18 for ImageNet-100, ImageNet as our classifi-
cation models, adhering to the conventional methodology. These models process inputs through a
sequence of convolutional layers to extract features, subsequently reshaping them into vectors using
global max-pooling. The resultant vector serves as input for a fully connected network, responsible
for calculating probabilities across seen classes. This setup defines the convolutional layers with
max-pooling as the feature extractor f and the fully connected network as the classifier ¢ used in
determining deterministic contrastive loss. For CIFAR-100 and ImageNet-100 under task settings
(3) and (6) of the main manuscript, to mitigate overfitting on the subsequent tasks, we reset the
training epochs to 20 and the learning rate to 0.01 at the beginning of task 2. The training batch size
on CIFAR-100, ImageNet-100 and ImageNet are 128, 32 and 32 respectively. All experiments are
finished on GeForce RTX 3090 GPUs. On CIFAR-100, ImageNet-100 and ImageNet, one run of
experiment needs 8 hours, 5 days and 15 days respectively.

C COMPLEMENTARY EXPERIMENTS

This section supplements additional experiments not featured in the main manuscript. To accelerate
the experiments, in all experiments, the random seed is fixed to be 1993 and the training epoch is
set to be 100. In Section|C.1I] we assess POC’s performance when fixing transformation parameters
to be rotations, emphasizing the benefits of learnable parameters. In Section [C.2] we investigate
whether the performance increases when the produced samples are regarded as positive and have the
same labels as their original classes. Section [C.3|analyze the performance of POC using different
transformation types. Section [C.4] presents experiments where adjacent regions are solely constrained
to be close to original classes, affirming the importance of maintaining diverse transformations.
Section[C.5|showcases experiments where adjacent regions receive identical labels, highlighting the
superior performance achieved by assigning distinct labels. In Section[C.6] we explore how varying
the number of transformations impacts POC’s performance. In Section we integrate our POC
into the models for other incremental learning tasks to show that POC is compatible and generalizable
to other tasks. Section investigates the sensitivity of POC’s performance to hyperparameters Aq
and \,. Lastly, Section [C.9|discusses the training costs of POC.

C.1 EFFECT OF LEARNABLE TRANSFORMATION
In Section [3.2.1] we emphasize the efficacy of learnable parameters {6;}?_, by making the transfor-

mations in POC adaptable and similar to rotations. And in Section[d.2.4] the performance of POC
with LUCIR as the baseline is evaluated when the transformations are fixed to be rotations. Following
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Table 8: Analysis on CIFAR-100 showcasing the enhanced performance of POC with learnable
transformation parameters. “B” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.
Class Number Settings
Method B=50 B=20
C=10 C=5 C=1 C=10 C=5 C=1
CwD 58.2/66.7 53.7/62.7 50.7/59.9 | 51.2/62.5 47.9/59.4 42.9/53.8
Fixed 59.6/68.3 54.1/63.6 51.6/61.2 | 53.9/65.2 50.3/62.5 45.1/56.4
Learnable | 61.1/69.6 54.9/64.6 52.9/62.4 | 55.6/67.1 52.5/64.2 46.8/59.1
PODNet | 48.7/60.3 48.9/59.8 49.3/59.9 | 38.7/53.9 36.1/51.0 36.1/50.3
Fixed 51.8/62.4 51.7/62.1 50.9/61.6 | 41.2/57.0 39.5/54.8 37.8/51.4
Learnable | 53.1/64.3 53.3/63.8 52.3/63.3 | 42.6/58.4 41.0/56.5 39.5/53.6
MEMO 60.1/66.0  60.6/65.9 56.8/61.8 | 58.7/67.7 59.2/67.8  55.2/63.5
Fixed 60.6/66.5 61.2/66.4 57.6/62.9 | 59.4/68.2 59.9/68.4 56.2/64.3
Learnable | 61.2/67.2 61.9/67.4 58.5/63.8 | 60.0/69.1 60.8/68.9 57.3/65.1
LODE 57.3/66.3 51.3/60.6 49.2/58.7 | 53.5/65.7 50.0/63.5 48.5/59.3
Fixed 58.3/66.9 52.4/61.2 50.2/59.6 | 55.6/67.3 51.0/64.0 49.4/60.5
Learnable | 59.1/67.4 53.8/62.0 51.3/60.4 | 57.0/69.0 52.1/64.6 50.2/62.1
MRFA 58.2/66.5 55.7/63.4 52.4/60.5 | 55.3/66.5 53.2/64.6 51.1/61.2
Fixed 59.0/67.1 56.4/64.5 53.3/61.7 | 56.8/67.8 54.9/65.6 52.5/63.0
Learnable | 59.8/67.9 57.3/65.9 54.7/62.6 | 57.9/68.5 56.3/66.5 53.7/64.1

Table 9: Analysis on ImageNet-100 showcasing the enhanced performance of POC with learnable
transformation parameters. “B”” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.

Class Number Settings
Method B =50 B=20
C=10 C=5 C=1 C=10 C=5 C=1
CwD 60.4/71.6  55.8/68.2 40.3/56.3 | 48.2/62.9 44.6/58.5 34.3/51.1
Fixed 61.2/72.4 56.6/68.9 42.9/58.2 | 50.0/63.8 45.9/59.6 37.3/52.0
Learnable | 62.3/73.2 57.4/69.4 44.7/59.8 | 51.2/64.4 47.1/60.6 38.9/53.1
PODNet | 62.3/73.4 57.4/71.6 42.9/59.7 | 45.8/63.0 41.7/59.8 32.4/50.0
Fixed 63.1/742  60.7/72.2 46.8/62.1 | 47.4/64.0 46.6/61.1 35.4/53.4
Learnable | 63.8/75.0 62.3/72.8 48.6/63.7 | 49.1/64.8 48.2/62.1 36.6/55.1
MEMO 66.2/76.8 64.5/76.4 52.7/64.0 | 53.6/67.1 48.4/60.8 40.3/53.2
Fixed 66.7/77.3  65.7/77.1 54.5/65.3 | 54.6/67.9 49.6/61.7 41.5/54.0
Learnable | 67.4/77.9 66.5/77.8 55.9/66.5 | 55.4/68.2 50.7/62.5 42.4/54.7
LODE 64.5/73.6  59.4/71.0 45.8/60.4 | 50.6/63.5 45.3/59.5 37.2/52.1
Fixed 65.3/74.6  60.6/72.3 48.8/62.5 | 52.4/64.8 46.9/60.7 39.2/52.8
Learnable | 66.1/75.1 61.7/73.1 50.4/63.8 | 53.4/65.7 48.3/62.3 40.5/53.4
MRFA 65.1/74.8 61.4/73.2 47.3/61.6 | 51.8/64.9 46.1/60.0 38.5/52.6
Fixed 65.8/75.2  62.3/74.0 48.5/63.1 | 52.7/65.7 46.9/60.9 39.4/53.4
Learnable | 66.4/76.0 63.3/74.9 50.6/64.4 | 54.1/66.6 48.7/62.1 41.1/54.3

the setting of Section[4.2.4] this section conducts an evaluation of performance when changing the
baseline to CwD, PODNet, MEMO, LODE and MRFA to further support our motivation.

The results in Table[§] [9]and [I0]underscore the enhanced performance of POC when employing learn-
able transformations. According to the results, when the transformations are fixed, the last/average
incremental accuracy of baseline methods will increase 1.4/1.3, 1.6/1.1, 0.9/1.1 on CIFAR-100,
ImageNet-100 and ImageNet in average respectively. However, when setting the transformations
learnable, the last/average incremental accuracy of baseline methods will increase 2.6/2.6, 2.9/2.1,
1.7/1.8 in average on CIFAR-100, ImageNet-100 and ImageNet. It shows that the performance
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Table 10: Analysis on ImageNet showcasing the enhanced performance of POC with learnable
transformation parameters. “B” and “C” represent the class number of the first task and the following
tasks respectively. The last/average incremental accuracy are reported.

Method Class Number Settings
B=500, C=100 | B=100, C=100 | B=10, C=10

LUCIR 49.4/57.9 42.3/54.8 21.6/30.4
Fixed 50.3/58.6 43.2/56.2 22.6/32.4
Learnable 50.8/59.0 43.8/57.3 23.2/33.6
CwD 50.8/58.6 42.8/56.2 22.4/31.3
Fixed 51.8/59.4 44.1/57.1 23.6/32.8
Learnable 52.4/59.8 44.8/57.6 24.5/34.0
MEMO 58.4/69.8 56.2/67.3 40.8/50.7
Fixed 59.1/70.5 56.9/68.2 41.5/51.8
Learnable 59.6/70.9 57.2/68.6 42.0/52.4

gain will increase by 185%/200%, 181%/190%, 188%/163% when setting transformations learn-
able, showing the efficacy of learnable parameters. Further to the explanation in Section[.2.4] the
rationale behind lies in the adaptability afforded by learnable parameters. By enabling learnable
transformations, the loss optimization process gains flexibility in shaping the feature space and
transforming parameters. Consequently, the model learns transformations capable of generating more
representative adjacent regions of seen classes in the input space, resulting in improved performance.

C.2 EFFECT OF SAMPLE LABEL SETTING

In the original POC, the samples produced by learnable transformations are considered as negative
samples of seen classes and have different labels. It is possible that the performance improves
because the model has seen multiple augmented samples. Therefore, we report and compare the
performance when the produced samples are considered as positive samples and have the same labels
as their original classes. Following the setting of Section[4.2.1] we report the performance of different
baselines when the produced samples are considered positive. The results in Table[TT]and [I2] show
that the performance gain is lower than that when the produced samples are regarded as negative.

We further analyze the Inter-Class Distance (ICD) and Intra-Class Generalization (ICG) when the
produced samples are considered as positive samples. The results illustrated in Figure [ indicates that
when the produced samples are considered positive, both ICG and ICD will increase. This results
from that when produced samples are considered positive, since the rotated samples have similar
distribution with original ones as shown in Section @] and the transform loss Lrans makes the
transformations similar to rotations, the transformations will converge to rotations to minimize both
LMod_cls and Lpans S0 that Lo is minimized. Therefore, the situation will be the same as that when
training with rotation augmentation so that the decision boundary of one class will extend more
broadly. Although it can increase the model’s generalization, the over-collapse is more severe as
well so that the overlapping between seen and future classes is worsen. Under the combined effect,
the performance gain is minor. Instead, the original design of POC both prevents over-collapse and
protects the generalization so that it obtains better performance.

C.3 EFFECT OF TRANSFORMATION TYPE

As outlined in Section [3.2.1} we confine the transformations in POC to be similar to rotations. In
this section, using LUCIR as the baseline method and CIFAR-100 for evaluation, we make the
transformations resemble other alternatives, including identical, mixup, cutmix, flip, Gaussian blur
and Gaussian noise, to assess their efficacy. The results in Table[I3]demonstrate varying performance
among different transformations, with rotation notably enhancing POC’s performance.

We also conduct a comparative analysis of Inter-Class Distance (ICD) and Intra-Class Generalization
(ICG) among diverse transformation types, visualized in Figure[5] The findings reveal that rotations
strike a better balance between ICD and ICG, resulting in enhanced overall performance for POC.
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Table 11: Analysis on CIFAR-100 to show that regarding samples produced by learnable transforma-
tions as negative to their original classes helps POC obtain better performance. “B” and “C” represent
the class number of the first task and the following tasks respectively. The experiments are run for 3
times and the mean and variance of average incremental accuracy are reported.

Class Number Settings
Method B =50 B=20
C=10 C=5 C=1 Cc=10 C=5 C=1
LUCIR | 64.1+£09 61.2+0.7 55.9+0.3 | 59.4+0.5 57.6+03 48.5+0.2
Positive | 64.9+£1.0 61.840.8 56.7£0.3 | 60.5+0.7 58.2£0.2 49.6+0.5
Negative | 66.8+0.7 63.5+0.6 59.6+0.4 | 63.8+0.3 59.2+0.3 53.1+0.2
CwD 67.2+0.2 62.840.1 59.7£0.2 | 64.3+£04 61.2£0.5 53.6+0.3
Positive | 68.0+0.4 63.8+£0.1 60.6+£0.4 | 65.1£0.5 62.1+£0.3 54.7+0.4
Negative | 69.6+0.4 65.4+0.3 62.3+£0.5 | 68.3+0.2 66.1+0.4 59.1+0.2
PODNet | 64.6+£0.7 63.2+1.1 59.840.5 | 54.9+£0.4 53.240.4 50.5+0.2
Positive | 65.2+0.6 63.7+1.1 60.5£0.7 | 56.0+£0.6 54.0£0.6 51.2+04
Negative | 68.2+0.8 67.2+1.0 63.1+£0.7 | 60.6+0.7 58.3+0.4 53.5+0.5
MEMO | 70.2£0.5 69.0+0.7 61.44+0.3 | 69.5£0.5 67.3£0.8 63.2£04
Positive | 70.8+£0.7 69.6+0.6 62.0£0.5 | 70.0+£0.5 67.9£0.5 63.7+£0.4
Negative | 71.840.6 70.4+0.4 63.5+£0.5 | 70.9£0.6 69.3+0.4 64.8+0.6
LODE | 68.7£0.6 64.6£0.8 58.5+0.4 | 66.2£0.5 64.4+£03 59.240.5
Positive | 69.2+0.7 65.1+£0.5 58.9+0.5 | 67.0+£0.6 64.8+04 59.7£0.6
Negative | 70.0+£0.5 66.1+0.7 60.5£0.7 | 68.4+0.3 65.8+0.6 62.4+0.4
MRFA | 68.0+£04 6644+0.6 60.3+0.8 | 67.840.8 65.7£0.6 61.3£0.7
Positive | 68.5+£0.5 66.8+0.5 60.8+0.7 | 68.44+0.7 66.2+£0.6 62.0+0.5
Negative | 69.2+0.4 68.1+0.5 62.7£0.5 | 69.6+0.6 67.5+04 63.6+-0.8

Table 12: Analysis on ImageNet-100 to show that regarding samples produced by learnable trans-
formations as negative to their original classes helps POC obtain better performance. ‘“B” and
“C” represent the class number of the first task and the following tasks respectively and the last
accuracy/average incremental accuracy are reported.
Class Number Settings
Method B=50 B=20
C=10 C=5 C=1 C=10 C=5 Cc=1
LUCIR | 61.4/71.5 55.1/67.2 41.1/56.8 | 48.0/61.5 42.6/55.7 34.3/48.9
Positive | 62.1/72.3  55.8/67.6 42.1/57.7 | 48.9/62.3 43.4/56.6 34.8/49.4
Negative | 64.0/73.7 57.6/68.3 47.7/61.8 | 51.5/65.2 46.4/59.3 36.9/51.5
CwD 60.4/71.6  55.8/68.2 40.3/56.3 | 48.2/62.9 44.6/58.5 34.3/51.1
Positive | 60.9/72.2 56.3/68.6  40.8/56.5 | 49.0/63.7 45.3/59.1 34.9/51.7
Negative | 62.3/73.2  57.4/69.4 44.7/59.8 | 51.2/64.4 47.1/60.6  38.9/53.1
PODNet | 62.3/73.4 57.4/71.6 42.9/59.7 | 45.8/63.0 41.7/59.8  32.4/50.0
Positive | 62.8/73.8 57.9/72.3 43.7/60.4 | 46.4/63.9 42.2/60.4 32.9/50.7
Negative | 63.8/75.0 62.3/72.8 48.6/63.7 | 49.1/64.8 48.2/62.1 36.6/55.1
MEMO | 66.2/76.8 64.5/76.4 52.7/64.0 | 53.6/67.1 48.4/60.8 40.3/53.2
Positive | 66.7/77.3  65.0/76.8 53.4/64.6 | 54.3/67.7 49.1/61.7  40.8/53.9
Negative | 67.4/77.9 66.5/77.8 55.9/66.5 | 55.4/68.2 50.7/62.5 42.4/54.7
LODE 64.5/73.6  59.4/71.0 45.8/60.4 | 50.6/63.5 45.3/59.5 37.2/52.1
Positive | 64.8/74.0 59.7/71.5 46.3/60.8 | 51.0/64.0 45.9/59.9 37.8/52.6
Negative | 66.1/75.1 61.7/73.1 50.4/63.8 | 53.4/65.7 48.3/62.3 40.5/53.4
MRFA | 65.1/748 61.4/732 47.3/61.6 | 51.8/649 46.1/60.0 38.5/52.6
Positive | 65.7/75.2  61.7/73.6  47.9/62.3 | 52.3/653 46.6/60.5 38.9/53.2
Negative | 66.4/76.0 63.3/74.9 50.6/64.4 | 54.1/66.6 48.7/62.1 41.1/54.3
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Figure 4: Illustration to show that regarding samples produced by learnable transformations as
positive to their original classes increases model’s generalization while overlapping is more severe.

Table 13: Analysis on CIFAR-100 to show that resembling different transformation types influences
the performance a lot. “B” and “C” represent the class number of the first task and the following
tasks respectively and the last accuracy/average incremental accuracy are reported.

Class Number Settings
B =50 B =20

C=10 C=1 Cc=10 C=1
Baseline | 52.6/62.0 45.2/55.9 | 45.8/57.8 36.4/48.3
Identical | 53.2/62.5 45.7/56.2 | 45.8/58.2 37.0/48.8
Mixup 55.8/64.2 48.3/57.2 | 47.4/60.0 40.6/51.8
Cutmix 55.3/63.7 47.6/56.4 | 46.9/59.3 40.2/51.2
Flip 53.7/63.4 45.6/56.2 | 46.3/58.6 37.0/49.2
Noise 53.5/62.8 46.3/56.8 | 46.7/59.0 37.4/50.2
Blur 52.7/162.7 46.0/56.3 | 46.5/58.6  37.2/49.7
Rotation | 57.4/65.6 50.9/59.7 | 49.7/61.6 42.0/53.1

Transform

Type

C.4 EFFECT OF TRANSFORMATION DIVERSITY

In deterministic contrastive loss (DCL), the adjacent regions are kept away from each other to keep
transformations diversified. This section aims to demonstrate the essentiality of maintaining this
diversity. To showcase the significance of diversity preservation, we modify the DCL as follows:

L:DCL = — Z sim(xi, Io). (62)

i=1

Initially, following the modification of the DCL, we evaluate the performance of POC using LUCIR
as the baseline method, and the results on CIFAR-100 are presented in Table [T4] These findings
highlight that maintaining diversified transformations enhances POC performance.

Moreover, we conduct an in-depth analysis of Inter-Class Distance (ICD) and Intra-Class General-
ization (ICG) during the training process. These results, depicted in Figure[6] underscore a crucial
insight: while forgoing diversity may improve model generalization on seen classes, it leads to
decreased distance between future and seen classes.
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Figure 5: Illustration to show that different transformation types have different influences on the
inter-class distance and intra-class generalization along the training procedure. The class number of
the first task and the following tasks are 50 and 10 respectively.

Table 14: Analysis on CIFAR-100 to show the necessity of keeping the transformations diversified
for POC. “B” and “C” represent the class number of the first and the following tasks and the last
accuracy/average incremental accuracy are reported.

Class Number Settings

Diversity B =50 B=20
C=10 C=1 C=10 C=1
Baseline | 52.6/62.0 45.2/55.9 | 45.8/57.8 36.4/48.3
No 56.7/64.9 50.3/58.7 | 48.9/61.2 40.5/51.8
Keep 57.4/65.6  50.9/59.7 | 49.7/61.6 42.0/53.1
0.9+ 1.0
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Figure 6: Illustration to show that keeping the transformations in POC diversified can protect the
future classes from overlapping with the seen classes better.

C.5 EFFECT OF DIFFERENT LABELS

In the main manuscript, for one seen class, the labeled adjacent regions are assigned with dif-
ferent labels for classification. This section assesses performance when adjacent regions labeled
by one seen class are assigned with the same label. Specifically, for the labeled adjacent regions

{{H{(zi jx, yi7k)};y:i1}f:f1 T_,. we set y; i to equal y; ; and then calculates the classification loss.
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Table 15: Analysis on CIFAR-100 to show that assigning the adjacent regions with different labels
leads to better performance of POC. “B” and “C” represent the class number of the first task and the
following tasks respectively and the last accuracy/average incremental accuracy are reported.

Class Number Settings
B =50 B =20
C=10 C=1 Cc=10 C=1
Baseline | 52.6/62.0 45.2/55.9 | 45.8/57.8 36.4/48.3
Same 56.7/65.2 48.7/57.6 | 47.8/59.8 38.6/48.6
Different | 57.4/65.6 50.9/59.7 | 49.7/61.6 42.0/53.1

Label
Assign

Table 16: Analysis on CIFAR-100 to show that transformation number has influence on the final
performance. “B” and “C” represent the class number of the first task and the following tasks
respectively and the last accuracy/average incremental accuracy are reported.

Class Number Settings
Transform
B =50 B=20
Number
C=10 C=1 Cc=10 C=1
1 55.0/63.4 46.3/55.0 | 47.0/58.5 35.0/46.8
5 56.7/65.1  50.5/59.4 | 49.5/60.7 39.3/50.8
7 56.8/64.9 49.5/59.2 | 48.5/60.0 38.7/50.9
3 57.4/65.6  50.9/59.7 | 49.7/61.6 42.0/53.1

Table|15|presents the performance of POC with LUCIR as the baseline on CIFAR-100 under task
settings (1), (3), (4), and (6). The findings demonstrate that assigning different labels to adjacent
regions yields superior performance.

C.6 EFFECT OF TRANSFORMATION NUMBER

This section assesses the impact of the number of transformations under task settings (1), (3), (4),
and (6), utilizing LUCIR as the baseline method. In Section.2.1] the number of transformations
is set to be 3 and here we compare the performance of POC on CIFAR-100 when the number
is 1, 5, 7. The findings, listed in Table highlight that POC achieves superior performance
when the transformation number is 3. This suggests that an excessively small or large number of
transformations does not yield optimal results.

We further compare the Inter-Class Distance (ICD) and Intra-Class Generalization (ICG) among
different transformation numbers and the results are illustrated in Figure[/| The findings indicate
that while a larger number of transformations may enhance generalization on seen classes, it simul-
taneously diminishes the separation between future and seen classes within the feature space. This
indicates the significance of selecting an optimal transformation number.

It is noteworthy that the ICD decreases as the number of transformations decreases. We analyze the
reason is that when the transformation number decreases, less transformed results will push each
other away due to DCL so that they will be less compact. In details, when the transformation number
decreases, the transformed result of the seen class by one transformation will be affected by fewer
other results through DCL, which pushes different results away from each other. Therefore, one
transformed result can be less compact and can cover more adjacent regions. When the number is 1,
DCL only constrains the transformed result to be close to the seen class. Therefore, the transformed
result will surround the seen class to minimize the distance. In this way, training the model to classify
between the seen class and more adjacent regions will decrease ICD.

To consolidate our analysis, we calculate the average cosine similarity between two samples from
one transformation result of one seen class. We find that after learning 6 tasks, the average cosine
similarity decreases from 0.89 to 0.8 when transformation number decreases from 7 to 1, indicating a
less compact distribution of transformation results.
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Figure 7: Illustration to show that different transformation numbers have different influences on the
inter-class distance and intra-class generalization along the training procedure. “B” and “C” represent
the class number of the first task and the following tasks.

Table 17: Performance analysis on PASCAL-VOC 2007 to show that POC is generalizable to

incremental object detection task and the mAP is reported.

Class Number Settings

Method 10-5 5-5 10-2 15-1 10-1

1-10 1120 120 | 1-5 620 120 | 1-10 1120 1-20 | 1-15 1620 1-20 | 1-10 1120 1-20
ABR | 687 67.1 679 | 647 564 584 | 670 581 626 | 687 567 657 | 620 557 589

w/POC | 69.8 686 692|662 586 605|681 594 638|696 584 668|633 578 606
BPF | 69.1 682 687|606 631 625|687 563 625|715 531 669|622 483 552

w/POC | 70.1 694 69.8 | 619 653 64.5| 697 584 641|722 566 683|635 506 57.1

C.7 GENERALIZATION ABILITY ANALYSIS

Since our POC only modifies the optimization objective of the classification model, it can be directly
integrated into other incremental learning tasks that take classification as a subtask. Therefore,
we supplement experiments when POC is integrated into 2 incremental object detection methods,
2 incremental semantic segmentation methods and 1 few-shot incremental instance segmentation
method to show the generalization ability of POC. We only integrate POC into the classification
branch of these methods, and do not apply the learnable transformations to the “background” category
in these tasks since it is a collection of multiple classes.

For the incremental object detection task, we use ABR (Liu et al.,|2023) and BPF (Mo et al., |2025)) as
baseline methods. The mean average precision (mAP) at a 0.5 IoU threshold on the PASCAL-VOC
2007 dataset is reported for comparison. In each incremental setting (A-B), A represents the number
of classes in the initial stage, while B indicates the number of classes introduced at each subsequent
stage. The results in Table[I'7|demonstrate improved mAP values across all settings after incorporating
POC, highlighting its effectiveness for incremental object detection.

For the incremental semantic segmentation task, we adopt DKD (Baek et al.,[2022)) and STAR (Chen
et al.| 2024)) as baseline methods. Consistent with the referenced papers, the mean Intersection over
Union (mIoU) on the PASCAL-VOC 2012 dataset is reported. In each incremental setting (A-B), A
denotes the number of classes in the first stage, and B represents the number of newly introduced
classes in each subsequent stage. Table [I8]shows improved mIoU values across all configurations
after applying POC, underscoring its effectiveness in incremental semantic segmentation.
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Table 18: Performance analysis on PASCAL-VOC 2012 to show that POC is generalizable to

incremental semantic segmentation task and the mloU is reported.

Class Number Settings

Method 19-1 15-5 15-1 10-1 5-3

1-19 20 120 | 1-15 16-20 1-20 | 1-15 16-20 1-20 | 1-10 11-20 1-20 | 1-5 6-20 1-20
DKD | 780 577 770 | 79.1 60.6 747 | 78.8 524 725|740 567 658 | 69.8 602 629

w/POC | 79.3 58.6 782 | 80.2 61.6 757 | 800 543 738 | 752 586 673 |71.0 624 64.7
STAR | 778 564 768|797 618 754|795 556 738|743 579 665|719 629 655

w/POC | 78.7 572 77.6 | 817 627 771 | 804 57.6 751|756 592 678|734 648 674

Table 19: Performance analysis on COCO to show that POC is generalizable to few-shot incremental
instance segmentation task. The AP and AP50 are reported.
Overall Base Novel
AP AP50 | AP APS0 | AP AP50
iMTFA | 20.1 30.6 | 259 393 |28 4.7
w/POC | 22.2 33,6 | 278 424 |52 173
iMTFA | 182 27.1 | 225 332 | 5.1 8.6
w/POC | 209 30.0 | 253 364 |77 10.6
iMTFA | 17.8 264 | 21.8 320 | 58 98
w/POC | 201 29.1 | 241 347 |79 124

Shots | Method

Table 20: Sensitivity analysis of hyper-parameters A; and Ay in POC on CIFAR-100 under task
setting (1). The last accuracy/average incremental accuracy are reported.

A2
0.01 0.1 1 10
1 | 56.5/65.1 56.9/64.9 55.7/64.4 54.2/63.1
10 | 56.1/64.3 57.4/65.6 56.8/65.1 54.1/62.7

A1

For the few-shot incremental instance segmentation task, we use iMTFA (Ganea et al.|[2021) as the
baseline method. Following the referenced work, we report both AP and AP50 on the COCO dataset,
considering 60 base classes and 20 novel classes. The results include performances with K=1, 5, and
10 shots per novel class. As shown in Table[T9] POC leads to improved AP and AP50 values across
all scenarios, further validating its effectiveness for few-shot incremental instance segmentation.

C.8 HYPERPARAMETER SENSITIVITY ANALYSIS

Based on the experimental results, the hyperparameters A; and A2 should have a significant impact on
the final performance of POC since both transform loss and DCL are crucial components. Therefore,
in this section, we conduct experiments to show the sensitivity of the final performance to the
hyperparameters. With LUCIR as the baseline method as CIFAR-100 as the evaluation dataset, we
choose A\ and \s from {1,10} and {0.01, 0.1, 1, 10} respectively. The performance of LUCIR with
POC is listed in Table [20] showing its sensitivity to hyperparameters.

C.9 TRAINING COST ANALYSIS

During training, since the model is also trained to classify the augmented samples, the training cost
will increase. Here, we design experiments to see whether the training cost will increase a lot. We
mainly use the training time to represent training costs. With the same training settings as in Section
4.2.1] we report the GPU days of different methods on CIFAR-100 and ImageNet-100 using one
GeForce RTX 3090 GPU. According to the results in Table 2T and Table 22] although the training
time increases after adopting our POC, the difference is minor. Furthermore, when the dataset is
larger, the proportion of increased time is smaller. This takes advantages of the parallel computing
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Table 21: Analysis of training time on CIFAR-100. The GPU days are reported.
Class Number Settings
Method B =50 B=20
C=10 C=5 C=1|C=10 C=5 C=1
LUCIR 0.23 026 031 0.27 0.32 0.39
w/ POC 0.28 0.29 0.34 0.29 0.36 0.42
CwD 0.24 0.27 0.33 0.27 0.33 0.40
w/ POC 0.29 0.29 0.34 0.36 0.36 0.43
PODNet 0.25 0.27 0.34 0.29 0.35 0.42
w/ POC 0.28 030 037 0.32 0.38 0.45
MEMO 0.26 0.31 0.40 0.30 0.35 0.49
w/ POC 0.30 0.34 0.43 0.33 0.38 0.52
LODE 0.23 026 032 0.27 0.32 0.40
w/ POC 0.28 0.29 0.34 0.29 0.36 0.42
MRFA 0.24 0.27 0.33 0.28 0.33 0.41
w/ POC 0.29 0.30 0.36 0.32 0.36 0.45

Table 22: Analysis of training time on ImageNet-100. The GPU days are reported.
Class Number Settings
Method B =50 B =20
C=10 C=5 C=1|C=10 C=5 C=1
LUCIR | 514 536 652 | 58 648 770
w/POC | 528 564 683 | 596 672 813
CwD 5.23 5.47 6.62 5.90 6.56 7.75
w/POC | 538 574 695 | 603 678 819
PODNet | 605 637 7.4 | 683 708 845
w/POC | 632 674 748 | 728 749 892
MEMO | 6.18 674 753 | 695 742 943
w/POC | 643 697 798 | 724 783 1023
LODE | 5.17 543 658 | 586 653 772
w/POC | 534 569 690 | 598 675 8.5
MRFA 5.74 5.98 6.93 6.24 6.78 8.16
w/POC | 598 614 721 | 674 712 846

ability of GPU. Although the batch size increases because of the augmented samples, the parallel
computing ensures that the computing time will not increase propositionally to the batch size.
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D VISUALIZATION RESULTS

This section presents visual representations of the feature distributions for both seen and future
classes, aiming to qualitatively demonstrate the efficacy of POC. Using LUCIR with and without
POC, we train the model on the initial 5/10 classes of CIFAR-100. Before learning from the following
5 future classes, we visualize the features pertaining to the seen and subsequent 5 classes using
T-SNE (van der Maaten & Hinton|, [2008). Figure [ vividly illustrates that with POC integration,
future classes are effectively safeguarded from overlapping with seen classes within the model’s
feature space, demonstrating consistent outcomes across both task settings.

S
¥
w/ POC

w/o POC

(b) B=10, C=5

Figure 8: Illustration of feature distribution for LUCIR with/without POC through T-SNE
Maaten & Hintonl, 2008). “B” and “C” represent the class number of the first task and the following
one task in CIFAR-100. The round points represent the samples from the seen classes and the cross
points represent that from the new classes. It is shown that under both task settings, POC can help
protect the future classes from overlapping with the seen classes in model’s feature space, avoiding
catastrophic forgetting.
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