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Abstract

Controlling the behaviors of large language models (LLM)
is fundamental to their safety alignment and reliable de-
ployment. However, existing steering methods are primarily
driven by empirical insights and lack theoretical performance
guarantees. In this work, we develop a control-theoretic foun-
dation for activation steering by showing that popular steering
methods correspond to the proportional (P) controllers, with
the steering vector serving as the feedback signal. Building
on this finding, we propose Proportional-Integral-Derivative
(PID) Steering, a principled framework that leverages the full
PID controller for activation steering in LLMs. The propor-
tional (P) term aligns activations with target semantic di-
rections, the integral (I) term accumulates errors to enforce
persistent corrections across layers, and the derivative (D)
term mitigates overshoot by counteracting rapid activation
changes. This closed-loop design yields interpretable error
dynamics and connects activation steering to classical stabil-
ity guarantees in control theory. Moreover, PID Steering is
lightweight, modular, and readily integrates with state-of-the-
art steering methods. Extensive experiments across multiple
LLM families and benchmarks demonstrate that PID Steer-
ing consistently outperforms existing approaches, achieving
more robust and reliable behavioral control.

Introduction

Large language models (LLMs) have demonstrated remark-
able capabilities across diverse domains, yet ensuring that
their outputs align with desired behaviors remains a cen-
tral challenge (Dang et al. 2025; Sclar et al. 2023; Kotha,
Springer, and Raghunathan 2023; Luo et al. 2025; Houlsby
et al. 2019). Common post-training approaches (Wei et al.
2021; Ouyang et al. 2022) have proven effective for improv-
ing alignment. However, these techniques demand substan-
tial computational resources (Houlsby et al. 2019) and re-
quire weight updates with new training data, which can un-
intentionally degrade fluency or performance on unrelated
tasks (Templeton et al. 2024; Kotha, Springer, and Raghu-
nathan 2023; Luo et al. 2025).
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An increasingly popular alternative is activation steering,
which modifies a model’s internal activations directly at in-
ference time, avoiding costly retraining (Vu and Nguyen
2025; Li et al. 2024; Turner et al. 2023, 2024; Lee et al.
2024; Rimsky et al. 2024; Rodriguez et al. 2025). This ap-
proach has been employed both to probe internal represen-
tations (Geiger et al. 2024; von Riitte et al. 2024; Vu and
Nguyen 2025) and to enable fine-grained behavioral con-
trol (Vu and Nguyen 2025; Rodriguez et al. 2025; Turner
et al. 2024; Zou et al. 2023a; Rimsky et al. 2024; Li et al.
2024). Recent work demonstrates that steering along care-
fully chosen low-dimensional directions can effectively al-
ter model behavior (Turner et al. 2024; Rimsky et al. 2024;
Arditi et al. 2024; Zou et al. 2023a; Vu and Nguyen 2025),
highlighting its potential as a lightweight yet powerful align-
ment strategy.

Steering through the Lens of Dynamical Systems. Re-
cent methods leverage the geometric structure of the acti-
vation space (Marks and Tegmark 2024; Park, Choe, and
Veitch 2024) using linear algebraic techniques (Turner et al.
2024; Zou et al. 2023a; Rimsky et al. 2024; Arditi et al.
2024; Vu and Nguyen 2025) to compute the steering vec-
tors. While effective, these works oversimplify the complex,
dynamic behavior arising from the auto-regressive nature of
LLMs. When viewed through this dynamical lens, activation
steering can be interpreted as guiding the model’s trajectory
through activation space, from a region encoding one con-
cept to another, analogous to steering a dynamical system
from one state to a desired target state.

Contribution. Building on the aforementioned dynam-
ical system insight, our work departs from the prevailing
algebraic framing and instead adopts a control-theoretic
perspective on activation steering. Although recent stud-
ies (Soatto et al. 2023; Kong et al. 2024; Luo et al. 2023)
have begun exploring this direction, their focus has pri-
marily remained at the level of the token-level genera-
tion proceses, treating high-level behaviors as control sig-
nals. In contrast, we take into account the internal mech-
anisms of LLMs by modeling the layer-wise construction
of feature directions (Bricken et al. 2023; Park, Choe, and
Veitch 2024) as a dynamical system. These feature direc-
tions are then used as steering vectors (Turner et al. 2024;
Zou et al. 2023a; Rimsky et al. 2024; Arditi et al. 2024;
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Figure 1: Our paper connects LLM Behavior Control, Feature Attri-
bution for LLM and Control Theory. Specifically, we apply a PID-
Controller to compute the steering vector for activation steering.

Vu and Nguyen 2025). Specifically, we show that exist-
ing steering methods relying on difference-of-means fea-
ture directions (Rimsky et al. 2024), including Activation
Addition (ActAdd) (Turner et al. 2024), Directional Abla-
tion (Arditi et al. 2024), and Mean Activation Transport
(Mean-AcT) (Rodriguez et al. 2025), can be interpreted as
instances of a proportional (P) controller, thus suffering
from the steady-state error due to the disturbance to the
state of the system (Astrom and Higglund 1995a). This new
perspective enables the application of principled control-
theoretic strategies for extracting effective feature directions
and computing steering vectors, thereby offering stronger
robustness and performance guarantees for activation steer-
ing methods. An overview of our approach is shown in Fig. 1
and 2. In this paper, we use the terms feature direction and
steering vector interchangeably, noting that steering vectors
represent a practical application of feature directions in ac-
tivation steering. Our contribution is three-fold:

1. Control-Theoretic Formulation for Feature Direc-
tion: We develop a new control-theoretic framework for
constructing feature directions/steering vectors along the
layers of an LLM.

2. PID-Based Steering: We propose the novel
Proportional-Integral-Derivative (PID) Steering, a
control-theoretic framework for computing feature di-
rections using a PID controller to reduce the steady-state
error inherent in existing activation steering methods
(see Fig. 2).

3. Unified Theoretical Framework: We demonstrate that
common activation steering methods correspond to pro-
portional (P) controllers. This connection enables a theo-
retical analysis that highlights PID Steering’s advantages
in reducing steady-state error and oscillations

We comprehensively validate our PID Steering across di-
verse modalities (text and image), downstream applica-
tions (toxicity mitigation, jailbreaking attack, and image
style control), steering paradigms (ActAdd, Mean-AcT, and
Angular Steering (Vu and Nguyen 2025)), model families
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Figure 2: PID Steering: To compute the steering vector u(k): a PID
controller is applied at every layer f () (+), using the diff-in-means
between 2 contrastive data x s, (k) and x (k) as the error signal e(k).

(Qwen2.5 (Yang et al. 2024), Gemma?2 (Gemma Team et al.
2024), Llama3 (Llama Team 2024), SDXL-Lightning (Lin,
Wang, and Yang 2024), and Flux (Labs 2024)), and model
scales (3B-14B for language models and 3.5B-12B for dif-
fusion models).

Organization. We organize the paper as follows: Section
reviews background; Section links activation steering to P
control and introduces PID Steering; Section presents its
theoretical analysis; Section provides empirical validation;
Appendix discusses related work; and Section concludes.
Proofs, derivations, and additional experiments are in the
Appendix.

Background

Transformers Decoder-only transformers take an input
token sequence ¢ = [q1,. .., ¢,) and map it to initial em-
beddings (1) = [z1(1),...,2,(1)]" = Embed(q). The
embeddings are then propagated through K layers. At each
layer k, the residual activation x; (k) for token p; is updated
by self-attention and an MLP block, with normalization ap-
plied before (and sometimes after) these modules:

T postan (k) = ;i (k) + SelfAttn*) (Norm(z;(k)))
:B’L(k + 1) = wi,post—attn(k) + MLP(k) (Norm(mi,postfatm(k)))

In this paper, for notational brevity, we summarize the lay-
ered processing above as x;(k + 1) = fi(k) (x(k)), 1 =
1,...,n, where f,t-(k) encapsulates both the Self-Attention
mechanism and Multi-Layer Perceptron at layer k. Finally,
the output activations from the last layer, @;(L + 1), are
decoded over the model’s vocabulary to get the next token
y; = Decode(x;(L + 1)) for subsequent generation.

Activation Steering Features such as behaviors or con-
cepts are hypothesized to align with (approximately) orthog-
onal directions in activation space (Park, Choe, and Veitch
2024; Bereska and Gavves 2024; Elhage et al. 2022). Ac-
tivation steering leverages this by modifying hidden states
at inference to amplify or suppress specific features (Bayat



et al. 2025; Konen et al. 2024; Li et al. 2024; Marks et al.
2025; Templeton et al. 2024). Recent approaches opera-
tionalize this idea by constructing feature directions, which
act as steering vectors r for adjusting hidden states. These
steering vectors are computed as layerwise differences in
mean activations between datasets with contrasting con-
cepts (e.g., harmful vs. harmless), a difference-in-means ap-
proach (Rimsky et al. 2024), shown to effectively isolate
salient feature directions (Turner et al. 2023, 2024; Arditi
et al. 2024).

Applying the Steering Vectors Two popular activation
steering approaches that use steering vectors are: Activa-
tion Addition (Turner et al. 2024), and Directional Abla-
tion (Arditi et al. 2024). Both methods modify the token ac-
tivation «(k) using the steering vector (k) at layer k such
that the activation expresses the target concept or behavior.
By setting (1, q) = Embed(q) and (1) = 0, these meth-
ods apply the steering vectors (k) to the activation x(k),
k = [K], at each layer via a steering function pyeer as fol-
lows:

SC(]C - 1, Q) = psteer(m(k - 17 q)a 'l"‘(k‘ - 1))7 for qc Dsource

ey

w(kv Q) = f(k) (.’13(]{1 -1, Q)), for g € Dsource U Dtarget-
2

We discuss here the details on how to design the steering
function pgeer for each method.

Activation Addition (ActAdd). ActAdd and sets
Pseer(@(K), (k) = x(k) + ar(k), where the coefficient
« controls the strength of the effect.

Directional Ablation (DirAblate). DirAblate removes
the feature by projecting the token activation onto the
orthogonal complement, pgeer(x(k),r(k)) = x(k) —
r(k) r(k)T (k).

Computing the Steering Vectors Non-sequential Map-
ping. Let us use the jailbreaking task as an example. In
this task, we apply activation steering to force the LLM
to respond to harmful prompts (Vu and Nguyen 2025;
Arditi et al. 2024). In order to compute the steering vec-
tors, i.e., refusal direction, for each layer k € [K|] and post-

instruction token position ¢+ € I, we calculate the mean ac-

tivation ft; taret(k) for harmless prompts from Df;rrg) and

Mi,source(k) for harmful prompts from D) .

source*

1
Ni,target(k) = (tram) Z i(ka Q)7 3

‘ target | .D(lmm)

target
1
Ui,source(k) |D(Hdm)‘ Z Ty (kv q) (4)
woureel gepmn

We then compute the difference-in-means vectors, r;(k) =
Wi target (B) — fi source (k), and use them as steering vectors.
Optionally, among the difference-in-means vector 7;(k) for
each post-instruction token position ¢ € [ at layer k,
we can select the single most effective vector r(k) =
Select({r;(k)}:cr) from this set by evaluating each candi-

date vector over validation sets D) and Dt(;'fglét

Sequential Mapping. A non-sequential mapping ne-
glects the causal dependency across activations, where out-
puts from one layer are passed to the next, i.e., x;(k + 1) =
fz(k)(:c(k)) Consequently, any intervention applied at one
layer must be accounted for before introducing an interven-
tion at the subsequent layer. To capture this causal structure,
Mean Activation Transport (Mean-AcT) in (Rodriguez et al.
2025) estimates the steering vectors incrementally at each
layer as follows:

:Bl(k} -1, q) = psteer(mi(k -1, q),r(k - 1))7 )
for ¢ € Dsource

zi(k.q) = [ (x(k —1,q)), for ¢ € Dyurce U Duargex (6)
1
;Uftarget(k) = (tram) Z ZBL(]C, q)a (7)

| ldrget| iel qu(lram)

1
Hsource (k) = | (train) | Z
Droureel ;1 o
r(k) = Ntarget(k) — Msource (F)- ©)

Like ActAdd, Mean-AcT sets pyeer(@(k), 7(k)) = x(k) +
ar(k).

zi(k,q) (®)

Proportional-Integral-Derivative Controller

Proportional-Integral-Derivative (PID) control is a feedback
mechanism extensively used in control systems (Minorsky
1922). It is valued for its simplicity, robustness, and effec-
tiveness in a broad range of applications, from industrial au-
tomation to robotics and aerospace systems (Visioli 2006;
Borase et al. 2021). The core idea behind PID control is
to compute a control signal based on the error between a
target reference signal and the actual output of a system.
Specifically, consider a continuous-time dynamical system
governed by a state space model

&(t) = g(z(t), u(t), t),  y(t) = h(z(t),u(t)t), (10)

where z(t) € R? denotes the state variable, u(t) € R™ is
the control variable, and y(¢) € R? represents the measured
output signal. Here, g : R? x R™ — R? specifies the system
dynamics, and h : R? x R™ — R?" is an output mapping. A
PID controller applies the control variable w(¢) to minimize
the discrepancy between a target reference, or also known as
the setpoint in the literature of PID control, ys,(t) and the
actual output y(t). This discrepancy, called control error, is
defined as

e(t) = ysp(t) =y (1) (11)

In a PID controller, the control variable u(t) is composed
of the proportional (P), integral (I), and derivative (D) terms
and given by:

¢
u(t) = Kye(t) + KZ/ e(r)dr + Kdd%it), (12)
0

where K, K;, Kq > 0 are the proportional, integral, and
derivation gains, respectively. In PID control design, the P,
I, and D play different roles: Proportional term (P) outputs



a correction proportional to the current error e;, but alone
leaves a steady-state offset; Integral term (I) accumulates
past errors to remove residual bias, ensuring offsets are cor-
rected even as proportional effects fade; and Derivative term
(D) responds to the error’s rate of change, damping rapid
growth to improve stability and reduce overshoot.

State-Feedback PID Controller. A special case of the
PID controller is obtained by choosing the measured output
y(t) to be the state variable x(t) in Eqn. 10, yielding the
following state-space model

a(t) = g(x(t), u(t),t), yt)=x@).  (13)

The control error then becomes the state tracking error,
e(t) = xp(t) — x(t), and the system is controlled through

feedback of the state (Astrom and Murray 2021).

Steering with a Feedback Controller

In this section, we will formulate popular activation steering
methods, such as ActAdd, DirAblate, and Mean-AcT, as a
state-feedback P controller. Based on this new interpretation,
we propose PID Steering, a novel steering method that uses
a PID controller.

Activation Steering as a P Controller

We consider the state-feedback PID controller given in
Eqn. 13 and the continuous steering vector = (t) in which we
replace the layer index k by the time index ¢. Substituting
the state tracking error e(t) by the difference-in-means vec-
tor 7(t) and using the P controller whose system dynamics
is governed by g(a(t), w(t),t) = f(pueer(@(t), u(t)), ) —
x(t), we obtain

Z(t) = f(psweer(x (), Kpr(t)),t) — (t). (14)

We discretize Eqn. 14 using Euler method (Euler 1768;
Hairer, Wanner, and Ngrsett 1993) to obtain

Limitations of P Controller. There is always a steady
state error in P control. The error decreases with increas-
ing gain, but the tendency towards oscillation also increases.
Since activation steering methods, i.e., ActAdd, DirAblate,
and Mean-Act, are P controllers, they share the same limi-
tations. We informally state our theoretical guarantees that
P-control activation steering methods cannot alleviate the
steady state error in Proposition 1 below and provide de-
tailed proofs in Appendix .

Proposition 1 (Steady-state error of P-control steering)
P-control activation steering ensures input-to-state stability
(ISS) for an appropriate range of K,,. However, there still
exists a steady-state error due to the disturbance w(k)
to the state of the system. In the best case, when w(k)
converges to w, under a mild condition, the expected
error, i.e., the difference-in-means, r(k) = é(k) eventually
converges to a steady state €55 < w. Therefore, €55 # 0 if
w # 0.

We further provide empirical evidence to validate Propo-
sition 1 in Figure 3 below. To archive this, we apply Se-
quential P-control activation steering (P Steering) on a ran-
domly intitialized model with 150 layers deep, and pre-
trained Qwen2.5-3B-Instruct. We use (€(0), &(¢)) as metric
since it is a scalar measure of the energy retained along €(0).
If this quantity fails to decay to zero, e.g., under noise, it in-
dicates a persistent component of the initial error, i.e., an
undesired dynamic (see Appendix for further explanation).
It can be seen that, for both the randomly initialized and
the pretrained models, the errors do not vanish completely.
These results confirm that P-control activation steering en-
sures stability but admits a persistent steady-state error due
to the disturbance.

Proportional-Integral-Derivative (PID) Steering

Overview To overcome the steady-state error inherent

in P-control activation steering, we extend the method by
ding integral (I) and derivative (D) terms to the steer-

_ ~1) = fk) — — — —
x(k) —@(k — 1) = [ (pseer (@ (k — 1), Kpr(k — 1)) — x(k f g vectors. PID Steering thus (i) reacts immediately to er-

or equivalently,
z(k) = f(k)(psteer<w(k - 1), Kpr(k -1))), (15)

where f(*)(-) = f(-, k), a function depending on index k.
Comparing Eqn. 15 with Eqn. 1 and 2 shows that apply-
ing the steering vectors as in Section is equivalent to imple-
menting the P controller, where f(*) is the k-th layer in an
LLM, u(t) = K,r(t) is the new steering vector. Thus, acti-
vation steering computes the expected state tracking error.

r(t) = e(t) =By cpum [@sp(t qsp)] = Eqeppm[@(t, ).
(16)

This expected state tracking error, i.e., the difference-in-
means vector 7(t), can be computed non-sequentially or se-
quentially, as explained in Section . When 7(t) is computed
non-sequentially and pgeer (2 (k), u(k)) = (k) + au(k) or
x(k) — u(k) w(k)"T x(k), we obtain ActAdd or DirAb-
late, respectively. When »(t) is computed sequentially and
Pseer(X(k), u(k)) = (k) + au(k), we attain Mean-AcT.

rors via the P term for greater responsiveness, (ii) removes
steady-state offsets with the I term, ensuring convergence
to the desired set point, and (iii) anticipates error trends
through the D term, improving stability and reducing over-
shoot. Together, these properties yield the following advan-
tages:

* Generalization. PID Steering extends P-control methods
like ActAdd, DirAblate, and Mean-AcT by adding inte-
gral and derivative components.

* Methodological Agnosticism. Our PID framework can
be applied across different activation steering techniques,
including ActAdd, DirAblate, and Mean-AcT.

 Stability. We theoretical prove and empirical demon-
strate that PID Steering reduces steady-state error and
overshoot in P-controllers, improving existing steering
methods.

* Interpretability. Derived from classical feedback con-
trol (Minorsky 1922), the framework inherits the simplic-
ity and interpretability that underpin the wide use of PID
controllers.
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Computing the Steering Direction Using a PID Feed-
back Controller Following Section , we consider the
state-feedback PID controller in Eqn. 13, replacing the state
tracking error e(t) with the difference-in-means vector 7(t).
With the PID controller governed by the system dynamics

g(m(t)7 u(t)7 t) f(psteer(w(t), u(t)) :E(f) we obtain

i(t) = F(peer((t), Kpr(t) + K / i an

+ K, e dt D)0y = 2(0).
(13)

Eqn. 17 defines the continuous-time model of PID Steering,
whose steering vector is given by:

dr(t)
dt

In order to obtain the discrete-time formulation of PID
Steering, we first discretize the sytem dynamics &(t) =
f(psteer(x(t), u(t)),t) — @(t) using Euler method (Euler
1768; Hairer, Wanner, and Ngrsett 1993), same as in Sec-
tion , and attain

( ) f( (piteer( (k - 1)7u(k - 1)))a (20)

Next, we discretize u(t) given in Eqn. 19 to obtain u(k)
using Lemma 1 below.

¢
u(t) = Kpr(t) + Ki/ r(T)dr + Ky (19)
0

Lemma 1 (Discretizing PID steering vector) Consider
the continuous PID steering vector defined in Eqn. 19. The
discrete-time PID steering vector is given by:

u(k) = +KZ N+ Ka(r(k) —r(k —1)).

21

Proof of Lemma 1 is in Appendix . With Eqn. 20 and

Lemma 1, we now define PID Steering.
Definition 1 (PID Steering) Given a large language model

K . .
whose layers are { f (k) } 1 and a steering function psieer,
PID Steering constructs the steering vectors as follows:

u(k) = +KZZT + Kq(r(k) —r(k —1)),

(22)

where for non-sequential mapping,
r(k) = By, enmn [®sp(k; @sp)] = Eqeppm[2(k; q)];
and for sequential mapping,
(k) = ") (psteer ((k — 1), u(k — 1)), (23)
r(k) = Eq,,epimn [@sp (ks @sp)] = E g piram [2 (K q))-

Theoretical Analysis of PID Steering

This section provides theoretical evidence for our claims: (i)
adding integral action (PI) reduces steady-state error that re-
mains under pure P-control (Proposition 3); and (ii) adding a
derivative term (PID) preserves bias removal while mitigat-
ing oscillations/overshoot (Proposition 1 and 2). We denote
K, = K,I, K; .= K;I,and K, := K;I. Detailed proofs
are provided in Appendix .

Dynamics of the Average Error Across Layers

To formalize the problem, we consider N pairs of prompt-
s/input tokens from two contrastive datasets, e.g. harmful
and harmless {(g;",q; )}, with corresponding activa-
tions =X (k) € RY at layer k A steering input w(k) perturbs
the undesired branch:

‘(k +1) = (s (k) +ulk)). (24)

Lete(k) := ZZ 1( F(k )—x:(k)) the error dynamics
of activation steering is then given by Proposition 2 below.
Proposition 2 (Error dynamics of activation steering)
The error dynamics €(k) in activation steering is of the
form:

e(k+1)=A(k)ek) — Ak)u(k) +w(k), (25)

where A(k) is the mean local Jacobian of fi(k) at = (k)
and the disturbance term w(k) collects heterogeneity. See
Appendix for detailed proof and explanations of the terms.

Our control objective is to drive (k) to zero with input-
to-state stability (ISS) for disturbed discrete system Eqn. 25
(Jiang, Sontag, and Wang 1999).

Stability of the Error Dynamics: Roles and Caveats
of PI and PID Control

In the following stability analysis, we consider the or-
thogonal decomposition for the disturbance w(k) =
wl (k) + w(k), where wll(k) € Tm A(k) and w (k) €
(Tm A(k))*.



PI Control The following proposition provides a theoret-
ical guarantee of PI Steering’s steady-state error reduction.

Proposition 3 (Stabilizing the PIloop) Ler M, (k) =
A(k)(I — K,), and denote |K;| =: h. Assume
supy | A(K)|| < M < oc and supy, [My(k)| < g < 1. 1If
q+Mh < 1, then the PI closed-loop control is ISS. Further-
more, the integral part exactly cancels the matched distur-
bance component w!l. The remaining error is due only to the
unmatched component w=, which cannot be compensated.

Full proof and term explanations provided in Appendix

Limitations of PI control. Overshoot is common under
PI: the closed loop oscillates about the setpoint before set-
tling (Astrom and Higglund 1995b, Ch. 3, §3.3, pp. 68-69),
and large overshoot can arise with a high integral gain K.
In our steering setting, we explain this by scalarizing the dy-
namics along a reference direction . The scalarized integral
state accumulates past error, pushing the trajectory beyond
the setpoint; when the scalarized error changes sign, the inte-
gral discharges and the error subsequently approaches zero.
See Fig. 5 for an illustration and Appendix for the formal
derivation.

PID Control The derivative action counteracts PI-induced
oscillations near the setpoint by responding to decreases
in the scalarized error, while preserving the integral term’s
bias-removal role, as shown in Theorems 1 and 2. For de-
tailed proofs and explanations, see Appendix .

Theorem 1 (Stabilizing the PID loop) Letr M, (k) =
A(k)(I-K,), and denote | K;|| =: h, || K,|| =: {. Assume
supy, [A(K)|| < M < oo and supy, [| M, (k)| < ¢ < 1.
If ¢ + Mh < 1 (stable PI loop), then there exists £ > 0
such that the PID closed-loop control is ISS. Therefore,
the integral part in PID design still cancels the matched

disturbance component w!.

Theorem 2 (PID reduces the first-overshoot amplitude)
Let the first overshoot occur at index ko with amplitude
Ao (definition in Eqn. 73). Then, the first-overshoot am-
plitude under PID Steering, AS'™, satisfies AF™® < ALY,
where AFY denotes the corresponding amplitude under PI
Steering.

To support the theory, we present empirical evidence in
Fig. 3. PI and PID controllers clearly improve over P-only
control: PI removes steady-state error but causes large over-
shoot, while adding the derivative term mitigates overshoot
and enables faster, cleaner convergence to zero.

Controlling the Steering Effect

In this section, we demonstrate the applicability and effec-
tiveness of PID-Steering by using it as a drop-in replace-
ment for the steering vector computation step across multi-
ple steering frameworks.

Toxicity Mitigation

We evaluate the effectiveness of PID Steering for toxic lan-
guage mitigation in comparison to sequential steering meth-
ods, specifically Linear-AcT and Mean-AcT (Rodriguez

et al. 2025), by closely following their experimental setup.
We apply PID-Steering into Mean-AcT and call it PID-AcT.

Experimental Setup. Our evaluation is conducted on
Gemma2-2B (Gemma Team et al. 2024) and Llama3-
8B (Llama Team 2024), using 1,000 randomly sampled
prompts from the RealToxicityPrompts dataset (Gehman
et al. 2020). Toxicity is quantified with a ROBERTA-based
classifier (Logacheva et al. 2022), following the methodol-
ogy of Suau et al. (2024). We also assess toxicity in a zero-
shot setting by employing Llama3-8B-Instruct as an LLM-
as-a-judge (Zheng et al. 2023).

To measure general utility of the intervened models,
we report: (i) perplexity (PPL) on a fixed set of 20k
Wikipedia sentences, (ii) PPL of model-generated outputs
evaluated with Mistral-7B (Jiang et al. 2023), and (iii) 5-shot
MMLU (Hendrycks et al. 2021) accuracy.

Results. PID-AcT cuts toxicity by up to 8 x while pre-
serving utility. As shown in Table 1, it lowers scores by
8.1 x on Gemma2-2B and 7.3x on LLaMA3-8B, consis-
tently outperforming Mean-AcT and Linear-AcT. It achieves
the lowest toxicity under both classifier and LLM-judge
evaluations, while maintaining utility: MMLU drops <1%
and perplexity rises only modestly (<6%). Unlike sequen-
tial methods that plateau, PID’s integral-derivative dynam-
ics deliver stronger, more stable mitigation without harming
performance.

Image Generation Styles Control

We study activation steering in diffusion models using
FLUX.1.Schnell’s denoising transformer (Labs 2024), built
on T5-XXL encoders (Raffel et al. 2020) and requiring just 4
diffusion steps. Experimental Setup. Following (Rodriguez

(b) Steampunk concept.

Figure 4: Qualitative results of activation steering in FLUX-Schnell
across two style concepts with the prompt ”Lady bent over with red
polka dot umbrella inside a brick building.”

et al. 2025), we intervene on all normalization layers af-
ter most residual blocks in FLUX. Style/concept expres-
sion is measured by a CLIP zero-shot classifier with two la-
bels (A picture of a {style/concept}’’ vs. A



Table 1: Toxicity mitigation results for Gemma-2B and Llama-8B, averaged over 10 runs. Lower is better for toxicity and perplexity; higher

is better for MMLU. Best and second-best exclude the Original baseline.

Seq. CLS Tox. (%) ] 0-shot Tox.(%)| PPL Wikipedia| PPL Mistral-7B| MMLU 1

Original - 4.13+0.43 12.85+0.94 14.40+0.20 6.05+0.51 53.03+0.60
g Mean-Act 1.1240.23 5.20+0.42 14.53+0.21 6.81+0.19 51.74+05s
E Linear-Act 0.95+0.36 5.37+0.80 14.7520.22 7.24+40.24 51.63+0.50
g Mean-Act v 0.68+0.21 3.2310.44 14.9240.25 6.97+0.74 51.80+0.55
Q Linear-Act v 1.00+0.27 4.1340.89 14.98+0.22 7.13+0.70 51.47+0.50
PID-Act v 0.51+0.21 2.90+0.55 15.22+0.24 7.02+0.65 51.30+0.52
Original - 5.30+0.35 15.24+0.40 9.17+0.18 5.18+0.20 65.33+0.42
% Mean-Act 1.78+0.33 6.56+0.54 9.36+0.28 5.45+0.34 64.35+0.39
f':g Linear-Act 1.87+0.30 6.55+0.21 9.35+0.17 5.56+0.33 64.55+0.33
E Mean-Act v 1214041 5.09+0.64 9.83+0.21 5.71+0.33 64.2240.40
= Linear-Act v 1.68+0.48 6.47+0.38 9.48+0.19 5.46+0.44 64.4910.38
PID-Act v 0.7210.40 4.36+0.51 9.56+0.20 6.08=+0.37 64.50=+0.36

picture of something’’), and content preservation
by CLIPScore (Hessel et al. 2021). Training uses 2,048
COCO Captions (Chen et al. 2015) prompts augmented with
cyberpunkl/steampunk modifiers from LLaMA-8B-Instruct
(source = unmodified p, target = modified ¢). Evaluation
samples 512 validation prompts to generate images across
intervention strengths.

Results. In Fig. 4, raising intervention strength from 0
to 1 yields a smooth progression of stylistic traits, e.g.,
neon hues for cyberpunk, mechanical textures for steam-
punk, while preserving core content. At moderate strengths,
style is pronounced yet faithful, and even at high strengths
semantic alignment largely holds. Quantitatively (Figs. 6),
style expression measured by a zero-shot classifier increases
monotonically, with PID-AcT surpassing Mean-AcT, es-
pecially at mid strengths (0.4-0.8). CLIPScore reveals the
trade-off:Both Mean-AcT and PID-AcT exhibit a steady de-
cline. While PID-AcT drops slightly more, the difference is
marginal.

Related Works

Recent works increasingly frame large language models
(LLMs) as dynamical systems, where generation is a tra-
jectory in latent space. This view shifts activation steering
from heuristic nudging to principled control: rather than bi-
asing outputs without guarantees, controllers enforce con-
straints on trajectories with formal assurances (Cheng and
Amo Alonso 2024). In our PID-steering framework, this dis-
tinction is key: we treat the model as a plant with hidden
states evolving under controlled interventions.

Closed-loop activation control. Cheng and Amo Alonso
(2024) propose Linear Semantic Control (LiSeCo), which
projects activations into safe subspaces at each decoding
step via a closed-form controller. This yields lightweight,
guaranteed control of simple attributes (e.g., toxicity, senti-
ment). However, the linearity assumption only approximates
LLM embeddings, guarantees are local rather than global,
and long-horizon stability remains unaddressed.

Dynamic representation editing. Kong et al. (2024) in-
troduce RE-CONTROL, which learns a value function on
hidden states and applies gradient-based interventions at
test time. This dynamic approach generalizes steering into a
Bellman-optimal control problem, balancing alignment with
fluency. Still, accuracy of the learned value function is crit-
ical, test-time optimization adds overhead, and local inter-
ventions may not guarantee global alignment.

Together, these works move activation steering from
heuristics to control theory. Soatto et al. (2023) prove funda-
mental controllability (but under strong assumptions), Luo
et al. unify prompt strategies as open-loop control (without
guarantees), Cheng and Amo Alonso (2024) derive closed-
form activation control (limited to linear approximations),
and Kong et al. (2024) extend to dynamic optimal control
(with overhead and approximation risks).

Concluding Remarks

We introduced PID Steering, a control-theoretic approach to
activation steering that models layer-wise representations as
a dynamical system. This framework unifies prior methods,
offers robustness guarantees, and leverages PID dynamics
for computing steering vectors. Across language and diffu-
sion models, PID Steering achieves stronger and more sta-
ble performance than existing approaches in toxicity mitiga-
tion, jailbreak prevention, and style control, while preserv-
ing model utility. Our results highlight control theory as a
principled foundation for developing reliable and generaliz-
able steering methods. A limitation of our work is the use
of “stability-first, one-gain-at-a-time” analytical strategy to
find controller gains: it clarifies the role of each component
but may miss optimal choices and can overlook broader fea-
sible regions. To address this, numerical methods, for exam-
ple, LMI-based computations, can be employed. We leave
these for future work.

Supplement to ““Activation Steering with a
Feedback Controller”



Theoretical Proofs
Discretized PID controller

Implementing a continuous-time controller on digital hard-
ware, such as PID, requires discretizing its derivative and
integral terms (Astrdm and Higglund 1995b, p.95)

Lemma 1 (Discretizing PID steering vector) Consider
the continuous PID steering vector defined in Eqn. 19. The
discrete-time PID steering vector is given by:

x>

—1

u(k) = Kpr(k) + K; Y r(j)+ Kq(r(k) —r(k—1)).

<.
Il
=)

2

Proof. We follow the discretization procedure for PID con-

trollers in (Astrém and Hiagglund 1995b, Sec. 3.6, Ch. 3).

For simplicity, the sampling period is normalized to h = 1.
Proportional term in Eqgn. 19.

P(t) = K, r(t).

The discrete-time form is obtained by substituting sampled
variables for their continuous counterparts:

P(k) = K, r(k). (26)

Integral term in Eqn. 19.

¢ dI
It)=K,; | r(r)dr = — =K;r(t)
Using forward Euler with h = 1,
I(k+1) - I(k) = K; r(k).
Hence
I(k+1)=1(k)+ K, r(k),
which is equivalent to
k—1 k—1
I(k) =100) + K; ) r(j)=K;) r(j), (27)
=0 =0

since I(0) = 0.
Derivative term in Eqn. 19.

dr(t)
dt -

Approximating the derivative by the backward Euler differ-
ence with h = 1 gives

D(k) = Kq (r(k) — r(k —1)). (28)

D(t) = K4

Combining equation 26, equation 27, and equation 28
yields

k—1
u(k) = K,r(k) + KlZ’r‘(j) + Kq(r(k)—r(k—1)).

O

Background on Input-to-state Stability &
Notations

Background on Input-to-state Stability (ISS) In our
proofs, the input-to-state stability (ISS) of a system can be
established either through the definition of an ISS system in
(Jiang, Sontag, and Wang 1999, Def. 2.1) or via the use of
an ISS-Lyapunov function as in (Jiang, Sontag, and Wang
1999, Def. 2.2, Prop. 2.3). We also rely on the definition of
a Lyapunov function and the difference Lyapunov equation
for linear discrete-time homogeneous dynamical systems in
(Gajic and Qureshi 2008, Ch. 1, p. 8). The existence of a so-
lution to the Lyapunov equation, together with its bound, is
stated in (Gajic and Qureshi 2008, Ch. 4, p. 110).

For reference, we briefly note that input-to-state stabil-
ity (ISS) extends the classical notion of Lyapunov by ex-
plicitly accounting for external inputs: the state remains
bounded and eventually whenever the input is bounded. A
Lyapunov function provides an energy-like certificate for
stability, while the associated Lyapunov equation offers a
constructive method for obtaining such functions in linear
settings. These notions are central for analyzing stability and
will be used throughout our proofs.

Conventions and assumptions (used throughout). Let
|| - || denote the Euclidean norm on R?; for a matrix M €
R¥*4 we also write || M]|| for the operator norm induced by
the Euclidean norm, i.e. [[M|| := supj = [|Mz| (the
spectral norm) (Horn and Johnson 2012, pp. 343-346). We
assume (i) supy, ||A(k)|| < oo; (ii) w(k) is bounded (for a
signal w we set || w||s = sups ||w(k)||) ; (iii) the con-
troller gains are static and time-invariant scalar multiples of
the identity. We use the standard meaning of the classes K
and [CL as in (Jiang, Sontag, and Wang 1999).

Dynamics of the Average Error Across Layers

To formalize the problem setup, we consider N pairs of con-
trastive prompt/input tokens {(q;", g; )}, where q;" car-
ries the desired property and g; represents the opposite. For
discrete time (layer) k, let 3 (k) € R denote the corre-

sponding activation vectors. The layer-to-layer evolution is
zi(k+1) = fPxk), i=1,...,N, (9

with fi(k) : R? — R differentiable on the operating region.
A steering input u(t) is applied on the undesired branch:

z;(k+1) = P (@ (k) +ulk)). (30)

Defining *(k) := & Zf\il x (k), we track the per-pair
and average errors as

ei(k) ==z (k) — z; (k), (1)
e(k) =zt (k) -z (k), (32)



Furthermore, we define A;(k) as the Jacobian of fi(k) at
x (k):

3

A;i(k) = Jffk)(mj(k)), (34)

_ 1 Y

A(t) ==+ ) Ai(k), (35)
S

A;(k) = Ai(k) — A(k). (36)

The dynamic of the average error €(k) is then given by
Proposition 2.

Proposition 2 (Error dynamics of activation steering)
The error dynamics e(k) in activation steering is of the
form:

ek +1) = A(k)e(k) — A(k)u(k) + w(k),  (25)

where A(k) is the mean local Jacobian of fi(k) at = (k)
and the disturbance term w(k) collects heterogeneity. See
Appendix for detailed proof and explanations of the terms.

Proof. The evolution of the average error e(k) through lay-
ers can be described as follows:

ek+l)=z"(k+1)—x (k+1) (37)
N

= [ 09) 1 () )

=1 (38)

Linearizing f*) around a7 (k), we obtain
k k
1 (@ (k) +8) ~ 17 (@] (k) + T oo (] (K)) -6, (39)

where J o denotes the Jacobian of fi(k).

Setting § = — e; (k) + u(k) yields
P (@] (k) +6) ~ 7 (@} (k) + Ai(k) (ei(k)+u(k)),

Insert this into Eqn.37 we obtain
1
ch+1) = — 5" A;(k)es(k) — A .4
b+ 1) = 7 DA eulk) — AR w40

Recall that

Therefore,
N
elh-+1) = 1 D" Ailk) exlk) — AK) u(h)
1 1;1 ) )
=< Z A(k) e;(k) — A(k) u(k)
1 1];1 )
+ Z ey (k) A (k)
) - 1 Y 1 o &
+ A(k) - 2 € (k) +e(k) ; Ay (k)
=0

(41)
We then obtain the final state-space model for the dynamics
of e(t) as

ek +1) = A(k)&(k) — A(k)u(k) + w(k),  (42)

where
1.
w(k) = N ZAz(k) éi(k),

which acts as a time-dependent exogeneous disturbance to
the model (]

Proportional (P) Control
Consider proportional control with

’u(k):Kpé(k), (K[:KDZO).
The dynamics Eqn. 25 then become
e(k) = Mp(k)e(k) + w(k), 43)

where Mp(k) = A(k)(I — Kp).

With a suitable choice of Kp, the system can be made
input-to-state stable (ISS); that is, there exist a JCL-function
B and a KC-function «y such that, for all disturbance w with
bounded sup norm and all initial states €(0),

le()l < B(le, k) + v(lwlle), k€ Zzo, (44)

see (Jiang, Sontag, and Wang 1999, Def. 2.1).
In particular, the error decays from the initial condition
and remains bounded under bounded disturbances.

Proposition 1 (Steady-state error of P-control steering)
P-control activation steering ensures input-to-state stability
(ISS) for an appropriate range of K,. However, there still
exists a steady-state error due to the disturbance w(k)
to the state of the system. In the best case, when w(k)
converges to w, under a mild condition, the expected
error, i.e., the difference-in-means, r(k) = e(k) eventually
converges to a steady state €55 x w. Therefore, €55 # 0 if
w # 0.

Proof. Assume supy, [|A(k)|| < M < oo, Kp = pl with

p > 0. Since Mp(k) = A(k)(I — Kp) = A(k)(1 — p)I,
by sub-multiplicative property of matrix norm we have

IMp@ < TADN (1 = p)IIl < M1 —p|=:q. (45)



Forpe (1— 47,14 4;), wehave g < 1.
Expanding recursively,

e(k) = Mp(k—1)--- Mp(0)e(0) (46)

+> Mp(k—1)---Mp(j+ Dw(j). @7
Hence,

ek < g le(o)] + iqk-l—fnwmu )

k
L ool (49)
—q

< ¢#le(0)] + *
< ¢"[leO)ll + ﬂllwum. (50)

Since ¢ < 1, we can set 3(s, k) = ¢*s, which is a KL-
function (decaying to zero as k — o0), and y(s) = 1 1qs
which is a KC-function, satisfying Eqn. 44. Therefore, the
system is ISS.

However, there exists a steady-state error due to the dis-
turbance w(k). In the best case, when A(k) converges to
A and w(k) converges to w, the error €(k) eventually con-

verges to a steady state given by
éss = (I - A(l *pI))il’LU
Therefore, €55 # 0 if w # 0. O

Remark 1 (Convergence rate versus K p.) From Ineq. 48,
smaller q yields faster convergence. Because

q(p) = M1 —p| = ( 1)
Mp-1), pell, 1+ﬁ),
we have dipq(p) = —-M < O0forp < 1and 3q(p) =

ol
M > 0 for p > 1. Therefore the contraction factor q(p) is

minimized at
pr=1 = ¢ =0,

and increases as p moves away from 1 within the admissible
interval.

Proportional-Integral (PI) Control

To reduce the steady-state error, the proportional con-
troller is extended with an integral action, resulting in a
proportional-integral (PI) control law:

u(k) = Kye(k)+Krs(k),s(k+1) =

The dynamics Eqn. 25 then become el

é(k+1)=A(k)(I — Kp)é(k) — A(k)Krs(k) + w(k).

We use the following orthogonal decomposition for w((i;z))
w(k) = wl(k) +w* (k),

where wl (k) € Tm A(k) and w (k) € (Im A(k))*.

s(k)+e(k),(Kp =0).

The impact of w/l (k) on the error can be eliminated by PI
control, as discussed below. On the other hand, P-only con-
trol is not able to do so, because keeping €(k) = 0 requires
u(k) = 0, leaving no component in w(k) that can compen-
sate for wl (k).

Since w!l (k) € Im A(k), it can be expressed as
wll(k) = A(k)K;s*(k). <= s"(k) = K;'A(k) w! (k)

Let 3(k) = s(k) — s*(k) and d(k) = s*(k + 1) — s* (k).

Therefore,
§(k+1) = 5(k) +e(k) — d(k) (53)
Insert s(k) = s*(k )—i—é( yand w(k) = wll (k) +w (k) =
A(k)Krs* (k) +w* (k) into Eqn. 52,
e(k+1)=A(k)(I - K,)e(k) — A(k)K;s*(k)
— A(K)K;5(k) + A(k)K;s* (k) + w* (k)
= A(k)I - K,)e(k) — A(k)K;3(k) + w" (k)
B (54)
We introduce the lifted state Cpr(k) = EE:;] with its

dynamic derived from Eqn. 53-54 as follow

Coi(k+1) = M;(t)Cor(k) + wer(k),  (55)
where
wie) = | My = GW).
with M,,(k) = A(p)(I — K,), G(k) = A(k)K; and

i) = [, ).

Proposition 3 (Stabilizing the PIloop) Ler M,(k) =
A(k)(I — K,), and denote |K;| =: h. Assume
supy | A(k)[| < M < o0 and supy ||M, (k)| < q < 1. If
q+Mh < 1, then the PI closed-loop control is ISS. Further-
more, the integral part exactly cancels the matched distur-
bance component wl. The remaining error is due only to the
unmatched component w=, which cannot be compensated.
Full proof and term explanations provided in Appendix
Proof. Using the sub-multiplicativity of the induced ma-
trix norm and the triangle inequality, and noting that
My (k)| < ¢, [|GE)] = [[AR) K| < AR [KL] <
Mh, we obtain

le(k + DIl < My (R)|| [e®)] + IGR)I15R)] + 1w (k)]

< qlle®)ll + Mh[|5(k)] + lw k)], (56)

150k + D < le(e) | + I5E)] + (k)] (57)
Introduce
Tl
2(h) = hé(k)n_ ’ 58)
H = [‘f ]‘fh , (59)
et
vik) = { YOIRE (60




Then Eqn. 56- 57 give the comparison system
z(k+1) < Hz(k)+v(k). (61)
Expanding Eqn. 61 recursively yields

k—1
2(k) < HF2(0)+ Y H¥ (i), (62)
=0

Consider the characteristic equation of H:
A=q)(A=1)=Mh =0 <= A\?—(g+1)\+(¢+Mh) = 0.
Since ¢ + Mh < 1, the maximal root \* satisfies \* < 1,
hence the spectral radius p(H) < 1.

Let r := p(H) < 1 be the spectral radius of H. By the
Gelfand formula for induced (operator) norms,

Jim |H*||*/* = »  (Horn and Johnson 2012, p. 349).
— 00

Fix any p € (r,1). Then, by the definition of the limit, there
exists N € N such that

|EHE|VF < p forallk >N — |H*|| < p* VEk>N.

Define the constant
C = max{l, max ||Hk||p_k}.
0<k<N

Then:

e If k > N, we have || H*|| p~% <1 < C, hence |H”||
C pk.

«If 0 < k < N, we have |HF|p7*F <
maxo<g<nN ||Hk|| p_k < C, hence ||Hk|| < Cpk.

Therefore,

IN

|H*| < CpF  forall k > 0. (63)
Applying Eqn. 63 to Eqn. 62 gives
k—1

(o) < IEH* | 12O + Y I ()]
=0

k—1
< P[] +C Y P ()]
i=0

< Cp"||(0)]| + [0l 0os (64)

1-p
where ||v|| oo 1= sup;>q [[v(7)]-
By construction,

IGer = | [E68)] | = CreteP+istine) 2 = o

Combining this identity with Eqn. 64, the ISS estimate fol-
lows with

B(s, k) :=Cpls € KL, ~v(s) := 10

s € K,

which proves that the PI closed loop Eqn. 55 is ISS. O

The integral part exactly cancels the matched disturbance
component w!!. The remaining error is due only to the un-
matched component w=, which cannot be compensated,
and to the variation rate d(k) when A(k) and w(k) change
over time. In the best scenario, if a steady state exists, i.e.,
A(k) — A and w(k) — w with w € Im A, then w* =0,
d = 0, and thus é(k) — 0.

Remark 2 (Convergence rate versus K;) From proposi-
tion 3, the convergence rate of (p;(t) depends on p: the
smaller p, the faster the convergence. We also adopt the con-
vention (as in the proof) that p € (r,1). Equivalently, we ex-
amined r(h) = p(H) and proved that with h = (147]\3)2 this
quantity is minimized.

Proof Consider the characteristic polynomial of H:
N —(g+ DA+ (g+ Mh) = 0.
Its discriminant is
A(h) = (g +1)? —4(qg+ Mh) = (¢ — 1)* — 4Mh.
If A(h) > 0 (e, 0 < h < 3=2%) then

r(h) = g+ 1+ /Ah)
2 )

and r(h) decreases as h increases.

If A(h) < 0 (e, L5 < h < 129), then

r(h) = \/q+ Mh,

and r(h) decreases as h decreases.
Hence r(h) can achieve its best (smallest) value at

(1-4q)°
h=-——"— 65
aM (65)
for which the error converges to zero the fastest. (]

Nevertheless, as we discuss in the next section, in some Sit-
uations such a large value of h may become a practical ob-
stacle for PI control.

Oveshoot Mechanism

Phenomenon. A common issue in standard PI settings is
overshooting: the closed loop oscillates around the setpoint
before settling (see Astrém and Higglund (1995b, Ch. 3,
§3.3)). In our terms, the integral part accumulates past er-
ror and can push the output beyond the setpoint; subsequent
sign changes of the error gradually “discharge” the integral,
producing a decaying oscillation. The big overshoot is un-
desirable when we prefer a more stable response near zero.
Below we analyze the same mechanism for our PI steering
setting.

Citing an observation from Vu and Nguyen (2025): in the
absence of steering, the cosine similarity between error vec-
tors at different layers is consistently positive, i.e.,

cos é(é(i), é(j)) >0 for all layers 4, j,

so the layerwise errors share (approximately) the same di-
rection. Consequently, with {Z T (k)} serving as the trajec-
tory setpoints and {Z~ (k)} the system output, an overshoot
event occurs when the instantaneous error reverses its initial
orientation, namely when

(e(k), e(0)) < 0.

We now introduce the definitions used below.



Scalarization along a direction. Let

e(0)
= 66
" Te)] (©0
and project onto v: 67)
e (k) :=v'e(k), s,(k):=uv"5(k).

(68)

From the PI loop dynamics Eqn. 55 we obtain the scalar PI
pair

e,(k+1)=a(k)e,(k) — b(k)s,(k) + wE(k), (69)
so(k+1) = s,(k) + ey(k) — dy(k), (70)

with a(k) = v A(k)(I — K,)v = v M(k)v, b(k) =
vT A(k)K;v_= v'G(k)v, and projected disturbances
wk(k) = v wt(k), d,(k) := v"d(k). Empirically (and
consistently with the angular-steering observation in our
setup), we have vTA(k)v > 0 for all k; together with the
gain K; = hl with h > 0, this implies b(k) > 0.

Also, the assumption ¢ := sup,, || M, (k)| and M =
supy. | A (k)| yeilds

ak) <g<1, 0<bk)<Mh, (@D

Since the system Eqn. 55 is ISS, so is the system Eqn. 69-
Eqn. 70. In other words, both e, (k) and s, (k) decay. Recall
that

k—1
Sv(k> = Z ev(i)'

Hence, s, (k) can only decrease when e, (k) < 0, which
is precisely the moment when overshoot occurs. These over-
shooting and decaying phenomena are observed in empirical
simulation, see Fig. 5. Below, we define the overshoot in our
setting.

Definition 2 (Overshoot and its amplitude) We say
an overshoot occurs from time k, to kg, + m if
e, (k) < 0Vk = koke + 1,00k + m — 1 and
e, (k) > 0fork =k, — 1, k, + m. Its amplitude is defined
as
A, = po, o max le, (7)) (72)

In standard PID settings illustrated in Astrém and
Higglund (1995b, Ch. 3, §3.3)), it is observed that the over-
shoot amplitude decays over time. This decay is also consis-
tent with the ISS property of the closed loop: as both e, (t)
and s, (t) are driven down, subsequent oscillations tend to
diminish in magnitude. In our simulation (see Fig. 5), the
first overshoot appear to be representative. Hence, while we
are not yet able to provide a formal proof, the empirical ev-
idence and ISS intuition justify the first overshoot which is
typically the dominant one and serves as a representative in-
dicator of oscillatory behavior.

This assumption is for Proposition 4. Suppose that a(t) >
0; equivalently, p € (1— ﬁ, 1], which is the result of propo-
sition 1. This assumption is expected to entail no loss of gen-
erality relative to the |a(t)| < ¢ < 1 assumption.
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Figure 5: Scalar errors across time step of randomly initialized

model after applying PI and PID controller. Colors from blue to
red denote the time (layer) dimension.

Proposition 4 (Agressive PI gain leads to a large first overshoot)
Let kg be the first sign-change time, i.e.,

ev(j)ZO Vj:O,l,...,]{io—l, ev(k‘o)<0,

and let k1 be the first time the trajectory returns to the non-
negative side,

ev(kl)zo, ev(z)<0 Vi:ko,k0+1,...,k171.
As in Eqn.72, the first overshoot amplitude is

Ay = kogr?gali(l—l |ev(l)| = |ev(7f7nax)|- (73)

Assume supy, |A(k)|| < M < oo and supy, | M, (k)| <
q < 1. Denote ||K;|| =: h. and given ¢ + Mh < 1. There-



fore,

A0<Mh( LI

1—¢ (1_7(1)2) €y (O) (74)

Mh Mh
iz oD+l 39
Mh(k 1 1
+Mllw\|m; 76)

1—

Proof. Before the first crossing (j < kg — 1) we have
sy(4) > 0, hence from Eqn. 69

en(j+1) = a(je, () — b(j)su(j) + wy () (77

< a(j)es(j) +wy () (78)
< gey()) + wlle, (79)
so by induction e, (j) < ¢’e,(0) + —||w||oo Summing
Eqn. 70,
ko—2 ko—2
solbo—1) = Y ey(i) — > dy(i) (80)
i=0 =0
e,(0) ko —1
< 22t (o - Dlldle + T ol
(81)

Since a(k) > 0 and e, (kg — 1) > 0, at the crossing step,

O

Consequently, the right-hand side of Ineq.84 is monotone
increasing in h (via the factor Mh) and increases as ¢ de-
creases (through the factors 5 ) In particular, more aggres-

sive PI leads to a larger ﬁrst—overshoot amplitude.

Remark 3 (“Fast-PI” specialization.) Wlth the tuning
used in our analysis in remark 2, h = (1 q (the value that
minimizes the comparison-system rate), so Mh = %.
Plugging into equation 84 gives

4 < (P04 7)) e0) 87)

1—gq 1 ko
(T o =0+ )l + ol
(88)

In particular, in the disturbance-free case (|[w|e =
lld|lcc = 0) we obtain

1—q 1
A < (14 ) enl0),
so stronger proportional action (smaller q) comes with a

larger first-overshoot envelope, even though the closed-loop
settles faster.

PID Control
Stability of PID closed loop We consider the PID update

ley(ko)| = —ey(ko) u(k) = Kye(k) + K;s(k) + Kq(e(k) —e(k—1)),
< bko— 1) sy(ko — 1) + |Jw|leo and define the auxiliary matrices
1,0 ko—1 M, (k) := Ak)(I - K,), 89
—q —q G(k) := A(k)K;, (90)
= f‘f" e,(0) + Mh(ko —1)||d|| H(k) = A(k)Kq, (91)
A together with the error increment
+ (Mh= )[[wllo Ae(k) = e(k) —e(k—1), Ae(—1)=0

(82)

Assume that d, (k) is small enough s.t during the over-

shoot time, s, is nonincreasing (since e, < 0 a.e. on

[ko, k1 — 1)), s0 8,(i) < sy(ko — 1) for i € [ko, k1 — 1].
Using Eqn. 69 again and unrolling m steps from ko,

Using the plant relation, we obtain
Ae(k+1) = (M,(k) —I)e(k)

— G(k)3(k) — H(k)Ae(k) + wt(k),
92)

m—1 Introduce the lifted state from the auxiliary PI state in
lew (ko +m)| < q"les(ko)l + Y ¢" (Mhs,(ko — 1) + || Ejn. 55 )
k=0 . e(k)
Mhsy(ko—1) + ||w||eo Ceip(k) = | &(k) |,
< lev(ko)| + - : Ae(k)

(83)
Taking the maximum over m € {0, 1,...,k; —ko} and sub-
stituting Ineq. 80 and Ineq. 82 into Ineq. 83 yields

1
AO <Mh(1_ +W> ev(o) (84)
Mh Mh
(oo =D+ )ldle @)
+ annm (86)

1—

Then the closed-loop evolution reads

Crin(k +1) = My(k)Cpip(k) + wemp(k),  (93)
where
My(k)  —G(k) —H(k)
My(k) == T T 0 |, ©4)
My(k) -1 —-G(k) —H(k)
w (1)
'wplD(k‘) = —ﬁ(k) (95)



Theorem 1 (Stabilizing the PID loop) Let M, (k) =
A(k)(I-K,), and denote | K;|| = || =: £. Assume
supy [[A(K)|| < M < oo and supy, | Mp(k)|| < ¢ < 1.
If g+ Mh < 1 (stable PI loop), then there exists £ > 0
such that the PID closed-loop control is ISS. Therefore,
the integral part in PID design still cancels the matched
disturbance component w!.

Proof. We establish the ISS for system 93 using the method
of ISS-Lyapunov function, see (Jiang, Sontag, and Wang
1999, Def. 2.2, Prop. 2.3). It then suffices to construct a can-
didate ISS-Lyapunov function Vpip (k) satisfying that there
exist class K, functions aq, ais, a3 and a class K function
o such that

al(prlD(k)H)

and

V (Cpp (k+1))—

as([|Cen (R)])),
(96)

< Ve (G (k) <

o7

Step 1: Candidtate Vp;p(k) and PI-closed loop baseline
Define

VpID(k’) = VPI(gpl(kJ),k) +r ||Aé(k)||2, r >0,

) o (98)

where VPI(CPI, k) = IIIP(]C)CPI with P(k’) = P(k)T =0
and there exists some ppr > 0 such that

M;(k)" P(k) Mi(k) — P(k) < —perl,  Vk, (99)

Regarding the existence of such Vpy, recall the homoge-
neous PI-loop (p1(k + 1) = M;(k)(p1(k) with M; (k) =
[Mf}(k) Cj.(k)} , being asymptotically stable. Suppose
there is Q(k) = Q(k)" = 0 bounded so that the pair
(M;(k),/Q(k)) is observable for all k, hence the differ-

ence Lyapunov equation
M (k)P(k +1)M;(k) - P(k) = —Q(k)

admits a unique positive definite solution P(k) = P (k) =
0 for all k, and a uniform bound || P|| := supy, || P (k)| <
oo (see (Gajic and Qureshi 2008, Ch. 4, p. 110))

Step 2: Condition (i) as in Eqn. 96
We write Vpip as a quadratic form

Ve (k) = Cpin(k)" Pu(k) Corp (k), (100)
P.(k) = [Pék) TOI} (101)

Clearly P,(k) = P.(k) " and P, (k) = 0because P(k) = 0
and rI > 0; hence P, (k) is symmetric positive definite for
all k.

By the spectral theorem, there exists an or-
thogonal matrix U,.(k) and a diagonal A.(k) =
diag(A1(k),..., A\n. (k)) with positive entries such
that P,(k) = U,(k)A.(k)U.(k)T. Moreover, because
P, (k) is block diagonal, its eigenvalues are precisely
the union of the eigenvalues of P(k) and the repeated

V(¢rin(k)) < —as([[Cen(k)|)+o(w]).

eigenvalue r. Using the uniform bounds already established
for P(k) (there exists A > 0 with Ayin (P(k)) > A and
Amax(P(k)) < || Pl := supy, | P(k)|| < o), we obtain
the k-independent bounds

Amin(Pi(k)) = A, :=min{), r} > 0, (102)
Amax(Pi(k)) < Ay i=max{|P||oo, 7} < oco. (103)

For every vector z and every symmetric positive definite M,
Amin(M)]|2]|? < 2T Mz < Anax(M)]|2||%. Applying this
to M = P,(k) and z = Cprp(k ) in Eqn. 100 yields

A ||Cpin (K || < Ven(k) < A HC~PID(/€)||2.
Therefore, choosing the class—ICOo functions
ai(s) == A, s%, as(s) = X, s°

we obtain the desired bound

Oél(HgPID H) < Ve (k) < a2(H§PID(7€)H)7

(104)
which establishes condition (i) in 96.
Step 3: Condition (ii) as in Eqn. 97.
From Eqn. 98,
AVeip(k) = AViy (épl(k)) ’pm (105)
PI part under PID update

+ r(||Ae(k+1)|* — [[Ae(k)[]*). (106)

Bounding the PI part under the PID update.
Under PI rule (K4 = 0),

Cor(k+1)|,, = Mi(k) Cpr(k) +wpi(k),  (107)
(

M;(k) = [Mf}(k) _G; k)] (108)
then
AVpy (5131(@) ‘ = Cp1(k) (M5 (k)" P (k+1)M; (k)
P(k))Cpi(k)
+ 2 Cpr(k) M; (k)" P(k+1) wpy (k)
+ wpr (k)" P(k+1) wpy(k)

By Eqn. 99, Cauchy-Schwarz inequality and Young’s in-
equality,

AVpr (§Pl(k)> ’PI < — ppr ||pr(R)|? (109)
+ 2| Mo || Pl oo || o1 (R) | |t (k) |
(110)
+ 1P| o || wpr ()| (111)
< —(pp1 — &1) ||Gpr(k)|? (112)
M; P2 -
+ (PEISIP |y ) aero

(113)
= — pipr ICp1(R) 1> + Chl[bpr (k)|
(114



for any ¢; > 0.
Under PID rule (K3 # 0),

é:pl(]{)—f'l)’PID = Mz(k‘) EPI(k) — (SUC) + 'wPI(k)7
with the “perturbation”

Hence,
AVer (gpl(k)) ‘PID -

(115)
Bounding each term in Eqn. 115

* Vei(Cei(k +1)[pp) = Ver(Cer(k)) < —upyllCer(k)]]* +
Crllwpr (k)|

* Applying Young’s inequality for inner product, there ex-
istse > 0s.t

2(Gp1(k +1)|p,) P(k) < || Cor(k + 1)p]|” (116)
+L5(k)" Ps(k)  (117)
< el Pl||ex(k + 1)y
(118)
+ LM e ()|
(119)
since [[Cpr(k + D]y < 2IMill%|IGer(B)I* +
2||wpr(k)||?
= 2(Cpr(k + 1)| ) PO(K) < 26| ||| MG|1%, [ pr ()
+ 22| P |pr (k)|
+ WPlarzez ae(k)?
= 2| P|l[| M|, [|Cp () |
+ e | ae )P
+ Callwpr (k)%
where Cy = 2¢|| P||
« 3(k)TPS(k) < | Pl[6(R)|1? < || PlIM¢|| Aé(k)|?
Therefore,
AVei(Ger(R)| < —ppallGer ()| + Ca e ()]
+ 26| ||| M| 2 || Cor () |12
+ LB A2 | Al (k)2
+ Co||wpi (k)2
+ || PIIM2E| Ae(k) |12
= —(ppr — 22| ||| M3]|%) I Cor () 1
+IPIM2E (L +1) ]| Ak (k)2

+ Cs|wpr1(k)|?,
(120)

where C3 = C; + Cs.

Bounding the increment term.
From Eqn. 92 and applying the inequality (x +y + 2)? <
3(2? +y? + 27),

Jaetk+ DI < 3(1IMy(k) = 112 + M) [ Ger (k)]
+ 3M2E (| Ae(k)|* + 3llwem (k).

and so
r(lAe(k + DI? - A(k)]?)
< 3r(IMy(K) = 1% + MR) [Gu(®)]2 (121)

— (1= 3M23) | Ae(k)|2 + 3rlfpin (k)2

Combination
Combining Eqn. 105, Ineq. 120, and Ineq. 121,
AVpip (k) <
- (7‘(1 — 3M20%) — ||P||OOM2£2G + 1)) |A&(k)||?
+ C [[wpi (k)]
where C = C3 + r. Define

S(r,e) = ppr — 2| Plloo [| M 1% (122)

= 3r (|| My (k) — I||5, + Mh), (123)

T(r,e,0) == (1 — 3M20?) — || P||os M2(2 (g n 1).
(124)

ISS of the PID loop follows if S(r,e) > 0 and
T(r,e, f) > 0.

Feasible choices.
We are free to choose any ¢ > 0 and r > 0 such that
S(r,e) > 0. One convenient selection is
_ 1P
8P|l | M]3
r = 1P
B 2
8(I| M,y (k) — I3, + Mh)

3

= S(re) = 2up; > 0.

With e, r fixed as above, pick £ > 0 small enough to satisfy
T(r,e,£) > 0, namely
2 T

< (1Pl (L + 1) +3r) M2

Under these choices, AVpip(k) < —az|pi(k)|]? —
ay||Aé(k)||? + B ||wpi(k)||? for some g, cug, 8 > 0, which
satisfies condition (ii) as in Eqn. 97 and proves ISS of the
PID closed loop. |

Overshooting under PID law of control Developing
from Sec. , we introduce scalar PID recursion along v:

eo(k+1) = a(k) ey (k) — b(k) s, (k) — c(k) Ae, (k) + w(k),

(125)
Sv(k + 1) = Sv(k) + ev(k) - dv(k)a (126)



where

a(k) :=v" M, (k)v, (127)
b(k) :=v' G(k)v, (128)
c(k) :=v" H(k)v, (129)

Ae,(k )—vTAe( ), (k:) vl L(k)

By construction a(k) < ¢ < 1, b(k:) < Mh, c(k) < M¢
with M := sup,, || A(k)|, h := || K;|| and £ := || K4]|.

We now impose an additional requirement on the deriva-
tive gain K4 so that, without the effect of noise, the PID
update secures the monotonic decrease of e, (k) before the
first negative peak of scalar error e, (k).

Remark 4 (Pre-overshoot monotonic decrease of scalar errors)

Assume the setting of Proposition 4 and further suppose
the scalar error trajectory before the first largest overshoot
under PID law is smooth in the sense that there exists
R > 1 such that

k=D p ol k=12 iy — 1,
ey (k)
(130)
where Ay = maxp,<i<k, |€s(?)| = |€y(imaa)| from
Eqn.73.

Assume that wr= 0 and d, = 0.

v T
If, in addition, the derivative gain satisfies

1—¢q

=Kyl € ——— 131
H d” = (R—l)M’ ( )
then under PID law
e,(k+1) < e,(k) forall k=0,1,...,0maz — 1.
Proof. Before ko, we have e, (k) > 0, so s,(k) > 0
(since s,, accumulates e, and s,(0) = 0). For kg < k <
tmaz — 1, 8y (k) > 0 proved in remark 5
Hence
ey(k+1) = a(k)e, (k) — b(k)s, (k) — c(k) (e, (k) —
< a(k)ev(k) ( )( (k ) - ev(k))
< {a(k) + c(k )}ev (k)
< o+ (r- 1)M4 eu(k) < ey(k),
where the last inequality is exactly Eqn. 131. d

Note for R: In practice, one may estimate a conservative
R from PI-law traces and use a small safety factor

Adding Disturbance: With bounded disturbances, the scalar
update reads

ev(k+1) < [q+ (R~ 1)cmax] e(k) + |wi(k)|,

so the same one-step monotonicity conclusion holds when-
ever

wi (1) < (1= [a+ (R = Demas] ) ealk)

for all pre-first-largest-overshooting steps.

e,(k—1)

If this smallness condition on disturbances fails at some
step, one-step monotonicity may be lost, but the ISS bounds
proved earlier still guarantee geometric decay up to a
disturbance-dependent radius.

We now show that before the first negative peak, the
integral state is positive.

Remark 5 Assume the setting of Remark. 4. Hence,
sy(k) > 0  forallk =ky,...

Proof. We argue by contradiction. Suppose there exists the
first 7 € [ko, imax — 1] such that s, (7) < 0. Then s, (7 —
1) > 0, and since we are on the first negative lobe, e, (7) <
0. Compute the one-step change of e,:

ev(7—+1) — €y (T) = (a(T) - 1)61) (T) - b(T)SU(T)
= (1 —a(7))les(T)] + b(7) (—s0u(7))

s tmax — ]-

because a(7) < ¢ < 1, e,(7) < 0 and s,(7) < 0. Hence
ey(7+1) > ( ). By the same reasoning, as long as both
ey(k) <0 and 8 (k) < 0hold, we have

eu(k+1) — e, (k) > (1 — q) |ey (k)| + bmin (—8,(k)) > 0,

where by, := infxb(k) > 0. Meanwhile s,(k+1) =
sy(k) + ey(k) < s,(k) on that interval, so s,(k) is
non-increasing; equivalenty —s, (k) is non-decreasing. If
e, stayed negative forever, then ZkN:O e,(T+k) = —oo,
s0 —8, (k) would grow without bound and the increments
e, (k+1)—e, (k) would eventually be arbitrarily large, forc-
ing e, to cross 0 in finite time. This contradicts the choice
of max as the first negative peak. Therefore such 7 cannot
existand s, (k) > Oforall k = ko, ..., imax — 1. O

Theorem 2 (PID reduces the first-overshoot amplitude)
Let the first overshoot occur at index ko with amplitude
Ag (definition in Eqn. 73). Then, the first-overshoot am-

plitude under PID Steering, AY™P, satisfies AJ'™® < ALY,

where AE' denotes the corresponding amplitude under PI
Steering.

) Proof. Under the PI law we have

A = — a(imaz—1) €y (imaz—1) + b(imaz —1) 8o (imaz —
(132)
— Wy (imas—1), (133)
while under the PID law
AP = — a(ipmar —1) €y (imaz—1) (134)
+ b(imaz—1) Sy (imaz—1) (135)
+ climaz —1) Aey (imaz—1) (136)
— Wy (imac—1), (137)

Due to the monotone decrease before this first largest over-
shooting condition stated in the previous part and the fact
that ¢(k) > 0, we have c¢(ko—1) Ae,(ko—1) < 0. There-
fore,

APTP < blimar — 1) 8y (imaz — 1) (138)
- a(imaz - ]-) ev(imax - 1) (139)
— W (ipaw — 1) = AL (140)

)



O

Remark 4 is neccessary because monotonic decrease of
e,(t) before the first peak is both a key technical prop-
erty for proving Theorem 2 and a desirable feature of PID
control itself. Indeed, as noted by Astrém and Higglund
(1995b, p.70), poorly tuned derivative gains may produce
non-monotonicity, in which case reducing only the first over-
shoot does not translate into improved overall behavior.

Additional Experimental Results
Qualitative Examples of Concept Steering

Fig. 7 and 8 show that varying the intervention strength
a € [0,1] produces a smooth and controllable progression
of stylistic traits in the generated images. At low strengths
(o = 0.2), subtle cues emerge, such as faint neon accents
for the cyberpunk style or mild metallic shading for steam-
punk, while the overall image remains close to the original
prompt. At moderate strengths (a =~ 0.5), stylistic features
become more salient: cyberpunk generations exhibit vivid
neon lighting and futuristic cityscapes, whereas steampunk
outputs show prominent brass textures, gears, and indus-
trial motifs. Importantly, in this regime, the central seman-
tic content of the prompt (i.e. objects, entities, and spatial
composition) is preserved with high fidelity. At high inter-
vention strengths (o > 0.8), stylistic traits dominate the
visual appearance, often saturating the scene with strong
color palettes or dense textures, yet semantic alignment to
the original prompt remains largely intact, indicating that the
steering primarily affects style without eroding core content.

Jailbreaking Large Language Models

We evaluate our method on ActAdd within the Angular
Steering framework (Vu and Nguyen 2025) on the jailbreak-
ing task, which seeks to override a model’s refusal behavior
and elicit harmful outputs. For full results table, please refer
to Tab2.

Experimental Setup. Following (Vu and Nguyen 2025),
we replace DIM with our method and baselines RePE (Zou
et al. 2023a) and ITT (Li et al. 2024). Refusal directions are
built from 80% of ADVBENCH (Zou et al. 2023b) and 512
harmless ALPACA (Taori et al. 2023) samples, with the re-
maining 20% for evaluation. General LM ability is tested on
TINYBENCHMARKS (Maia Polo et al. 2024). We evaluate
across Gemma2, LLaMA3, and Qwen2.5 models (3B—14B).

Results. PID Steering consistently outperforms DIM
and scales robustly across models and metrics (see
Tab. 2). On Qwen2.5-14B and LLaMA3.1-8B, PID achieves
the largest ASR reductions of 92.7% and 94.9%, exceed-
ing DIM by 1.5-2 points, while maintaining almost the
same performance, with marginal cost, on TinyBenchmarks.
Smaller models also see consistent gains: +2.0 ASR on
Qwen2.5-3B and +1.3 on LLaMA3.2-3B. In contrast, ITI
and RePE fail to scale, collapsing on larger models with
ASR values of 33.7 and 25.4, respectively, on Qwen2.5-14B.
A full version of Table 2 which also studies Qwen2.5-7B and
Llama3.2-3B is provided in Appendix 2?.
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Figure 6: 0-shot and CLIPScore results for ‘cyperpunk‘ and ‘steam-
punk‘ concept.

Figure 7: concept cyberpunk.
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Table 2: Comparison of Original, DIM, ITI, RePE, and PID across models on ASR and general benchmarks. Bold = best, underline = second-

best within each model (ASR column).

Method ASRT tinyArct tinyGSMSk strict! tinyMMLUT tinyTruthQA1 tinyHellaSwag? tinyWinoGrande?{

o  Original - 62.29 17.64 68.03 56.43 73.18 70.65
% . DIM 7403 61.95 14.80 66.11 54.95 72.40 69.85
SE m 7019 61.28 15.57 66.62 54.75 72.71 70.12
EZ RePE 6844  6L05 14.60 65.70 54.30 72.03 69.40
~ PID 7607  61.20 16.01 67.29 54.10 72.59 69.72
w  Original - 68.36 81.68 72.57 56.41 78.87 75.19
% . DIM 96.15  65.15 80.81 71.19 55.22 78.14 74.42
S5 m 84.61  65.76 79.48 71.23 55.63 78.36 T4.75
EZ RePE 8032 6500 78.90 70.60 55.00 7773 74.15
~ PID 96.46  66.61 80.78 71.22 55.52 78.28 74.58
«  Original - 73.96 90.12 74.60 64.50 82.70 73.77
<
% _ DM 90.38 7274 87.01 74.30 63.01 81.94 72.93
YE m 33.65  73.15 89.27 74.55 64.03 82.240 73.31
£Z RPE 2542 7240 86.20 73.90 63.20 81.52 72.60
©= pD 9265 7213 88.96 74.52 63.60 82.60 73.04
w  Original - 55.86 59.40 63.48 50.19 75.91 58.63
(2]
& _ DM 8846  54.24 58.63 61.68 49.78 75.10 57.94
'é g Im 76.92  53.67 57.77 61.85 49.95 75.22 58.16
SZ RePE 7015 5340 57.00 61.10 49.50 4.75 57.53
== PD 89.76  53.93 57.26 62.01 50.19 75.07 57.83
w  Original - 65.33 63.21 62.02 54.39 82.51 65.56
o
~_ DM 93.26  62.01 60.57 60.96 54.17 81.73 64.81
FE m 7980  64.26 61.85 61.37 54.33 82.01 65.21
SZ RePE 7042 6140 60.00 60.20 53.70 81.35 64.45
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