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ABSTRACT

Developing an effective molecular generation framework even with a limited num-
ber of molecules is often important for its practical deployment, e.g., drug discovery,
since acquiring task-related molecular data requires expensive and time-consuming
experimental costs. To tackle this issue, we introduce Hierarchical textual Inversion
for Molecular generation (HI-Mol), a novel data-efficient molecular generation
method. HI-Mol is inspired by a recent textual inversion technique in the visual
domain that achieves data-efficient generation via simple optimization of a new
single text token of a pre-trained text-to-image generative model. However, we
find that its naïve adoption fails for molecules due to their complicated and struc-
tured nature. Hence, we propose a hierarchical textual inversion scheme based on
introducing low-level tokens that are selected differently per molecule in addition
to the original single text token in textual inversion to learn the common concept
among molecules. We then generate molecules using a pre-trained text-to-molecule
model by interpolating the low-level tokens. Extensive experiments demonstrate
the superiority of HI-Mol with notable data-efficiency. For instance, on QM9,
HI-Mol outperforms the prior state-of-the-art method with 50× less training data.
We also show the efficacy of HI-Mol in various applications, including molecular
optimization and low-shot molecular property prediction.

1 INTRODUCTION

Finding novel molecules has been a fundamental yet crucial problem in chemistry (Xue et al., 2019;
Xu et al., 2019b) due to its strong relationship in achieving important applications, such as drug
discovery (Segler et al., 2018; Bongini et al., 2021) and material design (Hamdia et al., 2019; Tagade
et al., 2019). However, generating molecules poses a challenge due to their highly structured nature
and the vast size of the input space (Drew et al., 2012). To tackle this issue, several works have
considered training deep generative models to learn the molecule distribution using large molecular
datasets (Ahn et al., 2022; Jo et al., 2022). This is inspired by the recent breakthroughs of generative
models in other domains, e.g., images and videos (Rombach et al., 2022; Singer et al., 2022; Yu et al.,
2023), in learning high-dimensional and complex data distribution. Intriguingly, such deep molecular
generation methods have demonstrated reasonable performance (Jin et al., 2018; 2020; Ahn et al.,
2022) on the large-scale benchmarks (Ramakrishnan et al., 2014; Polykovskiy et al., 2020a) in finding
chemically valid and novel molecules, showing great potential to solve the challenge.

Unfortunately, existing molecular generation frameworks tend to fail in limited data regimes (Guo
et al., 2022). This restricts the deployment of existing approaches to practical scenarios, because
task-related molecular data for the target real-world applications are often insufficient to train such
molecular generative models. For example, drug-like molecules for a specific organ are inherently
scarce in nature (Schneider & Fechner, 2005; Altae-Tran et al., 2017), and the drug-likeness of each
candidate molecule should be verified through years of extensive wet experiments and clinical trials
(Drews, 2000; Hughes et al., 2011). This time-consuming and labor-intensive data acquisition process
of new task-related molecules (Stanley et al., 2021) limits the number of available training data for a
model to learn the desired molecule distribution. Thus, it is often crucial to develop a data-efficient
molecular generation framework, yet this direction has been overlooked in the field of deep molecular
generation (Guo et al., 2022) despite its importance in achieving practical applications.
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Figure 1: Overview of our HI-Mol framework. (1) Hierarchical textual inversion: we encode
the features of molecules into multi-level token embeddings. (2) Embedding interpolation-based
sampling: we generate novel molecules using interpolation of low-level token embeddings.

Meanwhile, recent works in text-to-image generation have explored the problem of low-shot (or
personalized) generation using the power of large pre-trained models trained on a massive amount of
data (Ruiz et al., 2022; Wei et al., 2023). In particular, Gal et al. (2022) propose a textual inversion
using pre-trained text-to-image diffusion models—given a small set of images, they show that the
common concepts among them can be learned effectively by optimizing a single text token under the
frozen diffusion model, where the learned token can be used for the desired generation.

Considering the recent success of large-scale pre-trained text-to-molecule models (Edwards et al.,
2022), what we ask in this paper is: can textual inversion be exploited to enable data-efficient
molecular generation with large-scale pre-trained text-to-molecule models? However, we find that
naïve adoption of textual inversion fails to achieve the goal, due to the highly complicated and
structured nature of molecules (see Figure 2). To exploit textual inversion for data-efficient molecular
generation, we suggest considering the unique aspects of the molecule carefully in its adoption.

Contribution. We introduce a novel data-efficient molecular generation method, coined Hierarchical
textual Inversion for Molecular generation (HI-Mol). Specifically, HI-Mol is composed of two
components (see Figure 1 for the overall illustration):

• Hierarchical textual inversion: We propose a molecule-specialized textual inversion scheme to
capture the hierarchical information of molecules (Alexander et al., 2011). In contrast to textual
inversion for the visual domain that optimizes a single shared token on given data, we design
multi-level tokens for the inversion so that some of the low-level tokens are selected differently
per molecule. Thus, the shared token learns the common concept among molecules and low-level
tokens learn molecule-specific features. This low-level token selection does not require any
specific knowledge of each molecule and can be achieved completely in an unsupervised manner.

• Embedding interpolation-based sampling: We present a molecule sampling scheme that utilizes
the multi-level tokens optimized in the inversion stage. Our main idea is to use low-level tokens
in addition to the shared token for molecular generation. In particular, we consider using the
interpolation of two different low-level token embeddings for generation. The mixing approach is
designed to extensively utilize the information of given molecules, and thus effectively alleviates
the issue of the limited number of available molecules that lie in the target distribution.

We extensively evaluate HI-Mol by designing several data-efficient molecular generation tasks on the
datasets in the MoleculeNet benchmark (Wu et al., 2018) and on the QM9 dataset (Ramakrishnan
et al., 2014). For instance, in the HIV dataset in MoleculeNet, HI-Mol improves Frechet ChemNet
Distance (Preuer et al., 2018, FCD) and Neighborhood Subgraph Pairwise Distance Kernel MMD
(Costa & De Grave, 2010, NSPDK) as 20.2 → 16.6, and 0.033 → 0.019 (respectively, lower values are
better) from prior arts. HI-Mol also achieves much better active ratio (higher is better) by improving
the previous state-of-the-art as 3.7 → 11.4. We also show the strong data-efficiency of HI-Mol. For
instance, on QM9, HI-Mol already outperforms the previous state-of-the-arts, e.g., STGG (Ahn et al.,
2022) by 0.585 → 0.434 in FCD, with 50× less training data. Finally, we validate the effectiveness
of HI-Mol on several downstream tasks including the molecular optimization for PLogP on the ZINC
dataset (Irwin et al., 2012) and the low-shot molecular property prediction on MoleculeNet.
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Property of the cluster: Containing long carbon chain Property of the cluster: Containing sulfonlyl benzene on sides

Figure 2: Visualizations of molecules in two clusters obtained from the unsupervised clustering in
Eq. (1) on the HIV dataset (Wu et al., 2018). We note that the molecules often have very different
structures, e.g., long carbon chains (left) and sulfonyl benzene groups (right), and thus the naïve
application of textual inversion with a single shared token does not perform well (see Table 6).

2 RELATED WORK

Molecular generation. Most molecular generation methods fall into three categories based on
different representations of molecules. First, there exist many attempts (Shi et al., 2020; Zang &
Wang, 2020; Niu et al., 2020; Luo et al., 2021; Liu et al., 2021; Jo et al., 2022; Luo et al., 2022; Guo
et al., 2022; Hoogeboom et al., 2022; Zhang et al., 2023; Vignac et al., 2023) to formalize molecular
generation as a graph generation problem by representing each molecule as an attributed graph. Next,
there are several fragment-based methods (Jin et al., 2018; Kong et al., 2022; Geng et al., 2023),
which define a dictionary of fragments, e.g., functional groups. Each molecule is represented as a tree
structure of dictionary elements and the distribution of connected fragments is then modeled. Finally,
there are approaches (Gómez-Bombarelli et al., 2016; Liu et al., 2018; Flam-Shepherd et al., 2022;
Ahn et al., 2022) that utilize the Simplified Molecular-Input Line-Entry System (SMILES, Weininger,
1988) representation to write molecules as strings and learn the distribution in this string space.

Molecular language model. Following the recent progress in large language models (Raffel et al.,
2020; Brown et al., 2020; Touvron et al., 2023), there exist several attempts to train molecular
language models (Fabian et al., 2020; Bagal et al., 2021; Christofidellis et al., 2023). Specifically,
these works exploit popular language model architectures to have pre-trained models for molecules,
based on the SMILES (Weininger, 1988) representation SMILES(x) that interprets a given molecule
x as a string. In particular, MolT5 (Edwards et al., 2022) proposes to fine-tune a large text-to-text
language model, T5 (Raffel et al., 2020), with SMILES representations of large-scale molecular
data and text description-SMILES pair data to have a text-to-molecule model. Notably, it results
in a highly effective pre-trained model for molecules, demonstrating superior performance across
text-to-molecule generation tasks. Inspired by its success, we use the Large-Caption2Smiles model
trained with this MolT5 approach for our goal of data-efficient molecular generation.

Low-shot generation. There have been substantial efforts in the generative model literature to design
a low-shot generation framework for generating new samples from a given small number of data.
Intriguingly, recent works on large-scale text-to-image diffusion models have surprisingly resolved
this challenge, even enabling “personalization” of the model at a few in-the-wild images through
simple optimization schemes that update only a few parameters (Gal et al., 2022; Cohen et al., 2022;
Wei et al., 2023). In particular, textual inversion (Gal et al., 2022) exhibits that the personalization of
large-scale text-to-image diffusion models can be achieved even with a very simple optimization of a
single additional text token without updating any pre-trained model parameters.

In contrast to the recent advances of low-shot generation in the image domain, developing a low-shot
(or data-efficient) molecular generation framework is relatively under-explored despite its practical
importance (Altae-Tran et al., 2017; Guo et al., 2022). Hence, our method tackles this problem by
designing a molecule-specific textual inversion method using the recent large-scale text-to-molecule
models. Specifically, due to our unique motivation to consider “hierarchy” of molecular structures
(Alexander et al., 2011), our method effectively learns the molecule distribution of low-shot molecules
with diverse molecular structures, while the applications of prior works, e.g., Guo et al. (2022), are
limited to structurally similar low-shot molecules such as monomers and chain-extenders.
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3 HI-MOL: HIERARCHICAL TEXTUAL INVERSION FOR MOLECULAR
GENERATION

In Section 3.1, we provide an overview of our problem and the main idea. In Section 3.2, we provide
descriptions of textual inversion to explain our method. In Section 3.3, we provide a component-by-
component description of our method.

3.1 PROBLEM DESCRIPTION AND OVERVIEW

We formulate our problem of data-efficient molecular generation as follows. Consider a given
molecular dataset M := {xn}Nn=1, where each molecule xn is drawn from an unknown task-related
molecule distribution p(x|c). Here, c represents the common underlying chemical concept among
molecules in the dataset for the target task, e.g., blood-brain barrier permeability or ability to inhibit
HIV replication. We aim to learn a model distribution pmodel(x) that matches p(x|c), where the
number of molecules N in the dataset is small, e.g., N = 691 in the BACE dataset.

To solve this problem, we take the recent approach of textual inversion (Gal et al., 2022) from
the text-to-image diffusion model literature—a simple yet powerful technique in low-shot image
generation that learns a common concept in given images as a single token in text embedding space.
Similarly, we aim to learn the common concept of molecules as text tokens and use them for our target
of data-efficient generation. However, exploiting this approach for our goal faces several challenges,
mainly due to the unique characteristics of molecules differentiated from images. First, it is yet
overlooked which of the large-scale model for molecules is beneficial to achieve textual inversion for
molecules, like the success of text-to-image diffusion models in achieving successful inversion in the
image domain. Moreover, molecules have a very different structural nature from images—unlike
images, molecules with similar semantics often have entirely different structures (see Figure 2),
making it difficult to simply learn the common concept as a single text token. Our contribution lies
in resolving these challenges by adopting molecule-specific priors into the framework to enjoy the
power of textual inversion techniques in achieving data-efficient molecular generation.

3.2 PRELIMINARY: TEXTUAL INVERSION

Recent text-to-image generation methods have proposed textual inversion (Gal et al., 2022), which
aims to learn a common concept c, i.e., the distribution p(x|c), from a small set of images and use it
for the concept-embedded (or personalized) generation. To achieve this, they optimize a single text
embedding of a token [S∗] shared among images to learn c using a pre-trained frozen text-to-image
diffusion model ft2i. Specifically, they put [S∗] with a short text description, e.g., “A photo of [S∗]”,
as the text prompt to ft2i, and then optimize this token embedding using given images with the
exact same training objective that is used for training ft2i. We propose to adapt the textual inversion
framework into the data-efficient molecular generation framework based on the recent state-of-the-art
large-scale pre-trained text-to-molecule generative model, MolT5 (Edwards et al., 2022).1

3.3 DETAILED DESCRIPTION OF HI-MOL

Hierarchical textual inversion. We first propose a molecule-specific textual inversion to learn the
desired molecule distribution. Unlike prior textual inversion that assumes a single shared token [S∗]
only, we propose to use “hierarchical” tokens [S∗], {[I∗k ]}Kk=1, {[D∗

n]}Nn=1 (with parametrizations
θ := (s, {ik}Kk=1, {dn}Nn=1)) by introducing additional intermediate tokens {[I∗k ]}Kk=1 and detail
tokens {[D∗

n]}Nn=1 (with K < N ). Such intermediate and detail tokens learn cluster-wise (high-level)
and molecule-wise (low-level) features of the molecular dataset, respectively.

To learn these hierarchical tokens, we consider a frozen text-to-molecule model f , e.g., Large-
Caption2Smiles (Edwards et al., 2022), to apply our proposed hierarchical textual inversion objective.

1We use SMILES strings as the representation of molecules because our method is built upon the state-of-
the-art text-to-molecule model that utilizes SMILES strings, i.e., MolT5 (Edwards et al., 2022). However, our
method is agnostic to the underlying molecule representation of the text-to-molecule models.
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Specifically, we optimize θ by minimizing the following objective on the given molecular dataset M:

L(θ;xn) := min
k∈[1,K]

LCE

(
softmax

(
f(“The molecule is a [S∗][I∗k ][D

∗
n]”)

)
, SMILES(xn)

)
, (1)

where LCE denotes cross-entropy loss and SMILES(xn) is a SMILES (Weininger, 1988) string of xn.
Thus, each xn is interpreted as three tokens [S∗][I∗cn ][D

∗
n], where we assign intermediate token index

cn ∈ [1,K] (for given xn and the corresponding [D∗
n]) during optimization to minimize the training

objective L (see Eq. (1)). We note that the selection of [I∗cn ] is achieved in an unsupervised manner so
that it does not require any specific information about each molecule. Intriguingly, we find that [I∗cn ]
can learn some of the informative cluster-wise features through this simple selection scheme although
we have not injected any prior knowledge of given molecular data (see Figure 2 for an example).

Our “multi-level” token design is particularly important for the successful inversion with molecules
because molecules have a different nature from images that are typically used in the existing textual
inversion method. Image inputs in the conventional textual inversion are visually similar, e.g., pictures
of the same dog with various poses, whereas molecules often have entirely different structures even if
they share the common concept, e.g., ability on the blood-brain membrane permeability (Wu et al.,
2018). This difference makes it difficult to learn the common concept as a simple single token; we
mitigate it by adopting hierarchy in the inversion scheme by incorporating the principle of chemistry
literature highlighting that molecular data can be clustered hierarchically (Alexander et al., 2011).

Embedding interpolation-based sampling. We propose a sampling strategy from the learned
distribution via hierarchical textual inversion. We find that sampling schemes used in existing textual
inversion for images, e.g., putting a text prompt including [S∗] such as “A similar chemical of [S∗]”
into the molecular language model f , does not work well in molecular generation (see Table 6).

To alleviate this issue, we propose to utilize the learned intermediate tokens {[I∗k ]}Kk=1 and detail
tokens {[D∗

n]}Nn=1 to sample from our target distribution. We consider the interpolation of each of
intermediate tokens and detail tokens in the sampling process, i.e., we incorporate the hierarchy
information of molecules which is obtained in our textual inversion. Specifically, we sample a novel
molecule with random molecule indices i, j sampled uniformly from [1, . . . , N ] and a coefficient λ
drawn from a pre-defined prior distribution p(λ) (see Appendix A for our choice of p(λ)):(̄

i, d̄
)
:= λ

(
ici ,di

)
+ (1− λ)

(
icj ,dj

)
, (2)

x := f
(
“A similar chemical of [S∗][Ī∗][D̄∗]”

)
,

where [Ī∗], [D̄∗] indicate that we pass interpolated embeddings ī, d̄ to f , respectively, and cn ∈ [1,K]
is an index of the intermediate token of a given molecule xn, i.e., an intermediate token index that
minimizes the training objective in Eq. (1).2 This additional consideration of low-level tokens
{[I∗k ]}Kk=1, {[D∗

n]}Nn=1 (as well as [S∗]) encourages the sampling process to exploit the knowledge
from given molecular dataset extensively, mitigating the issue of scarcity of target molecules that lie
in our desired molecule distribution and thus enables to generate high-quality molecules. We provide
qualitative analysis on our embedding interpolation-based sampling scheme in Appendix I.

4 EXPERIMENTS

We extensively verify the superiority of HI-Mol by considering various data-efficient molecular
generation scenarios. In Section 4.1, we explain our experimental setup. In Section 4.2, we present
our main molecular generation results on MoleculeNet and QM9. In Section 4.3, we present results
on downstream tasks, i.e., optimization and low-shot property prediction. Finally, in Section 4.4, we
conduct some analysis and an ablation study to validate the effect of components of our method. We
provide further ablation study and additional experimental results in Appendix E and F, respectively.

4.1 EXPERIMENTAL SETUP

Datasets. Due to the lack of benchmarks designed particularly for data-efficient molecular generation,
we propose to use the following datasets for evaluating molecular generation methods under our
problem setup. First, we consider three datasets in the MoleculeNet (Wu et al., 2018) benchmark

2We simply set the number of clusters K as 10 in our experiments. Please see Appendix E for analysis on K.
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Table 1: Quantitative results of the generated molecules on the three datasets (HIV, BBBP, BACE) in
the MoleculeNet benchmark (Wu et al., 2018). We mark in Grammar if the method explicitly exploits
the grammar of molecular data and thus yields a high Valid. score. The Active. score is averaged
over three independently pre-trained classifiers. We compute and report the results using the 500
non-overlapping generated molecules to the training dataset. We set the highest score in bold. ↑ and
↓ indicate higher and lower values are better (respectively) for each metric.

Dataset Method Class Grammar Active. ↑ FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

HIV

GDSS (Jo et al., 2022) Graph ✗ 0.0 34.1 0.080 69.4 100 100
DiGress (Vignac et al., 2023) Graph ✗ 0.0 26.2 0.067 17.8 100 100
JT-VAE (Jin et al., 2018) Fragment ✓ 0.0 38.8 0.221 100 25.4 100
PS-VAE (Kong et al., 2022) Fragment ✓ 3.7 21.8 0.053 100 91.4 100
MiCaM (Geng et al., 2023) Fragment ✓ 3.4 20.4 0.037 100 81.6 100
CRNN (Segler et al., 2018) SMILES ✗ 3.3 29.7 0.064 30.0 100 100
STGG (Ahn et al., 2022) SMILES ✓ 1.6 20.2 0.033 100 95.8 100
HI-Mol (Ours) SMILES ✗ 11.4 19.0 0.019 60.6 94.1 100
HI-Mol (Ours) SMILES ✓ 11.4 16.6 0.019 100 95.6 100

BBBP

GDSS (Jo et al., 2022) Graph ✗ 0.0 35.7 0.065 88.4 99.2 100
DiGress (Vignac et al., 2023) Graph ✗ 8.2 17.4 0.033 43.8 94.6 100
JT-VAE (Jin et al., 2018) Fragment ✓ 80.6 37.4 0.202 100 10.8 100
PS-VAE (Kong et al., 2022) Fragment ✓ 84.9 17.3 0.039 100 91.6 100
MiCaM (Geng et al., 2023) Fragment ✓ 82.0 14.3 0.021 100 89.4 100
CRNN (Segler et al., 2018) SMILES ✗ 88.8 20.2 0.026 54.0 100 100
STGG (Ahn et al., 2022) SMILES ✓ 89.1 14.4 0.019 99.8 95.8 100
HI-Mol (Ours) SMILES ✗ 94.4 11.2 0.011 78.8 92.9 100
HI-Mol (Ours) SMILES ✓ 94.6 10.7 0.009 100 94.2 100

BACE

GDSS (Jo et al., 2022) Graph ✗ 9.1 66.0 0.205 73.4 100 100
DiGress (Vignac et al., 2023) Graph ✗ 21.1 26.7 0.102 16.4 100 100
JT-VAE (Jin et al., 2018) Fragment ✓ 40.4 49.1 0.304 100 13.0 100
PS-VAE (Kong et al., 2022) Fragment ✓ 57.3 30.2 0.111 100 75.6 100
MiCaM (Geng et al., 2023) Fragment ✓ 56.2 18.5 0.060 100 64.2 100
CRNN (Segler et al., 2018) SMILES ✗ 79.0 21.7 0.066 38.0 100 100
STGG (Ahn et al., 2022) SMILES ✓ 42.9 17.6 0.053 100 94.8 100
HI-Mol (Ours) SMILES ✗ 81.0 16.4 0.052 71.0 69.9 100
HI-Mol (Ours) SMILES ✓ 80.4 14.0 0.039 100 74.4 100

(originally designed for activity detection): HIV, BBBP, and BACE, which have a significantly
smaller number of molecules than popular molecular generation benchmarks (Sterling & Irwin, 2015;
Polykovskiy et al., 2020b). For example, BACE includes only 691 active molecules. With only the
active molecules in each dataset, we construct tasks to generate novel molecules that share the same
chemical concept, e.g., blood-brain membrane permeability for the BBBP dataset.

Moreover, we also utilize the QM9 dataset (Ramakrishnan et al., 2014) for our experiments to show
the data-efficiency of HI-Mol. Specifically, we train our method with an extremely small subset of the
entire QM9 training split, e.g., 2%, where other baseline methods are trained with the whole training
split (105k molecules). We provide more details about the datasets in Appendix B.

Evaluation setup. To evaluate the quality of the generated molecules, we consider six metrics
that represent diverse aspects which are critical to the evaluation of the generated molecules, e.g.,
similarity to the target distribution, uniqueness, and novelty. We incorporate some well-known
metrics, such as those used in Jo et al. (2022), as well as introducing a new metric “Active ratio”:

• Active ratio3 (Active.): Our proposed metric, measuring the ratio of the valid generated molecules
that are active, i.e., satisfying the target property for the relevant task.

• Fréchet ChemNet Distance (FCD, Preuer et al., 2018): Metric for measuring the distance
between the source distribution and the target distribution using pre-trained ChemNet.

• Neighborhood Subgraph Pairwise Distance Kernel MMD (NSPDK, Costa & De Grave, 2010):
Another metric for measuring the gap between source and the target distributions, based on
algorithmic computation using graph-based representations of molecules.

• Validity (Valid.): The ratio of the generated molecules that have the chemically valid structure.

3For reliable evaluation with our metric, we avoid the overlap between the generated molecules and the
training data used for generation methods by ignoring the molecule if it is contained in this dataset. Hence, the
Novelty score is 100 for all MoleculeNet experiments since all samples are different from the training set (see
Table 1 for an example). We provide the detailed description of this metric in Appendix C.
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Table 2: Qualitative results of the generated molecules on the two datasets (HIV, BBBP) of the
MoleculeNet benchmark (Wu et al., 2018). We visualize the generated molecules from each method
that has the maximum Tanimoto similarity with a given anchor molecule. We report the similarity
below each visualization of the generated molecule. We set the highest similarity in bold.

Dataset DiGress (Vignac et al., 2023) MiCaM (Geng et al., 2023) STGG (Ahn et al., 2022) HI-Mol (Ours) Train

HIV

0.154 0.146 0.157 0.326

BBBP

0.238 0.247 0.246 0.505

• Uniqueness (Unique.): Diversity of the generated molecules based on the ratio of different
samples over total valid molecules earned from the generative model.

• Novelty: Fraction of the valid molecules that are not included in the training set.

Baselines. We mainly consider the following methods for evaluation: GDSS (Jo et al., 2022), DiGress
(Vignac et al., 2023), DEG (Guo et al., 2022), JT-VAE (Jin et al., 2018), PS-VAE (Kong et al., 2022),
MiCaM (Geng et al., 2023), CRNN (Segler et al., 2018), and STGG (Ahn et al., 2022). For evaluation
on QM9, we also consider GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021), MoFlow (Zang &
Wang, 2020), EDP-GNN (Niu et al., 2020), and GraphEBM (Liu et al., 2021), following the recent
works (Jo et al., 2022; Luo et al., 2022). We provide more details of the baselines in Appendix D.

4.2 MAIN RESULTS

Generation on MoleculeNet. Table 1 summarizes the quantitative results of the generated molecules
on the HIV, BBBP, and BACE datasets in the MoleculeNet benchmark (Wu et al., 2018). Our method
consistently outperforms other generation methods in terms of Active ratio, FCD, and NSPDK scores
on all three datasets. We note that the improvements in these scores are particularly crucial for the
deployment of the molecular generation method. For example, the superior Active ratio of HI-Mol,
e.g., 3.7 → 11.4 on the HIV dataset, indicates that the generated molecules are more likely to
exhibit the desired activeness. Our method also significantly improves the FCD metric on the HIV
dataset from 20.2 → 19.0, and this indicates the effectiveness of HI-Mol in generating more faithful
molecules that lie in the target distribution. We provide qualitative results in Table 2 by visualizing
some of the generated molecules from each dataset. One can observe that the generated molecules by
HI-Mol capture several crucial common substructures, e.g., many ester groups, while introducing the
novel components, e.g., 4-membered ring, due to our interpolation-based sampling scheme.

We also propose a simple algorithm to modify the generated invalid SMILES by correcting invalid
patterns4 without a computational overhead. By applying this algorithm, we convert all invalid
SMILES to valid ones, therefore, Validity becomes 100. In particular, the modified molecules further
improve the overall metrics, e.g., FCD by 19.0 → 16.6 and 11.2 → 10.7 in the HIV and BBBP
dataset, respectively. This indicates the modified SMILES indeed represent molecules from the
desired distribution and further highlights the superior quality of our generated molecules.

Generation on QM9. In Table 3, we report the quantitative results of the generated molecules from
each method. Here, we train our method with a limited portion of data, e.g., 2% and 10%, and then
compare the results with the baselines that are trained with the entire dataset. Our model shows
strong data-efficiency: only with a 2% subset of the training data, our method already outperforms the
state-of-the-art baseline, STGG (Ahn et al., 2022), by 0.585 → 0.430 in FCD. Utilizing a 10% subset
further improves the performance of HI-Mol, reducing the FCD by 0.430 → 0.398. In particular,
compared with STGG, HI-Mol not only improves the FCD score but also shows a better Novelty
score, which validates the capability of HI-Mol to find novel molecules from the target distribution.

4For example, we modify the invalid SMILES caused by the unclosed ring, e.g., C1CCC → CCCCC. Please see
Appendix H for detailed algorithm. We mark in Grammar column when modification is applied for evaluation.
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Table 3: Quantitative results of the generated molecules on the QM9 dataset (Ramakrishnan et al.,
2014). We mark in Grammar if the method explicitly exploits the grammar of molecular data and
thus yields a high Valid. score. Following the setup of Jo et al. (2022), we report the results using
10,000 sampled molecules. We denote the scores drawn from Luo et al. (2022) and Ahn et al. (2022)
with (*) and (†), respectively. We mark (-) when the score is not available in the literature. We set
the highest score in bold. ↑ and ↓ indicate higher and lower values are better (respectively) for each
metric. For our method, we report the ratio of the number of samples of the dataset used for training.

Method Class Grammar FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

CG-VAE† (Liu et al., 2018) Graph ✓ 1.852 - 100 98.6 94.3
GraphAF (Shi et al., 2020) Graph ✗ 5.268 0.020 67 94.5 88.8
MoFlow (Zang & Wang, 2020) Graph ✗ 4.467 0.017 91.4 98.7 94.7
EDP-GNN (Niu et al., 2020) Graph ✗ 2.680 0.005 47.5 99.3 86.6
GraphDF (Luo et al., 2021) Graph ✗ 10.82 0.063 82.7 97.6 98.1
GraphEBM (Liu et al., 2021) Graph ✗ 6.143 0.030 8.22 97.8 97.0
GDSS (Jo et al., 2022) Graph ✗ 2.900 0.003 95.7 98.5 86.3
GSDM∗ (Luo et al., 2022) Graph ✗ 2.650 0.003 99.9 - -
STGG† (Ahn et al., 2022) SMILES ✓ 0.585 - 100 95.6 69.8

HI-Mol (Ours; 2%) SMILES ✗ 0.434 0.001 90.7 75.8 73.5
HI-Mol (Ours; 2%) SMILES ✓ 0.430 0.001 100 76.1 75.6
HI-Mol (Ours; 10%) SMILES ✗ 0.400 0.002 87.6 87.6 71.2
HI-Mol (Ours; 10%) SMILES ✓ 0.398 0.001 100 88.3 73.2

For an extensive comparison with the baselines which show high Novelty scores, e.g., GDSS (Jo
et al., 2022), we adjust the sampling strategy slightly; we utilize a simple resampling strategy (which
takes only 1.8 sec per molecule) and make the Validity, Uniqueness, and Novelty scores to 100 for
a fair comparison in FCD with those methods. Even in this case, HI-Mol achieves FCD of 0.601,
which outperforms all those baselines. We provide detailed results and discussions in Appendix G.

4.3 APPLICATIONS OF HI-MOL

𝛾 = 5, PlogP = 5.06 𝛾 = 6, PlogP = 5.96 𝛾 = 7, PlogP = 6.59

Figure 3: Visualization of the generated
molecules with condition γ. The maximum
PLogP among the training molecules is 4.52.

Molecular optimization. We demonstrate the effec-
tiveness of HI-Mol in molecular optimization, mainly
following the experimental setup of Ahn et al. (2022).
We train a conditional molecular generative model
pmodel(x|γ) under the HI-Mol framework where γ
denotes the penalized octanol-water partition coef-
ficient (PLogP). Then, we sample with a high γ to
generate molecules with high PLogP. In Table 4, our
HI-Mol generates molecules with considerably high
PLogP even when trained with only 1% of the entire
training dataset. Here, we remark that solely maximizing the molecular property (such as PLogP)
may generate unrealistic molecules (Ahn et al., 2022), e.g., unstable or hard-to-synthesize (see
Appendix K). To address this and highlight the practical application of our HI-Mol framework,
we further show the model’s capability to generate molecules with the desired PLogP. In Figure 3,
HI-Mol generates realistic molecules with the target PLogP, even when the desired condition γ is
unseen in the training molecules. The overall results show that our HI-Mol exhibits a huge potential
for real-world scenarios where we aim to generate molecules with a specific target property.

Low-shot molecular property prediction. We show that the generated molecules by HI-Mol can be
utilized to improve the performance of classifiers for low-shot molecular property prediction. Here,
we collect low-shot molecules from the MoleculeNet benchmark (Wu et al., 2018) and generate
molecules via molecular generative models for each label. In Table 5, HI-Mol consistently shows
the superior ∆ROC-AUC5 score. This demonstrates the efficacy of HI-Mol to learn the concept,
e.g., activeness and in-activeness, of each label information with a limited number of molecules.
In practical scenarios, where the label information is hard to achieve, our HI-Mol indeed plays an
important role in improving the classifier. We provide experimental details in Appendix L.

5This score is calculated by the improvement of the ROC-AUC score when the generated molecules are
additionally added to the original low-shot training data; higher is better.
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Table 4: Results of molecular property maxi-
mization task. We report the top-3 property
scores denoted by 1st, 2nd, and 3rd. The
baseline scores are drawn from Ahn et al. (2022).

PlogP

Method 1st 2nd 3rd

GVAE (Kusner et al., 2017) 2.94 2.89 2.80
SD-VAE (Dai et al., 2018) 4.04 3.50 2.96
JT-VAE (Jin et al., 2018) 5.30 4.93 4.49
MHG-VAE (Kajino, 2019) 5.56 5.40 5.34
GraphAF (Shi et al., 2020) 12.23 11.29 11.05
GraphDF (Luo et al., 2021) 13.70 13.18 13.17
STGG (Ahn et al., 2022) 23.32 18.75 16.50

HI-Mol (Ours; 1%) 24.67 21.72 20.73

Table 5: Average ∆ROC-AUC of the low-shot
property prediction tasks with 20 random seeds.

Dataset Method 16-shot 32-shot

HIV

DiGress (Vignac et al., 2023) -2.30 -2.67
MiCaM (Geng et al., 2023) 1.02 0.69
STGG (Ahn et al., 2022) 0.53 -0.47

HI-Mol (Ours) 2.35 2.16

BBBP

DiGress (Vignac et al., 2023) 1.73 0.97
MiCaM (Geng et al., 2023) 1.91 1.78
STGG (Ahn et al., 2022) 1.85 1.76

HI-Mol (Ours) 2.73 2.64

BACE

DiGress (Vignac et al., 2023) -0.60 -0.91
MiCaM (Geng et al., 2023) -0.65 -1.11
STGG (Ahn et al., 2022) 2.34 2.01

HI-Mol (Ours) 3.53 3.39

Table 6: Ablation of the components of hierarchical textual inversion on the QM9 dataset (Ramakr-
ishnan et al., 2014) with 2% subset. We report the results using 10,000 sampled molecules.

Training prompt FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
The molecule is a [S∗] 7.913 0.041 96.2 19.3 39.5
The molecule is a [S∗][D∗

n] 0.486 0.002 93.8 70.8 72.3
The molecule is a [S∗][I∗cn ][D

∗
n] 0.434 0.001 90.7 75.8 73.5

4.4 ANALYSIS

Effect of intermediate tokens. Recall that we have introduced intermediate text tokens {[I∗k ]}Kk=1,
which are selected in an unsupervised manner during the hierarchical textual inversion to learn some
of the cluster-wise features included in given molecules. To validate the effect of our text token
design, we visualize the clustering results in Figure 2 by providing groups of the molecules that have
the same intermediate token. As shown in this figure, molecules are well grouped according to their
common substructures, e.g., a long carbon chain or sulfonyl benzene groups. Such a learning of
cluster-wise low-level semantics is indeed beneficial in molecular generation, since molecules often
share the concept, e.g., molecular property, even when they have large structural differences.

Ablation on hierarchical tokens. To validate the effect of each token in our proposed hierarchical
textual inversion, we perform an ablation study by comparing the results with our method where
some of the tokens are excluded from the overall framework. Specifically, we compare the generation
performance of the following three variants: (1) using the shared token [S∗] only, (2) using [S∗]
and the detail tokens [D∗

n], and (3) using all three types of tokens (HI-Mol). Note that for (1), it is
impossible to apply our interpolation-based sampling; hence, we use temperature sampling instead
based on the categorical distribution from a molecular language model with temperature τ = 2.0.
We provide this result in Table 6: as shown in this table, introducing each of the additional tokens
successively improves most of the metrics, while maintaining the Validity score as well.

5 CONCLUSION

We propose HI-Mol, a data-efficient molecular generation framework that utilizes a molecule-
specialized textual inversion scheme. Specifically, we propose to capture the hierarchical information
of molecular data in the inversion stage, and use it to sample novel molecules. We hope our method
initiates under-explored but crucial research direction in the data-efficient generation of molecules.

Limitation and future work. In this work, we apply our novel textual inversion scheme to the
molecular language model (Edwards et al., 2022), where developing such a model is a very recently
considered research direction. An important future work would be improving the large-scale molecular
language models themselves, e.g., the breakthroughs in the image domain (Rombach et al., 2022),
which will allow more intriguing applications of HI-Mol, such as composition (see Appendix F).
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ETHICS STATEMENT

This work will facilitate research in molecular generation, which can speed up the development of
many important generation tasks such as finding drugs for a specific organ and disease when the hit
molecules are rarely known. However, malicious use of well-learned molecular generative model
poses a potential threat of creating hazardous molecules, such as toxic chemical substances. It is an
important research direction to prevent such malicious usage of generative models (OpenAI, 2023).
On the other hand, molecular generation is also essential for generating molecules to defend against
harmful substances, so the careful use of our work, HI-Mol, can lead to more positive effects.

REPRODUCIBILITY STATEMENT

We provide explicit description of our training objective and the sampling method in Section 3.3.
We list the hyper-parameter information and the hardware information in Appendix A. We describe
the details of datasets and evaluation metrics in Appendix B and C, respectively. We provide our
molecule modification algorithm in Appendix H. We submit the code implementation of our HI-Mol
framework as a supplementary material.
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Appendix: Data-Efficient Molecular Generation
with Hierarchical Textual Inversion

A METHOD DETAILS

We utilize a recently introduced text-to-molecule model, MolT5-Large-Caption2Smiles (Edwards
et al., 2022) in our HI-Mol framework.6 This model is constructed upon a text-to-text model, T5
(Raffel et al., 2020), and molecular information is injected by additional training with both unpaired
SMILES (Weininger, 1988) string and caption-SMILES paired dataset. Our experiment is conducted
for 1,000 epochs using a single NVIDIA GeForce RTX 3090 GPU with a batch size of 4. We use
AdamW optimizer with ϵ = 1.0 × 10−8 and let the learning rate 0.3 with linear scheduler. We
clip gradients with the maximum norm of 1.0. We update the assigned cluster cn of each molecule
for the first 5 epochs following Eq. (1). For interpolation-based sampling, we choose a uniform
distribution p(λ), (i.e., p(λ) := U(l, 1− l)), where λ controls relative contributions of interpolated
token embeddings. We set l = 0.0 on the datasets in MoleculeNet benchmark (Wu et al., 2018), and
l = 0.3 on the QM9 dataset (Ramakrishnan et al., 2014).

B DATASETS

MoleculeNet dataset. We perform generation experiments on single-task datasets, HIV, BBBP, and
BACE, from MoleculeNet (Wu et al., 2018) benchmark. For each dataset, molecules are labeled with
0 or 1, based on its activeness of the target property:

• HIV consists of molecules and its capability to prevent HIV replication.
• BBBP consists of molecules and whether each compound is permeable to the blood-brain barrier.
• BACE consists of molecules and its binding results for a set of inhibitors of β-secretase-1.

We collect active (e.g., label-1) molecules to train molecular generative models. We utilize a common
splitting scheme for MoleculeNet dataset, scaffold split with split ratio of train:valid:test = 80:10:10
(Wu et al., 2018). We emphasize that such scaffold split is widely considered in molecular generation
domain (Ahn et al., 2022). Additional statistics for datasets on MoleculeNet are provided in Table 7.

Table 7: MoleculeNet downstream classification dataset statistics

Dataset HIV BBBP BACE

Number of molecules 41,127 2,039 1,513
Number of active molecules 1,443 1,567 691
Avg. Node 25.51 24.06 34.08
Avg. Degree 54.93 51.90 73.71

QM9 dataset. We perform generation experiments on the QM9 dataset (Ramakrishnan et al., 2014),
which is a widely adopted to benchmark molecular generation methods. This dataset consists of
133,885 small orginic molecules. We follow the dataset splitting scheme of (Ahn et al., 2022) and
randomly subset the training split with 2%, 5%, 10%, and 20% ratio for training our HI-Mol.

6https://huggingface.co/laituan245/molt5-large-caption2smiles
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C EVALUATION METRICS

We mainly utilize 6 metrics to incorporate diverse aspects for evaluation of the generated molecules.
We adopt 5 metrics (FCD, NSPDK, Validity, Uniqueness, Novelty) used in (Jo et al., 2022):

• Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) evaluates the distance between the
generated molecules and test molecules using the activations of the penultimate layer of the
ChemNet, similar to popular Fréchet inception distance (FI) used in image domain (Heusel et al.,
2017):

FCD := ∥m−mg∥22 + Tr
(
C + Cg − 2(CCg)

1/2
)
, (3)

where m,C are the mean and covariance of the activations of the test molecules, and mg, Cg are
the mean and covariance of the activations of the generated molecules.

• Neighborhood Subgraph Pairwise Distance Kernel MMD (NSPDK) (Costa & De Grave,
2010) calculates the maximum mean discrepancy between the generated molecules and test
molecules. We follow the evaluation protocol in (Jo et al., 2022), to incorporate both atom and
bond features.

• Validity (Valid.) is the ratio of the generated molecules that does not violate chemical validity,
e.g., molecules that obey the valency rule.

• Uniqueness (Unique.) is the ratio of different samples over total valid generated molecules.
• Novelty is the ratio of valid generated molecules that are not included in the training set.

We introduce an additional metric (Active ratio) to evaluate how the generated molecules are likely to
be active, e.g., label-1 on our target property:

• Active ratio (Active.) is the ratio of the valid generated molecules that are active.

We utilize pre-trained classifiers to measure the activeness of the generated molecules. To be specific,
we train a graph isomorphism network (GIN, Xu et al., 2019a) with the entire training split, e.g.,
contains both active (label-1) and inactive (label-0) molecules, of each dataset in the MoleculeNet
benchmark (Wu et al., 2018). We train 5-layer GIN with a linear projection layer for 100 epochs
with Adam optimizer, a batch size of 256, a learning rate of 0.001, and a dropout ratio of 0.5. We
select the classifier of the epoch with the best validation accuracy. The accuracies of the pre-trained
classifier on the validation split are 98.2%, 86.3%, and 86.1%, respectively. We calculate Active ratio
by the ratio of the generated molecules that this classifier classifies as label-1.
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D BASELINES

In this paper, we compare our method with an extensive list of baseline methods in the literature of
molecular generation. We provide detailed descriptions of the baselines we considered:

• GDSS (Jo et al., 2022) proposes a diffusion model for graph structure, jointly learning both node
and adjacency space by regarding each attributes as continuous values.

• DiGress (Vignac et al., 2023) proposes a discrete diffusion process for graph structure to properly
consider categorical distributions of node and edge attributes.

• DEG (Guo et al., 2022) suggests constructing molecular grammars from automatically learned
production rules for data-efficient generation of molecules. Due to the high computational
complexity of the grammar construction, this method can only be applied to structurally similar
molecules, e.g., monomers or chain-extenders, with an extremely limited number of molecules
(∼100 molecules with high structural similarity). Nevertheless, we compare with this method in
the extremely limited data regime of Appendix F.

• JT-VAE (Jin et al., 2018) proposes a variational auto-encoder that represents molecules as
junction trees, regarding motifs of molecules as the nodes of junction trees.

• PS-VAE (Kong et al., 2022) utilizes a principal subgraph as a building block of molecules and
generates molecules via merge-and-update subgraph extraction.

• MiCaM (Geng et al., 2023) introduces a connection-aware motif mining method to model the
target distribution with the automatically discovered motifs.

• CRNN (Segler et al., 2018) builds generative models of SMILES strings with recurrent decoders.
• STGG (Ahn et al., 2022) introduces a spanning tree-based molecule generation which learns the

distribution of intermediate molecular graph structure with tree-constructive grammar.
• GraphAF (Shi et al., 2020) proposes an auto-regressive flow-based model for graph generation.
• GraphDF (Luo et al., 2021) introduces an auto-regressive flow-based model with discrete latent

variables.
• MoFlow (Zang & Wang, 2020) utilizes a flow-based model for one-shot molecular generation.
• EDP-GNN (Niu et al., 2020) proposes a one-shot score-based molecular generative model,

utilizing a discrete-step perturbation procedure of node and edge attributes.
• GraphEBM (Liu et al., 2021) introduces a one-shot energy-based model to generate molecules

by minimizing energies with Langevin dynamics.
• GSDM (Luo et al., 2022) is a follow-up work of GDSS (Jo et al., 2022), suggesting to consider

the spectral values of adjacency matrix instead of adjacency matrix itself.
• CG-VAE (Liu et al., 2018) proposes a recursive molecular generation framework that generates

molecules satisfying the valency rules by masking out the action space.
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E ABLATION STUDY

Table 8: Ablation on the text prompts for interpolation-based sampling on the 2% subset of QM9.

Generation prompt FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
The molecule is a [S∗][I∗cn ][D

∗
n] 0.210 0.001 92.2 61.4 47.5

The molecule is similar to [S∗][I∗cn ][D
∗
n] 0.234 0.001 91.1 63.4 50.6

A similar molecule of [S∗][I∗cn ][D
∗
n] 0.271 0.001 91.5 65.0 52.6

The chemical is similar to [S∗][I∗cn ][D
∗
n] 0.437 0.002 90.2 75.5 72.4

A similar chemical of [S∗][I∗cn ][D
∗
n] 0.434 0.001 90.7 75.8 73.5

Table 9: Ablation on the hierarchical tokens on the 2% subset of QM9.

Training prompt FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
The molecule is a [S∗

1 ][S
∗
2 ][S

∗
3 ] 6.529 0.032 96.6 21.4 37.2

The molecule is a [S∗
1 ][S

∗
2 ][D

∗
n] 0.474 0.002 87.0 72.9 72.0

The molecule is a [S∗
1 ][I

∗
cn ][D

∗
n] 0.434 0.001 90.7 75.8 73.5

Table 10: Ablation on the number of clusters K in Eq. (1) on the 2% subset of QM9.

K FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
0 0.486 0.002 93.8 70.8 72.3
1 0.474 0.002 87.0 72.9 72.0
3 0.455 0.002 88.9 76.5 71.1
5 0.443 0.001 88.0 77.0 73.2
10 0.434 0.001 90.7 75.8 73.5
20 0.430 0.001 87.9 77.3 73.8
30 0.436 0.001 88.9 77.2 73.9
2,113 0.443 0.001 86.2 75.4 72.6

Effect of prompt. In Table 8, we show the ablation results on the generation prompt for embedding
interpolation-based sampling. We observe that we obtain low FCD and NSPDK scores when we use
a prompt similar to the training prompt. However, such choices yield low Novelty scores, generating
the many molecules contained in the training samples. The prompt we utilize generates more novel
molecules while preserving the state-of-the-art FCD and NSPDK scores.

Effect of hierarchical tokens. In Table 9, we additionally conduct an ablation study on the effect of
the hierarchical tokens. We compare our design with different choice of hierarchy: (1) utilization
of only shared tokens, and (2) utilization of shared and detail tokens (without intermediate tokens).
For (1), we use temperature sampling instead based on the categorical distribution from a molecular
language model with temperature τ = 2.0 since it is impossible to apply our interpolation-based
sampling. The results show that consideration of each shared, intermediate, and detail tokens is
indeed important for improving the quality measured with various metrics.

Effect of K. In Table 10, we report the quantitative results of the following cases. First, we consider
our proposed design with varying K from 3 to 30. In addition, we consider three other designs that do
not contain intermediate tokens to verify the effect of them: (a) [S∗

1 ][D
∗
n] that the intermediate tokens

are removed, i.e., K=0, (b) [S∗
1 ][S

∗
2 ][D

∗
n] that the intermediate tokens are replaced with a shared

token [S∗
2 ], i.e., K=1, and (c) [S∗][D∗

1,n][D
∗
2,n] that the intermediate tokens are replaced with a detail

token [D∗
1,n], i.e., K=2,113. The results exhibit that the intermediate tokens are indeed crucial for the

performance, given that the performance 10 ≤ K ≤ 30 is much better than (a), (b) and (c). We find
that the overall performance is rather degraded with K=2,113 compared to K=10, 20, and 30. We
hypothesis that this is because the sharing of the coarse-grained common features (i.e., intermediate
tokens) serves to regularize the fine-grained features (i.e., detail tokens) which are biased toward a
single molecule in the embedding interpolation-based sampling. We also remark that we did not put
much effort on tuning K, e.g., K=20 improves FCD as 0.434 → 0.430 from K=10.
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F ADDITIONAL EXPERIMENTS

Table 11: Generated molecules from HI-Mol with compositional prompt. We invert 4 aromatic
molecules (top row) with the prompt “The molecule is a [S∗][D∗

i ]”. With learned embeddings of
[S∗] and [D∗

i ], we generate molecules (bottom row) with “The molecule is a boron compound of
[S∗][D̄∗]”. We circle the substructures which indicate that the generated molecules indeed satisfy the
condition of the given language prompt.

Input molecules for inversion

The molecule is a [S∗][D∗
i ]

Generated molecules

The molecule is a boron compound of [S∗][D̄∗]

Table 12: Results on (1) learning several concepts (the first row) and (2) learning an underlying
concept among diverse molecules (the second row).

MiCaM STGG GSDM HI-Mol (Ours)

Success ratio (%) 18.2 33.2 0.0 52.0

Average QED 0.555 0.558 0.090 0.581

Compositionality. In Table 11, we explore the compositionality of the learned token embeddings
from HI-Mol. We learn the common features of 4 aromatic molecules7, e.g., naphthalene, pyrrole,
benzene, and pyridine, via textual inversion. Then, we generate molecules with an additional condition
via language prompt. We observe that the generated molecules both satisfy (1) the learned common
concept of aromatic molecules and (2) the additional conditions from the language prompt. Although
our current molecular language model (Edwards et al., 2022) shows some interesting examples
of composition between natural language and the learned concept, we strongly believe that future
advances in molecular language models will provide more intriguing examples in this application.

Learning complex molecular concepts. In this section, we explore the ability of HI-Mol to learn
more complex molecular concepts. We conduct two kinds of experiments. Firstly, we impose
several target concepts for molecular generation. We collect 300 molecules from GuacaMol (Brown
et al., 2019) which satisfy QED>0.5, SA>2.5, and GSK3B>0.3.8 With these molecules, we check
whether the generative models can learn to model several molecular concepts. We report the ratio
of the generated molecules that satisfy the aforementioned condition, e.g., QED>0.5, SA>2.5, and
GSK3B>0.3, as the Success ratio in Table 12. Our HI-Mol shows superior results on learning several
concepts, e.g., 33.2 → 52.0, compared to the most competitive baseline, STGG (Ahn et al., 2022).
Secondly, we explore whether HI-Mol can learn the “underlying” molecular property, e.g., QED,
among structurally diverse molecules. We curate 329 molecules in the QM9 dataset (Ramakrishnan
et al., 2014) where (a) each molecule in this subset has a Tanimoto similarity of no higher than 0.4
with any other molecule in the subset and (b) all the molecules in this subset have a high QED ratio
greater than 0.6. The average QED in Table 12 shows that HI-Mol generates molecules with high
QED even when the training molecules are structurally largely different, i.e., HI-Mol indeed learns
the underlying molecular concept.

7These molecules share several chemical properties such as resonance and planar structure.
8QED, SA, and GSK3B measure the drug-likeness, synthesizability, activity to GSK3B, respectively.
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Table 13: Quantitative results of the few-shot generation experiments on subsets of the HIV dataset
(Wu et al., 2018). We generate the same number of molecules as the number of the training samples.
Due to the large training cost, we report the score of DEG (Guo et al., 2022) only for 30 samples.

# Samples Method Class Grammar Active. ↑ FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

30

DEG (Guo et al., 2022) Graph ✓ 3.3 39.2 0.105 100 100 100
STGG (Ahn et al., 2022) SMILES ✓ 0.0 41.5 0.110 100 67 100
CRNN (Segler et al., 2018) SMILES ✗ 0.0 40.0 0.121 80 71 100

HI-Mol (Ours) SMILES ✗ 8.3 34.8 0.103 80 75 100

150
STGG (Ahn et al., 2022) SMILES ✓ 1.3 28.2 0.054 100 90 100
CRNN (Segler et al., 2018) SMILES ✗ 1.3 30.1 0.063 50 84 100

HI-Mol (Ours) SMILES ✗ 8.3 22.1 0.038 64 91 100

500
STGG (Ahn et al., 2022) SMILES ✓ 1.3 22.8 0.041 100 74 100
CRNN (Segler et al., 2018) SMILES ✗ 2.7 30.0 0.064 51 100 100

HI-Mol (Ours) SMILES ✗ 10.3 20.8 0.020 63 91 100

Table 14: Comparison with pre-trained model of STGG (Ahn et al., 2022) on the HIV dataset.

Method Active. ↑ FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
STGG (from scratch) 1.6 20.2 0.033 100 95.8 100
STGG (fine-tuned) 3.6 20.0 0.030 100 87.1 100

HI-Mol (Ours) 11.4 16.6 0.019 100 95.6 100

Table 15: Comparison with the large-scale text-to-molecule models on the HIV dataset.

Method Active. ↑ FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
MolT5-Large-Caption2Smiles (prompting) 0.0 60.6 0.196 100 14.6 100
Text+Chem T5-augm-base (prompting) 0.0 62.2 0.188 100 90.2 100

MolT5-Large-Caption2Smiles (fine-tuned) 6.0 23.3 0.024 100 96.0 100
Text+Chem T5-augm-base (fine-tuned) 5.8 22.4 0.023 100 95.4 100

HI-Mol (Ours) 11.4 16.6 0.019 100 95.6 100

Extremely limited data regime. Since our model exploits the power of large molecular language
models by designing a molecule-specialized textual inversion scheme, one can expect our model to be
beneficial in extremely limited data regimes compared with prior methods. To verify this, we conduct
an experiment using only a subset of the HIV dataset and report its quantitative result in Table 13.
Even with this situation, HI-Mol still outperforms prior state-of-the-art molecular generation methods,
e.g., our method improves FCD as 39.2 → 34.8 when trained with 30 samples.

Comparison with pre-trained model. In Table 14, we report the performance of the baseline method
by fine-tuning the pre-trained baseline model. Specifically, we fine-tune the model of STGG (Ahn
et al., 2022) pre-trained with the ZINC250k dataset (Irwin et al., 2012) on the HIV dataset (Wu et al.,
2018). We observe that HI-Mol still achieves significantly better performance in overall metrics, e.g.,
20.0 → 16.6 and 0.030 → 0.019 in FCD and NSPDK, respectively.

Comparison with frozen large-scale text-to-molecule models. In Table 15, we report the perfor-
mance of the large-scale text-to-molecule models with (1) prompting and (2) fine-tuning. We first
remark that it is not feasible to prompt all the training molecules to the large-scale text-to-molecule
models due to the maximum token length of the input prompt. Specifically, the maximum token length
of the text-to-molecule model is only 1024 and 512 for Edwards et al. (2022) and Christofidellis
et al. (2023), respectively, while we have thousands of molecules and each SMILES representation
of a molecule sometimes consists of more than 100 tokens. Nevertheless, we provide the molecular
generation results of the text-to-molecule models with the text prompt describing the task of the
HIV dataset.9 For fine-tuning experiments, we fine-tune the text-to-molecule models with the entire
dataset. We remark that fine-tuning with low-shot examples is known to lead suboptimal performance
(Mo et al., 2020; Zhao et al., 2020; Moon et al., 2022) in various domains. For text-to-molecule
models, we apply temperature sampling with τ=2.0 and the modification algorithm in Appendix H.
The table below shows that our method outperforms the naïve prompting or fine-tuning of the text-
to-molecule models. This confirms that our improved performance is not just due to the large-scale
text-to-molecule model, but rather to our carefully designed textual inversion framework.

9We utilize the official description from the MoleculeNet benchmark. http://moleculenet.org/
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G DETAILS ON QM9 EXPERIMENTS

Table 16: Qualitative results for molecular generation varying the data ratio on QM9.

Ratio (%) Grammar FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

2 ✗ 0.434 0.001 90.7 75.8 73.5
✓ 0.430 0.001 100 76.1 75.6

5 ✗ 0.412 0.001 89.4 85.8 70.4
✓ 0.410 0.001 100 86.4 72.4

10 ✗ 0.400 0.002 87.6 87.6 71.2
✓ 0.398 0.001 100 88.3 73.2

20 ✗ 0.384 0.001 86.7 87.8 70.0
✓ 0.383 0.001 100 88.7 71.8

Table 17: Comparison with the baseline with high Novelty via resampling strategy on QM9.
Method Resampling ratio FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
GDSS (Jo et al., 2022) 1.0 2.900 0.003 95.7 98.5 86.3

HI-Mol (Ours; 2%) 1.9 0.601 0.002 100 100 100

In Table 16, we report additional experimental results varying the data ratio from 2% (2,113 molecules)
to 20% (21,126 molecules). In particular, when we use 20% of the training data the performance
improves further by 0.430 → 0.383 (compared to using 2% of training data), i.e., our HI-Mol better
learns molecule distribution when more molecules are available for training.

We note that there is a fundamental trade-off between FCD and Novelty. If the generated molecules
have many overlaps with training molecules, i.e., low Novelty, the FCD score improves, i.e., decreases,
since the generated molecules are more likely to follow the target distribution. Therefore, it is crucial
to compare FCD under a similar Novelty score. Therefore, in Table 17, we report the generation
results with the resampling strategy, i.e., we sample molecules until we have 10,000 molecules with
Validity, Uniqueness, and Novelty scores as 100 and we reject samples that violate these scores. We
denote the relative ratio of the total sampling trial (including the rejected ones) as Resampling ratio.
Here, we remark that such resampling process does not incur much computational cost, e.g., only 1.8
sec for a sample (see Appendix J for analysis on time complexity). The result shows that HI-Mol
generates high-quality novel molecules from our desired target distribution.

H MODIFICATION ALGORITHM

Algorithm 1: Modification algorithm for an invalid SMILES string
Input: An invalid SMILES string
Output: A modified SMILES string

1 while exist a branch closing token token prior to a branch opening token do
2 Remove the corresponding branch closing token. // “CC)CCC” to “CCCCC”

3 while exist an unclosed branch opening token do
4 Add the the branch closing token at the end of the string. // “CC(CCC” to “CC(CCC)”

5 while exist an unclosed ring opening token do
6 Remove the ring opening token. // “CC1CCC” to “CCCCC”

7 while exist an atom that exceeds the valency do
8 Randomly drop a branch to satisfy the valency. // “C#C(=CC)C to “C#CC”

9 while exist a ring with less than 3 atoms do
10 Remove the ring opening/closing token. // “CC1C1 to “CCC”
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I ANALYSIS ON INTERPOLATION-BASED SAMPLING

Table 18: Generated molecules from HI-Mol with varying λ in Eq. (2). Samples are generated with
the prompt “A similar chemical of [S∗][Ī∗][D̄∗]”. The columns [D∗

i ] and [D∗
j ] denote molecules in

the HIV dataset (Wu et al., 2018) whose token embeddings are interpolated for each row.
[D∗

i ] A similar chemical of [S∗][Ī∗][D̄∗] [D∗
j ]

λ = 0.0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1.0

λ = 0.0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1.0

Table 19: Generated molecules from HI-Mol with varying λ in Eq. (2). We interpolate a single-level
token, e.g., “A similar chemical of [S∗][Ī∗][D∗]” and “A similar chemical of [S∗][I∗][D̄∗]”.

A similar chemical of [S∗][Ī∗][D∗]

A similar chemical of [S∗][I∗][D̄∗]

Note that our sampling is based on the interpolation of two different token embeddings with different
values of λ ∼ p(λ). In Table 18, we provide how the generated molecules are changed with different
values of λ. With varying λ, one can observe that the generated molecules (1) maintain some original
important low-level semantics and (2) introduce some novel aspects distinct from both original
semantics. For example, λ = 0.7 in the first row of Table 18 introduces a new 4-membered ring
system while preserving the phosphorous-sulfur double bond structure of the original features in
[D∗

j ]. This observation exhibits that our embedding space models the manifold of underlying target
distribution effectively, enabling data-efficient sampling from the target distribution. We also provide
the generated samples from different hierarchies. Interpolating intermediate tokens (see the first
row of Table 19) change the low-level semantics, i.e., size of molecules, of the generated molecules
and interpolating detail (see the second row of Table 19) tokens change the high-level features, i.e.,
insertion of a single atom, of the generated molecules.

J COMPLEXITY

Table 20: Time and space complexity of each molecular generative method.
JT-VAE PS-VAE MiCaM STGG CRNN GDSS GSDM DiGress HI-Mol (Ours)

Time complexity (s) 4.8 0.1 0.9 0.7 0.5 71.2 2.0 9.1 1.8
Space complexity (GB) 0.4 1.2 1.6 2.1 0.4 1.2 1.1 1.5 4.8

In Table 20, we provide the time and space complexity to generate a molecule via various molecular
generative models. For time complexity, measured with a single RTX 3090 GPU, HI-Mol takes about
1.8 seconds to sample a single molecule, while other methods, e.g., GDSS and DiGress, require
more time due to denoising diffusion steps. For memory complexity, HI-Mol requires 4.8GB of
GPU VRAM space due to the usage of the large model. We believe that reducing this space for large
language models, e.g., through Dao et al. (2022) will be an interesting future direction.
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K DISCUSSION ON MOLECULAR OPTIMIZATION

1st,	PlogP=24.67 2nd,	PlogP=21.72

Figure 4: Visualizations of the gen-
erated molecules with γ = 50. The
maximum PLogP among the train-
ing molecules is 4.52.

In Table 4, we have shown the usefulness of our HI-Mol to
maximize the PLogP value of the generated molecules. While
this evaluation setup for molecular optimization is a common
and popular choice in molecular domain (Jin et al., 2018; Shi
et al., 2020; Luo et al., 2021; Ahn et al., 2022), some prior
works have noted that solely maximizing the PLogP value
may yield unstable or hard-to-synthesize molecules (Gao &
Coley, 2020; Coley, 2021; Ahn et al., 2022). In Figure 4, we
show the visualizations of the optimized molecules with the
highest PLogP values. Similar to the most competitive baseline,
STGG (Ahn et al., 2022), our optimized molecules contain a
large number of atoms, and thus relatively hard to synthesize.
Although these results show that our HI-Mol effectively learns
to incorporate the condition PLogP in a data-efficient manner, it would be an important research
direction to develop an evaluation framework for molecular optimization that takes into account the
“realistic-ness”, e.g., stability and synthesizability, of the molecules.

L DETAILS ON LOW-SHOT MOLECULAR PROPERTY PREDICTION

Table 21: Results on low-shot classification on the MoleculeNet benchmark. We report the average
and 95% confidence interval of the test ROC-AUC scores within 20 random seeds.

Dataset Method 16-shot 32-shot

HIV

DiGress (Vignac et al., 2023) -2.30±3.50 -2.67±3.15
MiCaM (Geng et al., 2023) 1.02±3.29 0.69±2.09
STGG (Ahn et al., 2022) 0.53±2.79 -0.47±2.36

HI-Mol (Ours) 2.35±2.71 2.16±1.64

BBBP

DiGress (Vignac et al., 2023) 1.73±1.53 0.97±1.99
MiCaM (Geng et al., 2023) 1.91±2.13 1.78±1.98
STGG (Ahn et al., 2022) 1.85±1.83 1.76±1.72

HI-Mol (Ours) 2.73±2.01 2.64±1.75

BACE

DiGress (Vignac et al., 2023) -0.60±2.88 -0.91±1.82
MiCaM (Geng et al., 2023) -0.65±3.17 -1.11±2.95
STGG (Ahn et al., 2022) 2.34±2.15 2.01±1.45

HI-Mol (Ours) 3.53±1.57 3.39±1.80

In Table 21, we report the full results of low-shot molecular property prediction experiments with
averages and 95% confidence intervals. With randomly sampled low-shot molecules from the train
split (used in our main experiments of Table 1), we generate ×3 number of valid molecules via
generative models, e.g., we generate 96 molecules for 32-shot experiments. For the classifier, we
utilize the 5-layer GIN (Xu et al., 2019a) from You et al. (2020), which is pre-trained with unlabeled
molecules via self-supervised contrastive learning. We fine-tune this model for 100 epochs by
introducing a linear projection head for each dataset. We use Adam optimizer with a learning rate
of 0.0001 and no weight decay. The results are calculated based on the test ROC-AUC score of the
epoch with the best validation ROC-AUC score. Specifically, we consider two scenarios: (1) training
the classifier with only the low-shot molecules and (2) training the classifier with both the original
low-shot molecules and the generated molecules via the molecular generative model. We report
∆ROC-AUC score, calculated by the subtraction of the ROC-AUC score of (1) from (2).
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