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Abstract

The potential of Large Language Models (LLMs) in drug discovery is constrained1

by inadequate benchmarks. Current benchmarks, focused on single-tool calls in2

general scientific domains, fail to capture the complex, multi-step reasoning and3

execution required for pharmaceutical R&D. To address this critical gap, we in-4

troduce DrugNav, a new, open dataset of expert tool-calling trajectories tailored5

for drug discovery. DrugNav consists of high-fidelity, sequential tool interactions6

that solve complex queries, from target identification to lead optimization. Each7

trajectory documents the complete workflow of tool calls, intermediate reasoning,8

and outcomes, providing the necessary data to train agentic models on complex,9

multi-tool tasks. By providing a curated set of successful solution pathways, Drug-10

Nav is specifically designed to facilitate end-to-end, tool-integrated Reinforcement11

Learning for LLM agents. Our work will accelerate the development of capable12

autonomous systems, significantly reducing the time and cost of drug discovery13

and advancing AI-driven science.14

1 AI Task Definition15

Developing autonomous agents for drug discovery requires moving beyond an LLM’s declarative16

knowledge [32, 7] to procedural, tool-driven execution [10, 24, 29, 16, 4, 21]. Progress is currently17

bottlenecked by benchmarks [21, 20, 4, 26, 27] that lack the complexity of real-world pharmaceutical18

research. They typically evaluate isolated, single-tool actions, not the long-horizon, multi-stage19

workflows central to the field—such as chaining bioinformatics queries with molecular simulation20

tools. A meaningful AI task must therefore move beyond single-step evaluations and instead21

benchmark the strategic orchestration of a diverse toolset to solve complex scientific problems.22

To rigorously evaluate agents in this context, we formalize the AI task as learning a research policy23

π(at|st). The state st represents the agent’s complete experimental notebook at timestep t. It24

includes the initial user query (Q), such as "Find potential inhibitors for the EGFR T790M mutant,"25

and the history of all preceding thoughts, actions, and observations {(thi, ai, oi)}t−1
i=0 . The action26

at is a computational experiment, chosen from a high-dimensional action space A of tool calls.27

The available toolset T is tailored for drug discovery, containing essential bioinformatics tools28

(e.g., BLAST [3] for sequence search, AlphaFold [15, 2] for structure prediction), cheminformatics29

libraries (e.g., RDKit [19] for molecule manipulation), and simulation engines (e.g., AutoDock30

Vina [9, 33] for molecular docking). A full trajectory τ = {(st, at, ot)}Nt=0 represents an stage-wise31

end-to-end research workflow. The agent’s objective is to generate a trajectory that achieves a32

successful outcome, defined by criteria like identifying a molecule with a predicted binding affinity33

below a certain threshold or proposing a valid synthesis route. This framework allows us to benchmark34

the core capabilities essential for a computational chemist: strategic planning, correct tool selection35

and parameterization, error handling from failed simulations, and the synthesis of chemical and36

biological data.37
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2 Dataset Rational and Design38

Existing agent datasets are often knowledge-centric and lack the procedural trajectories required39

for complex scientific workflows. DrugNav is architected to fill this "workflow gap," providing40

complete action sequences for imitation and reinforcement learning. To ensure real-world relevance,41

its tasks are structured around the canonical stages of drug discovery—from target identification to42

lead optimization—covering a spectrum of causally-linked and increasingly complex challenges.43

Dataset Design Principles Our design philosophy is centered on creating a dataset that mirrors the44

complexity and structure of real-world computational drug discovery.45

• Stage-Wise Coverage of Drug Discovery: Trajectories will be stratified across four canonical46

stages (Target Identification & Validation, Hit/Lead Discovery, Lead Optimization, and Preclinical47

Research), ensuring coverage of causally linked and progressively complex tasks.48

• Hierarchical and Compositional Toolset: The tool suite will include:49

– Deep Learning Models: Pre-trained models for tasks like protein structure prediction [22, 18, 35],50

de novo molecular design [28, 11, 14, 30, 25] and property prediction [37, 36].51

– Domain-Specific Utilities: Deterministic computational tools for tasks like molecular fingerprint-52

ing (RDKit), sequence alignment (BLAST), and virtual high-throughput screening [33]53

– Simulators: Physics-based engines for molecular dynamics [1, 5, 23, 31, 13] and docking [12, 33]54

that produce complex, structured outputs.55

– Information Retrieval APIs: Interfaces to structured databases (e.g., PDB [6], UniProt [8],56

DrugBank [34], PubChem [17]) and knowledge sources (e.g., ArXiv, Google search).57

• Trajectory Schema: Each data sample will be a rich JSON object capturing the full reasoning58

process, inspired by the ReAct framework to expose the model’s chain-of-thought for interpretability59

and targeted learning. We provide an example shown in Appendix 4.2.60

• Data Generation Pipeline and Scale: We project an initial dataset size of 2,000 trajectories. Our61

generation pipeline is a rigorous, expert-driven process:62

– Tool Curation: We will structure our curation around the drug discovery pipeline, breaking it into63

tasks and subtasks. For each subtask, we will collect and standardize tools, creating a diverse64

suite of over 50. Each tool will receive a formal, OpenAPI-like specification detailing its interface,65

description, and operational semantics to ensure variety and clarity.66

– Task Authoring: Domain experts will design tasks with varying complexity, each with explicit67

success criteria and evaluation checkpoints.68

– Trajectory Generation: We will employ an expert-in-the-loop framework where a human expert69

guides a baseline LLM agent with a ReAct-like prompt (thought - tool calling - observation) to70

produce a "gold" trajectory. The expert can correct suboptimal actions, refine reasoning, and71

ensure the trajectory follows a scientifically valid path.72

– Automated and Manual Quality Control: Trajectories will be validated against a rubric assessing73

(1) tool call validity, (2) argument correctness, (3) scientific plausibility of the reasoning steps,74

and (4) task success. A separate LLM-based "judge" will provide an initial quality score, with75

final verification performed by human experts.76

• Estimated Cost: The initial construction (2,000 trajectories) is estimated to require approximately77

2,000 expert-hours and 500 GPU-hours for agent interaction and validation, reflecting the high-78

fidelity nature of the dataset.79

3 Impact and Potential80

DrugNav’s primary impact is establishing a rigorous, reproducible benchmark for long-horizon81

reasoning in the high-stakes domain of drug discovery. As an open-source resource, it will spur the82

development of advanced agent architectures and fuel progress in offline reinforcement and imitation83

learning from expert data. Ultimately, by accelerating the development of autonomous systems for84

the pharmaceutical pipeline, DrugNav will help reduce the significant time and cost of R&D and85

unlock a new era of AI-accelerated science.86
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4 Appendix225

4.1 Unified Tool Specification226

To ensure that the LLM agent can reliably and consistently understand and use the diverse set of227

tools, we adopt a unified tool specification format that fits with MCP. Each tool is described by a228

machine-readable schema that details its functionality, parameters, and expected inputs.229

The core of this specification is a JSON Schema definition for the tool’s input parameters. This230

provides strong typing, constraints (such as required fields or enumerated values), and rich natural231

language descriptions that are crucial for the LLM’s reasoning process.232
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For instance, the specification for the pdb_search tool, which queries the Protein Data Bank, is233

defined as follows:234

{
"name": "pdb_search",
"description": "Searches the Protein Data Bank (PDB) for protein structures.

Can be queried using keywords like protein name, gene name, or organism.
Returns a list of matching PDB entries with their metadata.",

↪→

↪→

"parameters": {
"type": "object",
"required": ["query"],
"properties": {

"query": {
"type": "string",
"description": "The search keyword, such as a protein name ('EGFR kinase

domain'), gene name ('BRAF'), or organism ('human')."↪→

},
"limit": {

"type": "integer",
"default": 5,
"description": "The maximum number of search results to return. Defaults

to 5."↪→

},
"method": {

"type": "string",
"enum": [

"X-RAY DIFFRACTION",
"NMR",
"ELECTRON MICROSCOPY"

],
"description": "Filter results by the experimental method used to

determine the structure."↪→

}
}

}
}

This structured format provides several key advantages: (1) it reduces hallucinated or malformed tool235

calls by enforcing strict parameter validation; (2) it enables the agent to self-correct by inspecting the236

schema if a call fails; and (3) it makes the entire tool suite more transparent and easier to extend.237

4.2 Trajectory Schema238

The Trajectory Schema is designed to capture complex scenarios, including error handling, which239

is crucial for training robust agents. The observation field can contain either successful results240

or structured error messages from the tools. The agent’s subsequent thought process must then241

demonstrate its ability to diagnose and recover from the error. Below is an example of a two-turn242

sequence where the agent makes a typo, receives an error, and corrects it.243

{
"task_id": "TD-015",
"query": "Find the PDB structure for the human protein BRAF.",
"trajectory": [

{
"turn": 1,

6



"thought": "I need to find the structure of the human BRAF protein. I will
use the pdb_search tool to query the Protein Data Bank.",↪→

"action": "pdb_search(query='human B-RAF')",
// Note: The correct identifier is typically 'BRAF', not 'B-RAF'. This may

cause an error.↪→

"observation": "{'status': 'error', 'message': 'Query \"human B-RAF\"
returned no results. No exact matches found.'}"↪→

},
{

"turn": 2,
"thought": "The previous search for 'human B-RAF' failed. It's possible I

used an incorrect alias or formatting. The standard gene name is BRAF.
I will try searching again with the correct identifier 'BRAF' to see if
I can get a result.",

↪→

↪→

↪→

// The agent correctly diagnoses the likely error (incorrect name) and
plans a corrective action.↪→

"action": "pdb_search(query='human BRAF kinase domain')",
"observation": "{'status': 'success', 'results': [{'pdb_id': '1UWJ',

'resolution': '2.65 A', 'method': 'X-RAY DIFFRACTION'}]}"↪→

}
// ... subsequent turns of thought, action, observation

]
}

4.3 Evaluation Framework244

To ensure rigorous and multi-faceted evaluation of LLM agents, we propose a comprehensive245

evaluation framework that will be released alongside the DrugNav dataset. This framework includes246

standardized metrics and a set of baseline models.247

Agent performance will be assessed using a suite of primary and secondary metrics:248

Primary Metric249

• Task Success Rate: A binary metric indicating whether the agent-generated trajectory achieves the250

final objective defined in the task’s success_metrics (e.g., found_lead: true, pIC50_met:251

true). This is the ultimate measure of an agent’s capability.252

Secondary Metrics253

Efficiency and Cost254

• Path Length: The total number of turns (thought-action-observation steps) required to complete255

the task. Shorter paths are generally more efficient.256

• Tool Call Count: The total number of times the agent invokes any tool. This serves as a proxy for257

both computational cost and API usage.258

• Computational Cost: For tasks involving simulators (e.g., molecular docking, MD simulations),259

we will record the estimated GPU/CPU hours, providing a real-world cost metric.260

Quality and Robustness261

• Trajectory Quality Score: A score from 1-5 provided by the final LLM-based "judge" and verified262

by a human expert, assessing the scientific plausibility and elegance of the agent’s reasoning path.263

• Error Handling Rate: The percentage of instances where an agent successfully recovers from a264

tool-generated error (e.g., failed simulation, invalid input, API timeout) and proceeds towards a265

valid solution.266
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