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Abstract

The potential of Large Language Models (LLMs) in drug discovery is constrained
by inadequate benchmarks. Current benchmarks, focused on single-tool calls in
general scientific domains, fail to capture the complex, multi-step reasoning and
execution required for pharmaceutical R&D. To address this critical gap, we in-
troduce DrugNav, a new, open dataset of expert tool-calling trajectories tailored
for drug discovery. DrugNav consists of high-fidelity, sequential tool interactions
that solve complex queries, from target identification to lead optimization. Each
trajectory documents the complete workflow of tool calls, intermediate reasoning,
and outcomes, providing the necessary data to train agentic models on complex,
multi-tool tasks. By providing a curated set of successful solution pathways, Drug-
Nav is specifically designed to facilitate end-to-end, tool-integrated Reinforcement
Learning for LLM agents. Our work will accelerate the development of capable
autonomous systems, significantly reducing the time and cost of drug discovery
and advancing Al-driven science.

1 AI Task Definition

Developing autonomous agents for drug discovery requires moving beyond an LL.M’s declarative
knowledge [32, [7] to procedural, tool-driven execution [10, 24} 29} 16} 4, 21]]. Progress is currently
bottlenecked by benchmarks [21} 20} 4} 26 |277]] that lack the complexity of real-world pharmaceutical
research. They typically evaluate isolated, single-tool actions, not the long-horizon, multi-stage
workflows central to the field—such as chaining bioinformatics queries with molecular simulation
tools. A meaningful Al task must therefore move beyond single-step evaluations and instead
benchmark the strategic orchestration of a diverse toolset to solve complex scientific problems.

To rigorously evaluate agents in this context, we formalize the Al task as learning a research policy
m(at|s¢). The state s; represents the agent’s complete experimental notebook at timestep ¢. It
includes the initial user query (@), such as "Find potential inhibitors for the EGFR T790M mutant,"
and the history of all preceding thoughts, actions, and observations {(th;, a;, 0;)}.Z5. The action
a; is a computational experiment, chosen from a high-dimensional action space A of tool calls.
The available toolset 7T is tailored for drug discovery, containing essential bioinformatics tools
(e.g., BLAST [3] for sequence search, AlphaFold [15} 2] for structure prediction), cheminformatics
libraries (e.g., RDKit [19] for molecule manipulation), and simulation engines (e.g., AutoDock
Vina [9}33] for molecular docking). A full trajectory T = {(s;, as, o)}, represents an stage-wise
end-to-end research workflow. The agent’s objective is to generate a trajectory that achieves a
successful outcome, defined by criteria like identifying a molecule with a predicted binding affinity
below a certain threshold or proposing a valid synthesis route. This framework allows us to benchmark
the core capabilities essential for a computational chemist: strategic planning, correct tool selection
and parameterization, error handling from failed simulations, and the synthesis of chemical and
biological data.
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2 Dataset Rational and Design

Existing agent datasets are often knowledge-centric and lack the procedural trajectories required
for complex scientific workflows. DrugNav is architected to fill this "workflow gap," providing
complete action sequences for imitation and reinforcement learning. To ensure real-world relevance,
its tasks are structured around the canonical stages of drug discovery—from target identification to
lead optimization—covering a spectrum of causally-linked and increasingly complex challenges.

Dataset Design Principles Our design philosophy is centered on creating a dataset that mirrors the
complexity and structure of real-world computational drug discovery.

» Stage-Wise Coverage of Drug Discovery: Trajectories will be stratified across four canonical

stages (Target Identification & Validation, Hit/Lead Discovery, Lead Optimization, and Preclinical
Research), ensuring coverage of causally linked and progressively complex tasks.

Hierarchical and Compositional Toolset: The tool suite will include:

— Deep Learning Models: Pre-trained models for tasks like protein structure prediction [22} [18] [35]],
de novo molecular design [28} 11} [14, 30l 25]] and property prediction [37}136].

— Domain-Specific Utilities: Deterministic computational tools for tasks like molecular fingerprint-
ing (RDKit), sequence alignment (BLAST), and virtual high-throughput screening [33]]

— Simulators: Physics-based engines for molecular dynamics [[1,15 23,131, [13]] and docking [[12,33]]
that produce complex, structured outputs.

— Information Retrieval APIs: Interfaces to structured databases (e.g., PDB [6], UniProt [8]],
DrugBank [34], PubChem [[17]]) and knowledge sources (e.g., ArXiv, Google search).

Trajectory Schema: Each data sample will be a rich JSON object capturing the full reasoning
process, inspired by the ReAct framework to expose the model’s chain-of-thought for interpretability
and targeted learning. We provide an example shown in Appendix {.2]

Data Generation Pipeline and Scale: We project an initial dataset size of 2,000 trajectories. Our
generation pipeline is a rigorous, expert-driven process:

— Tool Curation: We will structure our curation around the drug discovery pipeline, breaking it into
tasks and subtasks. For each subtask, we will collect and standardize tools, creating a diverse
suite of over 50. Each tool will receive a formal, OpenAPI-like specification detailing its interface,
description, and operational semantics to ensure variety and clarity.

— Task Authoring: Domain experts will design tasks with varying complexity, each with explicit
success criteria and evaluation checkpoints.

— Trajectory Generation: We will employ an expert-in-the-loop framework where a human expert
guides a baseline LLM agent with a ReAct-like prompt (thought - tool calling - observation) to
produce a "gold" trajectory. The expert can correct suboptimal actions, refine reasoning, and
ensure the trajectory follows a scientifically valid path.

— Automated and Manual Quality Control: Trajectories will be validated against a rubric assessing
(1) tool call validity, (2) argument correctness, (3) scientific plausibility of the reasoning steps,
and (4) task success. A separate LLM-based "judge" will provide an initial quality score, with
final verification performed by human experts.

Estimated Cost: The initial construction (2,000 trajectories) is estimated to require approximately
2,000 expert-hours and 500 GPU-hours for agent interaction and validation, reflecting the high-
fidelity nature of the dataset.

3 Impact and Potential

DrugNav’s primary impact is establishing a rigorous, reproducible benchmark for long-horizon
reasoning in the high-stakes domain of drug discovery. As an open-source resource, it will spur the
development of advanced agent architectures and fuel progress in offline reinforcement and imitation
learning from expert data. Ultimately, by accelerating the development of autonomous systems for
the pharmaceutical pipeline, DrugNav will help reduce the significant time and cost of R&D and
unlock a new era of Al-accelerated science.
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4 Appendix

4.1 Unified Tool Specification

To ensure that the LLM agent can reliably and consistently understand and use the diverse set of
tools, we adopt a unified tool specification format that fits with MCP. Each tool is described by a
machine-readable schema that details its functionality, parameters, and expected inputs.

The core of this specification is a JSON Schema definition for the tool’s input parameters. This
provides strong typing, constraints (such as required fields or enumerated values), and rich natural
language descriptions that are crucial for the LLM’s reasoning process.
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For instance, the specification for the pdb_search tool, which queries the Protein Data Bank, is
defined as follows:

"name": "pdb_search",
"description": "Searches the Protein Data Bank (PDB) for protein structures.
— Can be queried using keywords like protein name, gene name, or organism.
— Returns a list of matching PDB entries with their metadata.",
"parameters": {
"type": "object",
"required": ["query"],
"properties": {
"query": {
"type": "string",
"description": "The search keyword, such as a protein name ('EGFR kinase
— domain'), gene name ('BRAF'), or organism ('human')."
1,
"limit": {
"type": "integer",
"default": 5,
"description": "The maximum number of search results to return. Defaults
— to 5."
1,
"method": {
"type": "string",
"enum": [
"X-RAY DIFFRACTION",
"NMR",
"ELECTRON MICROSCOPY"
1,
"description": "Filter results by the experimental method used to
— determine the structure."

This structured format provides several key advantages: (1) it reduces hallucinated or malformed tool
calls by enforcing strict parameter validation; (2) it enables the agent to self-correct by inspecting the
schema if a call fails; and (3) it makes the entire tool suite more transparent and easier to extend.

4.2 Trajectory Schema

The Trajectory Schema is designed to capture complex scenarios, including error handling, which
is crucial for training robust agents. The observation field can contain either successful results
or structured error messages from the tools. The agent’s subsequent thought process must then
demonstrate its ability to diagnose and recover from the error. Below is an example of a two-turn
sequence where the agent makes a typo, receives an error, and corrects it.

"task_id": "TD-015",
"query": "Find the PDB structure for the human protein BRAF.",
"trajectory": [

{

"turn": 1,
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"thought": "I need to find the structure of the human BRAF protein. I will
— use the pdb_search tool to query the Protein Data Bank.",

"action": "pdb_search(query='human B-RAF')",

// Note: The correct tdentifier is typically 'BRAF', not 'B-RAF'. This may
— cause an error.

"observation": "{'status': 'error', 'message': 'Query \"human B-RAF\"

— returned no results. No exact matches found.'}"

"turn": 2,

"thought": "The previous search for 'human B-RAF' failed. It's possible I
— used an incorrect alias or formatting. The standard gene name is BRAF.
— I will try searching again with the correct identifier 'BRAF' to see if
— I can get a result.",

// The agent correctly diagnoses the likely error (incorrect name) and

— plans a corrective action.

"action": "pdb_search(query='human BRAF kinase domain')",
"observation": "{'status': 'success', 'results': [{'pdb_id': '1UWJ',
< 'resolution': '2.65 A', 'method': 'X-RAY DIFFRACTION'Z}]2}"
}
// ... subsequent turns of thought, action, observation
]
}

4.3 Evaluation Framework

To ensure rigorous and multi-faceted evaluation of LLM agents, we propose a comprehensive
evaluation framework that will be released alongside the DrugNav dataset. This framework includes
standardized metrics and a set of baseline models.

Agent performance will be assessed using a suite of primary and secondary metrics:

Primary Metric

 Task Success Rate: A binary metric indicating whether the agent-generated trajectory achieves the
final objective defined in the task’s success_metrics (e.g., found_lead: true, pIC50_met:
true). This is the ultimate measure of an agent’s capability.

Secondary Metrics

Efficiency and Cost

* Path Length: The total number of turns (thought-action-observation steps) required to complete
the task. Shorter paths are generally more efficient.

* Tool Call Count: The total number of times the agent invokes any tool. This serves as a proxy for
both computational cost and API usage.

* Computational Cost: For tasks involving simulators (e.g., molecular docking, MD simulations),
we will record the estimated GPU/CPU hours, providing a real-world cost metric.

Quality and Robustness
* Trajectory Quality Score: A score from 1-5 provided by the final LLM-based "judge" and verified

by a human expert, assessing the scientific plausibility and elegance of the agent’s reasoning path.

* Error Handling Rate: The percentage of instances where an agent successfully recovers from a
tool-generated error (e.g., failed simulation, invalid input, API timeout) and proceeds towards a
valid solution.
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