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Abstract

Fine-tuning large language models (LLMs) for
recommendation in a generative manner has
delivered promising results, but encounters sig-
nificant inference overhead due to autoregres-
sive decoding in the language space. This
work explores bypassing language-space de-
coding by directly decoding items in the la-
tent space, eliminating the time-intensive au-
toregressive process to reduce costs. More-
over, given that the hidden states of input se-
quences in the latent space have already en-
capsulated user preference information, latent-
space decoding also has the potential to pre-
serve performance. Towards this, we intro-
duce Light Latent-space Decoding (L2D), an
effective and efficient latent-space decoding
method. L2D uses the hidden states of test se-
quences to represent user-preferred items, and
it derives candidate item representations from
the hidden states of training sequences labeled
with the corresponding candidate items. It then
matches the two types of representations to de-
code items, achieving latent-space decoding.
Empirical results demonstrate that L2D is more
than 10x faster than language-space decoding
while maintaining or enhancing performance.

1 Introduction

Inspired by the powerful capabilities of Large Lan-
guage Models (LLMs), great efforts (Wu et al.,
2024a; Li et al., 2024) have been made to adapt
them to recommendations, giving rise to the LLM-
based recommendation paradigm. Unlike tradi-
tional recommendations, this paradigm reimag-
ines recommendation by shifting it to the "lan-
guage space", where the task and related entities
(i.e., users and items) are described in natural lan-
guage (Zhang et al., 2023a; Bao et al., 2023b). The
popular approaches are typically performed in a
generative manner — fine-tuning LLMs to directly
generate (or say, decode) items in the language
space (Bao et al., 2023a; Ji et al., 2024). This man-
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Figure 1: Illustration of language-space decoding and
latent-space decoding: Latent-space decoding elimi-
nates the autoregressive decoding process in language-
space decoding and directly performs item matching in
the latent space for efficient item decoding.

ner aligns well with the generative nature of LLMs,
effectively harnessing the LLMs’ power to achieve
promising results (Bao et al., 2024).

Decoding recommended items in the language
space poses a significant challenge to inference ef-
ficiency. When decoding an item, the LLM must
generate its representation (e.g., title) autoregres-
sively, with each token depending on the previous
one (Xia et al., 2024), incurring substantial time
costs. Worse, each recommendation request typi-
cally requires generating a list of items (Lin et al.,
2024a), causing the inference cost to scale linearly
with the list size. While grounding techniques (Bao
et al., 2023a) can reduce costs by mapping each
generated item to multiple actual items, they may
lead to performance degradation. For example, in
our findings, mapping only one generated item for
top-10 recommendations would result in a perfor-
mance drop of fifty percent compared to generating
10 items (c.f., Table 1).

Given these limitations, we explore the possi-
bility of bypassing language-space decoding by
analyzing the decoding process. Examining the
detailed process shown in Figure 1 (a), the LLM
first encodes the input into hidden states, which
are then mapped to the output layer to produce the



first token. Subsequently, this token is appended
to the input, and the process repeats iteratively to
generate other tokens. The initial hidden states cap-
ture the essential information that determines the
generated item. This suggests that the hidden states
can serve as latent representations of user-preferred
items without losing key information. Then, as
shown in Figure 1 (b), representing candidate items
in the same latent space, we can directly decode
recommended items in the latent space through
matching, bypassing the time-intensive autoregres-
sive process. As such, we can reduce the time costs
while maintaining the performance.

This work investigates directly decoding items in
the latent space to achieve efficient inference. The
key is to represent candidate items within the same
latent space as the hidden states, enabling straight-
forward item decoding through matching. While
learning item representations seems an intuitive so-
lution, it introduces additional costs and struggles
to maintain quality for sparse items in the high-
dimensional latent space. Instead, we note that the
training set already provides matching pairs (hid-
den state, ground-truth item). Each paired hidden
state reflects a feature aspect of the corresponding
ground-truth item, allowing us to aggregate these
paired hidden states into an effective representation
of the item in the latent space without incurring
extra training costs.

To this end, we propose Light Latent-space De-
coding (L2D), a simple yet efficient method for
latent-space decoding. After finishing generative
training, we store the training samples’ hidden
states and their labels (i.e., ground-truth items) in a
memory module and create each item’s represen-
tation by aggregating its associated hidden states
in the memory. Then we decode items to recom-
mend by finding the item whose representation is
most similar to the test sample’s hidden state using
L2 distance. Regarding the aggregation to form
item representation, L2D offers two strategies: 1)
global aggregation, which averages all associated
hidden states for an item, and 2) local aggregation,
which uses only the top-M most similar samples
from the memory based on the test sample’s hidden
state. The global strategy provides a comprehen-
sive representation, while the local strategy focuses
on aspects most relevant to the test sample.

The main contributions of this work are summa-
rized as follows:

* We propose directly decoding in latent space

rather than language space for LLM-based rec-
ommenders, to better balance performance and
inference cost.

e We introduce L2D, an effective and efficient
latent-space decoding method that recommends
items by comparing their representations, derived
from hidden states of training sequences, to the
test sample’s hidden state using L2 distance.

» Extensive experiments demonstrate that applying
L2D to existing LLM-based recommendation
methods reduces inference latency by at least
10 times compared to language-space decoding
while maintaining or enhancing performance.

2 LLM-based Generative Recommender

Let D represent the user-item interaction data. The
j-th sample in D is denoted as (s;,v;), where s;
represents a user’s interaction history, and v; is the
interacted item for the sample. Notably, both s;
and v; are in textual form. To train an LLM-based
generative recommender, we convert each sample
(sj,v;) into instruction data, using a fixed prompt
template such as "A user has interacted with the fol-
lowing items: <s;>; which item would the user like
next?", with v; as the ground-truth model output.
Then, the instruction data {(prompt(s;),v;)}; can
be utilized to fine-tune the LLM, learning the rec-
ommendation tasks by generating the next item’s
textual representation.

During inference, given a user’s interaction his-
tory s to generate the next item, the LLM first
encodes the prompt into hidden states, formally:

h = LLMiqst(prompt(s)), M

where h denotes the last hidden state of the input
prompt(s) at the final layer, and LL M, (-) rep-
resents the function that extracts the hidden state
from the last layer of the LLM. In the language-
space decoding method, h is further mapped to
the LLM’s output layer to generate the first item
token, which is then added to the input, and the
process repeats to generate a full item. In contrast,
we explore decoding items from the hidden state h.

3 Latent-Space Decoding

In this section, we introduce our Light Latent-space
Decoding (L2D) framework, starting with present-
ing the overview and followed by a detailed de-
scription of its key components.



Item /éandidate Item Representation Generation’ ‘Item Decoding
Hidden State Global Aggregation Recommend Items
O Item list: [vq, v3,...]
Memory
O V1 v
O O O aggregate @ 3 Vp
O O O ® 2
O O O Similarity score
O O All pairs in Memory I
O - Measure Similarity
Local Aggregation
O Candidate items  Test sample!
Retrieve O aggregate @ @ L2
— ) .
L |@ L [&) @)
Test Sample
I } Top-M pairs in Memory
] \

Figure 2: The overview framework of our proposed L2D. The left part illustrates the memory set that stores (hidden
state, ground-truth item) pairs. The middle part illustrates how L2D generates candidate item representations via
global aggregation (averaging all associated hidden states) or local aggregation (using the top-M relevant samples
to the test sample). The right part depicts the item decoding phase by measuring the similarity between the test

sample’s hidden state and candidate item representations.

3.1 Overview

The main idea of this work is to bypass language-
space decoding by directly operating in the latent
space, thereby eliminating the time-intensive au-
toregressive process to reduce costs fundamentally.
To achieve this, we propose L2D, which utilizes
the hidden states from the LLM. It constructs can-
didate item representations in the latent space and
matches them with the hidden states of the test sam-
ple to decode items. Figure 2 illustrates the overall
L2D process, which consists of three steps:

1) Memory Construction: Stores (hidden state,
ground-truth item) pairs from training samples in
a memory module, preparing for candidate item
representation generation.

2) Candidate Item Representation Generation:
Produces representations for each item by ag-
gregating its associated hidden states stored in
memory.

3) Item Decoding: Matches the hidden state of a
test sample with the candidate item representa-
tions to determine the output.

The first step can be pre-computed, ensuring no
impact on inference latency, while the last two steps
operate independently of LLM, minimizing latency.
We provide detailed explanations below.

3.2 Memory Construction

L2D begins by constructing a memory set that
stores the (hidden state, ground-truth item) pairs
from the training samples. Such pairs are derived
from real user-item interaction data, meaning the

hidden state reflects specific aspects of the corre-
sponding item and can be further utilized for item
representation generation. Specifically, for the j-
th training sample (sj,v;), we compute its last
hidden state at the final layer using Equation (1)
as hj = LLMj,s(prompt(s;)) and store the pair
(hj,v;) in amemory set M. Repeating this process
for all samples in the training set, L2D constructs
the final memory M, formally,

M:{(hjvvj>|j:1>"'>N}v (2

where N denotes the total number of training sam-
ples. The memory set is then utilized to generate
item representations.

3.3 Candidate Item Representation
Generation

After constructing the memory, L2D leverages the
stored (hidden state, ground-truth item) pairs to
generate item representations in the latent space.
For each item, it aggregates the associated hidden
states—those paired with the item as the ground-
truth item—to create the item’s representation. In
particular, L2D offers two aggregating strategies:
1) global aggregation, which averages all associ-
ated hidden states for each item, and 2) local ag-
gregation, which uses only the top-M most similar
samples in the memory based on the test user’s
hidden state. The global strategy provides a com-
prehensive representation, while the local strategy
focuses on aspects most relevant to the test sam-
ple. We will first elaborate on the two strategies,
followed by a comparison.



e Global Aggregation. To aggregate the hidden
states stored in the memory M for creating item
representations, a straightforward approach is to
directly average all hidden states associated with
the same item. The global aggregation follows this
strategy. Specifically, we first group hidden states
in memory by items and then average the hidden
states within each group to form the corresponding
item’s representation. Formally, for an item v, its
representation A, is computed as follows:

hy = Z h], 3)

heM

where M (v) denotes the set of all hidden states
associated with item v, defined as

M(v) = {h; | (hj,v;) € M,vj =v}.
The size of M (v) is denoted by | M (v)].

eLocal Aggregation. An item may encompass
multiple feature aspects, and the global aggrega-
tion method combines all aspects to form a compre-
hensive item representation. However, during the
inference stage, not all feature aspects are relevant
for each test sample; only the aspects related to the
test sample are important. This suggests that mix-
ing all aspects may introduce interference. With
this in mind, we propose local aggregation, which
leverages only the top-M samples from memory
that are most relevant to the test sample’s hidden
state for item representation generation.
Specifically, for a test sample with s;, we first
filter a subset of the memory based on the hidden
state h; of test sample, denoted as M. Formally,

M ={(hj, v5) | (hj, vj) € M,
S(ht, hyj) is in the top-M largest} ,

where S(hy, hj) = m measures the similar-
ity between the stored hidden state /; and the test
sample’s hidden state h;. Then, a process similar to
global aggregation is applied to M, to obtain the
candidate item representation. Given a candidate
item v, the representation is formulated as follows:

ht = > by, (5)
‘Mt h JEM(v)

where |M;(v)| denotes the size of M;(v), and
M (v) is the subset of M, containing items with
v as the ground-truth, defined as

Mt(v) = {hj | (hj,’Uj) € M, Vj = U}.

Global vs. Local Aggregation: Compared to
global aggregation, local aggregation can better fo-
cus on test sample-specific aspects, potentially im-
proving subsequent matching performance. How-
ever, it may struggle more with sparse items due to
an increased lack of associated hidden states. Addi-
tionally, unlike the representation obtained through
global aggregation, which is uniform for all test
samples, the representation derived from local ag-
gregation is tailored to each test sample. Despite
this, the computational cost remains relatively low,
as only a small subset of the memory is consid-
ered for each representation creation and no LLM
processing is involved.

3.4 Item Decoding

After generating the candidate item representations,
L2D could efficiently decode items in the latent
space during inference by measuring the similar-
ity between the test sample’s hidden state and the
representations of the candidate items. Specifically,
for a given test sample with hidden state h; and a
candidate item v, we denote the candidate item’s
representation as h,,, which is defined as:
if local aggregation.

ho
e
(6)

Then, we compute the similarity score between
h; and h,, using the L2 distance as: S(h¢, hy) =
m. Once the similarity scores for all can-
didate 1tems are computed, the top-K items with
the highest similarity scores to the test sample are
selected to form the final recommendation list. We
refer to 12D with global aggregation as L2D-G,
and L2D with local aggregation as L2D-L.

in Eq. (3)
in Eq. (5)

if global aggregation,

Discussion. Our method only requires a sin-
gle forward propagation for LLM inference, while
other operations rely on vector-level operations.
For both L2D-G and L2D-L, the total vector com-
putation cost could be kept far lower than LLM
inference, thus reducing overall latency. For more
details, refer to Experiments and Appendix A.4. On
the other hand, Storing vectors, especially for L2D-
L, which retains intermediate vectors from training
samples, can increase space cost. However, space
efficiency is generally less critical in recommenda-
tion, and strategies like sampling can help mitigate
the cost. More details are in Appendix A.3.



4 [Experiments

In this section, we conduct experiments on two
real-world datasets to demonstrate the effectiveness
of our L2D framework in balancing performance
and inference overhead. We will showcase it by
following research questions: RQ1: How do the
performance and overhead results of our L2D com-
pare to the baselines? RQ2: What is the impact
of each component of L2D? RQ3: What are suit-
able scenarios for the global and local aggregation,
respectively? RQ4: How does L2D influence the
quality of recommendation list?

4.1 Experimental Settings

Datasets. We conduct experiments using two repre-
sentative datasets from Amazon Product Reviews':
Amazon CDs (CDs) and Amazon Games (Games).
These datasets consist of user review data collected
from Amazon between 1996 and 2018. We regard
the review as an interaction. Following (Bao et al.,
2024), we truncate the datasets based on times-
tamps to maintain a manageable size, filter out
users and items with fewer than five interactions,
and set the maximum length of user interaction
sequences to 10. We chronologically order the in-
teractions and split them into training, validation,
and test sets in an 8:1:1 ratio. Detailed statistics of
the datasets are provided in Appendix A.7.

Compared Methods. In this work, to demonstrate
the superiority of our proposed method from the
perspective of balancing performance and infer-
ence overhead compared to LLM-based generative
recommendation systems, we primarily selected
some of the most commonly used LLM-based mod-
els in the current literature. (1)AlphaRec (Sheng
et al., 2024): This method uses LLM embeddings
for recommendations by applying a collaborative
filtering model to utilize language representations.
(2)BIGRec (Bao et al., 2023a): This is a generative
recommender system based on LLMs. It predicts
the next item a user might interact with by using
their past interactions, mapping the generated items
to the existing dataset by comparing L2 distances
to semantic embeddings. (3) GPT4Rec (Zhang
et al., 2024a): Similar to BIGRec, it uses the BM25
method for mapping items generated by LLMs to
those already in the dataset. (4) D3 (Bao et al.,
2024): Building on BIGRec, this method fixes
a potential bias in BIGRec’s process by remov-
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ing length normalization during decoding. It also
includes another collaborative model, which was
omitted in our implementation for fair comparison.

For all generative-based methods, we use beam
search to generate multiple items and then match
them to real items. The details on how beam search
decodes into a recommendation list can be found
in the appendix A.6.

Evaluation metrics. To assess the top-K recom-
mendation performance of the model, we employ
two widely recognized metrics: Recall@K and
NDCG@K (Bao et al., 2024; Zheng et al., 2024).
In our study, all evaluations are conducted follow-
ing a full-ranking protocol (Bao et al., 2023a), with
K generally set to 20, 50, and 100. In the following,
if space is limited, we will abbreviate Recall@K
and NDCG@K as R@K and N@K, respectively.

Implementation details. For our LLM-based
recommendation models, we employ Llama3.2-
1B (Dubey et al., 2024) as the foundational archi-
tecture. During the instruction tuning phase, we use
the AdamW optimizer along with a cosine learning
rate scheduler, set a batch size of 64, and modify
the learning rate within the range of [le-3, le-4,
5e-5]. Other configurations generally adhere to
those outlined in the D? paper. All experiments are
executed on an NVIDIA A100 GPU.

4.2 Main Results (RQ1)

To verify the effectiveness of our L2D, we present
the performance and inference cost of our method
compared to the baseline in Figure 3. Furthermore,
we illustrate the performance of our method at dif-
ferent @K values in Table 1. From the figure and
the table, we can find:

* When evaluating the trade-off between perfor-
mance and inference cost for all methods, we ob-
serve from Figure 3 that points closer to the top-
left corner indicate better performance at lower
costs. Our proposed L2D method is the closest
to the top-left corner on both datasets, indicating
that L2 D achieves excellent performance while
maintaining low inference cost, showcasing the
effectiveness of direct decoding of items in latent
space. Even when compared to the previously
most efficient LLM-based method, AlphaRec,
which uses LLM as embeddings, L2D reduces
the cost by at least a factor of five and gets a
better performance, further demonstrating the re-
markable potential of L2D in deployment.
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Figure 3: The Recall@50 performance and the overhead of LLM-based recommender system on two datasets.

Table 1: Overall performance comparison on the CDs and Games. Results with beam size 1 are reported for methods
using beam search for fair comparison, with results for other beam sizes in Figure 3. The best results are in bold.

CDs

Games

Model R@20 R@50 R@100 | N@20 N@50 N@100 | R@20 R@50 R@100 | N@20 N@50 N@100

AlphaRec | 0.0651 0.0976 0.1353 | 0.030 0.0364 0.0425 | 0.0619 0.1005 0.1392 | 0.0295 0.0371 0.0434
GPT4Rec | 0.0513 0.0562 0.0652 | 0.0433 0.0443 0.0458 | 0.0508 0.0782 0.1064 | 0.0293 0.0347 0.0392
BIGRec 0.0506 0.0565 0.0621 | 0.0435 0.0446 0.0456 | 0.0476 0.0702 0.1007 | 0.0284 0.0328 0.0378
D3 0.0507 0.0560 0.0623 | 0.0436 0.0447 0.0457 | 0.0478 0.0711 0.1004 | 0.0284 0.0330 0.0376

L2D-G 0.1144 0.1562 0.1996 | 0.0710 0.0792 0.0862 | 0.0646 0.1167 0.1794 | 0.0295 0.0397 0.0499
L2D-L 0.1158 0.1569 0.1992 | 0.0667 0.0745 0.0813 | 0.0879 0.1465 0.2072 | 0.0399 0.0511 0.0596

* When comparing the performance of baseline
methods under different beam sizes, we ob-
serve that the performance of generative-based
methods improves approximately linearly as the
beam size and inference cost increase. Among
these, D3 shows greater scalability (with a larger
growth rate). It would not be surprising if these
methods could surpass L2D in performance by
investing more in inference (e.g., increasing the
beam size to 50), but this could lead to nearly a
hundredfold increase in cost, which is not feasi-
ble in most real-world scenarios. Furthermore,
our experiments utilize Llama 3.2-1B as the back-
bone, which is a relatively small-scale language
model. The deployment costs would be even
higher with larger language models.

* Furthermore, as shown in Table 1, L2D outper-
forms all baselines across all metrics. We at-
tribute this improvement to the method’s ability
to effectively decode multiple historical interests
in the latent space of LLLM, which significantly
increases the likelihood of meeting users’ cur-
rent interests and demonstrates the robustness
and scalability of our method.

Notably, we include non-Amazon datasets to
evaluate our method. The results show that it
achieves the lowest inference latency while main-
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Figure 4: The impact of M on the Recall metric for
L2D-L, where M denotes the hyperparameter that de-
termines the number of hidden states in local aggrega-
tion. Note that L2D-L becomes equivalent to L2D-G
when M reaches its maximum value.

taining strong performance across most metrics.
See Appendix A.1 for details.

4.2.1 Ablation study (RQ2)

To validate the effectiveness of each component of
L2D, we conducted the following experiments:

4.3 Analysis

In this section, we conduct a thorough analysis of
L2D. We begin with an ablation study on each
component, followed by a discussion on the appli-
cation scenarios for our two decoding strategies in
both sparse and dense recommendation contexts.
Finally, we examine how our design influences the
diversity and popularity of recommendation lists.
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Figure 5: The performance of BIGRec, L2D-G, and
L2D-L on sparse and dense scenarios.

The impact of hyper-parameter ) on L2D-L.
We illustrate the impact of M in Figure 4, where
only the results for Recall are reported. The re-
sults for NDCG can be found in Appendix A.8.
Specifically, on the CDs dataset, the Global Aggre-
gation method in L2D-G outperforms the Local
Aggregation method in L2D-L. In contrast, on the
Games dataset, we observe that performance peaks
as M increases, but further increasing M leads to
a decline in performance. We attribute this phe-
nomenon to the varying demands for focusing on
the test sample’s feature aspects in different rec-
ommendation scenarios. The Games dataset may
require a stronger emphasis on detailed feature as-
pects compared to the CDs dataset.

The impact of aggregation on L2D-L. To gain a
comprehensive understanding of how L2D-L op-
erates, we conducted an experiment to validate the
effectiveness of its aggregation mechanism. Specif-
ically, we designed a variant called Onlytop, which
retains only the highest-ranked hidden state for
each item, as opposed to averaging all relevant hid-
den states to form the item representation. The
experimental results are summarized in Table 2.
We observed that the performance of Onlytop is
significantly worse than that of L2D-L. This may
be due to the fact that each hidden state of an item
in the local memory represents an aspect of the
item’s characteristics that closely relate to the user’s
personalized preferences. By retaining only the
highest-ranked hidden state, some important item
characteristics may be discarded.

The impact of instruction tuning. During the
instruction-tuning process, the hidden states of the
LLM have captured the necessary historical user
preferences. To highlight the importance of this
tuning process, we designed a variant for compar-

Table 2: The performance of various versions of our
proposed L2D method is evaluated in the ablation study.

CDs R@20 R@50 R@I100 | N@20 N@50 N@100
L2D-L 0.1158 0.1569 0.1996 | 0.0710 0.0792  0.0862
Only-top 0.1026 0.1346 0.1653 | 0.0570 0.0634 0.0683
No-tune  0.0688 0.1022 0.1321 | 0.0334 0.0400 0.0448
Games R@20 R@50 R@100 | N@20 N@50 N@100
L2D-L. 0.0879 0.1465 0.2072 | 0.0399 0.0511 0.0596
Only-top 0.0654 0.1117 0.1679 | 0.0307 0.0399 0.0489
No-tune  0.0559 0.1021 0.1501 | 0.0222 0.0312  0.0390

ison where L2D-L is applied to the original, non-
fine-tuned LLM, called No-tune. Our observations
show that No-tune performs significantly worse
than L2D-L. This is because the hidden states of
the original LLM are not aligned with recommen-
dation tasks and cannot effectively capture user
interests, making it challenging for L2D-L to ex-
tract useful information for recommendations.

4.3.1 Sparse and Dense Scenario (RQ3)

L2D-L has demonstrated stable performance com-
pared to L2D-G. However, since L2D-L was de-
signed to create a user-specific local memory using
the test sample’s hidden state, it might be unsuit-
able for scenarios where user-item interactions are
sparse. To analyze this, we divided the test set
into sparse and dense categories based on item fre-
quency in the training set. Figure 5 shows the
overall performance of the two strategies in these
scenarios. We observed the following: (1) Dense
scenarios: L2D-L achieves the best performance
due to the availability of numerous hidden states
for each item, allowing it to create a more person-
alized candidate item representation and eliminate
irrelevant information. (2) Sparse scenarios: the
interactions are limited, which means that even the
top similar hidden states may not accurately repre-
sent user preferences, potentially leading to biased
results and performance drops. In contrast, L2D-
G, which aggregates preferences globally, offers a
more balanced outcome.

In summary, both L2D-G and L2D-L have
strengths and weaknesses, but our decoding strat-
egy allows for flexible switching between the two
methods, making it adaptable to different scenarios.

4.3.2 Recommendation Quality (RQ4)

In the previous section, we noted that auto-
regressive decoding limits the ability to extract user
interests from instructions. To demonstrate L2D’s
ability to decode rich historical interests, we ana-
lyzed the diversity and popularity distribution of
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Figure 6: The recommendation quality comparison be-
tween L2D and BIGRec.

recommended items. As shown in Figure 6a, L2D
offers a significantly greater variety of item cate-
gories compared to BIGRec, highlighting its ability
to decode a wider range of user interests. Further-
more, we calculated the entropy of the probability
of each item being recommended. A higher entropy
indicates that the model recommends items more
uniformly, regardless of their popularity. Figure 6b
illustrates that L2D’s recommendations are able
to cover a wider range of items, showcasing its ca-
pacity to personalize suggestions and recommend
niche items to suitable users. Notably, L2D-L,
which relies only on partial training samples of
candidate items, still performs effectively in recom-
mending niche items. We provide an explanation
for this in Appendix A.5.

5 Related Work

e LLM-based recommendation. We discuss three
paradigms of LLM-based recommenders (Wu et al.,
2024b). (1) LLM-Embedding-Based Recom-
menders use embeddings from LLMs in traditional
systems to capture user preferences (Yuan et al.,
2023; Xi et al., 2024a). While effective in lan-
guage tasks, these embeddings require fine-tuning
for optimal performance. (2) LLM-Based Dis-
criminative Recommenders directly predict user-
item interactions by optimizing the recommenda-
tion task with the LLM’s loss function (Zhang et al.,
2023b; Li et al., 2023b; Zhang et al., 2024b). Al-
though it dispenses with intermediate embeddings,
it requires evaluating each item individually, re-
ducing efficiency compared to traditional models.
(3) LLM-Based Generative Recommenders gen-
erate natural language recommendations without
predefined items, offering innovative potential (Bao
et al., 2023a, 2024; Zheng et al., 2024). However,
autoregressive decoding introduces significant in-
ference overhead. Inspired by these paradigms,
we propose a novel LLM-based recommender that
balances performance and overhead, addressing ex-
isting challenges to enhance quality and efficiency.

Notably, some existing (large) language model

(LM)-based approaches (Sheng et al., 2024), such
as RecFormer (Li et al., 2023a), can be viewed as
representing candidate items in latent spaces and
then matching them with the user input sequence
encoded by the LM. However, they indeed modify
the output layer of the LMs, with the effectiveness
of their matching process tied to the training pro-
cess. As aresult, they fail to achieve plug-and-play
integration into existing advanced LLM-based rec-
ommenders. In contrast, our method is decoupled
from the training process, making it plug-and-play.
Additionally, the processes for obtaining historical
sequence and candidate representations differ: our
representations are determined by the generative
state, whereas others are not. A detailed discussion
is provided in Appendix A.2.
e Inference Acceleration for LLM-based Rec-
ommendation. With the widespread application
of LLMs, an increasing number of studies have fo-
cused on accelerating LLM inference. In particular,
in the field of LLM-based recommender systems,
models need to recommend products to a large
number of users within a short time frame, which
highlights the necessity of considering methods to
accelerate LLM inference in this domain. Spec-
ulative Decoding (SD) (Leviathan et al., 2023), a
significant acceleration technique in the NLP field,
has been applied to recommender systems, such as
DARE (Xi et al., 2024b) and AtSpeed (Lin et al.,
2024b). However, these methods still rely on ac-
celeration decoding within the language space. In
contrast, our method takes a step further by ex-
ploring how to implement efficient decoding for
recommendation in the latent space of LLMs, while
maintaining a simple and easy-to-implement over-
all framework that avoids complex designs.

6 Conclusion

In this study, we emphasized the importance of de-
veloping LLM-based recommenders to balance per-
formance and inference overhead. To address this
challenge, we proposed the L2 D, which bypasses
time-consuming autoregressive decoding in the lan-
guage space and directly decodes items in LLM’s
latent space. The L2D significantly reduces infer-
ence costs while achieving excellent performance.
Our results highlighted the potential of latent space
decoding as a fundamental advancement in LLM-
based recommender systems, and extensive results
demonstrated the superiority of L2D.



Limitations

This paper has the following limitations: 1) Al-
though the L2D framework we introduced sig-
nificantly reduces inference latency, the memory,
which is pre-constructed, still incurs additional
time overhead during its pre-construction process.
This motivates us to explore more efficient mem-
ory construction methods in future work. 2) Our
approach struggles with handling new items, i.e.,
cold-start items, as these items do not have samples
in the memory to model their implicit representa-
tions. In the future, we plan to address this issue by
using the interpolation technique or incorporating
auxiliary models. 3) We have not considered the
problem of memory updating. As user interaction
data gradually accumulates over time, how to ef-
fectively use this new data to update the memory
in L2D to achieve higher decoding performance
presents a promising direction. We intend to ex-
plore this issue in future research.

Ethical Considerations

In this paper, we present L2 D, designed to balance
the performance and inference overhead for gener-
ative LLMRec. Our method decode item in latent
space of LLM which doesn’t raise ethical concerns.
Moreover, the data we use are publicly available
and don’t include sensitive details. However, rec-
ommendations involve user behavioral data, which
might raise privacy concerns, which can be ad-
dressed through introducing the mechanism of user
consent. Additionally, using LL.Ms may have po-
tential negative societal biases. We argue for a
thorough risk assessment and alert users to the po-
tential risks associated with model deployment.

For the large language model use, we utilize
ChatGPT to help polish the writing at the sentence
level.
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A Appendix

A.1 Evaluation on Steam dataset.

In order to strengthen the generalizability claims
of the method, we evaluated proposed L2D on a
widely-used non-Amazon dataset, Steam.

The results, summarized in the table 3, show that
our method achieves the best performance on top-
50 and top-100 metrics and performs comparably to
the best baselines on top-20 metrics. Additionally,
our method maintains the lowest inference time
cost.

It is worth noting that the performance of L2D-
G on Steam is nearly an order of magnitude worse
than L2D-L. This phenomenon can be attributed to
L2D-G being less effective in dense scenarios com-
pared to L2D-L, while Steam is a denser dataset.
This is supported by the results in Section 4.3.1,
Sparse and Dense Scenario, where we analyzed the
strengths and weaknesses of L2D-L and L2D-G
across different sparsity levels. The experimental
results indicate that L2 D-G performs significantly
better in sparse scenarios, whereas L2D-L excels
in dense scenarios. Since Steam is denser than the
Games and CDs datasets, this results in a substan-
tial performance gap between L2D-G and L2D-L
on the Steam dataset.

A.2 Contribution Positioning

Some existing (large) language model (LM)-based
approaches (Sheng et al., 2024), such as Rec-
Former (Li et al., 2023a), can be seen as represent-
ing candidate items in latent spaces and matching
them with the user input sequence encoded by the
LM. This makes them somewhat similar to our ap-
proach. However, there are inherent differences
between these methods and ours. First, our method
does not alter the generative training process (next-
token prediction); it only modifies the decoding
process without requiring additional tuning. In con-
trast, in these existing approaches, the matching
process is entangled with the training phase.

Secondly, even when focusing solely on the
matching process, there are differences in how the
sequence representations and candidate item repre-
sentations are constructed, as well as in the learning
processes involved. Our approach introduces the
following innovations:

* History Representation: Our representation is
derived from the hidden state embedding at the
next-token prediction position, which serves as a
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"generative state" inherently encoding informa-
tion for generating subsequent tokens. In con-
trast, the existing methods do not leverage such
a generative state of LLMs.

 Item Representation: We construct item repre-
sentations by aggregating the "generative states"
of training samples where the item appears as
the target. This fundamentally differs from exist-
ing works, which require an item-based forward
encoding approach.

* Learning: Our history and item representations
exist in the same space and do not require ad-
ditional tuning. In contrast, existing methods
necessitate a separate training process to align
these representations for matching.

A.3 Space Complexity Analysis

Let D be the hidden state size, L the number of lay-
ers, T, and T, the average lengths of the user query
and generated item title, and N the number of
beams. Since beam search replicates the inference
process IV times, the space complexity of language-
space decoding is O(N L(T,+1T,)D), considering
only hidden state storage. For our method L2D,
space cost consists of two parts: LLM inference
and storage of training data hidden states.

* LLM inference: We only need the last hidden
state of the query, leading to O(LT, D).
* Training data storage:

— L2D-G: Stores final representations for all
items, with space complexity O(DN;), where
N; is the number of items.

— L2D-L: Stores hidden states for all training
samples, requiring O(DN;), where V; is the
total number of training samples.

Thus, the total space complexity is:

* L2D-G: O(LT,D) + O(DN;)
* L2D-L: O(LT,D) + O(DNy)

While our method incurs higher space costs com-
pared to the baseline, inference latency poses a
greater challenge in real-world recommendation
applications. Sacrificing some space for lower la-
tency is often acceptable. (Lin et al., 2024a; Xi
et al., 2024c; Zhao et al., 2024; Lin et al., 2023).

A.4 Clarification of L2D-L Efficiency

In this section, we aim to clarify the efficiency is-
sue of L2D-L. For L2D-L, the local aggregation



Table 3: The comparison of overall performance and inference time on the Steam dataset.

Model R@20 R@50 R@I100 N@20 N@50 N@100 Inference time
AlphaRec 0.1273 0.1813 0.2262  0.0506 0.0614 0.0686 362 s
GPT4Rec (beam = 1) 0.0293 0.0328 0.0389  0.0211 0.0217 0.0227 463 s
GPT4Rec (beam = 5) 0.0506 0.0604 0.0678  0.0270 0.0290 0.0302 1130 s
GPT4Rec (beam = 10) 0.0713 0.0840 0.0934  0.0319 0.0344 0.0359 1951 s
BIGRec (beam = 1) 0.0626 0.0994 0.1376  0.0317 0.0391 0.0453 466 s
BIGRec (beam = 5) 0.0701 0.1182 0.1767 0.0326 0.0421 0.0516 11335
BIGRec (beam = 10) 0.0851 0.1292 0.1962  0.0357 0.0443 0.0552 1957 s
D? (beam = 1) 0.0626 0.0994 0.1376  0.0317 0.0391 0.0453 457 s
D3 (beam = 5) 0.0864 0.1379 0.1993  0.0461 0.0562 0.0661 1037 s
D3 (beam = 10) 0.1139 0.1594 0.2221 0.0566 0.0655 0.0756 1593 s
L2D-G 0.0160 0.0390 0.0772  0.0059 0.0104 0.0165 26s
L2D-L 0.1236  0.2237 0.3282  0.0494 0.0683 0.0839 39s

process requires additional computation to deter-
mine similarity scores between the test sample’s
hidden state and all training samples in memory to
identify the most relevant M samples. This raises
concerns about whether the number of similarity
score computations impacts the claimed computa-
tional efficiency.

In our proposed L2D-L, the number of simi-
larity score computations would increase by M.
However, the computation cost compared to the
language-space decoding is very small. When in-
creasing the value of M by 1000, the total inference
cost for our method only increases by 2~3 seconds.
Moreover, when setting M to a relatively smaller
value, we can achieve better results than the base-
lines. In our experiments, setting M to 4000 for the
CDs dataset could lead to significant performance
improvements compared to the baseline, while the
inference cost is only about 1/10 of that compared
to BIGRec. Additionally, we could further leverage
techniques like the approximate Nearest Neighbors
search method to speed up the similarity computa-
tion process.

A.5 Effectiveness of L2D-L on Niche Items

The local aggregation mechanism in L2D-L re-
lies on selecting the most similar Top-M training
samples based on similarity scores. However, this
raises the question: can L2D-L effectively recom-
mend niche items with insufficient training sam-
ples? In this section, we will clearly demonstrate
the advantages of our proposed method regarding
this issue.

First of all, as shown in Figure 4.3.2, both L2D-
G and L2D-L recommend a more diverse set of
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items across different categories and popularity lev-
els compared to the baselines.

Additionally, the top-M selection process natu-
rally increases attention to niche items as the selec-
tion is based on the test sample (query), retrieving
the top-M most similar training samples. If the test
sample is associated with less popular items, the
retrieved training samples are also more likely to
be related to less popular items.

A.6 Beam-search for Recommendation

For all generative-based methods, we use beam
search to generate multiple items and then match
them to real items. Specifically, we first ob-
tain the semantic representation of each generated
item and compute their matching scores based on
their semantic similarity with all candidate items.
This results in a ranking matrix with dimensions
beam_number x candidate_item_number, where
each row represents the ranking list of a beam-
generated item. Finally, we flatten the matrix col-
umn by column into a single vector and retain the
top K unique items as the recommendation results.

A.7 Dataset Statistics

In this subsection, we supplement the statistical
information of the datasets used in our experiments.
The paper mainly presents the results of the CDs
and Games datasets, while the experimental re-
sults of the Steam dataset can be found in the Ap-
pendix A.1.

A.8 Impact of M on NDCG for L2D-L

In this subsection, we demonstrate the impact of
parameter M on the NDCG metric in the L2D-L



Table 4: The statistics of datasets.

Dataset #User #ltem

#Train  #Valid  #Test

CDs 21,347 14,239
Games 34,089 11,037
Steam 54,206 8,268

148,685 18,586 18,587
201,613 25,202 25,203
177,046 22,130 22,130
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Figure 7: The impact of M on NDCG metric in the
L2D-L. M 1is a hyperparameter that determines the
number of hidden states in local aggregation. Note that
L2D-L equals L2D-G when M reaches its maximum

length.

method. As shown in Figure 7, the phenomenon
observed in the NDCG metric is consistent with the
Recall metric in the paper, further strengthening

our argument.
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