
Decoding in Latent Spaces for Efficient Inference in LLM-based
Recommendation

Anonymous ACL submission

Abstract

Fine-tuning large language models (LLMs) for001
recommendation in a generative manner has002
delivered promising results, but encounters sig-003
nificant inference overhead due to autoregres-004
sive decoding in the language space. This005
work explores bypassing language-space de-006
coding by directly decoding items in the la-007
tent space, eliminating the time-intensive au-008
toregressive process to reduce costs. More-009
over, given that the hidden states of input se-010
quences in the latent space have already en-011
capsulated user preference information, latent-012
space decoding also has the potential to pre-013
serve performance. Towards this, we intro-014
duce Light Latent-space Decoding (L2D), an015
effective and efficient latent-space decoding016
method. L2D uses the hidden states of test se-017
quences to represent user-preferred items, and018
it derives candidate item representations from019
the hidden states of training sequences labeled020
with the corresponding candidate items. It then021
matches the two types of representations to de-022
code items, achieving latent-space decoding.023
Empirical results demonstrate that L2D is more024
than 10x faster than language-space decoding025
while maintaining or enhancing performance.026

1 Introduction027

Inspired by the powerful capabilities of Large Lan-028

guage Models (LLMs), great efforts (Wu et al.,029

2024a; Li et al., 2024) have been made to adapt030

them to recommendations, giving rise to the LLM-031

based recommendation paradigm. Unlike tradi-032

tional recommendations, this paradigm reimag-033

ines recommendation by shifting it to the "lan-034

guage space", where the task and related entities035

(i.e., users and items) are described in natural lan-036

guage (Zhang et al., 2023a; Bao et al., 2023b). The037

popular approaches are typically performed in a038

generative manner — fine-tuning LLMs to directly039

generate (or say, decode) items in the language040

space (Bao et al., 2023a; Ji et al., 2024). This man-041

Input

Input

 Latent Autoregressive decoding Generated items

(a) Language space decoding

(b) Latent space decoding

Very slow

Rec listFast

LLM

Candidate
Items

Latent space matching

Candidate
Items

Rec list

LLM

To latent
space

Grounding

LLM LLM

 Latent

Figure 1: Illustration of language-space decoding and
latent-space decoding: Latent-space decoding elimi-
nates the autoregressive decoding process in language-
space decoding and directly performs item matching in
the latent space for efficient item decoding.

ner aligns well with the generative nature of LLMs, 042

effectively harnessing the LLMs’ power to achieve 043

promising results (Bao et al., 2024). 044

Decoding recommended items in the language 045

space poses a significant challenge to inference ef- 046

ficiency. When decoding an item, the LLM must 047

generate its representation (e.g., title) autoregres- 048

sively, with each token depending on the previous 049

one (Xia et al., 2024), incurring substantial time 050

costs. Worse, each recommendation request typi- 051

cally requires generating a list of items (Lin et al., 052

2024a), causing the inference cost to scale linearly 053

with the list size. While grounding techniques (Bao 054

et al., 2023a) can reduce costs by mapping each 055

generated item to multiple actual items, they may 056

lead to performance degradation. For example, in 057

our findings, mapping only one generated item for 058

top-10 recommendations would result in a perfor- 059

mance drop of fifty percent compared to generating 060

10 items (c.f., Table 1). 061

Given these limitations, we explore the possi- 062

bility of bypassing language-space decoding by 063

analyzing the decoding process. Examining the 064

detailed process shown in Figure 1 (a), the LLM 065

first encodes the input into hidden states, which 066

are then mapped to the output layer to produce the 067

1

first token. Subsequently, this token is appended068

to the input, and the process repeats iteratively to069

generate other tokens. The initial hidden states cap-070

ture the essential information that determines the071

generated item. This suggests that the hidden states072

can serve as latent representations of user-preferred073

items without losing key information. Then, as074

shown in Figure 1 (b), representing candidate items075

in the same latent space, we can directly decode076

recommended items in the latent space through077

matching, bypassing the time-intensive autoregres-078

sive process. As such, we can reduce the time costs079

while maintaining the performance.080

This work investigates directly decoding items in081

the latent space to achieve efficient inference. The082

key is to represent candidate items within the same083

latent space as the hidden states, enabling straight-084

forward item decoding through matching. While085

learning item representations seems an intuitive so-086

lution, it introduces additional costs and struggles087

to maintain quality for sparse items in the high-088

dimensional latent space. Instead, we note that the089

training set already provides matching pairs (hid-090

den state, ground-truth item). Each paired hidden091

state reflects a feature aspect of the corresponding092

ground-truth item, allowing us to aggregate these093

paired hidden states into an effective representation094

of the item in the latent space without incurring095

extra training costs.096

To this end, we propose Light Latent-space De-097

coding (L2D), a simple yet efficient method for098

latent-space decoding. After finishing generative099

training, we store the training samples’ hidden100

states and their labels (i.e., ground-truth items) in a101

memory module and create each item’s represen-102

tation by aggregating its associated hidden states103

in the memory. Then we decode items to recom-104

mend by finding the item whose representation is105

most similar to the test sample’s hidden state using106

L2 distance. Regarding the aggregation to form107

item representation, L2D offers two strategies: 1)108

global aggregation, which averages all associated109

hidden states for an item, and 2) local aggregation,110

which uses only the top-M most similar samples111

from the memory based on the test sample’s hidden112

state. The global strategy provides a comprehen-113

sive representation, while the local strategy focuses114

on aspects most relevant to the test sample.115

The main contributions of this work are summa-116

rized as follows:117

• We propose directly decoding in latent space118

rather than language space for LLM-based rec- 119

ommenders, to better balance performance and 120

inference cost. 121

• We introduce L2D, an effective and efficient 122

latent-space decoding method that recommends 123

items by comparing their representations, derived 124

from hidden states of training sequences, to the 125

test sample’s hidden state using L2 distance. 126

• Extensive experiments demonstrate that applying 127

L2D to existing LLM-based recommendation 128

methods reduces inference latency by at least 129

10 times compared to language-space decoding 130

while maintaining or enhancing performance. 131

2 LLM-based Generative Recommender 132

Let D represent the user-item interaction data. The 133

j-th sample in D is denoted as (sj , vj), where sj 134

represents a user’s interaction history, and vj is the 135

interacted item for the sample. Notably, both sj 136

and vj are in textual form. To train an LLM-based 137

generative recommender, we convert each sample 138

(sj , vj) into instruction data, using a fixed prompt 139

template such as "A user has interacted with the fol- 140

lowing items: <sj>; which item would the user like 141

next?", with vj as the ground-truth model output. 142

Then, the instruction data {(prompt(sj), vj)}j can 143

be utilized to fine-tune the LLM, learning the rec- 144

ommendation tasks by generating the next item’s 145

textual representation. 146

During inference, given a user’s interaction his- 147

tory s to generate the next item, the LLM first 148

encodes the prompt into hidden states, formally: 149

h = LLMlast(prompt(s)), (1) 150

where h denotes the last hidden state of the input 151

prompt(s) at the final layer, and LLMlast(·) rep- 152

resents the function that extracts the hidden state 153

from the last layer of the LLM. In the language- 154

space decoding method, h is further mapped to 155

the LLM’s output layer to generate the first item 156

token, which is then added to the input, and the 157

process repeats to generate a full item. In contrast, 158

we explore decoding items from the hidden state h. 159

3 Latent-Space Decoding 160

In this section, we introduce our Light Latent-space 161

Decoding (L2D) framework, starting with present- 162

ing the overview and followed by a detailed de- 163

scription of its key components. 164

2

Global Aggregation

Test Sample

Candidate Item Representation Generation

Memory

…
… …

aggregate

Local Aggregation

… …

aggregate

Item Decoding
Hidden State

Item

Top-M pairs in Memory

All pairs in Memory

𝑣!

𝑣"

𝑣#
𝑣$

Similarity score

Item list: [𝑣!, 𝑣#, . . .]

…

Recommend Items

Measure Similarity

Candidate items Test sample

…

L2
𝑣"

𝑣!

𝑣!

𝑣"

𝑣!

𝑣"

Retrieve

Figure 2: The overview framework of our proposed L2D. The left part illustrates the memory set that stores (hidden
state, ground-truth item) pairs. The middle part illustrates how L2D generates candidate item representations via
global aggregation (averaging all associated hidden states) or local aggregation (using the top-M relevant samples
to the test sample). The right part depicts the item decoding phase by measuring the similarity between the test
sample’s hidden state and candidate item representations.

3.1 Overview165

The main idea of this work is to bypass language-166

space decoding by directly operating in the latent167

space, thereby eliminating the time-intensive au-168

toregressive process to reduce costs fundamentally.169

To achieve this, we propose L2D, which utilizes170

the hidden states from the LLM. It constructs can-171

didate item representations in the latent space and172

matches them with the hidden states of the test sam-173

ple to decode items. Figure 2 illustrates the overall174

L2D process, which consists of three steps:175

1) Memory Construction: Stores (hidden state,176

ground-truth item) pairs from training samples in177

a memory module, preparing for candidate item178

representation generation.179

2) Candidate Item Representation Generation:180

Produces representations for each item by ag-181

gregating its associated hidden states stored in182

memory.183

3) Item Decoding: Matches the hidden state of a184

test sample with the candidate item representa-185

tions to determine the output.186

The first step can be pre-computed, ensuring no187

impact on inference latency, while the last two steps188

operate independently of LLM, minimizing latency.189

We provide detailed explanations below.190

3.2 Memory Construction191

L2D begins by constructing a memory set that192

stores the (hidden state, ground-truth item) pairs193

from the training samples. Such pairs are derived194

from real user-item interaction data, meaning the195

hidden state reflects specific aspects of the corre- 196

sponding item and can be further utilized for item 197

representation generation. Specifically, for the j- 198

th training sample (sj , vj), we compute its last 199

hidden state at the final layer using Equation (1) 200

as hj = LLMlast(prompt(sj)) and store the pair 201

(hj , vj) in a memory set M. Repeating this process 202

for all samples in the training set, L2D constructs 203

the final memory M, formally, 204

M = {(hj , vj) | j = 1, . . . , N}, (2) 205

where N denotes the total number of training sam- 206

ples. The memory set is then utilized to generate 207

item representations. 208

3.3 Candidate Item Representation 209

Generation 210

After constructing the memory, L2D leverages the 211

stored (hidden state, ground-truth item) pairs to 212

generate item representations in the latent space. 213

For each item, it aggregates the associated hidden 214

states—those paired with the item as the ground- 215

truth item—to create the item’s representation. In 216

particular, L2D offers two aggregating strategies: 217

1) global aggregation, which averages all associ- 218

ated hidden states for each item, and 2) local ag- 219

gregation, which uses only the top-M most similar 220

samples in the memory based on the test user’s 221

hidden state. The global strategy provides a com- 222

prehensive representation, while the local strategy 223

focuses on aspects most relevant to the test sam- 224

ple. We will first elaborate on the two strategies, 225

followed by a comparison. 226

3

• Global Aggregation. To aggregate the hidden227

states stored in the memory M for creating item228

representations, a straightforward approach is to229

directly average all hidden states associated with230

the same item. The global aggregation follows this231

strategy. Specifically, we first group hidden states232

in memory by items and then average the hidden233

states within each group to form the corresponding234

item’s representation. Formally, for an item v, its235

representation h̄v is computed as follows:236

h̄v =
1

|M(v)|
∑

hj∈M(v)

hj , (3)237

where M(v) denotes the set of all hidden states238

associated with item v, defined as239

M(v) = {hj | (hj , vj) ∈ M, vj = v}.240

The size of M(v) is denoted by |M(v)|.241

•Local Aggregation. An item may encompass242

multiple feature aspects, and the global aggrega-243

tion method combines all aspects to form a compre-244

hensive item representation. However, during the245

inference stage, not all feature aspects are relevant246

for each test sample; only the aspects related to the247

test sample are important. This suggests that mix-248

ing all aspects may introduce interference. With249

this in mind, we propose local aggregation, which250

leverages only the top-M samples from memory251

that are most relevant to the test sample’s hidden252

state for item representation generation.253

Specifically, for a test sample with st, we first254

filter a subset of the memory based on the hidden255

state ht of test sample, denoted as Mt. Formally,256

Mt = {(hj , vj) | (hj , vj) ∈ M,

S(ht, hj) is in the top-M largest} ,
(4)257

where S(ht, hj) =
1

∥ht−hj∥2 measures the similar-258

ity between the stored hidden state hj and the test259

sample’s hidden state ht. Then, a process similar to260

global aggregation is applied to Mt to obtain the261

candidate item representation. Given a candidate262

item v, the representation is formulated as follows:263

h̄tv =
1

|Mt(v)|
∑

hj∈Mt(v)

hj , (5)264

where |Mt(v)| denotes the size of Mt(v), and265

Mt(v) is the subset of Mt containing items with266

v as the ground-truth, defined as267

Mt(v) = {hj | (hj , vj) ∈ Mt, vj = v}.268

Global vs. Local Aggregation: Compared to 269

global aggregation, local aggregation can better fo- 270

cus on test sample-specific aspects, potentially im- 271

proving subsequent matching performance. How- 272

ever, it may struggle more with sparse items due to 273

an increased lack of associated hidden states. Addi- 274

tionally, unlike the representation obtained through 275

global aggregation, which is uniform for all test 276

samples, the representation derived from local ag- 277

gregation is tailored to each test sample. Despite 278

this, the computational cost remains relatively low, 279

as only a small subset of the memory is consid- 280

ered for each representation creation and no LLM 281

processing is involved. 282

3.4 Item Decoding 283

After generating the candidate item representations, 284

L2D could efficiently decode items in the latent 285

space during inference by measuring the similar- 286

ity between the test sample’s hidden state and the 287

representations of the candidate items. Specifically, 288

for a given test sample with hidden state ht and a 289

candidate item v, we denote the candidate item’s 290

representation as hv, which is defined as: 291

hv =

{
h̄v in Eq. (3) if global aggregation,
h̄tv in Eq. (5) if local aggregation.

(6) 292

Then, we compute the similarity score between 293

ht and hv using the L2 distance as: S(ht, hv) = 294
1

∥ht−hv∥2 . Once the similarity scores for all can- 295

didate items are computed, the top-K items with 296

the highest similarity scores to the test sample are 297

selected to form the final recommendation list. We 298

refer to L2D with global aggregation as L2D-G, 299

and L2D with local aggregation as L2D-L. 300

Discussion. Our method only requires a sin- 301

gle forward propagation for LLM inference, while 302

other operations rely on vector-level operations. 303

For both L2D-G and L2D-L, the total vector com- 304

putation cost could be kept far lower than LLM 305

inference, thus reducing overall latency. For more 306

details, refer to Experiments and Appendix A.4. On 307

the other hand, Storing vectors, especially for L2D- 308

L, which retains intermediate vectors from training 309

samples, can increase space cost. However, space 310

efficiency is generally less critical in recommenda- 311

tion, and strategies like sampling can help mitigate 312

the cost. More details are in Appendix A.3. 313

4

4 Experiments314

In this section, we conduct experiments on two315

real-world datasets to demonstrate the effectiveness316

of our L2D framework in balancing performance317

and inference overhead. We will showcase it by318

following research questions: RQ1: How do the319

performance and overhead results of our L2D com-320

pare to the baselines? RQ2: What is the impact321

of each component of L2D? RQ3: What are suit-322

able scenarios for the global and local aggregation,323

respectively? RQ4: How does L2D influence the324

quality of recommendation list?325

4.1 Experimental Settings326

Datasets. We conduct experiments using two repre-327

sentative datasets from Amazon Product Reviews1:328

Amazon CDs (CDs) and Amazon Games (Games).329

These datasets consist of user review data collected330

from Amazon between 1996 and 2018. We regard331

the review as an interaction. Following (Bao et al.,332

2024), we truncate the datasets based on times-333

tamps to maintain a manageable size, filter out334

users and items with fewer than five interactions,335

and set the maximum length of user interaction336

sequences to 10. We chronologically order the in-337

teractions and split them into training, validation,338

and test sets in an 8:1:1 ratio. Detailed statistics of339

the datasets are provided in Appendix A.7.340

Compared Methods. In this work, to demonstrate341

the superiority of our proposed method from the342

perspective of balancing performance and infer-343

ence overhead compared to LLM-based generative344

recommendation systems, we primarily selected345

some of the most commonly used LLM-based mod-346

els in the current literature. (1)AlphaRec (Sheng347

et al., 2024): This method uses LLM embeddings348

for recommendations by applying a collaborative349

filtering model to utilize language representations.350

(2)BIGRec (Bao et al., 2023a): This is a generative351

recommender system based on LLMs. It predicts352

the next item a user might interact with by using353

their past interactions, mapping the generated items354

to the existing dataset by comparing L2 distances355

to semantic embeddings. (3) GPT4Rec (Zhang356

et al., 2024a): Similar to BIGRec, it uses the BM25357

method for mapping items generated by LLMs to358

those already in the dataset. (4) D3 (Bao et al.,359

2024): Building on BIGRec, this method fixes360

a potential bias in BIGRec’s process by remov-361

1https://jmcauley.ucsd.edu/data/amazon/

ing length normalization during decoding. It also 362

includes another collaborative model, which was 363

omitted in our implementation for fair comparison. 364

For all generative-based methods, we use beam 365

search to generate multiple items and then match 366

them to real items. The details on how beam search 367

decodes into a recommendation list can be found 368

in the appendix A.6. 369

Evaluation metrics. To assess the top-K recom- 370

mendation performance of the model, we employ 371

two widely recognized metrics: Recall@K and 372

NDCG@K (Bao et al., 2024; Zheng et al., 2024). 373

In our study, all evaluations are conducted follow- 374

ing a full-ranking protocol (Bao et al., 2023a), with 375

K generally set to 20, 50, and 100. In the following, 376

if space is limited, we will abbreviate Recall@K 377

and NDCG@K as R@K and N@K, respectively. 378

Implementation details. For our LLM-based 379

recommendation models, we employ Llama3.2- 380

1B (Dubey et al., 2024) as the foundational archi- 381

tecture. During the instruction tuning phase, we use 382

the AdamW optimizer along with a cosine learning 383

rate scheduler, set a batch size of 64, and modify 384

the learning rate within the range of [1e-3, 1e-4, 385

5e-5]. Other configurations generally adhere to 386

those outlined in the D3 paper. All experiments are 387

executed on an NVIDIA A100 GPU. 388

4.2 Main Results (RQ1) 389

To verify the effectiveness of our L2D, we present 390

the performance and inference cost of our method 391

compared to the baseline in Figure 3. Furthermore, 392

we illustrate the performance of our method at dif- 393

ferent @K values in Table 1. From the figure and 394

the table, we can find: 395

• When evaluating the trade-off between perfor- 396

mance and inference cost for all methods, we ob- 397

serve from Figure 3 that points closer to the top- 398

left corner indicate better performance at lower 399

costs. Our proposed L2D method is the closest 400

to the top-left corner on both datasets, indicating 401

that L2D achieves excellent performance while 402

maintaining low inference cost, showcasing the 403

effectiveness of direct decoding of items in latent 404

space. Even when compared to the previously 405

most efficient LLM-based method, AlphaRec, 406

which uses LLM as embeddings, L2D reduces 407

the cost by at least a factor of five and gets a 408

better performance, further demonstrating the re- 409

markable potential of L2D in deployment. 410

5

https://jmcauley.ucsd.edu/data/amazon/

0 500 1000 1500 2000 2500
Time (s)

0.06

0.08

0.10

0.12

0.14

0.16
Re

ca
ll@

50
CDs L2D-G

L2D-L

AlphaRec

BIGRec (beam=1)

BIGRec (beam=5)

BIGRec (beam=10)

D3 (beam=1)

D3 (beam=5)

D3 (beam=10)

GPT4Rec (beam=1)

GPT4Rec (beam=5)

GPT4Rec (beam=10)
0 1000 2000 3000

Time (s)

0.06

0.08

0.10

0.12

0.14

Re
ca

ll@
50

Games L2D-G

L2D-L

AlphaRec

BIGRec (beam=1)

BIGRec (beam=5)

BIGRec (beam=10)

D3 (beam=1)

D3 (beam=5)

D3 (beam=10)

GPT4Rec (beam=1)

GPT4Rec (beam=5)

GPT4Rec (beam=10)

Figure 3: The Recall@50 performance and the overhead of LLM-based recommender system on two datasets.

Table 1: Overall performance comparison on the CDs and Games. Results with beam size 1 are reported for methods
using beam search for fair comparison, with results for other beam sizes in Figure 3. The best results are in bold.

CDs Games

Model R@20 R@50 R@100 N@20 N@50 N@100 R@20 R@50 R@100 N@20 N@50 N@100

AlphaRec 0.0651 0.0976 0.1353 0.030 0.0364 0.0425 0.0619 0.1005 0.1392 0.0295 0.0371 0.0434

GPT4Rec 0.0513 0.0562 0.0652 0.0433 0.0443 0.0458 0.0508 0.0782 0.1064 0.0293 0.0347 0.0392

BIGRec 0.0506 0.0565 0.0621 0.0435 0.0446 0.0456 0.0476 0.0702 0.1007 0.0284 0.0328 0.0378

D3 0.0507 0.0560 0.0623 0.0436 0.0447 0.0457 0.0478 0.0711 0.1004 0.0284 0.0330 0.0376

L2D-G 0.1144 0.1562 0.1996 0.0710 0.0792 0.0862 0.0646 0.1167 0.1794 0.0295 0.0397 0.0499

L2D-L 0.1158 0.1569 0.1992 0.0667 0.0745 0.0813 0.0879 0.1465 0.2072 0.0399 0.0511 0.0596

• When comparing the performance of baseline411

methods under different beam sizes, we ob-412

serve that the performance of generative-based413

methods improves approximately linearly as the414

beam size and inference cost increase. Among415

these, D3 shows greater scalability (with a larger416

growth rate). It would not be surprising if these417

methods could surpass L2D in performance by418

investing more in inference (e.g., increasing the419

beam size to 50), but this could lead to nearly a420

hundredfold increase in cost, which is not feasi-421

ble in most real-world scenarios. Furthermore,422

our experiments utilize Llama 3.2-1B as the back-423

bone, which is a relatively small-scale language424

model. The deployment costs would be even425

higher with larger language models.426

• Furthermore, as shown in Table 1, L2D outper-427

forms all baselines across all metrics. We at-428

tribute this improvement to the method’s ability429

to effectively decode multiple historical interests430

in the latent space of LLM, which significantly431

increases the likelihood of meeting users’ cur-432

rent interests and demonstrates the robustness433

and scalability of our method.434

Notably, we include non-Amazon datasets to435

evaluate our method. The results show that it436

achieves the lowest inference latency while main-437

100 200 500 1000 2000 3000 4000L2D-G
M (top-M)

0.10

0.12

0.14

0.16

0.18

0.20 R@20 R@50 R@100

(a) Recall on CDs

100 200 500 1000 2000 3000 4000L2D-G
M (top-M)

0.10

0.15

0.20

R@20 R@50 R@100

(b) Recall on Games

Figure 4: The impact of M on the Recall metric for
L2D-L, where M denotes the hyperparameter that de-
termines the number of hidden states in local aggrega-
tion. Note that L2D-L becomes equivalent to L2D-G
when M reaches its maximum value.

taining strong performance across most metrics. 438

See Appendix A.1 for details. 439

4.2.1 Ablation study (RQ2) 440

To validate the effectiveness of each component of 441

L2D, we conducted the following experiments: 442

4.3 Analysis 443

In this section, we conduct a thorough analysis of 444

L2D. We begin with an ablation study on each 445

component, followed by a discussion on the appli- 446

cation scenarios for our two decoding strategies in 447

both sparse and dense recommendation contexts. 448

Finally, we examine how our design influences the 449

diversity and popularity of recommendation lists. 450

6

Recall@50 NDCG@500.0

0.1

0.2

0.3
BIGRec
L2D-G
L2D-L

(a) CDs Dense
Recall@50 NDCG@500.0

0.1

0.2

0.3
BIGRec
L2D-G
L2D-L

(b) Games Dense

Recall@50 NDCG@500.00
0.02
0.04
0.06
0.08 BIGRec

L2D-G
L2D-L

(c) CDs Sparse
Recall@50 NDCG@500.00

0.02
0.04
0.06
0.08 BIGRec

L2D-G
L2D-L

(d) Games Sparse

Figure 5: The performance of BIGRec, L2D-G, and
L2D-L on sparse and dense scenarios.

The impact of hyper-parameter M on L2D-L.451

We illustrate the impact of M in Figure 4, where452

only the results for Recall are reported. The re-453

sults for NDCG can be found in Appendix A.8.454

Specifically, on the CDs dataset, the Global Aggre-455

gation method in L2D-G outperforms the Local456

Aggregation method in L2D-L. In contrast, on the457

Games dataset, we observe that performance peaks458

as M increases, but further increasing M leads to459

a decline in performance. We attribute this phe-460

nomenon to the varying demands for focusing on461

the test sample’s feature aspects in different rec-462

ommendation scenarios. The Games dataset may463

require a stronger emphasis on detailed feature as-464

pects compared to the CDs dataset.465

The impact of aggregation on L2D-L. To gain a466

comprehensive understanding of how L2D-L op-467

erates, we conducted an experiment to validate the468

effectiveness of its aggregation mechanism. Specif-469

ically, we designed a variant called Onlytop, which470

retains only the highest-ranked hidden state for471

each item, as opposed to averaging all relevant hid-472

den states to form the item representation. The473

experimental results are summarized in Table 2.474

We observed that the performance of Onlytop is475

significantly worse than that of L2D-L. This may476

be due to the fact that each hidden state of an item477

in the local memory represents an aspect of the478

item’s characteristics that closely relate to the user’s479

personalized preferences. By retaining only the480

highest-ranked hidden state, some important item481

characteristics may be discarded.482

The impact of instruction tuning. During the483

instruction-tuning process, the hidden states of the484

LLM have captured the necessary historical user485

preferences. To highlight the importance of this486

tuning process, we designed a variant for compar-487

Table 2: The performance of various versions of our
proposed L2D method is evaluated in the ablation study.

CDs R@20 R@50 R@100 N@20 N@50 N@100

L2D-L 0.1158 0.1569 0.1996 0.0710 0.0792 0.0862
Only-top 0.1026 0.1346 0.1653 0.0570 0.0634 0.0683
No-tune 0.0688 0.1022 0.1321 0.0334 0.0400 0.0448

Games R@20 R@50 R@100 N@20 N@50 N@100

L2D-L 0.0879 0.1465 0.2072 0.0399 0.0511 0.0596
Only-top 0.0654 0.1117 0.1679 0.0307 0.0399 0.0489
No-tune 0.0559 0.1021 0.1501 0.0222 0.0312 0.0390

ison where L2D-L is applied to the original, non- 488

fine-tuned LLM, called No-tune. Our observations 489

show that No-tune performs significantly worse 490

than L2D-L. This is because the hidden states of 491

the original LLM are not aligned with recommen- 492

dation tasks and cannot effectively capture user 493

interests, making it challenging for L2D-L to ex- 494

tract useful information for recommendations. 495

4.3.1 Sparse and Dense Scenario (RQ3) 496

L2D-L has demonstrated stable performance com- 497

pared to L2D-G. However, since L2D-L was de- 498

signed to create a user-specific local memory using 499

the test sample’s hidden state, it might be unsuit- 500

able for scenarios where user-item interactions are 501

sparse. To analyze this, we divided the test set 502

into sparse and dense categories based on item fre- 503

quency in the training set. Figure 5 shows the 504

overall performance of the two strategies in these 505

scenarios. We observed the following: (1) Dense 506

scenarios: L2D-L achieves the best performance 507

due to the availability of numerous hidden states 508

for each item, allowing it to create a more person- 509

alized candidate item representation and eliminate 510

irrelevant information. (2) Sparse scenarios: the 511

interactions are limited, which means that even the 512

top similar hidden states may not accurately repre- 513

sent user preferences, potentially leading to biased 514

results and performance drops. In contrast, L2D- 515

G, which aggregates preferences globally, offers a 516

more balanced outcome. 517

In summary, both L2D-G and L2D-L have 518

strengths and weaknesses, but our decoding strat- 519

egy allows for flexible switching between the two 520

methods, making it adaptable to different scenarios. 521

4.3.2 Recommendation Quality (RQ4) 522

In the previous section, we noted that auto- 523

regressive decoding limits the ability to extract user 524

interests from instructions. To demonstrate L2D’s 525

ability to decode rich historical interests, we ana- 526

lyzed the diversity and popularity distribution of 527

7

BIGRec L2D-L L2D-G BIGRec L2D-L L2D-G

10

20

30

40

50

60
Item category

CDs
Games

(a)
CDs Games5

6

7

8

9

Entropy
BIGRec L2D-L L2D-G

(b)
Figure 6: The recommendation quality comparison be-
tween L2D and BIGRec.

recommended items. As shown in Figure 6a, L2D528

offers a significantly greater variety of item cate-529

gories compared to BIGRec, highlighting its ability530

to decode a wider range of user interests. Further-531

more, we calculated the entropy of the probability532

of each item being recommended. A higher entropy533

indicates that the model recommends items more534

uniformly, regardless of their popularity. Figure 6b535

illustrates that L2D’s recommendations are able536

to cover a wider range of items, showcasing its ca-537

pacity to personalize suggestions and recommend538

niche items to suitable users. Notably, L2D-L,539

which relies only on partial training samples of540

candidate items, still performs effectively in recom-541

mending niche items. We provide an explanation542

for this in Appendix A.5.543

5 Related Work544

• LLM-based recommendation. We discuss three545

paradigms of LLM-based recommenders (Wu et al.,546

2024b). (1) LLM-Embedding-Based Recom-547

menders use embeddings from LLMs in traditional548

systems to capture user preferences (Yuan et al.,549

2023; Xi et al., 2024a). While effective in lan-550

guage tasks, these embeddings require fine-tuning551

for optimal performance. (2) LLM-Based Dis-552

criminative Recommenders directly predict user-553

item interactions by optimizing the recommenda-554

tion task with the LLM’s loss function (Zhang et al.,555

2023b; Li et al., 2023b; Zhang et al., 2024b). Al-556

though it dispenses with intermediate embeddings,557

it requires evaluating each item individually, re-558

ducing efficiency compared to traditional models.559

(3) LLM-Based Generative Recommenders gen-560

erate natural language recommendations without561

predefined items, offering innovative potential (Bao562

et al., 2023a, 2024; Zheng et al., 2024). However,563

autoregressive decoding introduces significant in-564

ference overhead. Inspired by these paradigms,565

we propose a novel LLM-based recommender that566

balances performance and overhead, addressing ex-567

isting challenges to enhance quality and efficiency.568

Notably, some existing (large) language model 569

(LM)-based approaches (Sheng et al., 2024), such 570

as RecFormer (Li et al., 2023a), can be viewed as 571

representing candidate items in latent spaces and 572

then matching them with the user input sequence 573

encoded by the LM. However, they indeed modify 574

the output layer of the LMs, with the effectiveness 575

of their matching process tied to the training pro- 576

cess. As a result, they fail to achieve plug-and-play 577

integration into existing advanced LLM-based rec- 578

ommenders. In contrast, our method is decoupled 579

from the training process, making it plug-and-play. 580

Additionally, the processes for obtaining historical 581

sequence and candidate representations differ: our 582

representations are determined by the generative 583

state, whereas others are not. A detailed discussion 584

is provided in Appendix A.2. 585

• Inference Acceleration for LLM-based Rec- 586

ommendation. With the widespread application 587

of LLMs, an increasing number of studies have fo- 588

cused on accelerating LLM inference. In particular, 589

in the field of LLM-based recommender systems, 590

models need to recommend products to a large 591

number of users within a short time frame, which 592

highlights the necessity of considering methods to 593

accelerate LLM inference in this domain. Spec- 594

ulative Decoding (SD) (Leviathan et al., 2023), a 595

significant acceleration technique in the NLP field, 596

has been applied to recommender systems, such as 597

DARE (Xi et al., 2024b) and AtSpeed (Lin et al., 598

2024b). However, these methods still rely on ac- 599

celeration decoding within the language space. In 600

contrast, our method takes a step further by ex- 601

ploring how to implement efficient decoding for 602

recommendation in the latent space of LLMs, while 603

maintaining a simple and easy-to-implement over- 604

all framework that avoids complex designs. 605

6 Conclusion 606

In this study, we emphasized the importance of de- 607

veloping LLM-based recommenders to balance per- 608

formance and inference overhead. To address this 609

challenge, we proposed the L2D, which bypasses 610

time-consuming autoregressive decoding in the lan- 611

guage space and directly decodes items in LLM’s 612

latent space. The L2D significantly reduces infer- 613

ence costs while achieving excellent performance. 614

Our results highlighted the potential of latent space 615

decoding as a fundamental advancement in LLM- 616

based recommender systems, and extensive results 617

demonstrated the superiority of L2D. 618

8

Limitations619

This paper has the following limitations: 1) Al-620

though the L2D framework we introduced sig-621

nificantly reduces inference latency, the memory,622

which is pre-constructed, still incurs additional623

time overhead during its pre-construction process.624

This motivates us to explore more efficient mem-625

ory construction methods in future work. 2) Our626

approach struggles with handling new items, i.e.,627

cold-start items, as these items do not have samples628

in the memory to model their implicit representa-629

tions. In the future, we plan to address this issue by630

using the interpolation technique or incorporating631

auxiliary models. 3) We have not considered the632

problem of memory updating. As user interaction633

data gradually accumulates over time, how to ef-634

fectively use this new data to update the memory635

in L2D to achieve higher decoding performance636

presents a promising direction. We intend to ex-637

plore this issue in future research.638

Ethical Considerations639

In this paper, we present L2D, designed to balance640

the performance and inference overhead for gener-641

ative LLMRec. Our method decode item in latent642

space of LLM which doesn’t raise ethical concerns.643

Moreover, the data we use are publicly available644

and don’t include sensitive details. However, rec-645

ommendations involve user behavioral data, which646

might raise privacy concerns, which can be ad-647

dressed through introducing the mechanism of user648

consent. Additionally, using LLMs may have po-649

tential negative societal biases. We argue for a650

thorough risk assessment and alert users to the po-651

tential risks associated with model deployment.652

For the large language model use, we utilize653

ChatGPT to help polish the writing at the sentence654

level.655

References656

Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang,657
Zhengyi Yang, Yancheng Luo, Chong Chen, Fuli658
Feng, and Qi Tian. 2023a. A bi-step grounding659
paradigm for large language models in recommenda-660
tion systems. arXiv preprint arXiv:2308.08434.661

Keqin Bao, Jizhi Zhang, Yang Zhang, Xinyue Huo,662
Chong Chen, and Fuli Feng. 2024. Decoding mat-663
ters: Addressing amplification bias and homogeneity664
issue in recommendations for large language models.665
In Proceedings of the 2024 Conference on Empiri-666
cal Methods in Natural Language Processing, pages667
10540–10552.668

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, 669
Fuli Feng, and Xiangnan He. 2023b. Tallrec: An ef- 670
fective and efficient tuning framework to align large 671
language model with recommendation. In Proceed- 672
ings of the 17th ACM Conference on Recommender 673
Systems, pages 1007–1014. 674

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 675
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 676
Akhil Mathur, Alan Schelten, Amy Yang, Angela 677
Fan, et al. 2024. The llama 3 herd of models. arXiv 678
preprint arXiv:2407.21783. 679

Jianchao Ji, Zelong Li, Shuyuan Xu, Wenyue Hua, 680
Yingqiang Ge, Juntao Tan, and Yongfeng Zhang. 681
2024. Genrec: Large language model for genera- 682
tive recommendation. In European Conference on 683
Information Retrieval, pages 494–502. Springer. 684

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 685
2023. Fast inference from transformers via specula- 686
tive decoding. In ICML, volume 202 of Proceedings 687
of Machine Learning Research, pages 19274–19286. 688
PMLR. 689

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, 690
Jingbo Shang, and Julian J. McAuley. 2023a. Text is 691
all you need: Learning language representations for 692
sequential recommendation. In KDD, pages 1258– 693
1267. ACM. 694

Lei Li, Yongfeng Zhang, Dugang Liu, and Li Chen. 695
2024. Large language models for generative rec- 696
ommendation: A survey and visionary discussions. 697
In Proceedings of the 2024 Joint International Con- 698
ference on Computational Linguistics, Language 699
Resources and Evaluation (LREC-COLING 2024), 700
pages 10146–10159. 701

Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang, 702
and Chunxiao Xing. 2023b. E4srec: An elegant 703
effective efficient extensible solution of large lan- 704
guage models for sequential recommendation. CoRR, 705
abs/2312.02443. 706

Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, 707
Bo Chen, Xiangyang Li, Chenxu Zhu, Huifeng Guo, 708
Yong Yu, Ruiming Tang, and Weinan Zhang. 2023. 709
How can recommender systems benefit from large 710
language models: A survey. CoRR, abs/2306.05817. 711

Xinyu Lin, Chaoqun Yang, Wenjie Wang, Yongqi Li, 712
Cunxiao Du, Fuli Feng, See-Kiong Ng, and Tat- 713
Seng Chua. 2024a. Efficient inference for large 714
language model-based generative recommendation. 715
arXiv preprint arXiv:2410.05165. 716

Xinyu Lin, Chaoqun Yang, Wenjie Wang, Yongqi Li, 717
Cunxiao Du, Fuli Feng, See-Kiong Ng, and Tat-Seng 718
Chua. 2024b. Efficient inference for large language 719
model-based generative recommendation. CoRR, 720
abs/2410.05165. 721

Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang 722
Wang, and Tat-Seng Chua. 2024. Language models 723
encode collaborative signals in recommendation. 724

9

https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://aclanthology.org/2024.lrec-main.886
https://aclanthology.org/2024.lrec-main.886
https://aclanthology.org/2024.lrec-main.886

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,725
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,726
Hengshu Zhu, Qi Liu, et al. 2024a. A survey on large727
language models for recommendation. World Wide728
Web, 27(5):60.729

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,730
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,731
Hengshu Zhu, Qi Liu, et al. 2024b. A survey on large732
language models for recommendation. World Wide733
Web, 27(5):60.734

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai,735
Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang,736
Weinan Zhang, and Yong Yu. 2024a. Towards open-737
world recommendation with knowledge augmenta-738
tion from large language models. In RecSys, pages739
12–22. ACM.740

Yunjia Xi, Hangyu Wang, Bo Chen, Jianghao Lin,741
Menghui Zhu, Weiwen Liu, Ruiming Tang, Weinan742
Zhang, and Yong Yu. 2024b. A decoding accelera-743
tion framework for industrial deployable llm-based744
recommender systems. CoRR, abs/2408.05676.745

Yunjia Xi, Hangyu Wang, Bo Chen, Jianghao Lin,746
Menghui Zhu, Weiwen Liu, Ruiming Tang, Weinan747
Zhang, and Yong Yu. 2024c. A decoding accelera-748
tion framework for industrial deployable llm-based749
recommender systems. CoRR, abs/2408.05676.750

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,751
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-752
fang Sui. 2024. Unlocking efficiency in large lan-753
guage model inference: A comprehensive survey754
of speculative decoding. In Findings of the Asso-755
ciation for Computational Linguistics: ACL 2024,756
pages 7655–7671, Bangkok, Thailand. Association757
for Computational Linguistics.758

Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen759
Fu, Fei Yang, Yunzhu Pan, and Yongxin Ni. 2023.760
Where to go next for recommender systems? ID- vs.761
modality-based recommender models revisited. In762
SIGIR, pages 2639–2649. ACM.763

Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin764
Zhao, Leyu Lin, and Ji-Rong Wen. 2023a. Recom-765
mendation as instruction following: A large language766
model empowered recommendation approach. arXiv767
preprint arXiv:2305.07001.768

Peiyan Zhang, Yuchen Yan, Xi Zhang, Liying Kang,769
Chaozhuo Li, Feiran Huang, Senzhang Wang, and770
Sunghun Kim. 2024a. Gpt4rec: Graph prompt tun-771
ing for streaming recommendation. In SIGIR, pages772
1774–1784. ACM.773

Yang Zhang, Keqin Bao, Ming Yan, Wenjie Wang, Fuli774
Feng, and Xiangnan He. 2024b. Text-like encoding775
of collaborative information in large language models776
for recommendation. In ACL (1), pages 9181–9191.777
Association for Computational Linguistics.778

Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan779
Wang, and Xiangnan He. 2023b. Collm: Integrating780

collaborative embeddings into large language models 781
for recommendation. CoRR, abs/2310.19488. 782

Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xi- 783
aowei Mei, Yiqi Wang, Zhen Wen, Fei Wang, Xi- 784
angyu Zhao, Jiliang Tang, and Qing Li. 2024. Recom- 785
mender systems in the era of large language models 786
(llms). IEEE Trans. Knowl. Data Eng., 36(11):6889– 787
6907. 788

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, 789
Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen. 790
2024. Adapting large language models by integrat- 791
ing collaborative semantics for recommendation. In 792
2024 IEEE 40th International Conference on Data 793
Engineering (ICDE), pages 1435–1448. IEEE. 794

10

https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456

A Appendix795

A.1 Evaluation on Steam dataset.796

In order to strengthen the generalizability claims797

of the method, we evaluated proposed L2D on a798

widely-used non-Amazon dataset, Steam.799

The results, summarized in the table 3, show that800

our method achieves the best performance on top-801

50 and top-100 metrics and performs comparably to802

the best baselines on top-20 metrics. Additionally,803

our method maintains the lowest inference time804

cost.805

It is worth noting that the performance of L2D-806

G on Steam is nearly an order of magnitude worse807

than L2D-L. This phenomenon can be attributed to808

L2D-G being less effective in dense scenarios com-809

pared to L2D-L, while Steam is a denser dataset.810

This is supported by the results in Section 4.3.1,811

Sparse and Dense Scenario, where we analyzed the812

strengths and weaknesses of L2D-L and L2D-G813

across different sparsity levels. The experimental814

results indicate that L2D-G performs significantly815

better in sparse scenarios, whereas L2D-L excels816

in dense scenarios. Since Steam is denser than the817

Games and CDs datasets, this results in a substan-818

tial performance gap between L2D-G and L2D-L819

on the Steam dataset.820

A.2 Contribution Positioning821

Some existing (large) language model (LM)-based822

approaches (Sheng et al., 2024), such as Rec-823

Former (Li et al., 2023a), can be seen as represent-824

ing candidate items in latent spaces and matching825

them with the user input sequence encoded by the826

LM. This makes them somewhat similar to our ap-827

proach. However, there are inherent differences828

between these methods and ours. First, our method829

does not alter the generative training process (next-830

token prediction); it only modifies the decoding831

process without requiring additional tuning. In con-832

trast, in these existing approaches, the matching833

process is entangled with the training phase.834

Secondly, even when focusing solely on the835

matching process, there are differences in how the836

sequence representations and candidate item repre-837

sentations are constructed, as well as in the learning838

processes involved. Our approach introduces the839

following innovations:840

• History Representation: Our representation is841

derived from the hidden state embedding at the842

next-token prediction position, which serves as a843

"generative state" inherently encoding informa- 844

tion for generating subsequent tokens. In con- 845

trast, the existing methods do not leverage such 846

a generative state of LLMs. 847

• Item Representation: We construct item repre- 848

sentations by aggregating the "generative states" 849

of training samples where the item appears as 850

the target. This fundamentally differs from exist- 851

ing works, which require an item-based forward 852

encoding approach. 853

• Learning: Our history and item representations 854

exist in the same space and do not require ad- 855

ditional tuning. In contrast, existing methods 856

necessitate a separate training process to align 857

these representations for matching. 858

A.3 Space Complexity Analysis 859

Let D be the hidden state size, L the number of lay- 860

ers, Tq and Ta the average lengths of the user query 861

and generated item title, and N the number of 862

beams. Since beam search replicates the inference 863

process N times, the space complexity of language- 864

space decoding is O(NL(Tq+Ta)D), considering 865

only hidden state storage. For our method L2D, 866

space cost consists of two parts: LLM inference 867

and storage of training data hidden states. 868

• LLM inference: We only need the last hidden 869

state of the query, leading to O(LTqD). 870

• Training data storage: 871

– L2D-G: Stores final representations for all 872

items, with space complexity O(DNi), where 873

Ni is the number of items. 874

– L2D-L: Stores hidden states for all training 875

samples, requiring O(DNt), where Nt is the 876

total number of training samples. 877

Thus, the total space complexity is: 878

• L2D-G: O(LTqD) +O(DNi) 879

• L2D-L: O(LTqD) +O(DNt) 880

While our method incurs higher space costs com- 881

pared to the baseline, inference latency poses a 882

greater challenge in real-world recommendation 883

applications. Sacrificing some space for lower la- 884

tency is often acceptable. (Lin et al., 2024a; Xi 885

et al., 2024c; Zhao et al., 2024; Lin et al., 2023). 886

A.4 Clarification of L2D-L Efficiency 887

In this section, we aim to clarify the efficiency is- 888

sue of L2D-L. For L2D-L, the local aggregation 889

11

Table 3: The comparison of overall performance and inference time on the Steam dataset.

Model R@20 R@50 R@100 N@20 N@50 N@100 Inference time

AlphaRec 0.1273 0.1813 0.2262 0.0506 0.0614 0.0686 362 s
GPT4Rec (beam = 1) 0.0293 0.0328 0.0389 0.0211 0.0217 0.0227 463 s
GPT4Rec (beam = 5) 0.0506 0.0604 0.0678 0.0270 0.0290 0.0302 1130 s
GPT4Rec (beam = 10) 0.0713 0.0840 0.0934 0.0319 0.0344 0.0359 1951 s
BIGRec (beam = 1) 0.0626 0.0994 0.1376 0.0317 0.0391 0.0453 466 s
BIGRec (beam = 5) 0.0701 0.1182 0.1767 0.0326 0.0421 0.0516 1133 s
BIGRec (beam = 10) 0.0851 0.1292 0.1962 0.0357 0.0443 0.0552 1957 s
D3 (beam = 1) 0.0626 0.0994 0.1376 0.0317 0.0391 0.0453 457 s
D3 (beam = 5) 0.0864 0.1379 0.1993 0.0461 0.0562 0.0661 1037 s
D3 (beam = 10) 0.1139 0.1594 0.2221 0.0566 0.0655 0.0756 1593 s

L2D-G 0.0160 0.0390 0.0772 0.0059 0.0104 0.0165 26 s
L2D-L 0.1236 0.2237 0.3282 0.0494 0.0683 0.0839 39 s

process requires additional computation to deter-890

mine similarity scores between the test sample’s891

hidden state and all training samples in memory to892

identify the most relevant M samples. This raises893

concerns about whether the number of similarity894

score computations impacts the claimed computa-895

tional efficiency.896

In our proposed L2D-L, the number of simi-897

larity score computations would increase by |M |.898

However, the computation cost compared to the899

language-space decoding is very small. When in-900

creasing the value of M by 1000, the total inference901

cost for our method only increases by 2~3 seconds.902

Moreover, when setting M to a relatively smaller903

value, we can achieve better results than the base-904

lines. In our experiments, setting M to 4000 for the905

CDs dataset could lead to significant performance906

improvements compared to the baseline, while the907

inference cost is only about 1/10 of that compared908

to BIGRec. Additionally, we could further leverage909

techniques like the approximate Nearest Neighbors910

search method to speed up the similarity computa-911

tion process.912

A.5 Effectiveness of L2D-L on Niche Items913

The local aggregation mechanism in L2D-L re-914

lies on selecting the most similar Top-M training915

samples based on similarity scores. However, this916

raises the question: can L2D-L effectively recom-917

mend niche items with insufficient training sam-918

ples? In this section, we will clearly demonstrate919

the advantages of our proposed method regarding920

this issue.921

First of all, as shown in Figure 4.3.2, both L2D-922

G and L2D-L recommend a more diverse set of923

items across different categories and popularity lev- 924

els compared to the baselines. 925

Additionally, the top-M selection process natu- 926

rally increases attention to niche items as the selec- 927

tion is based on the test sample (query), retrieving 928

the top-M most similar training samples. If the test 929

sample is associated with less popular items, the 930

retrieved training samples are also more likely to 931

be related to less popular items. 932

A.6 Beam-search for Recommendation 933

For all generative-based methods, we use beam 934

search to generate multiple items and then match 935

them to real items. Specifically, we first ob- 936

tain the semantic representation of each generated 937

item and compute their matching scores based on 938

their semantic similarity with all candidate items. 939

This results in a ranking matrix with dimensions 940

beam_number × candidate_item_number, where 941

each row represents the ranking list of a beam- 942

generated item. Finally, we flatten the matrix col- 943

umn by column into a single vector and retain the 944

top K unique items as the recommendation results. 945

A.7 Dataset Statistics 946

In this subsection, we supplement the statistical 947

information of the datasets used in our experiments. 948

The paper mainly presents the results of the CDs 949

and Games datasets, while the experimental re- 950

sults of the Steam dataset can be found in the Ap- 951

pendix A.1. 952

A.8 Impact of M on NDCG for L2D-L 953

In this subsection, we demonstrate the impact of 954

parameter M on the NDCG metric in the L2D-L 955

12

Table 4: The statistics of datasets.

Dataset #User #Item #Train #Valid #Test

CDs 21,347 14,239 148,685 18,586 18,587
Games 34,089 11,037 201,613 25,202 25,203
Steam 54,206 8,268 177,046 22,130 22,130

100 200 500 1000 2000 3000 4000L2D-G
M (top-M)

0.065

0.070

0.075

0.080

0.085
N@20 N@50 N@100

(a) CDs NDCG

100 200 500 1000 2000 3000 4000L2D-G
M (top-M)

0.03

0.04

0.05

0.06
N@20 N@50 N@100

(b) Games NDCG

Figure 7: The impact of M on NDCG metric in the
L2D-L. M is a hyperparameter that determines the
number of hidden states in local aggregation. Note that
L2D-L equals L2D-G when M reaches its maximum
length.

method. As shown in Figure 7, the phenomenon956

observed in the NDCG metric is consistent with the957

Recall metric in the paper, further strengthening958

our argument.959

13

	Introduction
	LLM-based Generative Recommender
	Latent-Space Decoding
	Overview
	Memory Construction
	Candidate Item Representation Generation
	Item Decoding

	Experiments
	Experimental Settings
	Main Results (RQ1)
	Ablation study (RQ2)

	Analysis
	Sparse and Dense Scenario (RQ3)
	Recommendation Quality (RQ4)

	Related Work
	Conclusion
	Appendix
	Evaluation on Steam dataset.
	Contribution Positioning
	Space Complexity Analysis
	Clarification of L2D-L Efficiency
	Effectiveness of L2D-L on Niche Items
	Beam-search for Recommendation
	Dataset Statistics
	Impact of M on NDCG for L2D-L

