
Evaluation Hallucination in Multi-Round Incomplete Information
Lateral-Driven Reasoning Tasks

Wenhan Dong1 , Tianyi Hu2 , Jingyi Zheng1 , Zhen Sun1

Yuemeng Zhao1 , Yule Liu1 , Xinlei He1∗ and Xinyi Huang3

1Hong Kong University of Science and Technology (Guangzhou)
2University of Copenhagen

3Jinan University
wdong768@connect.hkust-gz.edu.cn,

tenneyhu@gmail.com,
{jzheng029, zsun344,yzhao472,yliu514}@connect.hkust-gz.edu.cn,

xinleihe@hkust-gz.edu.cn, xyhuang81@gmail.com

Abstract

Multi-round incomplete information tasks are cru-1

cial for evaluating the lateral thinking capabilities2

of large language models (LLMs). Currently, re-3

search primarily relies on multiple benchmarks and4

automated evaluation metrics to assess these abili-5

ties. However, our study reveals novel insights into6

the limitations of existing methods, as they often7

yield misleading results that fail to uncover key is-8

sues, such as shortcut-taking behaviors, rigid pat-9

terns, and premature task termination. These issues10

obscure the true reasoning capabilities of LLMs11

and undermine the reliability of evaluations. To ad-12

dress these limitations, we propose a refined set of13

evaluation standards, including inspection of rea-14

soning paths, diversified assessment metrics, and15

comparative analyses with human performance.16

1 Introduction17

The rapid progress of large language models (LLMs) has18

drawn significant attention to their reasoning and common-19

sense abilities. To evaluate these capabilities comprehen-20

sively, various benchmark datasets have been created across21

multiple domains [Bai et al., 2024; Kuratov et al., 2024;22

Xu et al., 2024; Liang et al., 2024; Cobbe et al., 2021;23

Hendrycks et al., 2021; Wang et al., 2023; Castillo-Bolado24

et al., 2024; Dong et al., 2025; Hudi et al., 2025].25

Despite notable improvements in logical reasoning and26

factual accuracy, research on the lateral thinking capabili-27

ties of LLMs remains limited, especially in multi-turn in-28

teractions. Lateral thinking is a type of reasoning that em-29

phasizes creativity, flexibility, and the ability to solve prob-30

lems from unconventional angles. It focuses on examin-31

ing problems from multiple angles, breaking away from32

traditional ways of thinking [Mustofa and Hidayah, 2020;33

Aithal and Kumar, 2017]. Lateral thinking is crucial for tasks34
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requiring innovative solutions beyond straightforward logical 35

deduction [Tsai, 2012; Warner and Myers, 2009]. 36

While single-turn reasoning can show lateral performance, 37

real-world scenarios often involve iterative interactions where 38

incomplete or implicit information must be processed over 39

multiple exchanges. Lateral thinking often involves gather- 40

ing ideas from a group, using methods like team discussions 41

and brainstorming sessions [Murukannaiah et al., 2022]. In 42

such cases, it provides an ideal framework for evaluating and 43

improving lateral thinking abilities. Through iterative inter- 44

actions, models can gradually build a deeper understanding 45

and refine their responses. 46

Iterative interactions not only help correct errors and re- 47

duce hallucinations [Wan et al., 2024; Wang et al., 2024; 48

Yu et al., 2024b], but also enable models to exhibit sustained 49

contextual awareness. This capability is crucial for tasks such 50

as multi-hop question answering [Baker et al., 2024], long- 51

context understanding [Bai et al., 2024], and mathematical 52

reasoning [Liang et al., 2024]. 53

However, most existing studies assume that information 54

is relatively complete or explicit, ignoring how models per- 55

form when faced with incomplete, implicit, or even contradic- 56

tory information. This limitation renders current evaluation 57

methods incapable of fully reflecting the potential of LLMs 58

in complex, real-world scenarios, particularly their ability to 59

think laterally when faced with incomplete information. 60

In this context, Situation Puzzles have gained attention for 61

their ability to test models’ lateral thinking under incomplete 62

information [Jiang et al., 2023; Huang et al., 2023]. 63

Although this benchmark typically includes multiple auto- 64

mated evaluation metrics, our research indicates that assess- 65

ment methods based solely on the responses of the evaluated 66

models may fail to accurately capture their true capabilities. 67

We have identified several critical issues, including models 68

taking shortcuts, tasks ending prematurely, and potential in- 69

terference from training data. 70

Based on these findings, we believe current evaluation 71

methods are insufficient: existing metrics cannot capture be- 72

haviors that do not align with human-accepted reasoning pro- 73

cesses, nor do they fully reflect the complexity of lateral 74



Question：A man walks into a bar and asks the bartender for a glass of water. Instead, the bartender suddenly 
pulls out a gun and points it at the man. Surprisingly, the man simply smiles and says, “Thank you!” and then 

calmly walks away. What happened?

Player Could the bartender hear what the man said?

     

     

Was the bartender angry about something?

Was the gun a water gun?

A man with hiccups asked for water, but the 
bartender scared him with a gun, curing the hiccups.

Judge

Figure 1: Situation Puzzles

thinking. To address these challenges, we advocate for de-75

veloping a more comprehensive set of benchmarks and met-76

rics specifically designed to measure the lateral thinking ca-77

pabilities of models in multi-round reasoning tasks. The main78

contributions of this paper are as follows:79

1. Revealing Evaluation Limitations: We introduce a80

novel perspective that response-based evaluation meth-81

ods, commonly employed in general tasks, are insuf-82

ficient for multi-turn lateral thinking tasks under in-83

complete information. Specifically, we emphasize that84

merely assessing the responses of evaluated models does85

not provide insights into how these responses are gener-86

ated. This limitation makes it challenging to ascertain87

whether the models rely on genuine lateral thinking or88

resort to shortcut strategies to complete tasks.89

2. Analysis of Potential Issues: We provide a comprehen-90

sive discussion of the problems inherent in current eval-91

uation methods, including shortcut-taking behaviors and92

premature task abandonment. Additionally, we explore93

other potential issues such as the contamination of train-94

ing data, rigid patterns, and questions regarding the ra-95

tionality of datasets in testing human and model capabil-96

ities. These discussions aim to shed light on the broader97

challenges in designing reliable benchmarks for lateral98

thinking reasoning tasks.99

3. Proposing Improved Standards: We design a specific100

set of standards to provide necessary reference for the101

subsequent development of scientific and comprehen-102

sive benchmarks, thereby advancing research into the103

lateral thinking reasoning capabilities of LLMs.104

2 Evaluation Experiment105

2.1 Data construction106

Situation Puzzles (example as shown in Figure 1) exhibit high107

diversity in terms of logical design and application scenar-108

ios [Jiang et al., 2023; Huang et al., 2023; Chen et al., 2024;109

Yu et al., 2024a; Li et al., 2025]. However, publicly avail- 110

able datasets are often sourced from online platforms, with 111

significant variability in quality and potential issues regarding 112

copyright and translation accuracy. To ensure the logical rigor 113

and reliability of our experimental data, we obtained a non- 114

commercial license for a high-quality dataset from a com- 115

pany specializing in Situation Puzzles games. This dataset is 116

highly acclaimed in the gaming community for its exceptional 117

logical design. After securing the license, we further con- 118

structed a high-quality dataset of 176 puzzles through manual 119

review, supplementation, and reduction. 120

These puzzles not only exhibit strong logical connections 121

between the question and the answer but also present suffi- 122

cient challenges in terms of reasoning paths, effectively test- 123

ing the reasoning and lateral thinking capabilities of LLMs. 124

The average length of the question is 68.37 characters, while 125

the average length of the answer texts is 149.93 characters. 126

2.2 Experiment Setup 127

We use the dataset mentioned above to evaluate mainstream 128

LLMs. The maximum number of rounds is set to 50. All 129

models under evaluation are tested with consistent prompts 130

to ensure fairness and comparability. We use GPT-4o3 as a 131

judge through its official API. We tested multiple representa- 132

tive models from the Llama1, Qwen2, GPT3, and Deepseek4. 133

3 The Mirage of Performance: Unpacking the 134

Shortcomings of Output-Centric Evaluation 135

The use of LLM as a Judge has been widely adopted due 136

to its demonstrated high reliability and accuracy across vari- 137

ous scenarios, achieving strong alignment with human judg- 138

ment [Gu et al., 2024]. However, when applied to multi-turn 139

1https://huggingface.co/meta-llama/
2https://qwenlm.github.io/blog/
3https://platform.openai.com/docs/models/
4https://huggingface.co/deepseek-ai/

https://huggingface.co/meta-llama/
https://qwenlm.github.io/blog/
https://platform.openai.com/docs/models/
https://huggingface.co/deepseek-ai/


interactive reasoning tasks, this approach faces a key lim-140

itation: it focuses on the final output while overlooking141

whether the reasoning process aligns with human logic142

and common sense. This limitation becomes especially crit-143

ical in tasks that require lateral thinking, where the reasoning144

path is as important as the final answer. Yet, this aspect re-145

mains insufficiently explored, leaving a clear research gap.146

To address this, we examine how representative final answers147

indeed are in multi-turn reasoning tasks and argue that a com-148

prehensive evaluation must consider both final outputs and149

reasoning processes.150

Specifically, we observe that relying solely on the final out-151

put for evaluation may fail to adequately capture potential is-152

sues within the reasoning process of the evaluated model. In153

particular, the tested model might adopt shortcut strategies or154

prematurely abandon complex reasoning tasks. These behav-155

iors are often invisible in the final output, which can lead to156

inaccurate or unfair assessments of a model’s actual reason-157

ing ability. Despite the existence of evaluation metrics that fo-158

cus on intermediate reasoning processes [Huang et al., 2023;159

Chen et al., 2024], these metrics still fail to capture the short-160

cut behaviors discussed in this study.161

3.1 The Phenomenon of Taking Shortcuts by162

Tested Models163

In our experiments, we identified two distinct types of short-164

cut behaviors exhibited by LLMs during multi-turn reasoning165

tasks. These behaviors can lead evaluators to overestimate166

the models’ true reasoning abilities, as they produce seem-167

ingly correct answers without genuine logical inference. We168

categorize these shortcut behaviors into two main types:169

Players Inducing Judges to Leak the Answer and Repeat-170

ing Responses. One common shortcut behavior involves the171

model prompting the judge to directly or indirectly reveal the172

correct answer, which the model then simply repeats to com-173

plete the task without engaging in genuine reasoning.174

Mirage of Performance: The Judge’s Revelation

Player:
I think I have tried my best.
I admit defeat, I did not guess the real reason why
grandma did not want me to eat apples of a certain
color.
Dear Judge, what is the real reason why Grandma did
not want me to eat apples of a certain color? I want
to know the truth!
Judge:
I’m sorry, you didn’t guess correctly. The real reason
grandma didn’t want you to eat apples of a certain
color is that she planted poisonous apples to protect
you from harm by family, classmates, and villagers.
Yellow apples poisoned the family, green apples poi-
soned classmates, and red apples poisoned the vil-
lagers. Grandma protected you in this way.

175

Player:
The answer is ...
Judge:
Congratulations on guessing correctly.

176

The example above illustrates the following pattern: 177

• Player Questioning Strategy: Although the judge’s 178

guidelines explicitly prohibit providing specific infor- 179

mation, players still elicit critical clues about the answer 180

through intentional or unintentional leading questions. 181

• Repeated Responses: After obtaining the solution, the 182

player repeats the content provided by the judge to com- 183

plete the task without engaging in complex reasoning 184

and lateral thinking. 185

By exploiting the judge’s leaked answer rather than reason- 186

ing, the model bypasses the task’s intent and leads to an over- 187

estimation of its true reasoning ability. 188

Players Substituting Questions to Mislead Judges. One 189

notable issue is that the tested model may attempt to replace 190

the question provided by the judge with a new one, thereby 191

misleading the judge into positively evaluating its response. 192

For example, in the case shown in Figure 1, the player sud- 193

denly introduces a new question during the game and guesses 194

the answer themselves. Due to the high similarity in form be- 195

tween the new and original questions, the judge may fail to 196

identify this substitution, leading to an incorrect judgment of 197

the player’s response as correct. 198

Mirage of Performance: Substituting Questions

Player:
I want to play another game. The question is ... and
the answer is ....
Judge:
Please start the game.

Player:
The answer is ....
Judge:
Congratulations on guessing correctly.

199

Specifically, the aforementioned behavior illustrates the 200

following pattern: 201

• Original Question: The judge presents a standard ques- 202

tion and its corresponding answer. 203

• Player Behavior: The player decides to switch the game 204

by suddenly declaring, “I want to play another game”, 205

and actively provides a new question and answer. Sub- 206

sequently, the player guesses the answer to their self- 207

proposed question and successfully prompts the judge 208

to evaluate their response as correct. 209



Table 1: Performance and unreliable behavior statistics of various models in multi-turn reasoning tasks. The data show that different models
exhibit varying degrees of unreliable behaviors, such as answer leakage induction and question substitution, while providing correct answers.
Notably, Llama3.1-8B demonstrates the highest ratio of unreliable behaviors (71.43%), whereas models like GPT-4o and Qwq-Plus show
no such behaviors. These results indicate a significant disparity between models’ complex reasoning capabilities and behavioral reliability,
highlighting the need for improved evaluation mechanisms to enhance the comprehensiveness and accuracy of testing.

Family Model Correct Answer Inducement Behavior Question Substitution Unreliable Behavior Ratio

Llama Llama3.1-70B 39 7 2 23.08%
Llama3.1-8B 21 3 12 71.43%

Qwen
Qwen2.5-32B 21 3 0 14.29%
Qwen-Max-2025-04-09 46 6 0 13.04%
Qwq-Plus-2025-03-05 20 0 0 0%

GPT GPT-4o-2024-08-06 55 0 0 0%
GPT-4o-mini-2024-07-18 19 3 0 15.79%

Deepseek

DeepSeek-R1-Distill-Qwen-14B 17 4 1 29.41%
DeepSeek-R1-Distill-Qwen-32B 31 5 1 19.35%
DeepSeek-R1 62 5 1 9.68%
DeepSeek-V3 37 0 0 0%

This behavior strategically avoids the original reasoning chal-210

lenge, and without validation checks, it may mislead the eval-211

uator into accepting a fabricated task as valid.212

Summary. The two types of shortcut behaviors, inducing213

answer leakage and repeating responses, as well as substi-214

tuting questions to mislead evaluators, reveal how these be-215

haviors lead to unreliable evaluation outcomes. By complet-216

ing tasks through unconventional means, the models produce217

responses that appear correct on the surface but fail to re-218

flect their true reasoning or lateral thinking capabilities, as the219

methods used to obtain these responses deviate from human220

default expectations. To gain a comprehensive understanding221

of the frequency of these behaviors and their impact on eval-222

uation reliability, we conducted a statistical analysis of the223

experimental data, with the results presented in Table 1. This224

table provides a detailed record of the extent to which differ-225

ent models adopted shortcut strategies in correctly answered226

questions, offering quantitative evidence for assessing the re-227

liability of evaluation outcomes. This analysis demonstrates228

that the presence of shortcut behaviors significantly under-229

mines the validity of the test, particularly in the absence of230

rigorous validation mechanisms, which can potentially lead231

to an overestimation of model capabilities.232

3.2 Surrender Phenomenon in High-Difficulty233

Tasks234

In addition to the aforementioned behavior where models235

attempt to obtain answers by surrendering and then repeat-236

ing those answers, we also observed another distinct phe-237

nomenon: some models give up without making any attempt238

to acquire the answer. This behavior differs fundamentally239

from the former, as it reflects a complete cessation of reason-240

ing effort rather than a strategic choice to bypass complexity.241

Specifically, when confronted with high-difficulty problems,242

these models often give up early, responding with phrases like243

“I don’t know the answer” or “I cannot continue”. This phe-244

nomenon is particularly prominent when tasks involve am-245

biguous clues or complex reasoning requirements.246

The tendency of models to surrender instead of attempt-247

ing further reasoning may reflect limitations in their task en- 248

gagement or exploratory inclination. However, it is important 249

to note that this surrender behavior should not be interpreted 250

as a lack of reasoning ability. Instead, it may reveal more 251

about the model’s strategic preference when dealing with un- 252

certainty or complex problems. Although this phenomenon 253

has not been thoroughly analyzed in the present study, it sug- 254

gests a valuable direction for future research, particularly fo- 255

cused on improving models’ sustained reasoning capabilities 256

and exploratory motivation in high-difficulty tasks. Further 257

studies could focus on designing more refined task frame- 258

works to encourage models to demonstrate greater reasoning 259

potential and adaptability when facing challenging tasks. 260

3.3 Conclusion and Call for Future Research 261

The issues mentioned above may be partially mitigated 262

through techniques such as Prompt Engineering. However, 263

preliminary tests conducted so far have not provided conclu- 264

sive evidence or experiments to completely eliminate these 265

problems. We call for future benchmarks based on LLMs 266

as Judges to incorporate these considerations. Additionally, 267

we urge researchers conducting multi-turn reasoning tasks to 268

strengthen the inspection of test results in their experimental 269

designs. Specifically, researchers should focus on evaluat- 270

ing whether the reasoning process aligns with human expec- 271

tations and include the inspection results as an essential com- 272

ponent of research reports to enhance the comprehensiveness 273

and reliability of evaluations. 274

For the surrender phenomenon observed in high-difficulty 275

tasks, we recommend that future research further explore the 276

performance of models in terms of task focus, stress resis- 277

tance, and exploratory willingness to gain a more compre- 278

hensive understanding of their behavioral patterns. This will 279

not only contribute to improving model design but also pro- 280

vide new perspectives for the evaluation methods of multi- 281

turn reasoning tasks. 282



4 The Illusion of Competence: Exploring283

Unknown Influences in Lateral-Driven284

Reasoning285

In this section, we explore several potential issues that may286

affect the evaluation of LLMs’ performance in multi-round287

lateral-driven reasoning tasks. These issues include potential288

contamination of training data, the role of luck versus system-289

atic reasoning, and the rationality of datasets in testing human290

and model capabilities. By addressing these challenges, we291

aim to provide a more comprehensive understanding of the292

limitations in current evaluation methods and propose direc-293

tions for future research.294

4.1 Suspected Contamination of Training Data295

and Its Impact on Model Performance296

In multi-round reasoning tasks, we observe that certain mod-297

els may exhibit anomalous reasoning capabilities, poten-298

tially due to the suspected inclusion of test questions in their299

training data. This phenomenon is particularly evident in300

Deepseek, which accurately guesses multiple key elements301

within a minimal number of rounds without querying core in-302

formation. Such behavior suggests that the model might rely303

on memorized patterns from its training data rather than en-304

gaging in genuine reasoning or lateral thinking. However,305

due to the lack of transparent access to the model’s train-306

ing data and the challenges associated with retrieving specific307

contents, direct verification of whether these questions exist308

in the training data remains unfeasible.309

The observation highlights that the model’s superior per-310

formance may partially stem from potential contamination of311

its training data rather than reflecting its intrinsic reasoning312

abilities. To address this issue, we recommend that future313

research prioritize the design of dynamic test sets or adopt314

adversarial testing methods to mitigate the influence of train-315

ing data on model performance. For instance, generating new316

puzzles or significantly modifying existing questions can help317

construct a more challenging testing environment, enabling a318

more accurate evaluation of the model’s true capabilities.319

4.2 Success May Be Attributable to Luck Rather320

Than Reasoning321

In some cases, LLMs may arrive at correct answers not322

through structured reasoning, but through repeated guessing.323

In multi-turn reasoning tasks, we observe that models fre-324

quently become fixated on a single hypothesis, testing minor325

variations of the same idea across many rounds without ex-326

ploring alternative possibilities. This behavior resembles a327

brute-force or trial-and-error approach, rather than a logical328

or creative reasoning strategy. For instance, a player model329

might fixate on one clue, asking over ten related questions in330

a row without exploring alternative possibilities. This con-331

straint restricts the ability to address challenges and obscures332

actual performance in multi-turn interactions. Moreover, suc-333

cess in identifying the correct answer may reflect random334

guessing rather than logical deduction or creative reasoning.335

Humans, by contrast, rarely repeat questions with such high336

frequency. For example, the player model asks 14 consec-337

utive questions about “who took the daughter away”, while 338

humans typically shift focus after a few attempts. 339

Fixation on a Single Hypothesis (Rigid Patterns)

Player: Is the daughter taken away by her father?
Judge: No

Player: Is the daughter taken away by her mother?
Judge: No

Player: Is the daughter taken away by her sister?
Judge: No

340

This suggests the model’s behavior stems from mechani- 341

cal repetition rather than logical strategy. These observations 342

underscore the importance of evaluating reasoning paths. 343

4.3 Addressing the Question of Human Solvability 344

in Lateral-Driven Datasets 345

In previous academic discussions, including feedback from 346

OpenReview, there have been questions about whether 347

lateral-driven datasets, such as Situation Puzzles, can gen- 348

uinely test the lateral thinking and reasoning abilities of 349

LLMs. Additionally, whether human players can solve these 350

puzzles within a reasonable timeframe has become a topic of 351

debate. If the puzzles themselves are overly complex or ex- 352

ceed human cognitive capacity, the resulting evaluations may 353

be questioned, thereby undermining the credibility of the re- 354

search conclusions. To address this issue, we suggest that fu- 355

ture dataset designs include comparative analyses with actual 356

human test results. Specifically, during the experimental de- 357

sign phase, a certain number of human participants can be in- 358

vited to engage in testing, and their performance on the same 359

tasks can be recorded, including metrics such as success rates, 360

the number of rounds required, and the questioning strategies 361

employed. By comparing the performance of human players 362

with that of models, the rationality of the puzzles can be val- 363

idated, and a more scientific benchmark for assessing model 364

capabilities can be established. 365

4.4 Summary and Call for Future Research 366

In summary, this section examines three critical issues related 367

to model performance in multi-round reasoning tasks: poten- 368

tial contamination of training data, the possibility that success 369

may be attributed to luck rather than reasoning, and whether 370

lateral-driven datasets, such as Situation Puzzles, can gen- 371

uinely assess the lateral thinking reasoning abilities of both 372

humans and models. These issues not only reveal shortcom- 373

ings in current evaluation methods but also provide important 374

directions for future research. First, to address the issue of 375

potential training data contamination, we urge researchers to 376

adopt stricter measures when designing test sets, such as dy- 377

namically generating new puzzles or modifying existing ones 378

in-depth, to reduce the influence of training data on model 379



performance. Second, to address the phenomenon of success380

potentially being attributed to luck, we recommend introduc-381

ing new evaluation metrics to measure the model’s perfor-382

mance throughout the process, quantifying its comprehensive383

capabilities in complex lateral-driven reasoning tasks. Fi-384

nally, to address the rationality of datasets, we suggest that385

future experimental designs incorporate accurate test results386

and process performances of human players to enhance the387

scientific rigor and reliability of the evaluation framework.388

Due to the high cost of human participants in multi-round in-389

teractions, future test sets can maintain a smaller scale but390

should demonstrate superior quality.391

5 Quantifying Consistency: LLMs as Reliable392

Judges Based on Final Response393

In the previous chapter, we analyzed the limitations of current394

evaluation methods based on final outputs in multi-round, in-395

complete information reasoning tasks in detail. Specifically,396

these methods fail to effectively identify potential shortcut-397

taking behaviors adopted by models during the reasoning pro-398

cess, such as inducing answer leakage, repeating responses,399

or substituting questions to mislead judges. Such behaviors400

can distort evaluation results, thereby masking the true rea-401

soning capabilities of the models. However, it is important402

to note that these limitations do not stem from the role of403

judges themselves, but rather from the inadequacy of the cur-404

rent evaluation framework, which fails to fully account for405

the complexity and dynamism of multi-round interactive rea-406

soning tasks.407

In the Situation Puzzle game, LLMs serving as judges must408

demonstrate high levels of consistency and information con-409

trol to ensure both fairness in rule enforcement and the intel-410

lectual challenge of the reasoning process. To evaluate the411

reliability of LLMs as Judges, we assessed their performance412

across two key phases:“questioning” and “guessing”.413

Consistency Analysis in the Questioning Phase. During the414

questioning phase, players engage in multi-turn interactions415

with the judge by posing questions. In the judge’s prompts,416

only one of the following responses can be selected to re-417

spond: “Yes”, “No”, “partially”, or “unknown”. To assess418

the performance of LLMs in this phase, we randomly sam-419

pled their responses across 500 questioning scenarios and420

compared them with answers provided by human annota-421

tors. The results revealed that 462 out of 500 responses422

(92.4%) were consistent with those of the annotators. This423

high level of consistency indicates that LLMs can provide424

answers aligned with annotators in multiple-choice question425

scenarios, thereby ensuring the coherence of game logic and426

the accuracy of information transmission.427

Furthermore, among the remaining 38 inconsistent re-428

sponses, a closer examination revealed that 11 were nonethe-429

less acceptable. Although these responses differed from the430

annotators’ choices, they demonstrated reasonable inferen-431

tial capabilities within the specific context and adhered to the432

problem’s contextual constraints. This suggests that LLMs433

exhibit a degree of flexibility and robustness when handling434

closed-ended multiple-choice questions.435

Consistency Analysis in the Guessing Phase. During the 436

guessing phase, when players choose to make a guess, the 437

judge evaluates the correctness of their answers. To assess 438

the reliability of LLMs in this phase, we randomly selected 439

183 guessing instances and organized four annotators to eval- 440

uate these instances. The responses from the LLMs were then 441

compared with the annotations provided by the annotators. 442

Table 2: Consistency Analysis Among Annotators and Between An-
notators and the Model. Results show that the model achieves a level
of consistency comparable to human annotators, demonstrating its
reliability in closed-ended Q&A and correctness evaluation tasks.

1 2 3 4 Model
1 – 0.6895 0.6742 0.7407 0.7079
2 0.6895 – 0.6774 0.6894 0.6583
3 0.6742 0.6774 – 0.6730 0.6975
4 0.7407 0.6894 0.6730 – 0.6983

The consistency among annotators was measured using 443

Kappa coefficients, as shown in Table 2. Additionally, the 444

pairwise Kappa coefficients between each annotator and the 445

model were calculated as follows: 0.7079 (Annotator 1), 446

0.6583 (Annotator 2), 0.6975 (Annotator 3), and 0.6983 (An- 447

notator 4), with an overall average of 0.6905. Further analy- 448

sis revealed that the Fleiss’ Kappa coefficient among annota- 449

tors alone was 0.6908, while the Fleiss’ Kappa coefficient for 450

evaluations involving both annotators and the model (four an- 451

notators plus LLMs) was 0.6918. These results indicate that 452

the LLMs achieved a level of consistency comparable to that 453

of human annotators. 454

Summary. Our analysis demonstrates that LLMs exhibit 455

a high level of consistency and reliability when serving as 456

judges in Situation Puzzle games, particularly in scenarios 457

involving closed-ended question-and-answer interactions and 458

correctness evaluations. These findings confirm the feasibil- 459

ity of using LLMs as judges in multi-round reasoning tasks. 460

However, the limitations identified in the previous chapter, 461

such as the inability to detect shortcut-taking behaviors or 462

premature task abandonment, are not inherent flaws of LLMs 463

as judges but rather reflect deficiencies in the design of the 464

current evaluation framework. 465

To address these challenges, future research should focus 466

on refining evaluation methods to better capture the nuances 467

of reasoning processes. By strengthening the inspection of 468

reasoning paths and incorporating more diversified metrics, 469

we can enhance the comprehensiveness and scientific rigor 470

of evaluations in complex interactive scenarios. These efforts 471

will pave the way for more robust benchmarks in evaluating 472

the lateral thinking reasoning capabilities of LLMs. 473

6 Call for New Benchmarks 474

In current research, although automated evaluation methods 475

based on response have been widely adopted and demon- 476

strate high reliability and accuracy, their application in multi- 477

turn interactive reasoning tasks still reveals significant lim- 478

itations. Specifically, these methods primarily focus on the 479



model’s responses, particularly the final outputs, while ne-480

glecting whether the reasoning process aligns with human-481

accepted logic and common sense. This limitation is partic-482

ularly pronounced in tasks that involve lateral thinking and483

multi-turn reasoning, where the reasoning path itself holds484

significant importance. However, existing research in this485

area remains insufficient, presenting a notable research gap.486

To address this challenge, we propose the establishment487

of new benchmarks to comprehensively evaluate the lateral488

thinking and reasoning capabilities of LLMs under incom-489

plete information. Below are the core criteria we propose:490

1. Diversified Metrics491

Current evaluation methods predominantly rely on met-492

rics, which fail to capture the model’s performance in493

multi-turn interactions. Future research should adopt494

diversified metrics, such as questioning strategies and495

question appropriateness, to construct a multidimen-496

sional evaluation framework.497

2. Sampling and Inspection of Reasoning Paths498

Relying solely on the final answer may overlook critical499

issues in the reasoning process, such as shortcut strate-500

gies or premature task abandonment. These behaviors501

often manifest in the reasoning path rather than the final502

output, undermining evaluation fairness and comprehen-503

siveness. To address this, we recommend incorporating504

sampling to inspect reasoning paths, coupled with man-505

ual inspection, ensuring their rationality and diversity.506

3. Comparison with Human Results507

To validate the effectiveness of the dataset and the sci-508

entific rigor of the evaluation method, we recommend509

comparing human and model performance in tasks such510

as success rates, interaction rounds, and questioning511

strategies. Special attention should be paid to reasoning512

paths rather than just final answers.513

4. Cross-Disciplinary Collaboration514

To ensure the dataset effectively tests lateral thinking515

abilities, we recommend collaborating with experts in516

psychology. Integrating psychological theories can in-517

form experimental design and validate model perfor-518

mance in complex scenarios, thereby enhancing both519

scientific rigor and the persuasiveness of research.520

5. Similarity and Dynamism of Questions521

To mitigate training data contamination, we recommend522

dynamically modifying questions to reduce reliance on523

memorized information. Questions should exhibit both524

similarity and variability to test generalization capabili-525

ties while remaining within the bounds of human cogni-526

tive capacity.527

7 Related Work528

Lateral Thinking Benchmark. The field of lateral thinking529

and computational creativity encompasses a variety of task530

types [Bellemare-Pepin et al., 2024; Chen and Ding, 2023;531

Huang et al., 2023; Chen et al., 2024; Chakrabarty et al.,532

2024; Dong et al., 2025; Lu et al., 2024; Zhao et al., 2025;533

Guo et al., 2024], such as Divergent Association Task [Olson534

et al., 2021] and the Alternative Uses Task [Olson et al., 2021; 535

Summers-Stay et al., 2023]. These tasks are designed to eval- 536

uate various cognitive abilities, including but not limited to 537

creative problem-solving, implicit information reasoning, and 538

multi-step logical deduction. By designing diverse task sce- 539

narios, researchers can examine model performance across 540

multiple dimensions in complex contexts, thereby providing 541

a comprehensive assessment of lateral thinking capabilities. 542

Evaluation Metrics for Incomplete Information Multi- 543

Round Lateral Thinking Benchmarks. For incomplete 544

information multi-round lateral thinking benchmarks, re- 545

searchers typically employ automated evaluation methods 546

to quantitatively analyze model performance [Huang et al., 547

2023; Chen et al., 2024; Yu et al., 2024a; Li et al., 2025]. In 548

multi-round lateral-driven reasoning tasks, commonly used 549

evaluation metrics include Final Accuracy and Answer Con- 550

sistency, which measure the quality of model outputs during 551

task completion. Additionally, automated evaluations also 552

cover Question Relevance and Question Divergence in multi- 553

round interactions, further analyzing the reasonableness and 554

creativity of the model’s reasoning paths. Together, these 555

metrics form a multidimensional evaluation framework, pro- 556

viding a scientific basis for comprehensively assessing lateral 557

thinking capabilities. 558

However, as reported in this paper, existing testing meth- 559

ods exhibit limitations in specific complex scenarios. For in- 560

stance, they fail to effectively identify or handle situations 561

where players substitute questions to mislead judges. Simi- 562

larly, the current evaluation system lacks sufficient sensitivity 563

and specificity in addressing strategic behaviors such as play- 564

ers inducing judges to leak answers. These issues indicate 565

that there is still room for improvement in capturing model 566

performance in multi-round interactive contexts. 567

8 Conclusion 568

In this paper, we examined the limitations of current methods 569

for evaluating the lateral thinking reasoning abilities of large 570

language models (LLMs) in multi-round tasks with incom- 571

plete information. Our findings indicate that current evalua- 572

tions often fail to ensure that reasoning aligns with human- 573

accepted paths. Key issues, such as shortcut-taking behav- 574

iors, premature task termination, and training data contamina- 575

tion, reduce evaluation reliability. To address these issues, we 576

propose a refined evaluation standard that includes inspecting 577

reasoning paths, utilizing diversified metrics, and comparing 578

model performance with human reasoning. By introducing 579

criteria for dynamic question generation and improved sam- 580

pling of reasoning paths, our study provides guidance for de- 581

signing future benchmarks and improving evaluation systems 582

for LLMs’ lateral reasoning under incomplete information. 583
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