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Abstract

Human communication seamlessly integrates speech and bod-
ily motion, where hand gestures naturally complement vocal
prosody to express intent, emotion, and emphasis. While re-
cent text-to-speech (TTS) systems have begun incorporating
multimodal cues such as facial expressions or lip movements,
the role of hand gestures in shaping prosody remains largely
underexplored. We propose a novel multimodal TTS frame-
work, Gesture2Speech, that leverages visual gesture cues to
modulate prosody in synthesized speech. Motivated by the
observation that confident and expressive speakers coordi-
nate gestures with vocal prosody, we introduce a multimodal
Mixture-of-Experts (MoE) architecture that dynamically fuses
linguistic content and gesture features within a dedicated style
extraction module. The fused representation conditions an
LLM-based speech decoder, enabling prosodic modulation
that is temporally aligned with hand movements. We fur-
ther design a gesture-speech alignment loss that explicitly
models their temporal correspondence to ensure fine-grained
synchrony between gestures and prosodic contours. Evalua-
tions on the PATS dataset show that Gesture2Speech outper-
forms state-of-the-art baselines in both speech naturalness and
gesture-speech synchrony. To the best of our knowledge, this
is the first work to utilize hand gesture cues for prosody con-
trol in neural speech synthesis. Demo samples are provided at
URL: https://tinyurl.com/3wv58sbw.

Introduction
Expressive speech synthesis is essential in applications such
as dubbing educational content, podcasts, talk shows, and in-
terviews, where intelligibility, natural prosody, and temporal
alignment are critical for effective communication (Brannon,
Virkar, and Thompson 2023). Speakers rely on nonverbal
bodily cues, particularly hand gestures to convey emphasis,
rhythm, and affective intent. These gestures exhibit tight
temporal and emotional coordination with speech rhythm
and tone, making them a rich source of prosodic and affec-
tive cues (Wagner, Malisz, and Kopp 2014). While neural
TTS systems produce high-quality, intelligible speech, they
still lack embodied prosodic control for expressive, multi-
modal communication (Hu et al. 2021; Sahipjohn et al. 2024).
Current models infer prosody from text or reference audio,
limiting their ability to capture the richness of human expres-
sion (Han et al. 2025; Casanova et al. 2024; Shimizu et al.
2024). Given the multimodal nature of communication, TTS

systems should leverage cues beyond text and audio (Jiménez-
Bravo and Marrero-Aguiar 2024; Zhang et al. 2021). Hand
gestures remain an underexplored modality despite offering
valuable prosodic cues. Their temporal synchrony with pitch
accents, emphasis, and duration reflects speaker intent and
expressive style (Feyereisen and De Lannoy 1991). However,
the relationship between gesture and prosody is complex
and speaker-dependent. Gesture intensity and timing may
not always correlate with prosodic prominence such as pitch
accents or energy peaks. Nonetheless, incorporating gesture
cues into TTS can improve prosody modeling and produce
temporally aligned, expressive speech, especially in dubbing
and conversational scenarios.

In prior work, the gesture modality has primarily been
leveraged for applications such as sign language recognition
and translation, human-robot interaction, and gesture gener-
ation (Madhiarasan and Roy 2022; Papastratis et al. 2021;
Li, Zhong, and Wang 2023). The generation of gestures from
speech, commonly referred to as co-speech gesture genera-
tion, has received significant attention (He et al. 2024; Ahuja
et al. 2020b). More recently, multimodal generation frame-
works have explored the simultaneous synthesis of speech
and gestures in an integrated manner (Mehta et al. 2024,
2023). However, the reverse paradigm, where gestures are
used as a modality to generate prosodically controlled speech
in TTS, remains largely underexplored. While our experi-
ments are conducted using the PATS dataset, which contains
high-quality multimodal recordings with aligned gesture and
speech, we acknowledge its limited cultural and emotional
scope. in real-world scenarios, full-body visibility or high-
resolution hand tracking may not always be available. Our
framework is designed to process full pose keypoints, relying
on upper-limb dynamics.

In this paper, we propose Gesture2Speech, a multimodal
TTS framework that integrates gesture input alongside text,
speech, and motion-derived video cues to generate expressive
speech aligned with gestural intent. Unlike conventional TTS
systems that primarily rely on textual and prosodic features,
Gesture2Speech treats hand gestures as dynamic style control
signals, enabling more grounded and contextually synchro-
nized speech synthesis. To effectively model the varying
contributions of different modalities, we extend a Mixture-of-
Experts (MoE) architecture (Jacobs et al. 1991), the novelty
of our approach lies in applying MoE to dynamically select



experts conditioned on gestural input in a speech synthesis
task, incorporating specialized expert modules for speaker
style and speaker-specific visual motion features. Inspired by
recent advances in style-disentangled expressive TTS (Jawaid
et al. 2024) and gesture animation (Ahuja et al. 2020b), our
multimodal MoE design facilitates fine-grained control over
generated speech while preserving speaker identity and ex-
pressiveness.

Our contributions lie not only in the technical novelty of
multimodal conditioning and expert specialization but also in
drawing attention to gesture-conditioned speech synthesis, a
relatively underexplored research area. Our key contributions
are as follows.
• We introduce a novel framework for prosody modeling in

expressive TTS, where hand gestures are used as control
signals to guide speech synthesis.

• We propose a multimodal Mixture of Experts (MoE) ar-
chitecture that integrates hand gesture and audio features
to learn rich, disentangled style representations.

• These learned representations condition an LLM-based
speech decoder, enabling the generation of speech that is
temporally aligned with gestural cues.

• We propose a gesture-speech alignment loss to explicitly
model and enhance the temporal synchronization between
gesture dynamics and speech prosody.

Related Work
Despite progress in neural TTS, fine-grained and inter-
pretable prosody control remains challenging. Most systems
still struggle with prosodic variability and expressiveness
without explicit control. Early unimodal approaches, such
as Tacotron (Shen et al. 2018) and its extensions, aimed to
control prosody using textual or reference audio prompts,
while models like GST-Tacotron (Wang et al. 2018) and Fast-
Speech (Ren et al. 2019) introduced style tokens or predicted
prosodic features (e.g., pitch, duration) directly from text.
These methods offered limited controllability and largely ig-
nored the affective context underlying expressive delivery.
To address this limitation, more recent works have explored
multimodal prosody modeling, incorporating cues such as
facial expressions and lip movements to enhance expressive-
ness in TTS (Chu, Shim, and Park 2024; Lu et al. 2022;
Sahipjohn et al. 2024). However, hand gestures, an essential
bodily cue that co-varies with speech prosody and emotion,
have been largely overlooked as a control modality in speech
synthesis. In contrast to facial or lip motion, gestures convey
intent, rhythm, and affective emphasis through larger, rhyth-
mically aligned movements, making them a promising but
underexplored source of prosodic information.

Speech Generation via Gestures
The interplay between gestures and speech has long intrigued
researchers in multimodal communication. Early studies fo-
cused primarily on gesture generation conditioned on speech
(Alexanderson et al. 2020), while more recent work investi-
gates integrated speech and gesture generation (Nyatsanga
et al. 2023; Wang et al. 2021; Zhang et al. 2025). Alexan-
derson and Székely (Alexanderson et al. 2020) proposed a

framework that jointly generates spontaneous speech and
gesture from text, demonstrating the tightly coupled nature
of these modalities. However, gestures were not directly used
to modulate acoustic parameters. More unified frameworks,
such as those by Mehta et al. (Mehta et al. 2024, 2023), used
flow matching to synthesize both gestures and speech from a
shared latent space, hinting at the potential for bidirectional
gesture-conditioned speech synthesis. Nevertheless, these ap-
proaches remain largely exploratory and do not explicitly
target fine-grained prosodic control. Our work diverges from
these by directly using gesture motion features as condition-
ing signals for prosody generation, enabling tighter temporal
and expressive alignment between physical motion and syn-
thesized speech. This formulation bridges the gap between
multimodal modeling and embodied expressivity.

Mixture of Experts for Style Transfer in TTS
The Mixture of Experts (MoE) paradigm has gained trac-
tion in TTS for capturing diverse speaking styles and emo-
tional nuances. By allocating responsibility across special-
ized expert networks, MoEs facilitate nuanced and adaptive
control over prosodic features. Jawaid et al. (Jawaid et al.
2024) introduced a Style-MoE architecture that learns ex-
pressive speech synthesis via multiple style embeddings, en-
abling smoother transitions between speaking styles. Simi-
larly, AdaSpeech 3 (Yan et al. 2021) models spontaneous and
conversational speech through adaptive expert components,
while Teh and Hu (Teh et al. 2023) explored ensemble-based
prosody prediction as a mixture framework for expressive
intonation control. Building on these insights, our framework
integrates modality-specific MoE modules that fuse linguis-
tic, acoustic, and gestural representations within a unified
style space. Unlike prior MoE-based systems focused purely
on speaker or style variation, our design explicitly leverages
gesture-driven cues to enhance temporal alignment and affec-
tive prosody generation. This integration extends the MoE
paradigm toward embodied multimodal expressivity, a key
goal for human-like TTS systems.

Proposed Method
Problem Formulation
Given an input text sequence T , a reference audio sample
Aref from a target speaker, and a sequence of gesture frames
V = {Vt}Tt=1, the goal is to synthesize a speech waveform
Â that is semantically aligned with T , retains the identity
of the speaker from Aref, and reflects the temporal prosody
driven by gestures in V . We model this as a conditional
generation problem with mapping Fθ : (T ,Aref,V) 7→ Â,
where the function Fθ is trained to maximize the likelihood
pθ(Â | T ,Aref,V). The synthesized speech must preserve lin-
guistic content, speaker characteristics, and exhibit prosodic
variation synchronized with gesture dynamics, encouraging a
tightly coupled multimodal alignment across text, audio, and
vision domains.

Proposed Architecture: Gesture2Speech TTS
Here, we propose a gesture-conditioned text-to-speech (TTS)
system that synthesizes expressive speech conditioned not



Figure 1: Overview of (a) the proposed Gesture2Speech architecture and (b) MoE layer. The system takes text, speech, and
video-based gesture features as input and generates expressive speech. Multiple MoE modules enable dynamic routing of features
for improved style representation and aligned with gestural intent via cross-attention.

only on textual input but also on hand gestures and motion
cues derived from video. By incorporating visual-semantic
information, our model aligns speech prosody with the tem-
poral dynamics of gestures. An overview of the proposed
framework is illustrated in Figure 1. The model operates on
three input modalities: (1) textual features, (2) audio em-
beddings, and (3) motion and pose features extracted from
video. Text and audio inputs are processed through a shared
encoder, while motion features are handled by a dedicated
visual encoder. To achieve temporal alignment and feature
compression, we employ a perceiver resampler. All modal-
ities are projected into a shared latent space of dimension
d = 1024 to facilitate effective cross-modal fusion.

The input text T is first tokenized using the byte-pair en-
coding (BPE), producing a sequence of embeddings Etext ∈
RL×d. From the reference audio, a mel-spectrogram is com-
puted and passed through a speaker encoder fspk to ob-
tain a speaker embedding espk ∈ Rd and normalized video

frames V are processed by a SlowFast (Zhang, Tie, and Qi
2021) motion encoder fmot to produce spatiotemporal fea-
tures M ∈ RT×d:

espk = fspk(Mel(Aref)); M = fmot(V) (1)

These motion features are concatenated with the broad-
casted speaker embedding and fed into a Perceiver module to
generate global style tokens S ∈ RN×d:

S = Perceiver([M ∥ espk]). (2)

To model modality specific characteristics, three MoE
modules are applied to the speaker embedding (i.e., Speech
MoE), motion features (i.e., Video MoE), and global style
tokens (i.e., Global MoE):

zspeech = MoEspeech(espk); zmotion = MoEmotion(M);

zstyle = MoEstyle(S) (3)



The outputs are concatenated to form a fused style represen-
tation:

zstyle-total = [zspeech ∥ zmotion ∥ zstyle] (4)

Gesture features are extracted using OpenPose (Cao et al.
2021) included in experimental dataset, to obtain 2D key-
points {Kt}Tt=1, with each Kt ∈ RJ×2 representing J joints.
These are flattened and projected to latent vectors using a
learnable linear mapping, resulting in a gesture token se-
quence G ∈ RT×d.

The LLM decoder receives the concatenation of text em-
beddings Etext and fused style tokens zstyle-total, and gesture
tokens G as input. We have used an LLM-based decoder with
cross attention:

v̂ = LLMcross([Etext ∥ G ∥ zstyle-total]). (5)

The output token sequence v̂ is decoded by a HiFi-GAN
(Kong, Kim, and Bae 2020)1 vocoder to produce the final
waveform:

Â = HiFi-GAN(v̂). (6)
This design enables expressive, gesture-aware speech genera-
tion that respects both motion dynamics and speaker-specific
prosody.

Style Transfer with Mixture-of-Experts (MoE)
To effectively capture modality-specific style information,
we incorporate a sparse Mixture-of-Experts module (Jacobs
et al. 1991) into the fusion pipeline. Specifically, we deploy
three distinct MoE modules, each for the conditional audio
embeddings, video features, and the fused representation.
Each module adopts an expert routing mechanism, enabling
dynamic and data-dependent expert selection during both
training and inference.

Let xaudio ∈ RA×d, xvideo ∈ RV×d, and xfused ∈ RS×d

denote the inputs to the speech, video, and global MoEs
respectively. Each MoE transforms the input using a gated
expert network:

MoE(x) =
K∑
i=1

gi(x)Ei(x), (7)

Where Ei is the ith expert, and gi(x) is the gating function
determining the contribution of expert i for input x. The
outputs from all three MoEs are concatenated and passed
to the LLM decoder along with text embeddings and open-
pose output embeddings. The resulting fused embeddings are
then used to predict expressive prosodic features, optimized
jointly using reconstruction and gesture-speech alignment
losses.

Gesture-Speech Alignment Loss
We propose a novel alignment loss based on Cross-Modal
Temporal Distance (CMTD) to enforce temporal alignment
between gesture apex points and speech prominences, as
illustrated in Figure 2. Gesture apexes are identified as the
midpoints of high-magnitude motion peaks, while speech

1https://github.com/jik876/hifi-gan (MIT License)

Figure 2: Comparison of gesture apexes and speech promi-
nence peaks between ground truth and TTS-generated speech.
The Cross-Modal Temporal Distance (CMTD) quantifies
alignment between gestures and prosodic peaks. Ground truth
CMTD: 0.819 seconds, indicating looser temporal alignment,
while TTS CMTD: 0.727 seconds suggests improved syn-
chronization with gestures.

end timings are derived from the predicted token sequence
produced by the decoder.

Let tpred denote predicted speech durations (in seconds)
inferred from the stop token positions, and tgesture denote
gesture apex times extracted from motion magnitudes. The
alignment loss is defined as the mean absolute error:

LAL =
1

B

B∑
i=1

∣∣∣t(i)pred − t
(i)
gesture

∣∣∣ , (8)

where B is the batch size.
Our final loss function combines standard text cross-

entropy loss, mel distortion loss, duration loss Ldur and align-
ment loss LAL:

L = Ltext + Lmel + λdurLdur + λALLAL (9)

This encourages natural speech generation while preserving
alignment between gesture intent and prosodic realization.

Experimental Setup
We conduct all experiments using a subset of the PATS dataset
(Ahuja et al. 2020a,b; Ginosar et al. 2019)2, which provides
transcribed poses with aligned audios and corresponding
transcripts. Our experiments focus on five speakers, namely,
Alamaram, Angelica, Kubinec, Oliver, and Seth. We restrict
clip durations to 4–15 seconds to ensure meaningful gesture
extractions and resample the video to 25 fps. Audio is down-
sampled from 44.1 kHz to 22.05 kHz for efficient processing.
The dataset contains 17,747 samples, totaling approx. 34.1
hours. We adopt a 90:10 train-test split for all model variants.

Baselines
As baselines, we adopt two state-of-the-art multilingual and
zero-shot expressive TTS models XTTS-V2 (Casanova et al.

2https://github.com/chahuja/pats (CC BY-NC 2.0 License)



2024)3 and GPT-SoVITS (RVC-Boss 2024)4 neither of which
incorporates explicit gesture-speech alignment. Both models
provide strong prosody modeling and high-fidelity speech
synthesis, making them effective starting points for multi-
modal extensions. We first experimented with GPT-SoVITS
by injecting pose-derived gesture embeddings into the GPT
module alongside the text representation. However, this led
to hallucinations in the generated speech and failed to cap-
ture gesture-speech intent accurately. Subsequently, we in-
tegrated gesture information into the XTTS-V2 pipeline by
extracting visual-semantic features from hand gestures and
upper-body motion. These features were fused with text and
audio representations via a cross-attention mechanism within
the LLM-based decoder, allowing the model to attend the
relevant motion cues while generating speech along with ges-
ture speech alignment loss. To further enhance multimodal
fusion, we incorporate sparse Mixture-of-Experts and hierar-
chical MoE modules5 at critical fusion points. These modules
dynamically route modality-specific information to special-
ized expert networks, improving both expressiveness and
generalization. This progression from unimodal baselines
to a hierarchically fused multimodal architecture forms the
backbone of our Gesture2Speech architecture.

Model Configurations
Our proposed Gesture2Speech system builds upon the XTTS-
V2 architecture, incorporating a multimodal framework en-
riched by multiple sparse Mixture-of-Experts modules to en-
able adaptability to gesture-aware speech synthesis. The core
autoregressive speech generation is handled by a transformer-
based LLM configured with 30 layers, each having a hidden
size of 1024 and 16 attention heads. We integrate three dis-
tinct MoE modules: a Multimodal MoE operating on the
fused gesture-text-audio embeddings, a Speech MoE focus-
ing on spectrogram features, and a Video MoE tailored for
visual-semantic gesture features. Each MoE is composed of
either 8 or 16 experts, where each expert is a four-layer feed-
forward network with Leaky ReLU activation (Xu et al. 2015).
The choice of expert count is informed by prior work such
as Switch Transformer (Fedus, Zoph, and Shazeer 2022) and
V-MoE (Riquelme et al. 2021), which demonstrate that this
range strikes a good tradeoff between routing stability and
computational overhead. Expert routing is performed using
top-2 routing with randomized fallback and adaptive capacity
constraints to ensure balanced utilization during training and
inference. To further enhance multimodal representation, we
employ Hierarchical Mixture-of-Experts (H-MoE) modules.
All the H-MoEs are initialized with an expert configuration
of num_experts=(4, 4), enabling efficient handling of
modality-specific complexities.

Furthermore, the system leverages a HiFi-GAN vocoder
configured to accept input at 22.05 kHz and produce output at
24 kHz, with conditioning vectors applied at each upsampling
layer to maintain temporal and acoustic fidelity. All models

3https://github.com/coqui-ai/TTS (MPL-2.0 License)
4https://github.com/RVC-Boss/GPT-SoVITS (MIT License)
5https://github.com/lucidrains/mixture-of-experts (MIT Li-

cense)

are trained from scratch using an NVIDIA A100 80GB GPU
for 100 epochs with a batch size of 48. We use the Adam
optimizer with a learning rate of 5e-6. During inference, a
probability of dropping condition is 0.1 and temperature of
0.7 are applied to to control randomness in outputs.

Results and Discussion
We consider five models in our evaluation, as shown in Ta-
ble 1: (1) Gesture2Speech: XTTS-V2, (2) Gesture2Speech:
GPT-SoVITS, (3) Gesture2Speech: Unimodal MoE, (4) Ges-
ture2Speech: Hierarchical MoE, and (5) the proposed Ges-
ture2Speech: Multimodal MoE.

Evaluation Metrics
To assess gesture-speech coordination, we employ two
custom-designed metrics tailored to capture the quality of
cross-modal alignment: Gesture Offset and Gesture-Audio
Mutual Information.

Gesture Offset measures the average temporal misalign-
ment between peaks in gesture motion and corresponding
peaks in speech pitch prominence. Gesture peaks are identi-
fied by detecting apex points in the norm of gesture vectors,
while speech peaks are derived from the pitch contour of the
audio signal. The computed apex points from both modalities
are temporally aligned, and the gesture offset is calculated
as the mean absolute difference (in seconds) between these
matched peaks. A lower gesture offset value reflects a tighter
synchronization between gestural intent and vocal expres-
sion.

Gesture-Audio Mutual Information quantifies the statisti-
cal dependency between the temporal dynamics of gesture
features and speech prosody. This metric provides a global
measure of how effectively gestural input influences speech
characteristics over time. Higher mutual information values
indicate stronger cross-modal coupling, reflecting more ex-
pressive and gesture-aware speech synthesis. To compute this,
gesture and speech peak times are discretized into uniform
bins over the full audio duration, and the resulting histograms
are used to estimate mutual information via non-parametric
regression.

In addition to gesture-speech coordination, we evaluate the
synthesized speech for intelligibility and naturalness using
a suite of objective metrics. Word Error Rate (WER) and
Character Error Rate (CER) are used to assess intelligibility,
computed using transcriptions generated by the Whisper-base
model (Radford et al. 2022). To assess prosodic similarity,
we employ AutoPCP (Barrault et al. 2023)6, which measures
the prosodic similarity between the synthesized and reference
speech. Hence, it serves as a direct indicator of improvement
in prosody modeling, with higher scores indicating stronger
prosodic similarity and, by extension, more expressive and
natural-sounding TTS outputs. We also evaluate the percep-
tual quality of the generated speech using predicted Mean
Opinion Scores (MOS). Two systems are used: UTMOS
(Saeki et al. 2022)7, and WVMOS, which is based on a fine-

6https://github.com/facebookresearch/seamless_
communication (MIT License)

7https://github.com/sarulab-speech/UTMOS22 (MIT License)



Table 1: Objective Evaluations on PATS test set. UTMOS, WVMOS, and AutoPCP are reported with 95% confidence intervals.

Method Gesture Offset ↓ Mutual Info ↑ WER ↓ CER ↓ UTMOS ↑ WVMOS ↑ AutoPCP ↑
Same Text

Ground Truth 1.0198 0.0362 35.61 25.20 3.34±0.16 3.32±0.23 –
Gesture2Speech (XTTS V2) 1.0386 0.0382 20.27 14.85 3.34±0.11 3.34±0.25 3.08±0.14
Gesture2Speech (GPT-SoVITS) 1.8656 0.0070 34.04 26.00 3.17±0.67 3.51±0.66 3.14±0.48
Gesture2Speech (unimodal MoE) 0.9794 0.0404 22.42 15.20 3.44±0.11 3.45±0.23 3.12±0.10
Gesture2Speech (H-MoE) 1.2008 0.0357 16.93 11.74 3.46±0.12 3.36±0.34 3.12±0.10
Gesture2Speech (multimodal MoE) 0.9471 0.0559 17.55 12.14 3.70±0.09 3.65±0.16 3.19±0.06

Different Text

Gesture2Speech (XTTS V2) 2.0554 0.0433 19.22 12.80 3.25±0.11 3.18±0.26 2.65±0.12
Gesture2Speech (GPT-SoVITS) 4.9933 0.0047 34.29 24.17 3.42±1.10 2.75±1.53 2.33±0.70
Gesture2Speech (unimodal MoE) 2.5915 0.0411 19.89 12.69 3.40±0.10 3.39±0.22 2.65±0.08
Gesture2Speech (H-MoE) 3.2073 0.0265 20.56 13.53 3.55±0.12 3.32±0.26 2.61±0.09
Gesture2Speech (multimodal MoE) 1.9434 0.0475 18.97 12.15 3.54±0.10 3.39±0.25 2.69±0.10

Table 2: Subjective Evaluation on Speech Quality and Prosodic Similarity of Gesture2Speech Variants along with a margin of
error corresponding to the 95% confidence interval.

Gesture2Speech
Metric XTTS v2 GPT-SoVITS Unimodal MoE H-MoE Multimodal MoE
Speech Quality ↑ 75.79± 2.39 70.78± 2.87 72.22± 2.62 73.55± 2.63 81.48± 2.25
Prosodic Similarity ↑ 72.78± 2.44 67.89± 3.20 71.59± 2.45 71.54± 2.91 79.35± 2.52

tuned Wave2Vec2.0 model (Baevski et al. 2020) (Andreev
et al. 2023)8. These metrics are computed on the same text
and different text scenarios. In the same text scenarios, the
input text used for audio synthesis matches the text spoken in
the reference video. On the other hand, in the different text
scenarios, the synthesized audio is generated from text that
differs from the content of the reference video.

Objective Evaluations
Table 1 presents the results of our objective evaluations. The
proposed Gesture2Speech: Multimodal MoE model consis-
tently outperforms all baselines across both alignment and
perceptual metrics, under both same-text and different-text
evaluation settings. To further enhance the style transfer net-
work, we experimented with a hierarchical MoE (H-MoE) a
hierarchical routing mechanism with top-k=2 for expert selec-
tion. Compared to H-MoE, the Multimodal MoE shows a ges-
ture offset improvement of 39.3% and a gesture-audio mutual
information gain of 79.9% under the different text scenarios,
although in the same text scenarios, H-MoE shows 0.62%
improvement in WER and 0.40% improvement in CER. We
also report a margin of error corresponding to the 95% confi-
dence intervals for UTMOS, WVMOS, and AutoPCP scores
to assess the statistical reliability of our evaluation. These
results demonstrate that the proposed multimodal MoE archi-
tecture provides consistent improvements in both alignment
and speech quality metrics across evaluation conditions.

Subjective Evaluations
To assess the perceptual quality and prosodic naturalness of
the generated speech, we conducted a subjective evaluation
study involving 30 participants all with no known hearing

8https://github.com/AndreevP/wvmos

impairments, aged between 25 and 37 years. Participants
were instructed to rate each audio sample on a scale from 0
to 100, where higher scores reflect better quality and natural-
ness. Each subject evaluated a randomized set of 720 sam-
ples, for all five Gesture2Speech model variants: XTTS-V2,
GPT-SoVITS, Unimodal MoE, Hierarchical MoE, and the
proposed Multimodal MoE. The evaluation focused on two
key metrics: overall speech quality and prosodic similarity.
The scores were aggregated for all subjects and and we report
the Mean Opinion Scores (MOS) along with 95% confidence
intervals in Table 2. Compared to the XTTS v2 baseline, the
proposed Multimodal MoE achieved an improvement of ap-
proximately 7.5% in speech quality and 9.1% in prosodic
similarity. While the H-MoE model also showed improve-
ments over the GPT-SoVITS and Unimodal MoE baselines,
its scores remained approximately 10.8% lower in speech
quality and 10.9% lower in prosodic similarity compared to
the proposed Multimodal MoE. These results confirm that the
integration of multimodal information via Mixture of Experts
enhances both the perceived quality and expressiveness of
the generated speech.

Ablation Experiments
We performed unimodal experiments by adding modality
specific MoE’s in architecture, first we experimented by in-
cluding one Speech-unimodal MoE taking audio features (no
other MoE), similarly we did for Video-unimodal MoE. The
evaluation results presented in Table 3 demonstrate the per-
formance of various Gesture2Speech models under same and
different text conditions. The multimodal MoE model consis-
tently outperforms other models in terms of prosody and nat-
uralness as reflected in the AutoPCP, UTMOS and WVMOS
scores in both conditions. As compared to the speech-only
multimodal MoE reflects an approximate 9% improvement,



Table 3: Ablation Evaluations using different MoE configurations. UTMOS, WVMOS, and AutoPCP are reported with a margin
of error corresponding to the 95% confidence intervals.

Method Gesture Offset ↓ Mutual Info ↑ WER ↓ CER ↓ UTMOS ↑ WVMOS ↑ AutoPCP ↑
Same Text

Gesture2Speech (Speech-Unimodal MoE) 0.9663 0.0424 20.78 15.64 3.40±0.11 3.35±0.27 3.16±0.12
Gesture2Speech (Video-Unimodal MoE) 1.0324 0.0191 31.43 25.01 3.41±0.11 3.48±0.26 3.12±0.06
Gesture2Speech (Multimodal MoE) 0.9471 0.0559 17.55 12.14 3.70±0.09 3.65±0.16 3.19±0.06

Different Text
Gesture2Speech (Speech-Unimodal MoE) 2.2088 0.0340 26.87 15.93 3.47±0.11 3.27±0.24 2.71±0.10
Gesture2Speech (Video-Unimodal MoE) 2.1835 0.0479 27.42 14.74 3.52±0.10 3.36±0.24 2.67±0.07
Gesture2Speech (Multimodal MoE) 1.9434 0.0475 18.97 12.15 3.54±0.10 3.39±0.25 2.69±0.10

Table 4: Ablation with respect to Fusion Strategies.

Method Gesture Offset ↓ Mutual Info ↑ UTMOS ↑ WVMOS ↑
Cross-Attention 0.8410 0.0223 3.36±0.25 3.42±0.33
Concatenation 1.0295 0.0134 3.04±0.36 3.32±0.46
MoE Fusion 0.7576 0.0606 3.64±0.22 3.67±0.30

similarly, the WVMOS score shows about a 9% gain in per-
ceptual quality. The AutoPCP metric, representing a relative
increase of around 2%–6% over the unimodal variants. Under
the different text condition, the multimodal MoE still main-
tains strong performance, maintaining competitive mutual
information, only video-unimodal MoE showed improved
0.84% higher mutual information score.

Table 4 presents the quantitative fusion strageties evalu-
ations. In style transfer network, we compared multimodal
Mixture of Experts, cross-attention and concatenation fu-
sion strategies. The proposed MoE Fusion strategy achieves
substantial improvements over baseline methods. Compared
to Cross-Attention, it reduces gesture offset by 9.9% and
increases mutual information by 171.7%. In terms of percep-
tual metrics, MoE Fusion improves UTMOS by 8.3% and
WVMOS by 7.3%. Relative to the Concatenation baseline,
it reduces gesture offset by 26.4%, , and increases UTMOS
and WVMOS by 19.7% and 10.5%, respectively.

t-SNE Analysis of Expert Specialization
To better understand the behavior of the individual MoE mod-
ules, we visualize their output embeddings using t-SNE, as
shown in Figure 3. The key objective is to assess how well
the different expert pathways specialize across modalities
and how effectively the system integrates them. The Multi-
modal MoE, which processes the global style tokens from
the perceiver module, shows a clear separation in the t-SNE
space, indicating a strong expert specialization. This suggests
that the learned representation captures distinct prosodic and
stylistic features across different inputs. For the Speech MoE
and Video MoE, we observe partial segregation of clusters.
While not as clearly separated as the Multimodal MoE, these
modules exhibit an emergent structure, indicating that the
experts are beginning to specialize with some overlap. This is
expected given that these components are processing modal-
ity specific features, such as spectrogram embeddings and
motion embeddings that may share some temporal correla-
tions. This supports the idea that combining complementary
modalities in a controlled MoE framework leads to richer and
more informative latent space representations. These findings

align with the qualitative performance of the system, where
gesture-conditioned speech outputs exhibit better alignment
and prosodic richness.

Figure 3: Speaker-wise t-SNE plots analysis of proposed
style transfer network. The t-SNE plot of (a) Speech MoE
embeddings, (b) video MoE embeddings and (c) Multimodal
MoE embeddings.

Conclusion

In this work, we introduced Gesture2Speech, a gesture-
conditioned text-to-speech (TTS) system that synthesizes ex-
pressive speech by integrating multimodal cues, such as, text,
audio, and video-based hand gesture features through a cross-
attention mechanism. Our framework employs modality-
specific Mixture-of-Experts (MoE) modules for adaptive fu-
sion and incorporates a gesture-speech alignment loss to
achieve fine-grained temporal synchrony between gestures
and prosodic contours. Experiments on the PATS dataset
demonstrate consistent improvements in prosody, alignment,
and naturalness across objective and subjective evaluations.
This study underscores how bodily cues, particularly hand
gestures, can enhance prosodic expressivity and emotional
grounding in neural speech synthesis. Future work will ex-
tend this framework to full-body motion cues and explore
lightweight routing strategies for expert selection and more
nuanced gesture-speech synchronization in real-world sce-
narios.
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