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ABSTRACT

Graph contrastive learning (GCL) has made significant strides in pre-training
graph neural networks (GNNs) without requiring human annotations. Previ-
ous GCL efforts have primarily concentrated on augmenting graphs, assuming
the node features are pre-embedded. However, many real-world graphs contain
textual node attributes (e.g., citation network), known as text-attributed graphs
(TAGs). The existing GCL methods often simply convert the textual attributes
into numerical features using shallow or heuristic methods like skip-gram and
bag-of-words, which cannot capture the semantic nuances and general knowl-
edge embedded in natural language. Motivated by the exceptional capabilities
of large language models (LLMs), like ChatGPT, in comprehending text, in this
work, we delve into the realm of GCL on TAGs in the era of LLMs, which we
term LLM4GCL. We explore two potential pipelines: LLM-as-GraphAugmentor
and LLM-as-TextEncoder. The former aims to directly leverage LLMs to con-
duct augmentations at the feature and structure levels through prompts. The latter
attempts to employ LLMs to encode nodes’ textual attributes into embedding vec-
tors. Building on these two pipelines, we conduct comprehensive and systematic
studies on six benchmark datasets, exploring various feasible designs. The results
show the promise of LLM4GCL in enhancing the performance of state-of-the-art
GCL methods. Our code and dataset will be publicly released upon acceptance.

1 INTRODUCTION

Graph contrastive learning (GCL) has demonstrated remarkable efficacy in the pre-training of graph
neural networks (GNNs) using unlabeled data (Wu et al., 2020). Existing GCL research, exemplified
by GraphCL (You et al., 2020) and BGRL (Thakoor et al., 2021), operate by creating two augmented
views of the input graph and subsequently training GNN encoder to produce similar representations
for both views of the same node, as shown in Figure 1. By pre-training GNN models using a large
number of unlabeled graphs, the pre-trained model or learned representations can be employed to
enhance various downstream tasks such as link prediction (Zhang & Chen, 2018; Pan et al., 2018),
node classification (Hassani & Khasahmadi, 2020; Zhu et al., 2020a; Qiu et al., 2020; Gong et al.,
2023), and graph classification (Xu et al., 2021; Suresh et al., 2021; Xia et al., 2022).

Despite the plethora of GCL methods proposed in recent years (Veličković et al., 2018b; Zhu et al.,
2021b; Hu et al., 2020b; Zhang et al., 2021a; Bielak et al., 2022), they exhibit limitations when con-
fronted with graphs that possess rich textual descriptions, often referred to as text-attributed graphs
(TAGs). A typical example of TAGs is citation network, where each node represents a research
paper, accompanied by node attributes in the form of titles and abstracts. These textual descriptions
serve as a valuable source of information for enhancing graph representation learning, as text is
highly expressive, capturing intricate semantic nuances. However, as illustrated in Figure 1, previous
GCL efforts simply employ textual attributes to derive numerical features using shallow embedding
models like Word2vec (Mikolov et al., 2013) or Bag-of-Words (BoW) (Harris, 1954). These shal-
low embeddings are suboptimal, since they cannot capture the complexity of semantic features (He
et al., 2023; Chen et al., 2023). Moreover, they conduct feature and structure augmentation in an
attribute-agnostic manner, relying solely on stochastic perturbation functions like feature and edge
masking; that is, the valuable textual attributes have not been fully leveraged in graph augmentation.
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Figure 1: The learning paradigm of GCL methods on TAGs. Given a TAG G = {V,S,A}, previous
GCL endeavors first adopt shallow embedding functions to convert the textual attribute (S) into
numerical features (X). After that, the feature-level and structure perturbation functions (i.e., τf
and τs) will be subsequently applied to the node features X and graph structure A to generate two
augmented graphs for contrastive learning. LLMs have the potential to advance graph augmentation,
including feature and structure aspects, and the embedding process.

Motivated by the formidable capabilities of large language models (LLMs) 1, such as Chat-
GPT (Brown et al., 2020), there has been a growing focus on harnessing LLMs for graph representa-
tion learning on TAGs (Zhang, 2023; Yang et al., 2021; Ye et al., 2023). For instance, GLEM (Zhao
et al., 2022) proposes a method involving the fine-tuning of a pre-trained language model (PLM),
like BERT (Devlin et al., 2018) and DeBERTa (He et al., 2020), to predict pseudo-labels generated
by a GNN model. TAPE (He et al., 2023) takes an approach where ChatGPT is initially employed to
generate new textual features for each graph node, followed by supervised fine-tuning of DeBERTa
using these newly generated texts. SimTeG (Duan et al., 2023) further incorporates low-rank adap-
tation (Hu et al., 2021a) into the fine-tuning process of the PLM model. However, all the methods
mentioned above are designed for fine-tuning PLMs on graphs in the supervised setting. The prob-
lem of how to leverage LLMs for textual graphs in the self-supervised setting remains unexplored.

To bridge the gap, we present LLM4GCL, the first comprehensive and systematic study on harness-
ing LLMs for GCL. Our study is designed to delve into the following key research questions. i) How
can we utilize LLMs for enhancing graph augmentations at both the feature and structural levels?
ii) How can we fine-tune a pre-trained PLM in an unsupervised manner to enhance its capacity for
encoding textual node attributes and structural relationships?

Contributions. We outline our main contributions below.

1. We explore two potential LLM4GCL pipelines designed to enhance contrastive learning on tex-
tual graphs: LLM-as-GraphAugmentor and LLM-as-TextEncoder. The former seeks to employ
LLM (e.g., ChatGPT) for perturbing the original graph, focusing on both feature and structural
aspects, thereby enhancing conventional heuristic augmentation strategies. The latter involves
fine-tuning a PLM using self-generated signals, followed by the utilization of the resulting node
features in standard GCL methods.

2. For LLM-as-GraphAugmentor, we utilize LLM to directly execute feature and structural augmen-
tations through various prompt templates. Our key observations: ❶ Instead of using the original
textual node attributes, LLM can generate more informative textual descriptions with appropriate
prompts. However, integrating structure information into this process poses a non-trivial chal-
lenge. ❷ In comparison to standard structural augmentation methods like edge masking, LLM
demonstrates the potential to generate highly competitive graph structures for GCL. ❸ It becomes
feasible to directly utilize the generated textual attributes and graph structure to replace one aug-
mented view, indicating the potential of LLM in simplifying the graph augmentation process.

3. Regarding LLM-as-TextEncoder, we investigate several self-supervised fine-tuning strategies to
adapt general PLMs to the graph domain for more effective encoding of textual attributes. Our
key findings: ❹ A PLM model cannot be directly applied to encode textual node attributes effec-

1In this work, “LLM” refers to large language models, such as ChatGPT, which require powerful computa-
tional devices, while “PLM” denotes small language models fine-tunable on common GPUs, e.g., BERT.
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tively. In some cases, even shallow embedding techniques like BoW outperform it. ❺ Incorporat-
ing structural information during fine-tuning can yield benefits compared to the standard masked
language modeling strategy.

2 PRELIMINARY

In this section, we introduce notations, formalize the research problem of this work, and illustrate
prospective opportunities for harnessing language models to enhance GCL on TAGs.

Text-Attributed Graphs. We are given a TAG G = {V,S,A} with N nodes, where V denotes the
node set, and A ∈ RN×N represents the adjacency matrix. For each node v ∈ V is associated with
a textual attribute Sv , and S = {Sv|v ∈ V} is the attribute set.

In this work, we study self-supervised learning on TAGs. Specifically, the goal is to pre-train a
mapping function fθ : S × A → RD, so that the semantic information in S and the topological
structure in A could be effectively captured in the D-dimensional space in a self-supervised manner.

Graph Neural Networks. For graph-structure data, graph neural networks (GNNs) are often applied
to instantiate fθ. Specifically, the goal of GNNs is to update node representation by aggregating
messages from its neighbors, expressed as:

h(k)
v = COM(h(k−1)

v ,AGG({h(k−1)
u : u ∈ Nv})), (1)

where h
(k)
v denotes the representation of node v at the k-th layer and Nv = {u|Av,u = 1} is a

direct neighbor set of v. In particular, we have h
(0)
v = xv , in which xv = Emb(Sv) ∈ RF is

a F -dimensional numerical vector extracted from v’s textual attribute Sv and Emb(·) stands for
embedding function. The function AGG is used to aggregate features from neighbors (Kipf &
Welling, 2016), and function COM is used to combine the aggregated neighbor information and
its own node embedding from the previous layer (Vaswani et al., 2017).

Graph Contrastive Learning on TAGs. Let τf : RF −→ RF and τs : V × V −→ V × V represent
the feature-level and structure-level perturbation functions, respectively. An example of τf is fea-
ture masking (Jin et al., 2020), while for τs, edge masking (Zhu et al., 2021a) serves as a typical
illustration. Previous GCL endeavors (You et al., 2021; Yin et al., 2022; Zhang et al., 2022) typi-
cally generates two augmented graphs, G1 = (A1,X1) and G2 = (A2,X2), utilizing perturbation
functions. Here, X1 = {τ1f (xv)|v ∈ V}, A1 = τ1s (A), X2 = {τ2f (xv)|v ∈ V}, and A2 = τ2s (A).
Subsequently, two sets of node representations are acquired for the two views using a shared GNN
encoder, denoted as H1 and H2, respectively. Finally, the GNN encoder is trained to maximize
the similarity between H1 and H2 on a node-wise basis. In this study, we primary focus on three
state-of-the-art methods, namely GraphCL (You et al., 2020), BGRL (Thakoor et al., 2021), and
GBT (Bielak et al., 2022), for experimentation.

3 LLM4GCL

Figure 1 illustrates the learning paradigm of standard GCL methods. While effective, these methods
have limitations in harnessing informative textual attributes because shallow models often struggle to
capture intricate semantic features. As depicted in Figure 1, we investigate two potential avenues for
incorporating LLMs into GCL, focusing on graph augmentation and feature extraction. This section
will introduce detailed strategies for utilizing LLMs for feature/structure augmentation (Section 3.1)
and fine-tuning a PLM to improve text embedding (Section 3.2).

3.1 LLM AS GRAPH AUGMENTOR

Graph augmentation plays a pivotal role in the success of GNN pre-training. A good augmentation
scheme is expected to retain the original graph’s semantic information in a modified version (Lee
et al., 2022; Tan et al., 2022). Nonetheless, previous augmentation techniques (e.g., feature or edge
masking) may fall short in TAGs, mainly because they primarily revolve around stochastic pertur-
bations (Ding et al., 2022a) within the feature or relational space, neglecting the informative textual
semantics. In this subsection, we explore the potential of LLMs (e.g., ChatGPT) for enhancing graph
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Figure 2: LLM-as-GraphAugmentor. Left: LLMs are emloyed to perturb node features by influ-
encing the input textual attributes. Right: LLMs are utilized to create new graph structures by
modifying and adding edges between nodes.

augmentation, depicted in Figure 2. In Section 3.1.1 and Section 3.1.2, we introduce strategies for
performing feature-level and structure-level augmentations using LLMs, respectively.

3.1.1 LLM FOR FEATURE AUGMENTATION

Given a node v and its textual attribute Sv , traditional GCL methods typically create an augmented
feature vector x̂v using purely stochastic functions, i.e., x̂v = τf (xv) = τf (Emb(Sv)). However,
this approach only introduces perturbations within the numerical space transformed by the Emb(·)
module, which cannot effectively manipulate the original input textual attribute. To overcome this
limitation, we propose to use LLMs to directly perturb the input text Sv and obtain an augmented
textual attribute Ŝv through three prompt templates (refer to Figure 2 (left)) outlined below.

Structure-Aware Summarization (SAS). Let SNv = {Su|v ∈ Nv} represent the textual attribute
set of node v’s neighbors. The idea of SAS is to query the LLM to create a summary of the anchor
node v by comprehending the semantic information from both its neighbors and itself. Specifically,
for each node v, we construct a prompt that incorporates the textual attributes of the anchor node and
its neighbors, denoted as {Sv,SNv }, along with an instruction for revising its textual attribute. The
general prompt format is illustrated in the left panel of Figure 2 (left). Specific prompt templates
for various datasets are detailed in Table 10 of Appendix C. Finally, we employ these summarized
textual attributes to represent the augmented attribute Ŝv .

Independent Reasoning (IDR). In contrast to SAS, which concentrates on text summarization,
IDR adopts an “open-ended” approach when querying the LLM. This entails instructing the model
to make predictions across potential categories and to provide explanations for its decisions. The
underlying philosophy here is that such a reasoning task will prompt the LLM to comprehend the
semantic significance of the input textual attribute at a higher level, with an emphasis on the most
vital and relevant factors (He et al., 2023). Following this principle, for each node v, we generate a
prompt that takes the textual attribute of the anchor node as input and instructs the LLM to predict
the category of this node and provide explanations. The general prompt format is illustrated in
the middle panel of Figure 2 (left). Specific prompt templates for different datasets are detailed
in Table 9 of Appendix C. We utilize the prediction and explanations to represent the augmented
attribute Ŝv .

Structure-Aware Reasoning (SAR). Taking a step beyond IDR, SAR integrates structural infor-
mation into the reasoning process. The rationale for this lies in the notion that connected nodes can
aid in deducing the topic of the anchor node. Specifically, for each node v, we devise a prompt that
encompasses the textual attributes of the anchor node Sv and its neighbors SN

v , along with an open-
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ended query concerning the potential category of the node. The general prompt format is given in
the right panel of Figure 2 (left). More detailed prompt templates for various datasets are provided
in Table 11 of Appendix C. Similar to IDR, we employ the prediction and explanations to denote the
augmented attribute Ŝv .

To reduce the query overhead of ChatGPT, we randomly sample 10 neighbors for each anchor node
in structure-aware prompts (i.e., SAS and SAR) in our experiments.

3.1.2 LLM FOR STRUCTURE AUGMENTATION

In addition to feature augmentation, structural augmentation is another popular strategy in state-of-
the-art GCL methods (Liu et al., 2022). Let A represent the adjacency matrix of a TAG. Previous
efforts have typically relied on structural perturbation functions τs, which involve operations like
randomly deleting or adding edges, to generate the augmented structure Â. While this approach has
been widely adopted in the literature, its attribute-agnostic nature may not be optimal for capturing
the complementary information between attributes and relational data, a phenomenon validated in
the research community (Huang et al., 2017). To address this limitation, we propose to leverage
LLMs to perturb the graph structure through a graph structure augmentation prompt defined below.

Graph Structure Augmentation (GSA). Let Nv and N̄v denote the connected and disconnected
node sets of v, respectively. We query the LLM model to predict if nodes in Nv (or N̄v) should be
disconnected (or connected) to the anchor node v. More precisely, we develop a prompt template, as
shown in Figure 2 (right), to answer this question by considering their textual attributes. For instance,
given the textual attribute Sv of the anchor node and its textual attribute set of neighbors SN

v , we
ask the LLM to decide if each node in Nv should be connected to v. The specific prompt templates
for different datasets are provided in Table 12 in the Appendix C. Subsequently, we construct an
augmented structure Â by either dropping or adding edges based on LLM’s decisions.

To enhance query efficiency, we initially employ shallow embedding algorithms, such as BoW, to
assess pairwise similarity between two nodes. Subsequently, we select the top 20 nearest neighbors
from Nv in descending order and the top 20 unconnected nodes from N̄v in ascending order based
on their scores for querying ChatGPT in our experiments. More empirical details can be found at
Appendix C.2.

3.2 LLM AS TEXT ENCODER

We have demonstrated the use of LLMs for graph augmentations. In Section 3.1, our remaining
question is how to implement the embedding function Emb(·), which is responsible for transforming
the (augmented) textual attribute (Sv and Ŝv) into an embedding vector (xv and x̂v) using LLMs.
One naive approach is to directly employ pre-trained LLMs to encode Sv , thereby endowing GCL
with the capability to capture richer semantic meanings. However, this direct application of LLMs
might yield unsatisfactory performance due to the mismatch between the TAG dataset and general
text data. Therefore, fine-tuning procedures are necessary. In this subsection, we present three
strategies for fine-tuning LLMs for GCL (See Figure 11 in Appendix C.3) elaborated as follows. It is
worth noting that we use PLMs rather than LLMs in the following description due to computational
constraints that prohibit fine-tuning LLMs (e.g., ChatGPT) in practice.

Masked Language Modeling (MLM). The idea is to directly fine-tune the model on textual at-
tributes. Following (Devlin et al., 2018), our approach entails model fine-tuning through the masking
of tokens within the sentence. Specifically, for each textual attribute Sv = {w1, w2, ..., wnv

} with
nv tokens, where wi denotes a token, we randomly mask ω% of tokens in Sv and replace them with
a special MASK token. We represent the set of masked tokens as Smask, while the set of observed
tokens as S\Smask

v . The objective of MLM is formally expressed as follows:

LMLM =
∑

wi∈Smask

logPθ(wi|S\Smask
v ), (2)

where θ is the model weight of the PLM. In our experiments, we fix the value of ω at 15.

Topology-Aware Contrastive Learning (TACL). One limitation of MLM is that its fine-tuning
procedure can not learn the topology information of the graph. To address this, we propose fine-
tuning a PLM using contrastive learning, inspired by (You et al., 2020). Given node v and one of its
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connected node u. Let xv and xu respectively denote the representations of node v and u generated
by the PLM model and sim() be the cosine similarity function, the training objective of TACL is:

LTCL = −
∑

u∈N pos
v

log
exp(sim(xv,xu)/τ)∑B

n=1,n̸=u exp(sim(xv,xn)/τ)
, (3)

where N pos
v comprises K nodes randomly sampled from Nv , with K being a hyperparameter. τ is

the temperature parameter, and B denotes the batch size.

Multi-Scale Neighborhood Prediction (GIANT). Unlike TACL, we adopt the approach from GI-
ANT (Chien et al., 2022) to reconstruct all neighbors by transforming this task into a multi-label
classification problem. However, directly fine-tuning the PLM on a high-dimensional output space
of size |V| is computationally infeasible. To address this challenge, GIANT employs the formalism
of extreme multi-label classification (XMC). The key concept is to construct a hierarchical node
cluster tree using the balanced k-means algorithm, based on the PIFA features (Zhang et al., 2021b).
Subsequently, the PLM is pre-trained to match the most relevant clusters in a top-down manner. For
a detailed mathematical exposition, interested readers are encouraged to consult (Chien et al., 2022).

By employing these three fine-tuning strategies, we can efficiently adapt a PLM model to TAGs.
Once fine-tuned, this model becomes capable of converting both the original and augmented textual
attributes into numerical features.

4 EXPERIMENTS

Throughout the experiments, we aim to address the following research questions. RQ1: Is GCL
helpful on TAGs, especially when compared to standard GNN methods? RQ2: Is a general PLM
without fine-tuning sufficient to encode textual attributes, and how do the proposed fine-tuning
strategies for text encoding perform? RQ3: How effective is LLM in generating augmented fea-
tures and structures? RQ4: Which types of language models are best suited for GCL on TAGs?
RQ5: Can LLM-as-TextEncoder also enhance the performance of generative self-supervised learn-
ing methods for graphs? RQ6: How do the textual embeddings generated by LLM-as-TextEncoder
compare with those generated by shallow methods?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the proposed LLM4GCL framework using five publicly available TAG
datasets. These datasets encompass two citation networks, namely PubMed and Ogbn-Arxiv
(Arxiv), and three E-commerce datasets extracted from Amazon (Ni et al., 2019), including
Electronics-Computers (Compt), Books-History (Hist), and Electronics-Photography (Photo). Un-
less specified otherwise, we primarily focus on the semi-supervised setting. More details on these
datasets and corresponding data splits can be found in Appendix A.

Baselines. We consider three type of baseline algorithms for comparison, including two standard
GNNs methods GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2018a), three represen-
tative GCL methods GraphCL (You et al., 2020), BGRL (Thakoor et al., 2021), and GBT (Bielak
et al., 2022)), and three popular language models BERT (Devlin et al., 2018), DeBERTa (He et al.,
2020), and RoBERTa (Liu et al., 2019). Please refer to Appendix B.1 for more experimental details.

Implementation details. For the reproducibility of our experiments, we employ GNN implementa-
tions from the PyG package (Fey & Lenssen, 2019). For the GraphCL, BGRL, and GBT methods,
we closely adhere to the procedures outlined in (Zhu et al., 2021a). We leverage PLMs from Hug-
gingface for feature extraction and utilize OpenAI’s ChatGPT 3.5 for graph augmentation. More
implementation details are provided in Appendix B.1.

4.2 IS GRAPH CONTRASTIVE LEARNING HELPFUL ON TAGS?

Before experimenting with our proposed LLM-based augmentation and text encoding strategies, it
is necessary to understand how the existing GCL methods perform on TAGs. To answer RQ1, we
evaluate the performance of three representative state-of-the-art GCL methods against the standard
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Method Feat Type PubMed Arxiv Compt Hist Photo

GCN SE 77.41±1.22 71.74±0.29 59.87±0.63 62.13±0.26 63.69±0.66
GAT 79.00± 0.71 72.60±0.16 55.81±0.49 58.61±0.93 56.93±0.93

BGRL

SE 79.61±0.13 71.82±0.27 55.40±0.04 69.84±0.42 57.98±0.09
FIX 68.81±1.25 69.37±0.45 20.52±1.08 67.81±1.11 29.94±0.22

MLM 70.19±1.69 69.78±0.12 21.62±1.08 65.41±0.40 30.33±0.20
GIANT 81.38±0.07 73.14±0.21 74.23±0.56 74.16±0.83 71.65±0.61
TACL 80.82±0.46 73.28±0.15 74.85±0.32 73.96±0.61 73.00±0.43

GBT

SE 79.44±1.31 68.55±0.52 69.53±0.26 71.62±1.38 68.56±0.95
FIX 71.96±1.28 67.96±0.11 51.73±0.08 69.81±0.57 53.34±0.34

MLM 75.26±3.79 68.93±0.48 55.62±0.37 69.57±0.40 55.58±0.40
GIANT 75.64±2.06 62.64±0.22 76.87±0.36 71.89±0.63 74.65±0.69
TACL 74.51±2.04 71.41±0.55 77.07±0.21 73.49±0.55 75.18±1.08

GraphCL

SE 76.48±0.71 68.41±0.34 51.74±0.75 54.21±0.48 53.21±0.47
FIX 62.98±1.93 56.40±0.33 34.46±0.80 63.63±2.14 47.67±0.88

MLM 65.82±2.17 58.04±0.15 37.54±1.18 63.70±0.30 50.37±0.59
GIANT 79.13±0.70 50.88±0.38 74.24±0.24 71.14±1.38 71.40±0.62
TACL 79.15±0.55 70.67±0.08 71.89±1.54 74.39±0.59 72.35±0.55

Table 1: Accuracies of GCL methods using different input features generated by PLM and three
fine-tuning strategies. “SE”/“Fix” indicates features generated by standard shallow models/general
PLM models. Highlighted are the top first, second, and third results.
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Figure 3: Few-shot learning results on BGRL. Please refer to Appendix B.2.1 for more results.
GNN counterparts in the semi-supervised setting. The results are reported in Table 1. We make the
following observations.

① GCL methods can enhance the performance of GNNs on TAGs in semi-supervised sce-
narios. From Table 1, at least one of the GCL methods using the shallow embeddings (i.e., SE)
outperforms the standard GNNs across five datasets. Notably, GBT exhibits clear superiority over
GCN and GAT on the three E-commerce datasets (Compt, Hist, and Photo), which validates the
potential of GCL on TAGs. Nevertheless, ② GCL methods could degrade the performance in
many cases. Specifically, GraphCL, BGRL, and GBT with shallow embeddings underperform the
standard GNNs on 5, 2, and 1 of the datasets, respectively. We conjecture that this stems from the
limitations of current GCL methods on TAGs, which do not effectively capture semantic information
during augmentation. Furthermore, from Figure 3, ③ Pre-training GNN models using contrastive
learning can improve their performance in few-shot cases. When the number of available ex-
amples is limited, the pre-trained GNN models still achieve highly competitive results. Conversely,
GCN and GAT experience a significant performance drop in these few-shot cases. This discrepancy
can be attributed to the capability of GCL methods to compel the GNN encoder to acquire more
informative and invariant node representations across augmented views (Liu et al., 2021). These
findings underscore the importance of exploring contrastive learning on text-attributed graphs.

4.3 CAN LLMS ENHANCE THE ENCODING OF TEXTUAL ATTRIBUTES?

To address RQ2 about the potential of using LLMs to enhance the encoding of textual attributes on
TAGs, we investigate the effectiveness of the three fine-tuning strategies proposed in Section 3.2,
namely MLM, TACL, and GIANT. For comprehensive details of our experimental setups, please
refer to Appendix B.2.2. Table 1 lists the results, where we can make the following key observations.
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Figure 4: The performance of LLM4GCL, when augmented with both features and structure by
ChatGPT, is denoted as ChatGAug. The variants “w/o nfeat” and “w/o nstruc” represent scenarios
where augmented features and augmented structure are not considered, respectively.

④ Directly using the text encoding obtained from a general PLM without fine-tuning does
not improve the performance. From Table 1, we observe that the features generated by general
PLM without fine-tuning (FIX in the table) exhibit notably inferior performance compared to the
classical features derived from shallow models (SE) across three GCL backbones. This could be
explained by the negative transfer issue associated with pre-trained models (Ding et al., 2022b).
Meanwhile, ⑤ the standard masked language modeling strategy is ineffective at fine-tuning
PLMs for TAGs. Although the MLM outperforms FIX by a consideration margin, it still falls short
when compared with shallow models across all datasets. This could be attributed to the fact that
the MLM overlooks the crucial topological structure. Furthermore, ⑥ by integrating structure
information, both TACL and GIANT can enhance the performance of GCL methods. Table 1
and Figure 3 show that TACL and GIANT generally outperform both FIX and MLM strategies
across all scenarios. Moreover, BGRL, GBT, and GraphCL generally perform better when utilizing
node features generated by TACL and GIANT, compared to the results achieved by shallow models.

4.4 HOW EFFECTIVE IS LLMS IN PERFORMING GRAPH AUGMENTATIONS?

While PLMs can enhance textual embeddings, the enhancements are not consistent across all the
datasets. In this section, we conduct experiments to assess the feasibility of utilizing LLMs for
graph augmentation to achieve further improvements (RQ3). Specifically, we investigate the impact
of three feature augmentation prompts, namely SAS, IDR, and SAR, as presented in Section 3.1.1,
as well as the structure augmentation prompt (i.e., GSA) introduced in Section 3.1.2. The detailed
experimental settings are provided in Appendix B.2.3. Figure 4 summarizes the results, from which
we draw several key observations.

Method SAS IDR SAR

PubMed
GBT 73.18±2.45 66.94±1.23 75.12±1.74

GraphCL 79.43±0.74 78.10±1.70 77.79±1.33
BGRL 80.47±1.14 83.01±0.26 81.44±0.29

Arxiv
GBT 70.66±0.41 70.52±0.36 71.49±0.32

GraphCL 70.63±0.32 71.42±0.41 71.19±0.21
BGRL 71.34±0.17 72.64±0.34 73.11±0.34

Table 2: The impact of different feature augmentation
prompts on GBT, GraphCL, and BGRL.

⑦ By enhancing standard GCL
methods with our augmented features
and structures (referred to as “Chat-
GAug”), their performance can be fur-
ther improved. In Figure 4, we can see
that the ChatGAug variant generally out-
performs the best baselines mentioned in
Table 1, including TACL and GIANT.
Similar findings are replicated in other
evaluation datasets, as illustrated in Ap-
pendix. Furthermore, ⑧ Leveraging
LLMs (e.g., ChatGPT) to jointly aug-
ment node features and graph structures is more effective than augmenting them individually.
Figure 4 illustrates that ChatGAug consistently outperforms the “w/o nfeat” and “w/o nstruc” vari-
ants in nearly all cases. These comparisons validate that the LLM-based augmentation in the feature
and structure levels are complementary.

8



Under review as a conference paper at ICLR 2024

We now examine the impact of different feature augmentation prompts (i.e., SAS, IDR, and SAR)
on the ChatGAug variant. Table 2 presents the results for the PubMed and Arxiv datasets. Our
observations are as follows: ⑨ Reasoning-based prompts tend to outperform text summarization
prompts. Specifically, both IDR and SAR variants generally outperform SAS, particularly on Arxiv
dataset. This is because IDR and SAR instruct ChatGPT to make predictions regarding potential
label categories. This guidance encourages ChatGPT to establish connections between keywords in
the textual attributes and abstract semantic meanings (i.e., potential categories). ⑩ The best prompt
templates could vary across different datasets. Neither IDR nor SAR consistently outperforms
the other, as demonstrated in Table 2. For example, BGRL achieves its best result on PubMed using
the IDR prompt, while GBT achieves its best performance with the SAR prompt. In the future, we
will investigate whether there potentially exists a universally suitable prompt template for GCL.

4.5 ADDITIONAL INVESTIGATION

In this section, we conduct further experiments to provide a better understanding of LLM4GCL. For
comprehensive details on the experimental setups, please refer to Appendix D.

Figure 5: The impact of different PLM
backbones on BGRL.

To answer RQ4, we explore the influence of different
language model backbones on GCL methods. Figure 5
and Figure 12 in Appendix illustrate the outcomes ob-
tained with BERT, DeBERTa, and RoBERTa backbones,
revealing that the optimal language model configura-
tion varies for different GCL methods across datasets.
As an instance, BGRL attains the highest performance
on PubMed when utilizing RoBERTa, whereas GraphCL
achieves the best results with DeBERTa. Hence, defin-
ing a unified language model that exhibits strong general-
ization across various methods and datasets represents a
promising avenue for future research.

To answer RQ5, we select two representative backbones:
GraphMAE (Hou et al., 2022) and S2GAE (Tan et al.,
2023). In our experiments, we test their performance by
replacing the original shallow embeddings with the ones
generated by our fine-tuned PLMs, specifically focusing on DeBERTa. The results in Table 13 in
Appendix showcase that GraphMAE and S2GAE generally yield superior results when utilizing
the node features generated by GIANT and TACL. These findings align with our discoveries on
GCL in Section 4.3, highlighting the potential applicability of LLM4GCL within the broader self-
supervised graph learning domain.

Embedding visualization. For RQ6, we employ the t-SNE tool to visualize the extracted node
features. The results, available in Figures 8& 9& 10 in the Appendix, illustrate the impact of differ-
ent fine-tuning strategies. We observe from the visualization that the embedding space learned by
GIANT and TACL excels in producing more distinct clusters. These outcomes provide additional
support for the superior performance of GIANT and TACL in our primary experiments.

5 CONCLUSION

This study investigates contrastive learning to text-attributed graphs (TAGs) and introduces a com-
prehensive framework, LLM4GCL. LLM4GCL leverages large language models (LLMs) to en-
hance graph contrastive learning methods. Our contribution is twofold. Firstly, we present a novel
approach, termed LLM-as-GraphAugmentor, which utilizes LLMs to augment graphs at both the
feature and structural levels through the application of prompts. Secondly, we explore a suite of
fine-tuning strategies designed to adapt pre-trained language models for encoding of textual at-
tributes in TAGs, referred to as LLM-as-TextEncoder. Based on these two pipelines, we conduct
extensive experiments across five diverse TAG datasets. We hope our empirical results can highlight
the promising applications of LLMs in graph self-supervised learning and inspire future research.
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