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ABSTRACT

Similar to Vision Transformers, this paper identifies artifacts also present within
the feature maps of Vision Mamba. These artifacts, corresponding to high-norm
tokens emerging in low-information background areas of images, appear much
more severe in Vision Mamba—they exist prevalently even with the tiny-sized
model and activate extensively across background regions. To mitigate this issue,
we follow the prior solution of introducing register tokens into Vision Mamba.
To better cope with Mamba blocks’ uni-directional inference paradigm, two key
modifications are introduced: 1) evenly inserting registers throughout the input
token sequence, and 2) recycling registers for final decision predictions. We term
this new architecture Mamba®. Qualitative observations suggest, compared to
vanilla Vision Mamba, Mamba®’s feature maps appear cleaner and more focused
on semantically meaningful regions. Quantitatively, Mamba®attains stronger
performance and scales better. For example, on the ImageNet benchmark, our
Mamba®-B attains 83.0% accuracy, significantly outperforming Vim-B’s 81.8%;
furthermore, we provide the first successful scaling to the large model size (i.e.,
with 341M parameters), attaining a competitive accuracy of 83.6% (84.5% if fine-
tuned with 384× 384 inputs). Additional validation on the downstream semantic
segmentation task also supports Mamba®’s efficacy.

1 INTRODUCTION

Recent advances in State Space Models (SSMs) have showcased their considerable potential in
sequence modeling tasks. In contrast to Transformers’ quadratic computational complexity with
respect to sequence lengths, SSMs operate with linear computational complexity, offering significant
efficiency advantages in managing extended sequences. One exemplary instantiation of SSMs is
the Mamba architecture (Gu & Dao, 2023), which employs selective scan techniques alongside a
suite of hardware-optimized designs. This innovation facilitates the efficient training and inference
of recurrent models with linear computational complexity and memory overhead. Furthermore, a
comprehensive body of recent research (Gu & Dao, 2023; Behrouz et al., 2024; Lieber et al., 2024)
substantiates that the Mamba architecture is able to achieve competitive performance levels, on par
with Transformers, particularly in processing natural language and audio.

Furthermore, the Mamba architecture has also been successfully extended to a variety of visual
tasks (Zhu et al., 2024; Liu et al., 2024b; Li et al., 2024; Hu et al., 2024). The motivation for this
expansion mainly arises from the computational challenges presented by processing high-resolution
images and videos. These data types often lead to long input sequences that conventional models
struggle to handle effectively or efficiently—e.g., for long-length input, traditional models such
as Convolutional Neural Networks (CNNs) suffer from relatively small receptive fields, and Vision
Transformers (ViTs) contend with high computational and memory costs. Yet, Vision Mamba (Vim)
architectures have shown the potential to mitigate these limitations—recent works demonstrate that
they not only manage computational and memory demands more efficiently but also deliver strong
performance across a variety of generic visual tasks, including classification, segmentation, and
image generation (Zhu et al., 2024; Liu et al., 2024a; Hu et al., 2024).

Despite the competitive benchmark performance, our observations reveal that Mamba’s internal
modeling exhibits significant issues when processing visual inputs. This issue is similar to the prior
observation of ViTs (Darcet et al., 2024), where some outlier tokens located in the less semantic
background unexpectedly contain rich global information (showing as high attention scores in the
feature map). These unusual feature activations are termed artifacts. In this work, we reveal that
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Input: Input:ViM: Mamba®: ViM: Mamba®:

Figure 1: Feature maps of vanilla Vision Mamba (Vim) (Zhu et al., 2024) and our Mamba®. It
shows that massive artifacts appear in Vim’s feature map, making the model difficult to attend to
visually meaningful content within the image. In contrast, our model exhibits much cleaner feature
activations, showcasing the significant efficacy of our enhanced architectural design.

this artifact issue not only exists but actually is considerably more severe in Vision Mamba. For
example, the artifacts are clearly visible in the feature maps of Vim (Zhu et al., 2024), as illustrated
in the 2nd and 4th columns of Figure 1, where activations encompass not just semantically significant
content, but also extend to expansive yet minimally informative background regions. Furthermore,
as quantitatively confirmed in Section 3.2, these artifact tokens are widely present in different sizes
of Vision Mamba models and possess rich global information.

Building upon a previous solution (Darcet et al., 2024), we introduce a straightforward yet effective
architectural refinement to Vision Mamba by appending registers—new, input-independent tokens—
to the token sequence. Unlike (Darcet et al., 2024) which only appends several register tokens at
one end of the input layer, we 1) insert register tokens evenly throughout the token sequence; and
2) at the end of the Vision Mamba, concatenate the register tokens to form a comprehensive image
representation for the final prediction. We name this enhanced architecture Mamba®.

Empirically, Mamba® showcases advantages on two fronts. Qualitatively, as evidenced by the
cleaner feature maps displayed in the 3rd and 6th columns of Figure 1, Mamba® significantly sup-
presses artifacts, with responses now more focused on visually meaningful content. Meanwhile, as
visualized in Figure 6, registers can well capture object-related semantic information for building
high-quality image representations. Quantitatively, the improvements in benchmarks are equally
compelling. For example, Mamba®-Base achieves an accuracy of 83.0% on ImageNet, notably
outperforming the 81.8% accuracy of Vim-Base, which is a vanilla Vision Mamba architecture.
Furthermore, Mamba® successfully expands the scaling capabilities of Vision Mamba—whereas
previous models were limited to configurations no larger than 90M parameters (Zhu et al., 2024;
Liu et al., 2024b; Yang et al., 2024), Mamba® can be effectively trained with up to 341M parame-
ters, reaching an impressive 83.6% accuracy on ImageNet; this accuracy can be further boosted to
84.5% by enlarging the image input size to 384× 384. For the ADE20k (Zhou et al., 2019) seman-
tic segmentation benchmark, our Mamba® attains a 49.1% evaluation mIoU, which significantly
outperforms Vim’s best result of 44.9% mIoU (Zhu et al., 2024).

2 RELATED WORK

Generic Visual Backbone Architectures. Modern computer vision predominantly relies on two
types of backbone architectures: CNNs that excel in extracting hierarchical features and ViTs
that are effective in modeling long-range dependencies. Since the advent of CNNs (LeCun
et al., 1998), their structure and scale have undergone a series of significant innovations in recent
decades (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016; Huang et al., 2017;
Tan & Le, 2019; Liu et al., 2022). Unlike CNNs that build spatial dependencies through convo-
lutional operations, ViTs (Dosovitskiy et al., 2021) attain a global receptive field by utilizing the
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self-attention mechanism (Vaswani et al., 2017), leading to state-of-the-art performance in a series
of downstream visual tasks. Based on this architecture, extensive research has been dedicated to im-
proving its model design (Yuan et al., 2021; Chen et al., 2021a; Liu et al., 2021), enhancing training
strategy (Touvron et al., 2021; 2022), and advancing self-supervised pretraining frameworks (Chen
et al., 2021b; Caron et al., 2021; Bao et al., 2022; He et al., 2022).

State Space Models. The concept of State Space Models (SSMs) can be dated back to the 1960s in
control systems where it was used to process continuous inputs (Kalman, 1960). With advancements
in discretization strategies (Tallec & Ollivier, 2018; Gu et al., 2020; Nguyen et al., 2022; Gu et al.,
2023), SSMs have recently been introduced into the field of deep learning, modeling sequential
information such as language and speech (Gu et al., 2022; 2021; Smith et al., 2022). Broadly defined,
SSMs can refer to any recurrent models with a latent state such as RNNs and the variant architectures
such as Linear Attention (Katharopoulos et al., 2020), RetNet (Sun et al., 2023), and RWKV (Peng
et al., 2023). More recently, Gu & Dao (2023) introduced a selective SSM block, namely Mamba,
that incorporates structured SSMs with hardware-aware state expansion, leading to a highly efficient
recurrent architecture that is competitive to Transformer.

Mamba Models in Vision. Building upon the Mamba block, a series of follow-up studies have
explored the application of SSMs in computer vision. For example, Zhu et al. (2024) propose a
straightforward vision Mamba model by sequentially stacking the Mamba blocks, attaining superior
performance than Vision Transformers (Dosovitskiy et al., 2021; Touvron et al., 2021) in both tiny
and small model sizes. Liu et al. (2024b) presents a hybrid architecture that combines Mamba with
2D convolution, showcasing significant results in a series of vision tasks. The study of Mamba-based
architectures is continuously explored (Lieber et al., 2024; Li et al., 2024; Liu et al., 2024a).

3 METHOD

3.1 MAMBA PRELIMINARIES

The original definition of SSM is a Linear Time-Invariant (LTI) system that projects the input stim-
ulation x(t) ∈ RL to the output response y(t) ∈ RL through a hidden state h(t) ∈ CN . For the
continuous inputs, the system can be formulated by a group of linear ordinary differential equations
as follows:

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t),
(1)

where A ∈ CN×N , B ∈ CN , C ∈ CN , and D ∈ C1 denote the weighting parameters.

By discretizing this ordinary differential equation group, the continuous-time SSMs can be inte-
grated to process discrete inputs such as language, speech, and image pixels. To this end, the model
can be solved by an analytic solution and then approximated by Zero-Order Hold (Gu & Dao, 2023),
leading to a discrete model:

ht = Aht−1 +Bxt

yt = Cht +Dxt,
(2)

where A = exp(∆A), B = (∆A)−1(exp(∆A)− I) ·∆B are transformed parameters for discrete
inputs and ∆ is a learnable parameter estimating the discrete interval. Notably, in contrast to the
basic recurrent inference, this structured SSM (S4) allows efficient computation by a convolution
process with

K = (CB,CAB, . . . ,CA
M−1

B) (3)

being the kernel and predicting by y = x ∗K.

However, the Structural State Space Models’ nature of Linear Time-Invariance significantly limits
its capacity to fit contextual information, making it difficult to scale up and achieve performance
comparable to Transformers. The Selective State Space Model, also known as Mamba or S6 (Gu
& Dao, 2023), improves it by introducing input-dependent parameters B = SB(x), C = SC(x),
and ∆ = S∆(x), leading to a time-varying system that can model more complex inputs. Notably,
with associative scan algorithms (Martin & Cundy, 2018; Smith et al., 2022), the Mamba module
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Input: Layer 7: Layer 11: Layer 15: Layer 19: Layer 23:

Figure 2: ℓ2 norm of local image tokens in vision Mamba’s different layers. It shows that massive
artifacts associated with high-norm tokens appear in the low-information areas, making it hard to
distinguish primary objects from the background.

can be trained and inferred efficiently via parallel computing, with detailed mathematical derivations
elaborated in (Gu & Dao, 2023).

To adapt Mamba for visual tasks, images are first processed into sequential inputs through patch
embedding as in ViT. However, the standard Mamba is a unidirectional model where each token in
the sequence can only access information from preceding tokens. This characteristic, while working
well with 1-D language signals, significantly constrains the model’s capacity to gather contextual
information inherently from 2-D visual signals. To overcome this limitation, a common solution is
to reconfigure Mamba blocks for bidirectional scanning. Specifically, the sequence is scanned once
from start to end and again from end to start, with the outputs from both scans subsequently averaged
to obtain a comprehensive representation (Zhu et al., 2024). We follow this scanning design in all
subsequent experiments.

3.2 FEATURE ARTIFACTS OF VISION MAMBA

In ViT, an interpretable feature map can be obtained by visualizing the activation scores in their self-
attention blocks. Ideally, under appropriate pre-training paradigms, these feature maps are expected
to display high attention scores in the informative foreground regions of images and relatively low
scores in less semantic background areas. Nevertheless, a considerable amount of outliers often ap-
pear in these feature maps, which position-wise correspond to low-information background regions
yet exhibit anomalously high attention scores. A recent study (Darcet et al., 2024) has termed these
outliers as feature artifacts. Specifically, this study reveals that the artifact tokens always possess
high normalization values and, during inference, they tend to discard their local information in favor
of retaining global features, thereby ‘compromising’ the quality of the feature map.

This work identifies a similar issue in Vision Mamba models. First, by computing the ℓ2 distances
between vanilla Vision Mamba’s global and local outputs, we observe a considerable amount of
activations in background areas (shown in Figure 1). Further analysis of their normalization reveals
that these background activations also exhibit high normalization values, akin to the artifacts ob-
served in ViTs. For example, by visualizing the ℓ2 normalization of vanilla Vision Mamba’s local
outputs in Figure 2, we can observe a significant presence of high-norm tokens in the background,
even blurring the distinction between foreground and background regions. Quantitatively, we plot
the norm distributions of vanilla Vision Mamba in Figure 3a, where it clearly displays a number of
outliers with high normalization, confirming consistency with previous findings in ViTs as discussed
in (Darcet et al., 2024).

Furthermore, it is equally noteworthy that these artifacts in Vision Mamba function similarly to
those in ViTs in retaining global representations (Darcet et al., 2024). As reported in Table 1, the
vanilla Vision Mamba model can obtain 81.0% ImageNet accuracy by merely using the average of
top 5% high norm tokens as a global feature, which is only 0.1% lower than that of pooling all local
tokens. Increasing this threshold to top 10% or 20% high norm tokens further enables the model to
match the accuracy of using global pooling. In contrast, relying on the remaining 80% of relatively
low-norm tokens results in a performance drop to 79.3%.

Yet differently, we observe that the artifact issues are considerably more severe in Vision Mamba than
in ViTs: these artifacts appear more prevalent in the background areas and exhibit higher normal-
ization values than those observed in ViTs. As shown in Figure 3a, the average norm of the outlier
tokens increases rapidly with the depth of layers, reaching over 4000 by the 23rd layer. Compared
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Figure 3: Distributions of ℓ2 normalization values of local outputs across different layers. It quanti-
tatively shows that our Mamba®effectively reduces the number of high-norm outliers.

Feature Accuracy (%)

class token (default) 81.8
global pooling 81.1
high-norm tokens (top 20%) 81.1
high-norm tokens (top 10%) 81.1
high-norm tokens (top 5%) 81.0
low-norm tokens 79.3

Table 1: Vim-B’s ImageNet accuracy with different
features. Using a small portion of high-norm tokens
for final prediction attains significantly higher accuracy
that that of low-norm tokens.

Tiny                   Small                  Base
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Figure 4: Normalization distribution
across different sizes of Vision Mamba.

to the norms below 100 in shallower features, these extremely high-norm artifacts can easily af-
fect feature extraction and pose significant challenges to model optimization, which may potentially
explain the instability issues and scaling difficulties encountered in Vision Mamba. Additionally,
unlike ViTs where artifacts predominantly appear in larger models, they are present even in the tiny
Vision Mamba models and intensify with increasing model size, as illustrated in Figure 4. These
observations altogether suggest that the artifact issues are crucial for Vision Mamba models and
need to be urgently addressed.

3.3 MAMBA®: VISION MAMBA WITH REGISTERS

Following the solution of removing artifacts in ViT (Darcet et al., 2024), we propose to address this
issue by introducing register tokens into Vision Mamba. We term our new architecture Mamba®.
Unlike the previous method (Darcet et al., 2024) which only appends register tokens at one end of
the input sequence, we hypothesize that by distributing the register tokens more densely throughout
the sequence, our method can 1) better address the more pervasive artifact issue that is unique to
vision mamba; and 2) helps capture global representation that is often missed in vision mamba due
to its uni-directional nature. The framework of Mamba® is illustrated in Figure 5. Overall, we
follow the backbone architecture of vanilla Vision Mamba (Vim) (Zhu et al., 2024), where the input
image is first decomposed into a sequence of non-overlapping patches and then fed into a stack of
bi-directional Mamba blocks. Based on this plain architecture, we make the following two simple
yet very effective modifications to build our Mamba®.

Sparsely distributed register tokens. The input sequence of Mamba®is composed of m image
tokens produced by patch embedding and n register tokens evenly inserted between them. Contrary
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Figure 5: Framework of Mamba®. We address Vision Mamba’s artifact issues by evenly inserting
input-independent register tokens into the input sequence. In the final layer, we concatenate the
output of register tokens to form a global representation for final predictions.

Table 2: Configurations of Mamba®series models. We set patch size to 16 by default for all models.

Model Depth Embed dim (d) #Registers (n) Reduce (r) #Params

Mamba®-Tiny 24 192 12 1 9M
Mamba®-Small 24 384 12 2 28M
Mamba®-Base 24 768 12 4 98M
Mamba®-Large 48 1024 16 8 340M

to the self-attention module where token outputs are agnostic to their positions, in Mamba, it is
crucial to strategically place the registers to ensure effective interaction with local tokens. Intuitively,
for the recurrent Mamba model, sparsely distributed registers facilitate capturing and preserving
important semantic information across different positions. In our experiments, we also empirically
confirm that this token positioning enhances both quantitative and qualitative performance.

Register head for final prediction. Different from ViTs which simply discard registers during
the final prediction, we observe that recycling them as a global representation yields significant
improvements for vision Mamba. Specifically, given n d-dimensional register vectors, we first apply
a linear layer to reduce their dimensionality by a factor of r, and then concatenate them into a single
vector in dimension of n × d/r, which we refer to as the register head. Note that the choice to
concatenate, rather than average, is motivated by the multi-head mechanism in self-attention, where
concatenation is more effective at retaining information from all heads. The detailed configurations
of Mamba®can be found in Table 2.

In addition, as shown in Figure 6, we observe that in certain cases, our registers can interestingly
display distinct feature patterns highlighting different objects or semantic elements within a scene,
an intriguing aspect that is not explicitly optimized. Given that Mamba currently lacks a multi-head
mechanism, this property could have the potential to offer a valuable dimension for interpreting
Mamba’s feature representations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We primarily evaluate our Mamba® on the standard ImageNet (Deng et al., 2009) dataset, which
consists of ∼1.28 million training images and 50,000 validation images spread across 1,000 cate-
gories. Our training setup mostly follows the protocols established in DeiT (Touvron et al., 2021).
Specifically, we use AdamW optimizer (Loshchilov & Hutter, 2019) with a momentum of 0.9, a
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Input:

Input:

[Reg 0] [Reg 2] [Reg 3] [Reg 5] [Reg 7]

[Reg 1] [Reg 4] [Reg 5] [Reg 8] [Reg 10]

Figure 6: Feature maps for different register tokens. The registers sometimes can attend to different
parts or semantics with an image. Similar to the multi-head self-attention mechanism, this property
is not required but naturally emerges from training.

Table 3: ImageNet classification results. The throughput is tested on an A100 GPU. The memory
overhead is measured with a batch size of 128 on a single GPU. Our results are highlighted in blue .

Model Img. size #Params Throughput Mem. Acc. (%)

Convolutional networks:
ResNet-50 (He et al., 2016) 2242 25M 2388 6.6G 76.2
ResNet-152 (He et al., 2016) 2242 60M 1169 12.5G 78.3
EfficientNet-B3 (Tan & Le, 2019) 3002 12M 546 19.7G 81.6
EfficientNet-B5 (Tan & Le, 2019) 4562 30M 143 78.5G 83.6
EfficientNet-B7 (Tan & Le, 2019) 5602 66M 61 >80G 84.3
ConvNeXt-T (Liu et al., 2022) 2242 29M 635 8.3G 82.1
ConvNeXt-S (Liu et al., 2022) 2242 50M 412 13.1G 83.1
ConvNeXt-B (Liu et al., 2022) 2242 89M 305 17.9G 83.8

Vision Transformers:
ViT-B/16 (Dosovitskiy et al., 2021) 3842 86M 201 63.8G 77.9
ViT-L/16 (Dosovitskiy et al., 2021) 3842 307M 95 >80G 76.5
DeiT-S (Touvron et al., 2021) 2242 22M 1924 6.8G 79.8
DeiT-B (Touvron et al., 2021) 2242 86M 861 14.4G 81.8
DeiT-B (Touvron et al., 2021) 3842 86M 201 63.8G 83.1

Hybrid architecture (2D convolution + Mamba):
VMamba-T (Liu et al., 2024b) 2242 31M 464 7.6G 82.5
VMamba-S (Liu et al., 2024b) 2242 50M 313 27.6G 83.6
VMamba-B (Liu et al., 2024b) 2242 89M 246 37.1G 83.9

Pure Mamba architecture:
Vim-T (Zhu et al., 2024) 2242 7M 750 4.8G 76.1
Vim-S (Zhu et al., 2024) 2242 26M 395 9.4G 80.5
Mamba®-T 2242 9M 746 5.1G 77.4
Mamba®-S 2242 28M 391 9.9G 81.4
Mamba®-B 2242 99M 196 20.3G 83.0

3842 99M 63 51.4G 84.3
Mamba®-L 2242 341M 67 55.5G 83.6

3842 342M 23 >80G 84.5

weight decay of 0.05, a cosine annealing learning rate starting at 1×10−3, a batch size of 1024
for Mamba®-Tiny, Small, and Base, and a batch size of 2048 for Mamba®-Large. For better effi-
ciency and preventing over-fitting, we train each model for 300 epochs in 128×128 input size and
fine-tune in 224×224 with stronger data augmentation strategies. We also empirically find a 100-
epoch intermediate finetuning with weak augmentation can further improve the results. In total, the
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Table 4: Semantic segmentation results on
ADE20K. All models are trained with an
UperNet head and 512×512 input size. Our
results are highlighted in blue

Backbone #Parameters mIoU (%)

ResNet-50 67M 41.2
ResNet-101 86M 44.9

DeiT-S 58M 43.8
DeiT-B 144M 45.5

Vim-Ti 13M 41.0
Vim-S 46M 44.9

Mamba®-S 56M 45.3
Mamba®-B 132M 47.7
Mamba®-L 377M 49.1

Table 5: Ablation study of registers with a
Mamba®-Base (d=768). The final output dimen-
sion is calculated by d × n/r, where r < 1 de-
notes increasing the dimension. Note that the
case n = r = 1 is equivalent to vanilla Vi-
sion Mamba (Vim) with a class token (marked in
gray . Our default setup is highlighted in blue .

The best result is bolded.

#Reg (n) Rdc (r) Final dim. Acc. (%)

1 1 768 81.8
1 1/3 2304 82.0
3 1 2304 82.8
6 2 2304 82.8

12 4 2304 83.0
24 4 4608 82.6

training process leads to ∼230 effective training epochs in 224×224 image size, yet significantly
outperforms its 300-epoch counterparts. A detailed training recipe can be found in the Appendix.

We further evaluate models’ downstream performance on semantic segmentation using the
ADE20k (Zhou et al., 2019) dataset, which comprises 150 fine-grained semantic categories dis-
tributed across 20K training images, 2K validation images, and 3K test images. Following the
existing baseline models (Touvron et al., 2021; Zhu et al., 2024), we choose UperNet (Xiao et al.,
2018) as the segmentation head. We utilize AdamW optimizer with a weight decay of 0.01. The
models are optimized with a total batch size of 16 for 160k iterations.

4.2 MAIN RESULTS

Image classification. As illustrated in Table 3, our Mamba® demonstrates strong performance
on ImageNet. Compared to the existing pure Mamba architecture, Vim (Zhu et al., 2024),
Mamba® shows a significant improvement, outperforming Vim by 1.3% for the Tiny model and
by 0.6% for the Small model. More importantly, compared to Vim, our Mamba® exhibits signif-
icant enhancement in scalability: we successfully train a Base (99M parameters, achieving 83.0%
accuracy) and even a Large (341M parameters, achieving 83.2% accuracy) size Mamba architec-
tures in vision. This performance can be further enhanced by finetuning with the input resolutions
increased to 384×384—our highest accuracy is 84.5%, which outperforms all prior Mamba variants
in ImageNet classification.

Semantic segmentation. As shown in Table 4, Mamba® consistently exhibits superior semantic
segmentation performance on the ADE20k dataset (Zhou et al., 2019). For example, when com-
pared with Vim-S (Zhu et al., 2024), our Mamba®-S achieves an improvement of 0.4% mIoU. By
further scaling up, our Mamba®-B model (featuring 132M parameters) records an mIoU of 47.7%,
notably outperforming a similarly-sized DeiT-B model by 2.2% mIoU (results for DeiT are refer-
enced from Liu et al. (2024b)). Additionally, our Mamba®-L (with 377M parameters) also shows
great scalability in the segmentation task, achieving 49.1% mIoU on the ADE20k benchmark.

4.3 ABLATION STUDY

Basically, in our models, introducing register tokens brings two effects: 1) the inherent benefits of
the register itself, including the reduced number of high-norm artifact tokens (see Figure 3b) and
enhanced feature extraction capabilities; and 2) the changes in output dimensions caused by the
register head (i.e., the n × d/r output dimension). Here we present ablation studies to separately
demonstrate the impact of these two effects on predictive performance.

Number of registers. We first ablate how the number of registers affects the model’s ImageNet
accuracy. As summarized in Table 5, inserting registers generally leads to consistent performance
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Table 6: Ablation study of register positions and final prediction protocols. R and I denote reg-
ister and image tokens respectively. The column “Final prediction” implies how global feature is
computed. R1 only: use one of the registers and discard others. “Reduce and concat” is our default
setting that leverages a linear layer to reduce registers’ dimension and concatenate them as global
representation.

Mode Register positions Final prediction Accuracy (%)

Head R1 R2 I1 I2 I3 I4 I5 I6
R1 only 81.3

Mean of registers 81.4
Reduce and concat 82.1

Middle I1 I2 I3 R1 R2 I4 I5 I6
R1 only 81.8

Mean of registers 82.0
Reduce and concat 82.6

Even I1 I2 R1 I3 I4 R2 I5 I6
R1 only 81.7

Mean of registers 82.2
Reduce and concat 83.0

enhancements, with 0.8% and 1.0% higher accuracy compared with vanilla Mamba architectures
in both the Small size and the Base size. Additionally, we observe that simply increasing the out-
put dimension has little benefit to the performance. For example, by projecting Vim-Base’s 768-
dimensional latent output size into 2304, the accuracy is only improved by 0.1%. Furthermore, we
observed that using 12 registers is a sweet point for both the Small size and the Base size; after that,
the performance will saturate and may even drop if the final aggregated feature dimension is high
(e.g., 4608).

Registers design choice. Next, we ablate our design choices of registers, i.e., evenly inserting reg-
isters and reuse them for final prediction. The results are reported in Table 6. First, we note the
performance is sensitive to the positioning of the registers. For instance, positioning all registers at
the beginning of the sequence results in a performance decrease of 0.8% (82.1% vs.83.0%). Simi-
larly, positioning all registers in the middle of the sequence, the best strategy reported by Vim (Zhu
et al., 2024), still led to a 0.3% drop in performance, which suggests that the sparse distribution
of registers helps with feature extraction for Vision Mamba. These noticeable performance gaps
highlight the necessity of evenly inserting registers between image tokens, as Mamba’s nature of
recurrence makes it sensitive to its token positions in the input sequence.

Further distinctions in register utility are observed when comparing with previous findings (Darcet
et al., 2024), which indicate that registers primarily aid in enhancing ViT’s feature representation.
In contrast, our study demonstrates that the registers play a crucial role in boosting the quantitative
performance of Vision Mamba architectures. Notably, utilizing our default method of evenly dis-
tributed registers and reusing all for the final prediction achieved an accuracy of 83.0%, surpassing
the approach that uses only one register (R1 only; the rest of the tokens are discarded) by 1.2%.
These results affirm that registers constitute a vital component of the Vision Mamba architecture.

5 CONCLUSION

In this paper, we explored the nature of artifacts within the feature maps of Vision Mamba, con-
trasting these with those observed in Vision Transformers. Specifically, we implemented a novel ar-
chitecture named Mamba®, incorporating registers strategically to enhance image processing. Our
empirical assessments demonstrate that, qualitatively, Mamba® not only reduces the presence of
artifacts but also sharpens the focus on semantically relevant areas within images, leading to cleaner
and more effective feature maps. Quantitatively, Mamba® not only surpasses its predecessors in
accuracy but also exhibits superior scalability, handling larger model sizes with competitive accu-
racy. We hope this work can establish a solid backbone architecture for future research in optimizing
Mamba architectures in vision.
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A APPENDIX

A.1 MORE TECHNICAL DETAILS

Table 7: Pre-training configurations

Configuration Small Base Large
input size 128
epochs 300
optimizer AdamW
weight decay 0.05
base learning rate 5e-4 2e-4 2e-4
batch size 1024 2048 2048
drop path 0.1
label smoothing ✗
random erasing ✗
Rand Augmentation ✗
repeated augmentation ✓
ThreeAugmentation ✓

Table 8: Intermediate training configurations

Configuration Small Base Large
input size 224
epochs 100
optimizer AdamW
weight decay 0.05
base learning rate 2e-4
batch size 1024
drop path 0.2 0.4 0.4
label smoothing ✗
random erasing ✗
Rand Augmentation ✗
repeated augmentation ✓
ThreeAugmentation ✓

Table 9: Fine-tuning configurations

Configuration Small Base Large
input size 224
epochs 20
optimizer AdamW
weight decay 0.1
base learning rate 1e-5
batch size 512
drop path 0.2 0.4 0.6
label smoothing 0.1
random erasing ✗
Rand Augmentation rand-m9-mstd0.5-inc1
repeated augmentation ✗
ThreeAugmentation ✗

We train Mamba®-Tiny by the configurations of DeiT-Tiny (Touvron et al., 2021) but fol-
low a weaker data augmentation strategy used in (Touvron et al., 2022). For bigger sizes of
Mamba®models, we use a three-stage training approach to prevent over-fitting and reduce effective
training epochs. We summarize the recipes of pre-training, intermediate training, and fine-tuning
in Table 7, Table 8, and Table 9, respectively. For all stages, the learning rate is calculated by
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base lr ∗ batchsize/512, following a cosine decay scheduling with 5 epochs warmup. We use color
jitter with a factor of 0.3, mixup and cutmix with alpha setting to 0.8 and 1.0, respectively.
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