
Parameter-Level Soft-Masking for Continual Learning

Tatsuya Konishi 1 † Mori Kurokawa 1 Chihiro Ono 1 Zixuan Ke 2 Gyuhak Kim 2 Bing Liu 2

Abstract
Existing research on task incremental learning in
continual learning has primarily focused on pre-
venting catastrophic forgetting (CF). Although
several techniques have achieved learning with no
CF, they attain it by letting each task monopolize a
sub-network in a shared network, which seriously
limits knowledge transfer (KT) and causes over-
consumption of the network capacity, i.e., as more
tasks are learned, the performance deteriorates.
The goal of this paper is threefold: (1) overcoming
CF, (2) encouraging KT, and (3) tackling the ca-
pacity problem. A novel technique (called SPG) is
proposed that soft-masks (partially blocks) param-
eter updating in training based on the importance
of each parameter to old tasks. Each task still uses
the full network, i.e., no monopoly of any part of
the network by any task, which enables maximum
KT and reduction in capacity usage. To our knowl-
edge, this is the first work that soft-masks a model
at the parameter-level for continual learning. Ex-
tensive experiments demonstrate the effectiveness
of SPG in achieving all three objectives. More
notably, it attains significant transfer of knowl-
edge not only among similar tasks (with shared
knowledge) but also among dissimilar tasks (with
little shared knowledge) while mitigating CF.

1. Introduction
Catastrophic forgetting (CF) and knowledge transfer (KT)
are two key challenges of continual learning (CL), which
learns a sequence of tasks incrementally. CF refers to the
phenomenon where a model loses some of its performance
on previous tasks once it learns a new task. KT means that
tasks may help each other to learn by sharing knowledge.

†The work was done when this author was visiting Bing
Liu’s group at University of Illinois at Chicago. 1KDDI Re-
search, Inc., Fujimino, Japan. 2University of Illinois at Chicago,
Chicago, United States. Correspondence to: Tatsuya Konishi <tt-
konishi@kddi.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

This work further investigates these problems in the popular
CL paradigm, task-incremental learning (TIL). In TIL, each
task consists of several classes of objects to be learned.
Once a task is learned, its data is discarded and will not be
available for later use. During testing, the task id is provided
for each test sample so that the corresponding classification
head of the task can be used for prediction.

Several effective approaches have been proposed for TIL
that can achieve learning with little or no CF. Parameter
isolation is perhaps the most successful one in which the sys-
tem learns to mask a sub-network for each task in a shared
network. HAT (Serra et al., 2018) and SupSup (Worts-
man et al., 2020) are two representative systems. HAT set
binary/hard masks on neurons (not parameters) that are im-
portant for each task. In learning a new task, those masks
block the gradient flow through the masked neurons in the
backward pass. Only those free (unmasked) neurons and
their parameters are trainable. Thus, as more tasks are
learned, the number of free neurons left becomes fewer,
making later tasks harder to learn, which results in gradual
performance deterioration (see Section 4.2.1). Further, if a
neuron is masked, all the parameters feeding to it are also
masked, which consumes a great deal of network capacity
(hereafter referred to as the “capacity problem”). As the
sub-networks for old tasks cannot be updated, it has limited
knowledge transfer. CAT (Ke et al., 2020) tries to improve
KT of HAT by detecting task similarities. If the new task is
found similar to some previous tasks, these tasks’ masks are
removed so that the new task training can update the param-
eters of these tasks for backward pass. However, this is risky
because if a dissimilar task is detected as similar, serious
CF occurs, and if similar tasks are detected as dissimilar, its
knowledge transfer will be limited. SupSup uses a backbone
network (randomly initialized) and finds a sub-network for
each task. The sub-network is represented by a mask, which
is a set of binary gates indicating which parameters in the
network are used. The mask for each task is saved. Since
the network is not changed, SupSup has no CF or capacity
problem, but since each mask is independent of other masks,
SupSup by design has no KT.

To tackle these problems, we propose a very different ap-
proach, named “Soft-masking of Parameter-level Gradient
flow” (SPG). It is surprisingly effective and contributes in
following ways:

1

Parameter-Level Soft-Masking for Continual Learning

(1). Instead of learning hard/binary masks on neurons for
each task and blocking these neurons in training a new
task and in testing like HAT, SPG computes an importance
score for each network parameter (not neuron) to old tasks
using gradients. The reason that gradients can be used as
importance is because gradients directly tell how a change
to a specific parameter will affect the output classification
and may cause CF. SPG uses the importance score of each
parameter as a soft-mask to constrain the gradient flow in
the backward pass to ensure those important parameters to
old tasks have minimum changes in learning a new task
to prevent CF of previous knowledge. To our knowledge,
soft-masking of parameters has not been done before.

(2). SPG has some resemblance to the popular regularization-
based approach, e.g., EWC (Kirkpatrick et al., 2017), in that
both use importance of parameters to constrain changes to
important parameters of old tasks. But there is a major differ-
ence. SPG directly controls each parameter (fine-grained),
but EWC controls all parameters together using a regular-
ization term in the loss to penalize the sum of changes to
all parameters in the network (rather coarse-grained). Sec-
tion 4.2 shows that our soft-masking is markedly better
than regularization. We believe this is an important result.

(3). In the forward pass, no masks are applied, which en-
courages knowledge transfer among tasks. This is better
than CAT as SPG does not need extra mechanism for task
similarity comparison. Knowledge sharing and transfer in
SPG are automatic. SupSup cannot do knowledge transfer.

(4). As SPG soft-masks parameters, it does not monopolize
any parameters or sub-network like HAT for each task and
SPG’s forward pass does not use any masks. This reduces
the capacity problem.

Experiments with the standard CL setup have been con-
ducted with (1) similar tasks to demonstrate SPG’s better
knowledge transfer and (2) dissimilar tasks to show SPG’s
ability to overcome CF, and (3) deal with the capacity issue.
None of the baselines is able to achieve all. The code is avail-
able at https://github.com/UIC-Liu-Lab/spg.

2. Related Work
Approaches in continual learning can be grouped into three
main categories. We review them below.

Regularization-based: This approach computes impor-
tance values of either parameters or their gradients on pre-
vious tasks, and adds a regularization in the loss to re-
strict changes to those important parameters to mitigate
CF. EWC (Kirkpatrick et al., 2017) uses the Fisher infor-
mation matrix to represent the importance of parameters
and a regularization to penalize the sum of changes to all
parameters. SI (Zenke et al., 2017) extends EWC to re-

duce the complexity in computing the penalty. Many other
approaches (Li & Hoiem, 2016; Zhang et al., 2020; Ahn
et al., 2019) in this category have also been proposed, but
they still have difficulty to prevent CF. As discussed in the
introduction section, the proposed approach SPG has some
resemblance to a regularization based method EWC. But
the coarse-grained approach of using regularization is sig-
nificant poorer than the fine-grained soft-masking in SPG
for overcoming CF as we will see in Section 4.2.

Memory-based: This approach introduces a small memory
buffer to store data of previous tasks and replay them in
learning a new task to prevent CF (Lopez-Paz & Ranzato,
2017; Chaudhry et al., 2019). Some methods (Shin et al.,
2017; Deja et al., 2021) prepare data generators for previous
tasks, and the generated pseudo-samples are used instead of
real samples. Although several other approaches (Rebuffi
et al., 2017; Riemer et al., 2019; Aljundi et al., 2019) have
been proposed, they still suffer from CF. SPG does not save
replay data or generate pseudo-replay data.

Parameter isolation-based: This approach is most sim-
ilar to ours SPG. It tries to learn a sub-network for each
task (tasks may share parameters and neurons), which limits
knowledge transfer. We have discussed HAT, SupSup, and
CAT in Section 1. Many others also take similar approaches,
e.g., Progressive Networks (PGN) (Rusu et al., 2016),
APD (Yoon et al., 2020), PathNet (Fernando et al., 2017),
PackNet (Mallya & Lazebnik, 2018), SpaceNet (Sokar et al.,
2021), and WSN (Kang et al., 2022). In particular, PGN
allocates a sub-network for each task in advance, and pro-
gressively concatenates previous sub-networks while freez-
ing parameters allocated to previous tasks. APD selectively
reuses and dynamically expands the dense network. Those
methods, however, depend on the expansion of network for
their performance, which is often not acceptable in cases
where many tasks need to be learned. PathNet splits each
layer into multiple sub-modules and finds the best pathway
designated to each task. PackNet freezes important weights
for each task by finding them based on pruning. Although
PathNet and PackNet do not expand the network along with
continual learning, they suffer from over-consumption of
the fixed capacity. To address this, SpaceNet adopts the
sparse training to preserve parameters for future tasks but
the performance for each task is sacrificed. WSN also allo-
cates a subnetwork within a dense network and selectively
reuses subnetworks for previous tasks without expanding
the whole network. Nevertheless, those methods are still
limited by the pre-allocated network size as each task mo-
nopolizes and consumes some amount of capacity, which
results in poorer KT when learning many tasks.

In summary, parameter isolation-based methods suffer from
over-consumption of network capacity and have limited KT,
which the proposed method tries to address at the same time.

2

https://github.com/UIC-Liu-Lab/spg

Parameter-Level Soft-Masking for Continual Learning

3. Proposed SPG

(a) Train task 𝑡 until convergence
Forward pass

Backward pass

(b) Compute importance after training task 𝑡

… …

𝒈′! ← 1 − 𝜸!"#$% 𝒈!

𝐻!

𝐻"

…

𝐿","

𝒈′&! ← 1 − 𝜸'"#$% 𝒈&!Soft-masking:

… …

Parameter 𝜽!

𝐻!

𝐻"

…

𝑀"(𝑋")

𝑋"

<latexit sha1_base64="qVg1XKdhPsKP/F3xeJCBd1dnJXg=">AAAB9HicdVDLSgMxFM3UV62vqks3wSK4GjK1Tu2u6MaNUME+oB1KJs20oZnMmGQKZeh3uHGhiFs/xp1/Y6atoKIHAodz7uWeHD/mTGmEPqzcyura+kZ+s7C1vbO7V9w/aKkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH19lfntCpWKRuNPTmHohHgoWMIK1kbxeiPWIYJ7ezPq6XywhG1XdMnIhst3yeQ1VDKmVz9xaFTo2mqMElmj0i++9QUSSkApNOFaq66BYeymWmhFOZ4VeomiMyRgPaddQgUOqvHQeegZPjDKAQSTNExrO1e8bKQ6Vmoa+mcxCqt9eJv7ldRMdXHgpE3GiqSCLQ0HCoY5g1gAcMEmJ5lNDMJHMZIVkhCUm2vRUMCV8/RT+T1pl23Htym2lVL9c1pEHR+AYnAIHVEEdXIMGaAIC7sEDeALP1sR6tF6s18VozlruHIIfsN4+AZA+kqY=</latexit>Mt

… …

𝜸!"# (via 𝜸!
#,()

𝐻$

𝐻"

𝐿",$𝑋"

<latexit sha1_base64="o53XdTglEFw8OEAJ1mIv3TMULAo=">AAAB+XicdVDLSgMxFM34rPU16tJNsAiuhkytU7srunEjVLAP6AxDJs20oZkHSaZQhv6JGxeKuPVP3Pk3ZtoKKnogcDjnXu7JCVLOpELow1hZXVvf2Cxtlbd3dvf2zYPDjkwyQWibJDwRvQBLyllM24opTnupoDgKOO0G4+vC706okCyJ79U0pV6EhzELGcFKS75puhFWI4J5fjvzXYUz36wgC9WdKnIgspzqRQPVNGlUz51GHdoWmqMClmj55rs7SEgW0VgRjqXs2yhVXo6FYoTTWdnNJE0xGeMh7Wsa44hKL58nn8FTrQxgmAj9YgXn6veNHEdSTqNATxY55W+vEP/y+pkKL72cxWmmaEwWh8KMQ5XAogY4YIISxaeaYCKYzgrJCAtMlC6rrEv4+in8n3Sqlu1YtbtapXm1rKMEjsEJOAM2qIMmuAEt0AYETMADeALPRm48Gi/G62J0xVjuHIEfMN4+AVfslCc=</latexit>M⌧

Compute importance:

𝐿","

Figure 1. When learning task t, SPG proceeds in two steps. Black
(solid) and green (dashed) arrows represent forward and backward
propagation, respectively. Ht denotes the head for task t. (a)
Training of a model. In the forward pass, nothing extra is done. In
the backward pass, the gradients of parameters in the feature ex-
tractor gi are changed to g′

i, based on the accumulated importance
(γ≤t−1

i). For parameters of the head for task t, their gradients gHt

are changed to g′
Ht

using the average of accumulated importance
(γ̄≤t−1). (b) Computation of the accumulated importance γ≤t

i .

As discussed in Section 1, the current parameter isolation
approaches like HAT (Serra et al., 2018) and SupSup (Worts-
man et al., 2020) are very effective for overcoming CF, but
they hinder knowledge transfer and/or consume too much
learning capacity of the network. For such a model to im-
prove knowledge transfer, it needs to decide which parame-
ters can be shared and updated for a new task. That is the
approach taken in CAT (Ke et al., 2020). CAT finds similar
tasks and removes their masks for updating, but may find
wrong similar tasks, which causes CF. Further, parameters
are the atomic information units, not neurons, which HAT
masks. If a neuron is masked, all parameters feeding into
it are masked, which costs a huge amount of learning ca-
pacity. SPG directly soft-masks parameters based on their
importance to previous tasks, which is a more flexible and
uses much less learning space. Soft-masking clearly enables
automatic knowledge transfer.

Figure 1 and Algorithm 1 illustrate how SPG works. In SPG,
the importance of a parameter to a task is computed based
on its gradient. We do so because gradients of parameters
directly and quantitatively reflect how much changing a pa-
rameter affects the final loss. Additionally, we normalize the
gradients of the parameters within each layer to make rela-
tive importance more reliable as gradients in different layers

Algorithm 1 Continual Learning in SPG.

1: for t = 1, · · · , T do
2: # Training of task t. Mt is the model for task t

(see Figure 1(a)).
3: repeat
4: Compute gradients {gi} and gHt

withMt using
the task t’s data (Xt,Yt).

5: for all parameters of i-th layer do
6: g′

i ← Equation (6)
7: end for
8: for all parameters of the task t’s head do
9: g′

Ht
← Equation (7)

10: end for
11: UpdateMt with the modified gradients {g′

i} and
g′
Ht

.
12: untilMt converges.
13: # Computing the importance of parameters after

training task t (see Figure 1(b)).
14: for τ = 1, · · · , t do
15: Compute a loss Lt,τ in Equation (2).
16: for all parameters of i-th layer do
17: γt,τ

i ← Equation (1)
18: end for
19: end for
20: for all parameters of i-th layer do
21: γt

i ← Equation (4), γ≤t
i ← Equation (5)

22: end for
23: Store only {γ≤t

i } for future tasks.
24: end for

can have different magnitude. The normalized importance
scores are accumulated by which the corresponding gradi-
ents are reduced in the optimization step to avoid forgetting
the knowledge learned from the previous tasks.

3.1. Computing the Importance of Parameters

This procedure corresponds to Figure 1(b). The importance
of each parameter to task t is computed right after complet-
ing the training of task t following these steps. Task t’s
training data, (Xt,Yt), is given again to the trained model
of task t, and the gradient of each parameter in i-th layer
(i.e., each weight or bias of each layer) is then computed
and used for computing the importance of the parameter.
Note that we use θi (a vector) to represent all parameters
of the i-th layer. This process does not update the model
parameters. The reason that the importance is computed
after training of the current task has converged is as follows.
Even after a model converges, some parameters can have
larger gradients, which indicate that changing those parame-
ters may take the model out of the (local) minimum leading
to forgetting. On the contrary, if all parameters have similar
gradients (i.e, balanced directions of gradients), changing

3

Parameter-Level Soft-Masking for Continual Learning

ℎ! "
#$%

ℎ! &!"#
#$%

…

ℎ! '
#

ℎ! &!
#

…

𝑤'"# Task 𝜏’s
head ℒ!,!

(a) After learning task 𝜏

ℎ) "
#$%

ℎ) &!"#
#$%

…

ℎ) '
#

ℎ) &!
#

…

𝑤'"# Task 𝜏’s
head

Task 𝑡’s
head

ℒ),!

ℒ),)

Additional loss for CHI

(b) After learning task 𝑡	(𝑡 > 𝜏)

<latexit sha1_base64="o53XdTglEFw8OEAJ1mIv3TMULAo=">AAAB+XicdVDLSgMxFM34rPU16tJNsAiuhkytU7srunEjVLAP6AxDJs20oZkHSaZQhv6JGxeKuPVP3Pk3ZtoKKnogcDjnXu7JCVLOpELow1hZXVvf2Cxtlbd3dvf2zYPDjkwyQWibJDwRvQBLyllM24opTnupoDgKOO0G4+vC706okCyJ79U0pV6EhzELGcFKS75puhFWI4J5fjvzXYUz36wgC9WdKnIgspzqRQPVNGlUz51GHdoWmqMClmj55rs7SEgW0VgRjqXs2yhVXo6FYoTTWdnNJE0xGeMh7Wsa44hKL58nn8FTrQxgmAj9YgXn6veNHEdSTqNATxY55W+vEP/y+pkKL72cxWmmaEwWh8KMQ5XAogY4YIISxaeaYCKYzgrJCAtMlC6rrEv4+in8n3Sqlu1YtbtapXm1rKMEjsEJOAM2qIMmuAEt0AYETMADeALPRm48Gi/G62J0xVjuHIEfMN4+AVfslCc=</latexit>M⌧

Figure 2. Cross-head importance (CHI). In the above figures, thl
i

and wl
ij represents the output of the i-th neuron in the l-th layer

just after training task t and the parameter in l-th layer connecting
between the neurons thl

i to thl+1
j , respectively. (a) The importance

of wl
ij to task τ is computed based on its gradient, ∂Lτ,τ/∂wl

ij

and then accumulated. (b) After learning task t (t > τ), the state of
related parameters might have been changed. To reflect importance
to task τ again with the current neurons’ output (e.g., thl

i rather
than old τhl

i), an additional loss, Lt,τ , is computed at task τ ’s
head using task t’s data as unlabeled data for task τ .

the parameters will not likely to change the model much to
cause forgetting. Based on this assumption, we utilize the
normalized gradients after training as a signal to indicate
such dangerous parameter updates. The proposed mecha-
nism in SPG has the merit that it keeps the model flexible
as it does not fully block parameters using an importance
threshold or binary masks. While HAT completely blocks
important neurons, which results in the loss of trainable
parameters over time, SPG allows most parameters remain
“alive” even when most of them do not change much.

Additionally, computing the gradients based only on the
model (Mt) of the current task t does not deal with another
issue. We use an example illustrated in Figure 2. For exam-
ple, just after learning task τ , the gradient of a parameter is
computed and normalized among the same layer’s parame-
ters to be accumulated. Even though during learning task
t (t > τ), the parameter is not much changed considering
its accumulated importance, at the end of learning task t,
the state of related parameters might have been changed,
by which the normalized importance may become less use-
ful. To reflect the parameter’s importance to task τ again in
the current network state, we introduce cross-head impor-
tance (CHI) mechanism. In particular, an additional loss,
Sum(Mτ (Xt)), is computed with each previous task’s
head by substituting task t’s data as unlabeled data for the
previous tasks. By taking this loss, parameters affecting the
logits more for previous tasks are regarded more important.
Finally, both the normalized importance computed for the
current task’s head and the ones for previous tasks’ heads in
CHI are considered by taking element-wise maximum, as
shown in Equation (4).

To put things together, the proposed method computes the
normalized importance, γt

i , of the parameters of the i-th
layer, θi, using each task τ ’s model (1≤τ≤ t),Mτ .

γt,τ
i =

∣∣∣∣tanh(Norm

(
∂Lt,τ

∂θi

))∣∣∣∣ , (1)

Lt,τ =

{
L (Mτ (Xt) ,Yt) (τ = t)

Sum (Mτ (Xt)) (τ < t)
, (2)

Norm(x) =
x−Mean(x)√

Var(x)
, (3)

γt
i = max

(
γt,1
i , · · · ,γt,t

i

)
, (4)

where max (·) and L mean element-wise maximum and a
loss function, respectively. Equation (1) normalizes the gra-
dients over the same layer to avoid the discrepancies caused
by large differences of gradient magnitudes in different lay-
ers. For the current task’s head (i.e., τ = t), a normal loss
function (e.g., cross entropy) is used as Lt,t in Equation (2).
However, for each previous task’s head (when τ <t), since
the current task data do not belong to any previous classes,
the loss Lt,τ is defined by Sum(Mτ (Xt)) over previous
classes’ logits in the proposed CHI mechanism. Essentially,
this operation computes the importance of parameters based
on the data of task t’s impact on all tasks learned so far.
Finally, to prevent forgetting as much as possible, we take
the accumulated importance, γ≤t

i , as follows:

γ≤t
i = max

(
γt
i ,γ

≤t−1
i

)
, (5)

where an all-zero vector is used as γ≤0
i . This γ≤t

i depicts
how important each parameter is to all the learned tasks.

Memory needed to save parameter importance: Regard-
less of the number of tasks, at any time only the accumulated
importance γ≤t

i is saved after the learning of each task so
that it can be used again in the next task for Equation (5).
γ≤t
i has the same size as the number of parameters, |θi|.

3.2. Soft-Masking of Feature Extractor

This procedure appears in Figure 1(a). To suppress the
update of important parameters in the backward pass in
learning task t, the gradients of all parameters in the shared
feature extractor are modified (i.e., soft-masked) based on
the accumulated importance as follows (i.e., each param-
eter is soft-masked by a different amount according to its
accumulated importance):

g′
i =

(
1− γ≤t−1

i

)
gi, (6)

where gi and g′
i represent the original gradients of the pa-

rameters of the i-th layer (i.e., θi) and the modified ones,
which will be used in the actual optimization, respectively.

4

Parameter-Level Soft-Masking for Continual Learning

3.3. Soft-Masking of Classification Head

We found that the above soft-masking may induce another
problem. If only the feature extractor’s parameters are soft-
masked, the model will try to find an optimal solution mainly
by updating the classification head since its parameters are
not masked and thus can be updated more easily than the
feature extractor. However, this discourages the learning of
the feature extractor, which hinders knowledge transfer.

To achieve a balanced training of the feature extractor and
the classification head, we need to slow down the learning
of the head by reducing the gradients of the head’s parame-
ters based on how much the feature extractor’s parameters
are soft-masked. We still use the soft-masking idea, but all
parameters in the head are soft-masked by an equal amount.
Specifically, the gradients of all parameters in task t’s head,
gHt , are soft-masked by the average (γ̄≤t−1) of the ac-
cumulated importance of all the parameters in the feature
extractor (i.e., {γ≤t−1

i }). The modified gradients, g′
Ht

, are
used in optimization.

g′
Ht

=
(
1− γ̄≤t−1

)
gHt

(7)

Note that SPG has no specific hyper-parameter and does
not employ anything special in the forward pass except it
needs the task id to locate the correct head, which follows
the standard TIL scenario. To our knowledge, neither soft-
masking of the parameters in the feature extractor nor in the
classification head has been done by any existing work.

4. Experiments
Datasets: The proposed SPG is evaluated using 5 CL
datasets. Their statistics are given in Table 1. Below, we use
“-n” to depict that n tasks are created from each dataset (n
takes 10 or 20). Classes in the first three datasets are split by
task, so each task has a disjoint set of classes. On the other
hand, all tasks in the last two datasets have the same set of
classes. We refer to the tasks in the former datasets as “dis-
similar tasks” in which CF is the essential problem to solve,
while we regard the tasks in latter datasets as “similar tasks”
as the ability of knowledge transfer is more important.

(1) CIFAR100-n (C-n): CIFAR100 (Krizhevsky & Hin-
ton, 2009) is a dataset that has images of 100 classes. We
split it into n tasks so that each task has 100/n classes. (2)
TinyImageNet-n (T-n): TinyImageNet (Wu et al., 2017) is
a modified subset of the original ImageNet (Russakovsky
et al., 2015) dataset, and has 200 classes. Each task contains
200/n classes. (3) ImageNet-100 (I-100): ImageNet (Rus-
sakovsky et al., 2015) contains 1000 classes of objects. We
split it to 100 tasks, each of which has 10 classes, to stress-
test systems using a large number of tasks and classes. (4)
F-CelebA-n (FC-n): Federated CelebA (Liu et al., 2015) is
a dataset of celebrities’ face images with several attributes.

Table 1. Statistics of the CL datasets. n can take 10 and 20. Vali-
dation sets are used for early stopping.

Dataset #Tasks #Classes per task #Train #Validation #Test

C-n n 100/n 45, 000 5, 000 10, 000
T-n n 200/n 90, 000 10, 000 10, 000

I-100 100 10 1, 000, 000 100, 000 50, 000
FC-n n 2 400n 40n 80n
FE-n n 62 3100n 310n 620n

We use it with binary labels indicating whether he/she in
the image is smiling or not. Each task consists of images
of one celebrity. (5) F-EMNIST-n (FE-n): Federated EM-
NIST (Liu et al., 2015) is a dataset that has 62 classes of
hand-written symbols written by different persons. Each
task consists of hand-written symbols of one person.

Baselines: We use 16 baselines. 11 of them are existing clas-
sical and most recent task incremental learning (TIL) sys-
tems, EWC (Kirkpatrick et al., 2017), A-GEM (Chaudhry
et al., 2019), SI (Zenke et al., 2017), UCL (Ahn et al.,
2019), TAG (Malviya et al., 2022), PGN (Rusu et al., 2016),
PathNet (Fernando et al., 2017), HAT (Serra et al., 2018),
CAT (Ke et al., 2020), SupSup (Wortsman et al., 2020),
and WSN (Kang et al., 2022). Additionally, three simple
methods are used for references: multi-task learning (MTL)
that trains all the tasks together, one task learning (ONE)
that learns a separate model/network for each task and thus
has no CF or KT, and naive continual learning (NCL) that
learns each new task without taking any care of previous
tasks, i.e., no mechanism to deal with CF. Since HAT, our
main baseline and perhaps the most effective TIL system,
adopts AlexNet (Krizhevsky et al., 2012) as its backbone,
all our experiments are conducted with AlexNet. For other
baselines, their original codes are used with switching their
backbones to AlexNet for fair comparison. Furthermore, to
compare our soft-masking with the regularization-based
approach and our gradient-based importance with Fisher
information matrix (FI) based importance in EWC, two
more baselines EWC-GI and SPG-FI are created. EWC-
GI is EWC with its FI based importance replaced by our
gradient-based importance (GI) in Section 3.1, i.e., the same
penalty/regularization in EWC is applied on our accumu-
lated importance, γ≤t−1

i in Equation (5) when learning task
t (no soft-masking). SPG-FI is SPG with our gradient-based
importance replaced by FI based importance in EWC. The
network size of each method is presented in Appendix E.

Evaluation Metrics: The following three metrics are used.
Let αj

i be the test accuracy of task i task just after a model
completes task j.

(1) Accuracy: The average of accuracy for all tasks of
a dataset after learning the final task. It is computed by
1/T

∑T
t αT

t , where T is the total number of tasks.
(2) Forward transfer: This measures how much the learning
of previous tasks contributes to the learning of the current
task. It is computed by 1/T

∑T
t (αt

t − βt), where βt repre-

5

Parameter-Level Soft-Masking for Continual Learning

Table 2. Accuracy results in percent. Best methods in each dataset are emphasized in bold, and second best methods are underlined.

Dissimilar tasks Similar tasks

Model C-10 C-20 T-10 T-20 I-100 (Avg.) FC-10 FC-20 FE-10 FE-20 (Avg.)

(MTL) 76.4±0.3 78.4±0.4 52.7±0.3 59.6±1.2 64.8±0.4 66.4 87.5±0.7 88.3±0.2 86.2±0.7 87.2±2.2 87.3
(ONE) 66.9±3.1 76.5±0.7 43.5±3.0 54.5±0.9 49.3±0.4 58.1 74.6±2.6 78.8±2.3 80.9±1.5 79.7±1.4 78.5
NCL 50.9±1.7 54.2±5.3 37.2±0.9 41.1±1.0 30.6±1.2 42.8 84.4±1.8 84.1±1.4 86.1±0.8 86.4±0.3 85.3

A-GEM 50.8±1.0 56.9±7.1 36.2±0.6 41.7±1.1 32.1±1.1 43.5 83.2±3.6 83.2±1.9 86.6±0.2 86.9±0.3 85.0
PGN 65.1±0.6 75.5±0.4 44.0±0.8 53.5±0.4 45.2±0.4 56.7 74.7±3.5 74.7±2.8 82.5±1.0 82.6±0.3 78.6

PathNet 69.1±0.5 75.5±1.0 46.0±1.5 51.9±1.6 42.0±1.5 56.9 79.3±1.2 80.5±0.4 84.3±0.2 84.5±0.4 82.1
HAT 62.8±0.7 71.8±1.1 45.5±1.0 51.7±2.1 45.3±1.9 55.4 79.0±3.1 81.9±0.7 83.8±0.9 84.6±0.8 82.3
CAT 64.2±0.6 73.9±1.1 43.7±0.6 50.9±0.8 N/A N/A 82.9±1.3 82.9±3.7 82.9±1.4 84.1±0.9 83.2

SupSup 66.2±0.2 75.6±0.3 44.0±0.2 54.1±0.3 48.6±0.1 57.7 75.0±2.3 78.1±1.4 80.5±0.5 79.7±0.2 78.3
UCL 64.8±0.8 74.0±0.6 45.4±0.3 55.1±0.5 37.4±0.6 55.4 86.2±0.5 86.5±0.5 85.1±0.7 85.0±1.6 85.7

SI 62.9±0.3 70.3±0.7 45.9±0.6 52.6±0.7 44.1±0.2 55.2 86.4±0.8 86.8±0.3 87.6±0.3 87.9±0.2 87.2
TAG 60.6±0.7 68.4±0.9 43.0±0.8 49.5±0.4 44.9±0.3 53.3 74.3±3.7 77.3±2.1 84.2±0.5 83.8±0.4 79.9
WSN 69.3±0.2 76.9±0.5 47.8±0.5 57.8±0.5 51.9±0.4 60.7 83.9±1.2 84.1±0.7 85.5±0.2 86.3±0.2 84.9
EWC 61.6±0.9 60.7±2.7 36.5±1.1 41.5±1.3 25.4±1.4 45.1 81.2±3.0 86.1±0.9 86.9±0.3 86.8±0.6 85.2

EWC-GI 63.3±1.2 60.1±1.9 48.3±1.0 48.6±1.9 52.7±0.2 54.6 83.4±3.0 84.6±1.7 86.6±1.5 87.4±0.9 85.5
SPG-FI 60.5±0.2 67.7±1.0 43.9±0.6 51.2±0.8 48.8±0.8 54.4 86.7±0.6 86.2±0.8 87.5±0.3 87.9±0.2 87.1

SPG 67.7±0.3 75.9±1.1 48.4±0.3 59.1±0.5 58.1±0.5 61.8 87.0±0.9 87.1±0.2 87.7±0.2 87.9±0.1 87.4

sents the test accuracy of task t in the ONE method, which
learns each task separately.
(3) Backward transfer: This measures how the learning
of the current task affects the performance of the previous
tasks. Negative values indicate forgetting. It is computed by
1/(T − 1)

∑T−1
t

(
αT
t − αt

t

)
.

4.1. Training Details

The networks are trained with SGD by minimizing the cross-
entropy loss except for TAG, which uses the RMSProp
optimizer as SGD-based TAG has not been provided by
the authors. The mini-batch size is 64 except MTL that
uses 640 for its stability to learn more tasks and classes
together. Hyper-parameters, such as the dropout rate or
each method’s specific hyper-paramters, are searched based
on Tree-structured Parzen Estimator (Bergstra et al., 2011).
With the found best hyper-parameters, the experiments are
conducted 5 times with different seeds, and the average
accuracy and standard deviation are reported.

4.2. Results

Tables 2 to 4 report the accuracy, forward and backward
transfer results, respectively. Since CAT takes too much
time to train, proportionally to the square of the number of
tasks, we are unable to get its results for I-100 (ImageNet
with 100 tasks) due to our limited computational resources.

Dissimilar Tasks (C-n, T-n, I-100): MTL performs the
best in all cases, but NCL performs poorly due to serious
CF (negative backward transfer) as expected. While PGN,
PathNet, HAT, CAT, and SupSup can achieve training with

no forgetting (0 backward transfer), on average SPG clearly
outperforms all of them as their transfer is limited. Al-
though SPG underperforms PathNet in C-10, its accuracy
is markedly lower in the other settings due to PathNet’s
capacity problem (see Section 4.2.1). The backward trans-
fer results in Table 4 show that SPG has slight forgetting.
However, its positive forward transfer results in Table 3
more than make up for the forgetting and give SPG the best
final accuracy in most cases. As we explained in Section 2,
the regularization-based approach is closely related to our
work. However, the representative methods, EWC, SI and
UCL, perform poorly due to serious CF (see Table 4) that
cannot be compensated by their positive forward transfer
(see Table 3). Although TAG has almost no CF, its forward
transfer is limited, resulting in poorer final accuracy. While
SPG underperforms WSN in C-10 and C-20 slightly, SPG
outperforms all baselines in other dissimilar task datasets;
especially, in the more realistic and difficult dataset I-100,
for which SPG is significantly better, outperforming WSN
by 6.2%.

Comparing our gradient based importance (GI) and Fisher
information (FI) matrix based importance, we observe that
EWC-GI outperforms EWC except for C-20 (EWC is less
than 1% better), and SPG significantly outperforms SPG-FI
in all cases. Comparing soft-masking and regularization
using the same importance measure, we can see SPG is
markedly better than EWC-GI, and SPG-FI is also better
than EWC except for C-10 (EWC is only 1% better). These
results clearly demonstrate that our gradient based impor-
tance (GI) and soft-masking are much more effective than
standard regularization methods.

6

Parameter-Level Soft-Masking for Continual Learning

Similar Tasks (FC-n, FE-n): Table 2 shows that SPG
achieves the best in all cases due to its strongest positive
forward (see Table 3) and positive backward knowledge
transfer ability (see Table 4). NCL, A-GEM, UCL, and
SI also perform well with positive or very little negative
backward transfer since the tasks are similar and CF hardly
happens. TAG underperforms them due to it’s limited trans-
fer. PGN, PathNet, HAT, and WSN have lower accuracy as
their forward transfer is limited (i.e., they just reuse learned
parameters in the forward pass) and no positive backward
transfer. SupSup, which does not have any mechanism
for knowledge transfer, results in much lower performance.
CAT is slightly better due to its stronger positive forward
transfer and no negative backward transfer.

Comparing GI and FI, SPG-FI and EWC-GI perform sim-
ilarly to SPG and EWC as suppressing updates of impor-
tant parameters becomes less critical for similar tasks and
thus the choice of GI or FI is not important. Comparing
soft-masking and regularization, EWC-GI and EWC are
worse than SPG and SPG-FI in all cases, indicating that
soft-masking is still more effective as regularization may
hinder the learning of new tasks more.

Summary: SPG markedly outperforms all the baselines.
When tasks are dissimilar, its positive forward transfer ca-
pability overcomes its slight forgetting (negative backward
transfer) and achieves the best overall results. It has the
strong positive forward transfer even with dissimilar tasks,
which has not been realized by the other parameter isolation-
based baselines. When tasks are similar, SPG has both
positive forward and backward transfer to achieve the best
accuracy results. Keeping most parameters trainable in SPG
promotes knowledge transfer. Moreover, we observe that
soft-masking (SPG and SPG-FI) is better than regularization
(EWC-GI and EWC) and that our gradient-based importance
(SPG and EWC-GI) is better than FI (SPG-FI and EWC).

4.2.1. CAPACITY CONSUMPTION

The reason that PGN, PathNet, HAT, CAT, and WSN have
lower accuracy on average than SPG despite the fact that
they can learn with no forgetting (see backward transfer in
Table 4) is mainly because they suffer from the capacity
problem, which is also indirectly reflected in lower forward
transfer in Table 3. Although SupSup does not suffer from
this problem, its architecture prevents transfer and gives
markedly poorer performances especially in similar tasks
(see Table 2). As discussed in Section 1, since these pa-
rameter isolation-based methods freeze a sub-network for
each task, as more tasks are learned, the capacity of the
network left for learning new knowledge becomes less and
less except for SupSup, which leads to poorer performance
for later tasks. Table 5 shows the percentage of parameters
in the whole network that are completely blocked by HAT

Table 3. Forward transfer results in percent.
Dissimilar tasks Similar tasks

Model C-10 C-20 T-10 T-20 I-100 (Avg.) FC-10 FC-20 FE-10 FE-20 (Avg.)

NCL −7.1 −2.7 −3.2 −4.3 −0.7 −3.6 +7.9 +6.2 +4.1 +5.9 +6.0
A-GEM −3.2 −0.9 −3.7 −3.5 −0.5 −2.4 +8.4 +5.4 +4.3 +6.4 +6.1

PGN −1.8 −1.0 +0.5 −1.0 −3.9 −1.4 +0.2 −4.1 +1.6 +2.9 +0.1
PathNet +2.2 −0.9 +2.5 −2.6 −7.1 −1.2 +4.7 +1.7 +3.4 +4.8 +3.7

HAT −4.0 −4.6 +2.0 −2.8 −3.8 −2.7 +4.4 +3.2 +2.9 +4.9 +3.8
CAT −2.7 −2.5 +0.1 −3.6 N/A N/A +8.4 +4.1 +2.0 +4.4 +4.7

SupSup −0.6 −0.8 +0.5 −0.3 −0.4 −0.4 +0.5 −0.8 −0.4 +0.1 −0.2
UCL +3.9 +6.1 +4.9 +7.8 +2.7 +5.1 +8.3 +5.6 +3.0 +4.7 +5.4

SI +7.5 +3.5 +13.3 +8.6 +12.6 +9.1 +7.1 +5.8 +5.9 +7.5 +6.6
TAG −5.6 −6.6 −0.2 −4.2 −5.1 −4.3 −0.5 −1.8 +3.5 +4.1 +1.3
WSN +2.4 +0.5 +4.3 +3.3 +2.9 +2.7 +9.3 +5.3 +4.6 +6.6 +6.4
EWC +0.4 −2.5 −3.5 −5.6 −1.2 −2.5 +7.8 +5.8 +4.7 +6.7 +6.3

EWC-GI −1.5 +2.3 +6.3 +6.8 +12.1 +5.2 +8.8 +5.7 +4.2 +6.0 +6.2
SPG-FI +3.2 +1.0 +1.5 +4.4 +6.6 +3.4 +9.6 +6.5 +5.4 +7.4 +7.2

SPG +5.5 +5.0 +8.9 +7.9 +10.2 +7.5 +9.8 +5.6 +5.9 +7.8 +7.3

Table 4. Backward transfer results in percent.
Dissimilar tasks Similar tasks

Model C-10 C-20 T-10 T-20 I-100 (Avg.) FC-10 FC-20 FE-10 FE-20 (Avg.)

NCL −9.9 −20.5 −3.4 −9.6 −17.9 −12.3 +2.1 −0.9 +1.2 +0.9 +0.8
A-GEM −14.3 −21.8 −4.0 −9.7 −16.6 −13.3 +0.2 −1.0 +1.5 +0.9 +0.4

PGN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PathNet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HAT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CAT 0.0 0.0 0.0 0.0 N/A N/A 0.0 0.0 0.0 0.0 0.0

SupSup 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
UCL −6.6 −9.0 −3.4 −7.7 −14.5 −8.2 +3.7 +2.2 +1.2 +0.7 +2.0

SI −12.8 −5.7 −12.1 −11.0 −17.6 −11.8 +5.2 +2.3 +0.9 +0.7 +2.3
TAG −0.8 −1.6 −0.4 −0.8 +0.9 −0.5 +0.4 +0.4 −0.3 0.0 +0.1
WSN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EWC −6.4 −13.9 −3.9 −7.8 −22.7 −10.9 −1.3 +1.6 +1.4 +0.4 +0.5

EWC-GI −1.4 −19.6 −1.6 −13.4 −8.6 −8.9 0.0 +0.1 +1.6 +1.7 +0.9
SPG-FI −10.7 −10.3 −1.3 −8.1 −7.0 −7.5 +2.8 +1.0 +1.4 +0.8 +1.5

SPG −5.3 −5.9 −4.4 −3.4 −1.2 −4.0 +2.9 +2.8 +0.9 +0.5 +1.8

and SPG (layer-wise results are given in Appendix B). SPG
blocks much fewer parameters than HAT does in all cases.
This advantage allows SPG to have more flexibility and
capacity to learn while mitigating forgetting, which leads to
better performances.

Figure 3 plots the forward transfer of the limited datasets
due to the space limitations (all results are presented in
Appendix A). A positive value in the figures means that
a method’s forward test result (the test result of the task
obtained right after the task is learned) is better than ONE,
benefited by the forward knowledge transfer from previ-
ous tasks. We can clearly observe a downward trend of
these baselines for dissimilar tasks ((a)-(c)). We believe that
this is due to the capacity problem, i.e., as more tasks are
learned, they gradually lose their learning capacity. On the
other hand, SPG shows a upward trend in all cases, even
for dissimilar tasks, thanks to its positive forward transfer,
which indicates SPG has a much higher capacity to learn.
For Figure 3(d), the difference is not obvious as the tasks are
similar and the capacity problem is less serious. However,
SPG still keeps the best forward transfer.

Table 5. Each cell reports how many percentage of parameters are
completely blocked (i.e., importance of 1) just after learning task
t. T is the total number of tasks (e.g., T = 10 for C-10).

Dissimilar tasks Similar tasks

t Model C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

1
HAT 1.9±0.5 15.9±1.1 2.9±0.2 0.2±0.1 23.5±0.6 0.3±0.0 6.3±1.0 23.9±1.0 19.0±1.1
SPG 0.1±0.0 0.2±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.2±0.0 0.1±0.0 0.1±0.0

T/2
HAT 22.4±1.1 98.2±0.3 36.7±1.9 21.1±1.4 99.8±0.0 3.4±0.3 65.7±2.4 86.8±0.8 94.0±1.6
SPG 0.9±0.1 2.9±0.3 0.5±0.1 1.4±0.2 4.1±0.4 0.8±0.0 1.3±0.1 0.6±0.3 1.0±0.2

T
HAT 41.8±1.3 99.6±0.1 57.5±1.8 38.6±2.1 99.9±0.1 9.8±1.1 79.5±0.9 97.9±0.3 97.5±0.9
SPG 2.0±0.2 5.2±0.6 0.9±0.1 3.1±0.2 6.3±0.6 1.4±0.1 2.0±0.3 1.1±0.5 1.5±0.3

7

Parameter-Level Soft-Masking for Continual Learning

Table 6. The results for pruning parameters based on the gradient-based importance.

Dissimilar tasks Similar tasks

Pruning strategy C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

Nothing 75.5±1.0 78.9±1.9 46.7±0.8 49.2±1.2 48.8±1.2 74.5±3.0 87.8±2.6 86.0±0.5 85.4±0.8
Lowest 10% 73.6±2.4 75.4±4.8 41.2±0.9 45.8±1.5 43.3±2.6 74.0±2.9 85.5±1.9 83.1±1.7 84.3±0.4

Random 10% 69.5±2.1 70.5±4.2 34.7±1.1 44.8±1.6 40.8±1.2 71.3±2.0 84.3±3.7 70.8±4.6 72.3±3.1
Highest 10% 19.4±8.5 24.6±8.1 6.2±1.1 13.2±2.4 17.1±3.6 39.0±0.6 49.3±4.1 55.5±9.7 19.8±8.4
Lowest 20% 68.6±5.1 72.7±6.7 36.4±3.3 43.1±1.8 39.4±4.1 73.3±3.9 85.5±3.7 61.5±2.7 81.6±3.5

Random 20% 58.3±2.2 58.7±7.4 20.4±0.6 37.2±3.1 32.3±2.6 68.5±3.0 85.0±3.6 37.2±3.4 43.5±5.4
Highest 20% 10.8±1.0 22.5±5.6 5.5±0.6 10.2±0.2 11.7±1.3 38.8±0.0 49.3±4.1 20.7±5.8 7.8±1.5

1 5 10 15 20
#Tasks

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

SPG
ONE
HAT

CAT
PathNet

PGN
WSN

(a) C-20

1 5 10 15 20
#Tasks

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(b) T-20

1 10 20 30 40 50 60 70 80 90 100
#Tasks

-20%

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(c) I-100

1 5 10 15 20
#Tasks

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(d) FE-20

Figure 3. The forward transfer of each task along with the number
of tasks learned. (a) to (c) are the plots with dissimilar tasks, while
(d) is the one with similar tasks.

4.2.2. VALIDITY OF GRADIENT-BASED IMPORTANCE

We further analyze how the proposed gradient-based im-
portance metric indicates the contribution of parameters
with different importance values to the performance of each
task. Specifically, we evaluate the accuracy on the first task
of each dataset (no continual learning) after pruning some
parameters based on their importance so that we can con-
firm whether the importance metric is co-related with the
performance change.

The following four strategies for choosing which parameters
to prune are compared – (1) Nothing: we do not prune
any parameters. (2) Random n%: n% of parameters are
randomly pruned regardless of their importance. (3) Lowest
n%: the parameters with the lowest n% of importance are
pruned. (4) Highest n%: the parameters with the highest
n% of importance are pruned.

The average results over 5 different seeds are presented in
Table 6. It can be clearly observed that pruning parame-
ters with higher importance degrades the performance more
(e.g., “Lowest 10%” is much better than “Highest 10%”).

1 4 7 10
#Tasks learned in continual learning

0%

10%

20%

Ac
cu

ra
cy

SPG
PathNet

NCL
HAT

(a) Fine-tuning for TinyIma-
geNet after CL for C-10

1 510 40 70 100
#Tasks learned in continual learning

0%

10%

20%

30%

Ac
cu

ra
cy

(b) Fine-tuning for CIFAR100
after CL for I-100

Figure 4. The learning of representation through continual learn-
ing. The x-axis means the number of tasks learned in continual
learning (CL). The pair of a CL/non-CL dataset for (a) and (b) is
C-10/TinyImageNet and I-100/CIFAR100, respectively.

When it is “Highest 20%”, the accuracy is almost like ran-
dom chance classification (e.g., it is 10.8% for C-10 while
the random chance also gives 10%). We believe this obser-
vation implies that our gradient-based importance metric
effectively indicates the importance of parameters.

4.2.3. BETTER REPRESENTATION LEARNING OF SPG

We found that SPG’s stronger performance is manifested in
its strong representations learning. We conduct additional
experiments from the perspective of representation learning.
In particular, a model that has just incrementally learned
some tasks of a CL dataset (e.g., 5 tasks of C-10) are used
as a frozen feature extractor to learn another dataset (not
split into tasks), which we call “non-CL dataset”, by fine-
tuning a new classifier using the dataset, e.g., CIFAR100
or TinyImageNet (a non-CL dataset contains all classes of
the dataset shown in Table 1). We evaluate the test accuracy
for a non-CL dataset. Three pairs of a CL/non-CL dataset
are tested: (1) C-10/TinyImageNet, (2) I-100/CIFAR100,
and (3) T-10/CIFAR100. We here only show the results for
(1) and (2) due to the space limitations (all the results are
provided in Appendix D).

Figure 4(a) shows that SPG learns better representations
in continual learning than baselines (we use NCL and two
strong performing baselines from Table 2). HAT even dete-
riorates, which indicates that hard-masking of some parame-
ters/units leave less network capacity to learn good features.

8

Parameter-Level Soft-Masking for Continual Learning

Table 7. The results for the ablation studies.
Dissimilar tasks Similar tasks

Ablation C-10 C-20 T-10 T-20 I-100 (Avg.) FC-10 FC-20 FE-10 FE-20 (Avg.)

SPG 67.7±0.3 75.9±1.1 48.4±0.3 59.1±0.5 58.1±0.5 61.8 87.0±0.9 87.1±0.2 87.7±0.2 87.9±0.1 87.4
SPG (w/o CHI) 65.4±0.6 70.4±2.2 46.9±0.7 55.3±0.8 57.6±0.4 59.1 86.2±0.3 86.9±0.5 87.9±0.3 88.1±0.3 87.3
SPG (w/o SMH) 66.1±1.0 74.8±0.3 47.2±0.5 56.9±0.4 55.2±0.8 60.0 85.8±0.7 86.8±0.5 87.2±0.2 87.5±0.2 86.8
SPG (w/ hard-masking) 63.6±0.4 73.2±1.2 46.8±0.4 53.7±0.2 51.1±0.3 57.7 84.3±0.4 86.3±0.5 86.8±0.0 88.0±0.2 86.3

Figure 4(b) shows that while NCL significantly degrades
due to its serious forgetting in such an extreme continual
learning on I-100 (with 100 tasks), SPG keeps the best after
learning a few tasks. These clearly confirm that SPG learns
better representations to enable better continual learning.

4.3. Ablation Studies

As SPG has three core mechanisms that contribute to its
performance, we evaluate whether each of them is beneficial.
The first one is cross-head importance (CHI), which is in-
troduced in Equation (4) with the motivation of suppressing
the update of important parameters for previous tasks more.
In the ablation SPG (w/o CHI), γt

i is replaced with γt,t
i in

Equation (4) and the previous tasks’ heads are not used for
computing importance. The second one is soft-masking of
each head (SMH), which is introduced in Equation (7) for
the purpose of balancing the training of the feature extractor
and the classification head. In the ablation SPG (w/o SMH),
Equation (7) is not employed. The last one is soft-masking
(not hard-masking), which is the core technique of SPG to
keep most parameters trainable while mitigating CF. While
the reported results so far are based on soft-masking, it is
also possible to convert the importance to binary (0 or 1)
masks using a pre-defined threshold. In the ablation SPG
(w/ hard-masking), if the threshold is 0.6, this variant treats
importance larger than 0.6 as 1 (blocking updates of param-
eters), otherwise 0 (not blocking). We search for the best
threshold for each dataset from {0.2, 0.4, 0.6, 0.8}.
The ablation results are presented in Table 7. For CHI, it im-
proves the performance especially in dissimilar tasks (up to
5.5% for C-20) by blocking more gradient flow to mitigate
CF. On the other hand, CHI does not contributes much for
similar tasks, which is reasonable as blocking parameters
becomes less important in similar tasks. Nevertheless, SPG
with CHI still works the best for similar tasks on average and
CHI does not cause side effects. More quantitative analysis
of how CHI contributes to suppressing parameter updates is
given in Appendix C. For SMH, it delivers positive perfor-
mance gains both in dissimilar and similar tasks. These re-
sults indicate that the lack of balance in the training between
the feature extractor and head, which can happen without
SMH, adversely affects the performance. The promotion
of knowledge transfer by SMH becomes most prominent
for I-100 (up to 2.9%) as the effectiveness of knowledge

transfer is more important in such an extreme case with
more tasks. For whether masking should be soft or hard,
SPG with hard-masking is significantly worse than SPG
with soft-masking, which demonstrates that it is difficult to
find a good threshold for hard-masking. Soft-masking is
more flexible and effective. These results clearly confirm
that SPG enjoys all of the three different mechanisms.

5. Conclusion
To overcome the difficulty of balancing forgetting pre-
vention and knowledge transfer in continual learning, we
proposed a novel and simple method, called SPG, that
blocks/masks parameters not completely but partially to give
the model more flexibility and capacity to learn. The pro-
posed soft-masking mechanism not only overcomes CF but
also performs knowledge transfer automatically. Although it
is conceptually related to the regularization approach, as we
have argued and evaluated, it markedly outperforms the reg-
ularization approach. Extensive experiments demonstrate
that SPG markedly outperforms all the strong baselines.

Acknowledgements
The work of Zixuan Ke, Gyuhak Kim, and Bing Liu was sup-
ported in part by a research contract from KDDI Research,
Inc. and three NSF grants (IIS-1910424, IIS-1838770, and
CNS-2225427).

References
Ahn, H., Cha, S., Lee, D., and Moon, T. Uncertainty-based

Continual Learning with Adaptive Regularization. In
Proc. of NeurIPS, 2019.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Cac-
cia, M., Lin, M., and Page-Caccia, L. Online Continual
Learning with Maximal Interfered Retrieval. In Proc. of
NeurIPS, 2019.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for Hyper-Parameter Optimization. In Proc. of
NeurIPS, 2011.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient Lifelong Learning with A-GEM. In Proc. of
ICLR, 2019.

9

Parameter-Level Soft-Masking for Continual Learning

Deja, K., Wawrzyński, P., Marczak, D., Masarczyk, W., and
Trzciński, T. BinPlay: A Binary Latent Autoencoder
for Generative Replay Continual Learning. In Proc. of
IJCNN, 2021.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha,
D., Rusu, A. A., Pritzel, A., and Wierstra, D. PathNet:
Evolution Channels Gradient Descent in Super Neural
Networks, 2017.

Kang, H., Mina, R. J. L., Madjid, S. R. H., Yoon, J.,
Hasegawa-Johnson, M., Hwang, S. J., and Yoo, C. D.
Forget-free Continual Learning with Winning Subnet-
works. In Proc. of ICML, 2022.

Ke, Z., Liu, B., and Huang, X. Continual Learning of a
Mixed Sequence of Similar and Dissimilar Tasks. In
Proc. of NeurIPS, 2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,
Kumaran, D., and Hadsell, R. Overcoming catastrophic
forgetting in neural networks. In Proc. of NAS, 2017.

Krizhevsky, A. and Hinton, G. Learning Multiple Layers of
Features from Tiny Images, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
Classification with Deep Convolutional Neural Networks.
In Proc. of NeurIPS, 2012.

Li, Z. and Hoiem, D. Learning without Forgetting. In Proc.
of ECCV, 2016.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep Learning
Face Attributes in the Wild. In Proc. of ICCV, 2015.

Lopez-Paz, D. and Ranzato, M. Gradient Episodic Memory
for Continual Learning. In Proc. of NeurIPS, 2017.

Mallya, A. and Lazebnik, S. PackNet: Adding Multiple
Tasks to a Single Network by Iterative Pruning. In Proc.
of CVPR, 2018.

Malviya, P., Ravindran, B., and Chandar, S. TAG: Task-
based Accumulated Gradients for Lifelong Learning. In
Proc. of CoLLAs, 2022.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert,
C. H. iCaRL: Incremental Classifier and Representation
Learning. In Proc. of CVPR, 2017.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu,
Y., and Tesauro, G. Learning to Learn without Forgetting
by Maximizing Transfer and Minimizing Interference. In
Proc. of ICLR, 2019.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. IJCV, 2015.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive Neural Networks, 2016.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming Catastrophic Forgetting with Hard Attention to
the Task. In Proc. of ICML, 2018.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual Learning
with Deep Generative Replay. In Proc. of NeurIPS, 2017.

Sokar, G., Mocanu, D. C., and Pechenizkiy, M.
SpaceNet: Make Free Space For Continual Learning.
Neurocomputing, 439:1–11, 2021.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A.,
Rastegari, M., Yosinski, J., and Farhadi, A. Supermasks
in Superposition. In Proc. of NeurIPS, 2020.

Wu, J., Zhang, Q., and Xu, G. Tiny ImageNet Challenge,
2017.

Yoon, J., Kim, S., Yang, E., and Hwang, S. J. Scalable and
Order-robust Continual Learning with Additive Parameter
Decomposition. In Proc. of ICLR, 2020.

Zenke, F., Poole, B., and Ganguli, S. Continual Learning
Through Synaptic Intelligence. In Proc. of ICML, 2017.

Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L.,
Zhang, H., and Kuo, C. C. J. Class-incremental Learning
via Deep Model Consolidation. In Proc. of WACV, 2020.

10

Parameter-Level Soft-Masking for Continual Learning

A. Forward Transfer
Figure 3 in the main paper shows the forward transfer plots for some datasets but not all due to space limitations. Figure 5
presents the forward transfer results for all datasets. It can be clearly seen that SPG has the best positive forward transfer
and keeps or even grows it constantly in all cases. On the other hand, the other parameter isolation-based methods, PGN,
PathNet, HAT, CAT, and WSN lose their ability for the forward transfer in later tasks for the dissimilar task (i.e., (a) to (e)).

1 2 3 4 5 6 7 8 9 10
#Tasks

-20%

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

SPG
ONE
HAT

CAT
PathNet

PGN
WSN

(a) C-10

1 5 10 15 20
#Tasks

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(b) C-20

1 2 3 4 5 6 7 8 9 10
#Tasks

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(c) T-10

1 5 10 15 20
#Tasks

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(d) T-20

1 10 20 30 40 50 60 70 80 90 100
#Tasks

-20%

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(e) I-100

1 2 3 4 5 6 7 8 9 10
#Tasks

-10%

0%

10%

20%

30%

Fo
rw

ar
d

tra
ns

fe
r

(f) FC-10

1 5 10 15 20
#Tasks

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(g) FC-20

1 2 3 4 5 6 7 8 9 10
#Tasks

-10%

0%

10%

20%

Fo
rw

ar
d

tra
ns

fe
r

(h) FE-10

1 5 10 15 20
#Tasks

-10%

0%

10%

Fo
rw

ar
d

tra
ns

fe
r

(i) FE-20

Figure 5. Forward transfer results. (a) to (e) are for dissimilar tasks, and (f) to (i) are for similar tasks.

B. Capacity Consumption at Each Layer
We show the percentage of parameters in the whole network that are fully blocked in Table 5 in the main text of the paper.
Here Table 8 presents the same result for each layer. We use AlexNet as the backbone, and it has three convolution layers
followed by two fully-connected layers.

As we described in Section 4.2.1, SPG blocks much fewer parameters than what HAT does in all cases. Additionally, we can
see from Table 8 the significant difference between HAT and SPG in their layer-wise tendency. HAT blocks more parameters
in earlier layers (e.g., after learning task 5 of C-10, 77.8% of parameters in the 1st convolution layer are completely blocked
while 52.4% of the ones in the 2nd convolution layer are), which is reasonable given that the earlier layers are supposed to
extract basic features and thus changing their parameters without being blocked could easily cause more forgetting than
in later layers. On the other hand, SPG contrarily tends to completely block more parameters in later layers (e.g., after
learning task 5 of C-10, 0.0% of parameters in the 1st convolution layer are completely blocked while 0.6% of ones in 2nd
convolution layer are). Since SPG computes parameters’ importance based on their gradients with regard to the loss through
normalization, this result implies that later layers are likely to have more parameters on which some of the tasks highly
depend. It can be said that SPG keeps earlier layers alive with less blocking for better basic feature learning (i.e., leading to
positive knowledge transfer) while it blocks some specific parameters in later layers that are supposed to be important for
previous tasks, which is different from what HAT does.

11

Parameter-Level Soft-Masking for Continual Learning

Table 8. The percentage of parameters that are completely blocked for each layer. T is the total number of tasks (e.g., T = 10 for C-10).

(a) Results for the 1st convolution layer.

Dissimilar tasks Similar tasks

t Model C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

1
HAT 25.0±5.3 24.4±8.4 31.6±6.0 14.4±5.5 60.0±4.4 17.8±4.4 40.0±8.7 75.0±3.1 67.2±9.9
SPG 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

T/2
HAT 77.8±2.7 98.4±1.7 83.4±3.6 79.1±2.5 100.0±0.0 73.4±7.6 100.0±0.0 98.8±1.2 99.4±0.8
SPG 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

T
HAT 95.6±1.5 100.0±0.0 97.2±1.2 95.3±1.0 100.0±0.0 98.8±1.8 100.0±0.0 100.0±0.0 100.0±0.0
SPG 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

(b) Results for the 2nd convolution layer.

Dissimilar tasks Similar tasks

t Model C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

1
HAT 5.6±1.6 7.3±2.9 8.9±2.3 1.5±1.1 33.9±5.0 2.2±0.6 12.0±2.0 55.7±6.6 45.7±12.1
SPG 0.1±0.0 0.1±0.1 0.0±0.0 0.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.1 0.0±0.0

T/2
HAT 52.4±2.5 98.0±1.7 63.7±6.2 56.2±4.5 100.0±0.0 41.3±4.7 98.3±1.2 98.4±1.0 99.2±1.0
SPG 0.6±0.1 2.1±0.4 0.3±0.1 0.9±0.3 1.5±0.3 0.1±0.1 0.2±0.1 0.5±0.5 0.6±0.2

T
HAT 81.0±2.0 99.8±0.3 90.2±2.8 86.4±4.5 100.0±0.0 86.9±2.2 99.4±0.3 100.0±0.0 100.0±0.0
SPG 1.1±0.2 3.1±0.5 0.4±0.1 1.5±0.3 1.8±0.4 0.2±0.1 0.3±0.2 0.8±0.7 0.9±0.3

(c) Results for the 3rd convolution layer.

Dissimilar tasks Similar tasks

t Model C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

1
HAT 4.8±1.3 8.7±1.7 7.5±1.1 0.7±0.3 30.6±2.8 1.0±0.2 8.0±1.5 43.7±6.5 36.4±6.2
SPG 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.2±0.1 0.0±0.0 0.0±0.0

T/2
HAT 42.6±3.6 98.7±0.7 60.3±4.1 47.1±2.3 100.0±0.0 14.7±1.2 88.7±4.2 98.0±0.7 99.1±0.4
SPG 0.7±0.1 2.1±0.4 0.3±0.1 1.0±0.2 1.2±0.2 0.5±0.1 1.0±0.3 0.3±0.2 0.3±0.1

T
HAT 66.8±2.7 99.7±0.5 87.1±2.2 74.1±3.4 100.0±0.0 43.1±4.0 95.3±1.9 99.8±0.5 99.8±0.2
SPG 1.2±0.2 3.1±0.7 0.4±0.1 1.5±0.3 1.8±0.2 0.9±0.2 1.4±0.4 0.5±0.3 0.5±0.1

(d) Results for the 4th fully-connected layer.

Dissimilar tasks Similar tasks

t Model C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

1
HAT 2.7±0.8 12.6±1.6 4.0±0.3 0.2±0.1 25.7±1.4 0.3±0.0 6.5±0.9 27.7±2.3 22.7±2.1
SPG 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.1 0.0±0.0 0.1±0.0 0.2±0.0 0.1±0.0 0.1±0.0

T/2
HAT 29.7±1.4 98.3±0.6 47.7±2.1 29.4±2.2 99.9±0.1 3.8±0.4 70.9±3.7 90.2±1.1 95.6±1.4
SPG 0.8±0.2 2.4±0.2 0.4±0.1 1.4±0.2 1.6±0.2 0.8±0.1 1.4±0.1 0.6±0.2 0.8±0.1

T
HAT 52.4±1.1 99.7±0.3 72.3±1.6 50.6±2.5 99.9±0.1 12.1±1.3 84.0±1.8 98.5±0.4 98.2±0.7
SPG 1.6±0.2 4.1±0.3 0.7±0.1 2.5±0.2 2.3±0.4 1.5±0.2 2.2±0.3 0.9±0.4 1.2±0.2

(e) Results for the 5th fully-connected layer.

Dissimilar tasks Similar tasks

t Model C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

1
HAT 1.3±0.4 17.9±1.0 2.1±0.2 0.1±0.0 22.0±0.5 0.2±0.0 6.0±1.0 20.8±0.5 16.2±1.3
SPG 0.1±0.0 0.2±0.0 0.1±0.0 0.0±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0

T/2
HAT 17.6±1.5 98.2±0.1 29.9±2.0 15.4±1.2 99.8±0.0 2.1±0.2 61.8±1.8 84.6±0.8 92.8±1.8
SPG 1.0±0.1 3.2±0.4 0.5±0.1 1.5±0.2 5.5±0.6 0.7±0.0 1.2±0.2 0.7±0.3 1.1±0.2

T
HAT 34.9±2.0 99.6±0.1 48.5±2.1 30.6±2.0 99.9±0.1 6.1±1.1 76.4±0.6 97.4±0.3 97.1±1.1
SPG 2.2±0.3 5.8±0.7 1.1±0.2 3.4±0.3 8.6±0.7 1.3±0.0 1.9±0.2 1.2±0.6 1.8±0.3

12

Parameter-Level Soft-Masking for Continual Learning

Table 9. Quantitative contribution of CHI in learning task t. T is the total number of tasks (e.g., T = 10 for C-10).
C-10 C-20 T-10

t F-each G-each F-total G-total F-each G-each F-total G-total F-each G-each F-total G-total

2 0.64±0.02 0.15±0.02 0.42±0.02 0.13±0.00 0.52±0.09 0.10±0.03 0.35±0.06 0.09±0.02 0.49±0.01 0.13±0.00 0.32±0.01 0.12±0.00
T/2 0.84±0.01 0.31±0.02 0.24±0.01 0.04±0.00 0.88±0.01 0.33±0.02 0.15±0.03 0.01±0.00 0.77±0.01 0.28±0.01 0.24±0.01 0.04±0.00
T 0.90±0.03 0.39±0.04 0.15±0.01 0.01±0.00 0.90±0.00 0.34±0.01 0.05±0.00 0.00±0.00 0.87±0.01 0.36±0.01 0.13±0.00 0.01±0.00

T-20 I-100 FC-10

t F-each G-each F-total G-total F-each G-each F-total G-total F-each G-each F-total G-total

2 0.52±0.01 0.14±0.01 0.34±0.02 0.12±0.01 0.47±0.01 0.11±0.00 0.30±0.02 0.11±0.01 0.53±0.04 0.14±0.01 0.38±0.03 0.12±0.00
T/2 0.88±0.02 0.37±0.02 0.14±0.00 0.01±0.00 0.91±0.00 0.36±0.00 0.02±0.00 0.00±0.00 0.83±0.06 0.25±0.01 0.25±0.01 0.04±0.00
T 0.92±0.01 0.41±0.02 0.05±0.00 0.00±0.00 0.91±0.01 0.37±0.00 0.02±0.00 0.00±0.00 0.85±0.02 0.28±0.01 0.15±0.02 0.01±0.00

FC-20 FE-10 FE-20

t F-each G-each F-total G-total F-each G-each F-total G-total F-each G-each F-total G-total

2 0.41±0.07 0.10±0.01 0.29±0.04 0.10±0.01 0.51±0.15 0.08±0.02 0.34±0.11 0.07±0.02 0.49±0.08 0.09±0.01 0.33±0.08 0.08±0.01
T/2 0.79±0.08 0.24±0.01 0.12±0.01 0.01±0.00 0.72±0.09 0.17±0.04 0.25±0.07 0.02±0.00 0.75±0.04 0.26±0.02 0.13±0.01 0.01±0.00
T 0.84±0.06 0.30±0.01 0.08±0.01 0.00±0.00 0.86±0.02 0.24±0.05 0.11±0.01 0.01±0.00 0.89±0.00 0.31±0.01 0.09±0.03 0.00±0.00

1 4 7 10
#Tasks learned in continual learning

0%

10%

20%

Ac
cu

ra
cy

SPG
PathNet

NCL
HAT

(a) Fine-tuning for TinyImageNet after
CL for C-10

1 510 40 70 100
#Tasks learned in continual learning

0%

10%

20%

30%

Ac
cu

ra
cy

(b) Fine-tuning for CIFAR100 after CL
for I-100

1 4 7 10
#Tasks learned in continual learning

0%

10%

20%

30%

40%

Ac
cu

ra
cy

(c) Fine-tuning for CIFAR100 after CL
for T-10

Figure 6. The learning of representation through continual learning. The x-axis means the number of tasks learned in continual learning
(CL). The pair of a CL/non-CL for (a), (b) and (c) is C-10/TinyImageNet, I-100/CIFAR100, and T-10/CIFAR100, respectively.

C. Quantitative Analysis on Cross-Head Importance (CHI)
We analyze in detail how CHI quantitatively contributes to suppressing parameter updates with the following four metrics.

(1) Overwrite Frequency at each task (F-each): How often does the importance from CHI have a larger value than the
one from the current task (1 means that it always happens)? It corresponds to cases where γt,τ

i > γt,t
i for any τ(1 ≤ τ < t)

in Equation (4).
(2) Overwrite Gap at each task (G-each): When the cases of F-each happen, how much is the difference of overwriting on
average? It is defined by the average of max (γt,1

i , · · · ,γt,t−1
i)− γt,t

i .
(3) Overwrite Frequency in total (F-total): How often does the importance from CHI actually overwrite the accumulated
importance through the maximum operation? It corresponds to cases where γt,τ

i > γ≤t−1
i for any τ(1 ≤ τ < t) in

Equation (5).
(4) Overwrite Gap in total (G-total): When the cases of F-total happen, how much is the difference of overwriting on
average? It is defined by the average of max (γt,1

i , · · · ,γt,t−1
i)− γ≤t−1

i .

The result is presented in Table 9. We can clearly observe that CHI adds more importance to some parameters (e.g., in C-10,
about 15-42% of parameters constantly update their accumulated importance by the ones from CHI), which is denoted
by F-total. Since we introduce CHI to further mitigate forgetting by accumulating more importance, this expectation is
consistent with the observed results. Although CHI also overwrites the accumulated importance in similar tasks as frequently
as in dissimilar tasks (see F-each and F-total), it happens with a smaller gap overall (see G-each and G-total), which is
reasonable as the tasks are similar thus parameters can have similar gradients among different tasks.

13

Parameter-Level Soft-Masking for Continual Learning

D. Representation Learning in Continual Learning
All results (i.e., the pairs of a CL and non-CL dataset are C-10/TinyImageNet, I-100/CIFAR100, and T-10/CIFAR100) are
presented in Figure 6. We can see that SPG learns better representations in continual learning than baselines in all cases.

E. Network Size
The number of learnable parameters of each system is presented in Table 10. Note that all approaches adopt AlexNet as their
backbone, and the number of parameters vary depending on their additional structures such as attention mechanisms or
sub-modules. It also depends on datasets because each dataset has a different number of tasks and in TIL, each task has a
different classification head and the number of units in each classification head depends on the number of classes in each
task. It can be seen that CAT and SupSup need more parameters than SPG and other approaches.

Table 10. The number of learnable parameters of each model. “M” means a million (1, 000, 000).

Dissimilar tasks Similar tasks

Model C-10 C-20 T-10 T-20 I-100 FC-10 FC-20 FE-10 FE-20

(MTL) 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M
(ONE) 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M
NCL 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M

A-GEM 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M
PGN 6.7M 6.7M 6.7M 6.7M 8.3M 6.0M 6.6M 7.5M 8.9M

PathNet 6.6M 6.8M 6.7M 6.6M 8.4M 6.4M 6.4M 7.8M 8.7M
HAT 6.8M 6.8M 7.0M 7.0M 9.0M 6.6M 6.7M 7.8M 9.1M
CAT 39.5M 39.7M 40.8M 40.9M N/A 38.5M 38.9M 46.2M 55.1M

SupSup 65.2M 130.2M 65.4M 130.4M 652.0M 65.0M 130.1M 65.8M 131.7M
UCL 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M

SI 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M
TAG 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M
WSN 6.7M 6.7M 6.8M 6.8M 8.5M 6.5M 6.5M 7.7M 8.9M
EWC 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M

EWC-GI 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M
SPG-FI 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M

SPG 6.7M 6.7M 6.9M 6.9M 8.6M 6.5M 6.6M 7.7M 9.0M

14

