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ABSTRACT

In goal-conditioned Hierarchical Reinforcement Learning (HRL), a high-level
policy periodically sets subgoals for a low-level policy, and the low-level pol-
icy is trained to reach those subgoals. A proper subgoal representation function,
which abstracts a state space to a latent subgoal space, is crucial for effective
goal-conditioned HRL, since different low-level behaviors are induced by reach-
ing subgoals in the compressed representation space. Observing that the high-level
agent operates at an abstract temporal scale, we propose a slowness objective to
effectively learn the subgoal representation (i.e., the high-level action space). We
provide a theoretical grounding for the slowness objective. That is, selecting slow
features as the subgoal space can achieve efficient hierarchical exploration. As a
result of better exploration ability, our approach significantly outperforms state-
of-the-art HRL and exploration methods on a number of benchmark continuous-
control tasks12. Thanks to the generality of the proposed subgoal representation
learning method, empirical results also demonstrate that the learned representation
and corresponding low-level policies can be transferred between distinct tasks.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has demonstrated increasing capabilities in a wide range of do-
mains, including playing games (Mnih et al., 2015; Silver et al., 2016), controlling robots (Schulman
et al., 2015; Gu et al., 2017) and navigation in complex environments (Mirowski et al., 2016; Zhu
et al., 2017). Solving temporally extended tasks with sparse or deceptive rewards is one of the major
challenges for RL. Hierarchical Reinforcement Learning (HRL), which enables control at multiple
time scales via a hierarchical structure, provides a promising way to solve those challenging tasks.
Goal-conditioned methods have long been recognized as an effective paradigm in HRL (Dayan &
Hinton, 1993; Schmidhuber & Wahnsiedler, 1993; Nachum et al., 2019). In goal-conditioned HRL,
higher-level policies set subgoals for lower-level ones periodically, and lower-level policies are in-
centivized to reach these selected subgoals. A proper subgoal representation function, abstracting
a state space to a latent subgoal space, is crucial for effective goal-conditioned HRL, because the
abstract subgoal space, i.e., high-level action space, simplifies the high-level policy learning, and ex-
plorative low-level behaviors can be induced by setting different subgoals in this compressed space
as well.

Recent works in goal-conditioned HRL have been concentrated on implicitly learning the subgoal
representation in an end-to-end manner with hierarchical policies (Vezhnevets et al., 2017; Dilok-
thanakul et al., 2019), e.g., using a variational autoencoder (Péré et al., 2018; Nair & Finn, 2019;
Nasiriany et al., 2019), directly utilizing the state space (Levy et al., 2019) or a handcrafted space
(Nachum et al., 2018) as a subgoal space. Sukhbaatar et al. (2018) proposed to learn subgoal em-
beddings via self-play, and Ghosh et al. (2018) designed a representation learning objective using
an actionable distance metric, but both of the methods need a pretraining process. Near-Optimal

∗Denotes equal contribution
1Videos available at https://sites.google.com/view/lesson-iclr
2Find open-source code at https://github.com/SiyuanLee/LESSON
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Representation (NOR) for HRL (Nachum et al., 2019) learns an abstract space concurrently with
hierarchical policies by bounding the sub-optimality. However, the NOR subgoal space could not
support efficient exploration in challenging deceptive reward tasks.

In this paper, we develop a novel method, which LEarns the Subgoal representation with SlOw
dyNamics (LESSON) along with the hierarchical policies. Subgoal representation in HRL is not
only a state space abstraction, but also a form of high-level action abstraction. Since the high-level
agent makes decisions at a low temporal resolution, our method extracts features with slow dy-
namics from observations as the subgoal space to enable temporal coherence. LESSON minimizes
feature changes between adjacent low-level timesteps, in order for the learned feature representa-
tion to have the slowness property. To capture dynamic features and prevent the collapse of the
learned representation space, we also introduce an additional contrastive objective that maximizes
feature changes between high-level temporal intervals. We provide a theoretical motivation for the
slowness objective. That is, selecting slow features as the subgoal space can achieve the most effi-
cient hierarchical exploration when the subgoal space dimension is low and fixed. We illustrate on
a didactic example that our method LESSON accomplishes the most efficient state coverage among
all the compared subgoal representation functions. We also compare LESSON with state-of-the-
art HRL and exploration methods on complex MuJoCo tasks (Todorov et al., 2012). Experimental
results demonstrate that (1) LESSON dramatically outperforms previous algorithms and learns hi-
erarchical policies more efficiently; (2) our learned representation with slow dynamics can provide
interpretability for the hierarchical policy; and (3) our subgoal representation and low-level policies
can be transferred between different tasks.

2 PRELIMINARIES

In reinforcement learning, an agent interacts with an environment modeled as an MDP M =
(S,A, P,R, γ), where S is a state space, A is an action space. P : S × A × S → [0, 1] is an
unknown dynamics model, which specifies the probability P (s′|s, a) of transitioning to next state
s′ from current state s by taking action a. R : S × A → R is a reward function, and γ ∈ [0, 1) is a
discount factor. We optimize a stochastic policy π(a|s), which outputs a distribution over the action
space for a given state s. The objective is to maximize the expected cumulative discounted reward
Eπ[
∑∞
t=0 γ

trt] under policy π.

3 METHOD

In this section, we present the proposed method for LEarning Subgoal representations with SlOw
dyNamics (LESSON). First, we describe a two-layered goal-conditioned HRL framework. We then
introduce a core component of LESSON, the slowness objective for learning the subgoal represen-
tation of HRL. Finally, we summarize the whole learning procedure.

3.1 FRAMEWORK

Following previous work (Nachum et al., 2018; 2019), we model a policy π(a|s) as a two-level
hierarchical policy composed of a high-level policy πh(g|s) and a low-level policy πl(a|s, g). The
high-level policy πh(g|s) selects a subgoal g in state s every c timesteps. The subgoal g is in a
low dimensional space abstracted by representation function φ(s) : S → Rk. The low-level policy
πl(a|s, g) takes the high-level action g as input and interacts with the environment every timestep.
Figure 1 depicts the execution process of the hierarchical policy.

LESSON iteratively learns the subgoal representation function φ(s) with the hierarchical policy. To
encourage policy πl to reach the subgoal g, we train πl with an intrinsic reward function based on
the negative Euclidean distance in the latent space, rl(st, at, st+1, g) = −||φ(st+1) − g||2. Policy
πh is trained to optimize the expected extrinsic rewards renvt . We use the off-policy algorithm SAC
(Haarnoja et al., 2018) as our base RL optimizer. In fact, our framework is compatible with any
standard RL algorithm.

Apparently, a proper subgoal representation φ(s) is critical not only for learning an effective low-
level goal-conditioned policy but also for efficiently learning an optimal high-level policy to solve a
given task. As the feature dimension k is low, φ(s) has a compression property, which is necessary
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Figure 1: A schematic illustration of the hierarchical policy execution. One high-level step corre-
sponds to c low-level steps. The negative Euclidean distance in the latent space provides rewards for
the low-level policy.

to make the hierarchical policy learning easier. If φ(s) is exactly an identity function without any
abstraction, the high-level policy πh still needs to explore in a large space and the complicated
subgoal g for the low-level policy is hard to reach as well. In this circumstance, the hierarchical
structure cannot simplify the MDP and has no advantage over a flat structure.

3.2 LEARNING SUBGOAL REPRESENTATIONS

Inspired by physics-based priors, features with slow dynamics preserve higher temporal coherence
and less noise (Wiskott & Sejnowski, 2002). As the high-level policy acts at a lower temporal reso-
lution compared to the low-level policy, it is sensible to learn a subgoal representation function with
a slowness objective. To solve large-scale problems, we parameterize the representation function
φ(s) with a neural network to extract slow features. One natural way of learning φ(s) is to minimize
the squared difference between feature values at times t and t+ 1,

min
φ

E(st,st+1)∼D[||φ(st)− φ(st+1)||2], (1)

where D is a replay buffer. This loss function eliminates fast features, but can be trivially optimized
if we allow lossy representation function φ (e.g., if φ(s) = 0 for ∀s ∈ S). To avoid such trivial
solutions and capture dynamic features, we propose a contrastive loss to maximize the distance
between high-level state transitions in the latent subgoal space, i.e., minφ E(st,st+c)∼D[−||φ(st) −
φ(st+c)||2]. To trade off these two loss functions, we adopt the technique of triplet loss (Chopra
et al., 2005), i.e., imposing the latent distance between high-level transitions larger than a margin
parameterm, as shown by Eq. 2. If we remove the margin parameterm and themax operator, Eq. 2
will be dominated by the maximizing distance part. Margin m defines a unit of distance in the latent
space, which prevents trivial solutions as well.

min
φ

E(st,st+1,st+c)∼D[||φ(st)− φ(st+1)||2 +max(0,m− ||φ(st)− φ(st+c)||2)]. (2)

The above learning objective abstracts the state space to a latent subgoal space with slow dynamics.
As Eq. 2 optimizes the squared difference between feature values, the learned representation can
preserve the spatial locality property of the state space, so a subgoal g can be selected in the neigh-
borhood of φ(s). In the next section, we give a theoretical motivation for the slowness objective.
That is, selecting slow features as the subgoal space can promote efficient exploration. Algorithm
1 shows the learning procedure of our method. We update φ(s) and πl at the same frequency so
that the low-level reward function varies in a stationary way. The high-level policy is updated less
frequently, as the high-level transitions are less.

4 EFFICIENT EXPLORATION WITH SLOW SUBGOAL REPRESENTATION

In this section, we provide a theoretical motivation for subgoal representation learning with slow
dynamics from a statistical view. To support a formal analysis, we consider selecting a subset
of features from the state space as a subgoal space. We prove that, given a fixed subgoal space
dimension, selecting slow features as the subgoal space can achieve the most efficient hierarchical
exploration. We first define a measure for exploration and describe assumptions of our analysis.
Then, we present a theorem about the optimality property and corresponding implications.
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Algorithm 1 LESSON algorithm
1: Input: Number of training steps N , margin m, replay buffer D.
2: Initialize: Learnable parameters for πh(g|s), πl(a|s, g) and φ(s).
3: for t = 1..N do
4: Collect experience (st, gt, at, st+1, r

env
t ) under πh and πl.

5: Compute low-level reward rlt = −||φ(st+1)− gt||2.
6: Update the replay buffer D.
7: Optimize πh by maximizing cumulative task rewards with D every c timesteps.
8: Optimize πl by maximizing cumulative low-level rewards with D every timestep.
9: Sample a batch of state transitions from D and update φ with Eq. 2 every timestep.

10: end for
11: Return: πh, πl and φ.

4.1 DEFINITIONS AND ASSUMPTIONS

To develop a theoretical analysis, we give a definition of slow features and a measure of exploration.
Then, we formulate the exploration process in goal-conditioned HRL as a random walk in the state
space as follows.

As our theoretical analysis is broadly applicable to arbitrary feature space, we denote a state st =
[s1t , ..., s

I
t ]
T as a vector containing I features3. State st can be factored into slow features sslow and

fast features sfast with a one-step feature change metric ∆sit = |sit − sit+1| (1 ≤ i ≤ I). Without
loss of generality, we assume that Eπr [∆sit] < Eπr [∆si+1

t ], where πr is a random policy. The
expected one-step feature change of slow features is relatively small. With a limited slow feature
dimension k, sslow = [s1, ..., sk]T , and the rest are fast features. For example, the movements of a
robot are slow, but the changes of noisy sensory observations are fast.
Definition 1 (Measure of Exploration). In goal-conditioned HRL, an effectiveness measure of hi-
erarchical exploration is defined as the Kullback–Leibler (KL) divergence from the distribution of
explored states q(x) to a desired state distribution p(x):

DKL(p‖q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx. (3)

In this definition, the desired state distribution p(x) is a prior state distribution while q(x) is the
distribution of the states explored by the agent. According to Definition 1, when the state distribution
of exploration q(x) is closer to the target state distribution p(x), the exploration is more effective.
Definition 2 (Random Walk). In goal-conditioned HRL, the exploration process in the state space
is an I-dimensional random walk when there is no extrinsic reward for the high-level policy and the
low-level policy is optimal. Define s0 as the origin of the state space: s0 = 0, and the unit step of
the random walk is Xc

t = st − st−c, t = c, 2c, · · · , which is i.i.d. Denote a sequence of random
variables Yn =

∑n
i=1 Xc

ic, then the asymptotic distribution of Yn is q(x): Yn
D→ q(x).

We aim to solve sparse reward problems, where an agent needs to explore with little extrinsic re-
wards, so we consider the circumstance with no extrinsic rewards and the optimal low-level policy
to analyze the exploration problem. Thus the high-level policy selects subgoals randomly. The agent
can move independently and identically in the state space, leading to Xc

t is i.i.d. In fact, q(x) can
be seen as the steady state distribution of the Markov chain induced by the policy. To facilitate the
analysis of different subgoal representations, we make the following assumptions throughout this
section:

(a) The transition function P (s′|s, a) is deterministic.
(b) The features are all independent.
(c) Xc

t is bounded in the state space: {|xi| ≤ ri, i = 1, · · · , I}, where xi is the i-th element of
Xc
t , and ri is a fixed upper bound of |xi|.

(d) The subgoal g selected by the high-level policy at time t is constrained in the neighbour-
hood of st:

{
|gj − sjt | ≤ rg, j = 1, · · · , k

}
, where gj and sjt are the j-th elements of

corresponding vectors, and rg is a fixed bound of subgoals in all dimensions.
3The state here refers to a true Markovian state.
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Assumption (a) is a general technique to simplify theoretical analysis in RL (Krishnamurthy et al.,
2016; Boyan & Moore, 1995). Assumption (b) makes it possible to analyze the exploration of each
feature dimension separately. Assumption (c) means that every c timesteps, the agent can move in
dimension i with a step size |xi| ≤ ri, and slower features have a smaller bound: ∀i < i′, ri < ri′ .
Taking advantage of the spatial continuity of the state space, subgoals are set in the neighborhood
of the current state in the selected subgoal feature dimensions, specified as Assumption (d).

4.2 OPTIMALITY AND IMPLICATIONS

Theorem 1. Assume p(x) is a multivariate Gaussian distribution: p(x) ∼ NI(x; 0,R), where R
is a diagonal matrix diag(r2) and r is large enough. Given a fixed subgoal space dimension k,
selecting the k slowest features for the subgoal space leads to the optimal hierarchical exploration.
Denote the distribution of the explored states in this case as qslow, we have:

qslow = q∗ = arg min
q∈Q

DKL(p‖q), (4)

whereQ is the sets of all distributions of explored states brought by different subgoal space selection.

Without any prior knowledge, we assume p(x) is an isotropic Gaussian distribution with zero mean.
When r is large enough, q(x) approximates a uniform distribution.

Proof sketch. The exploration process is decided by the coverage area of the random walk, as shown
in Definition 2, and a larger coverage area leads to better exploration (see Definition 1). We analyze
the coverage scale in each dimension separately. The exploration ability varies in different dimen-
sions since the slow-feature dimension has a smaller coverage scale. Notice that the exploration
ability in dimension i changes if we select the i-th feature for the subgoal space. Concretely, if
we choose slow features for the subgoal space, the coverage area in these dimensions will expand.
In contrast, selecting fast features decreases the ability of exploration. We prove that with a fixed
subgoal space dimension k, if and only if we select the k slowest features as the subgoal space,
DKL(p‖q) is minimized, i.e., achieves the optimal hierarchical exploration defined in Definition 1.
See the detailed proof in Appendix A.

Selecting slow features as the subgoal space can achieve superior exploration shown in Theorem 1.
This property indicates that using the slowness objective to learn the subgoal representation can
promote more efficient exploration. As real-world tasks are often on a large scale, utilizing neural
networks to extract slow features as the subgoal space is more general. To conclude, Theorem 1 is a
theoretical grounding for the learning objective of LESSON.

5 RELATED WORK

Learning subgoal representations is a challenging problem in HRL (Dwiel et al., 2019). Nachum
et al. (2018) and Zhang et al. (2020) predefined a subspace of observations as a subgoal space
with domain knowledge. Li et al. (2019) sought for an alternative way of setting advantage-based
auxiliary rewards to the low level policy to avoid this difficult problem. Levy et al. (2019) directly
used the whole observation space, which is unscalable to high-dimensional tasks. A variational
autoencoder (VAE) (Kingma & Welling, 2013) can compress the high-dimensional observations in
an unsupervised way, and it has been utilized to learn a subgoal space in (Péré et al., 2018; Nair
& Finn, 2019; Nasiriany et al., 2019). However, the features extracted by VAE can hardly capture
the transitional relationship in MDPs. In Vezhnevets et al. (2017) and Dilokthanakul et al. (2019), a
subgoal representation is learned in an end-to-end way with hierarchical policies. Since the resulting
representation is under-defined, those methods often underperformed (see Nachum et al. (2018)).
Ghosh et al. (2018) proposed to learn representations using an actionable distance metric, assuming
that goal-conditioned policies are given. Sukhbaatar et al. (2018) developed a method called HSP to
learn subgoal representations via self-play, but HSP requires a pretraining process, and thus it may
be inefficient. Near-Optimal Representation (NOR) for HRL (Nachum et al., 2019) outperforms the
previous methods by learning representations bounding the sub-optimality of hierarchical policies.
However, the optimization of NOR is complicated, and the abstraction of the NOR space does not
aim for efficient exploration. In contrast, we develop a simple subgoal space learning method with
a slowness objective. Furthermore, we formally show that the slowness objective has a theoretical
grounding for better exploration ability.
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Slowness or temporal coherence has been an important prior for learning state representations in
continuous control tasks (Bengio et al., 2013; Jonschkowski & Brock, 2015; Lesort et al., 2018).
Standard Slow Feature Analysis (SFA) methods learn slow features by solving an optimization
problem with constraints (Wiskott, 1999; Wiskott & Sejnowski, 2002). However, their expressivity
tends to scale unfavorably in high-dimensional problems. To increase the expressivity, hierarchical
SFA (Franzius et al., 2007; 2011; Escalante-B & Wiskott, 2013) composes multiple SFA modules
in a layer-wise way. More recent works use neural networks to extract slow features using a slow-
ness loss function. To avoid trivial solutions, another term, such as reconstruction loss (Goroshin
et al., 2015a; Finn et al., 2016) or prediction error (Goroshin et al., 2015b), is also included in the
loss function. In similarity metric learning, contrastive or triplet loss is investigated to capture slow
features in video and audio datasets as well (Jayaraman & Grauman, 2016; Jansen et al., 2018). In
reinforcement learning, several approaches exploit the slowly changing bias to extract useful fea-
tures so that policy learning can be accelerated (Zhang et al., 2009; Legenstein et al., 2010; Oord
et al., 2018). To the best of our knowledge, we are the first to utilize the slowness objective in HRL,
and our proposed method significantly outperforms state-of-the-art HRL methods on benchmark
environments.

The inductive bias of slowness has largely been investigated in the skill discovery methods as
well. Continual Curiosity driven Skill Acquisition (CCSA) learns a latent space with SFA, and
utilizes curiosity-driven rewards in this latent space to train skills (Kompella et al., 2017). Similarly,
Machado et al. (2017a), Jinnai et al. (2019) and Bar et al. (2020) proposed to learn options to reach
local maxima or minima of the Proto-value functions (PVFs) (Mahadevan & Maggioni, 2007). As
pointed out by Sprekeler (2011), the objective functions of SFA and PVFs are equivalent, when the
adjacent function of PVFs is the transition function in MDP. But obtaining the full transition func-
tion in large scale tasks is nearly infeasible. To solve large scale problems, Machado et al. (2017b)
and Ramesh et al. (2019) proposed to replace PVFs with eigenvectors of the deep successor rep-
resentation (Kulkarni et al., 2016), which equal to scaled PVFs. Jinnai et al. (2020) approximated
the computation of PVFs with the objective introduced by Wu et al. (2018). Our method and those
skill discovery methods share some similarities in learning low-level policies in a smooth or slow
latent space. However, the skill discovery methods can be regarded as bottom-up HRL, where a
set of task-agnostic low-level skills are firstly learned with some intrinsic reward functions and then
composed to solve downstream tasks. In contrast, our goal-conditioned method can be regarded as
top-down HRL, where the high-level policy sets subgoals to the low level during learning a task, and
the level-level policy is incentivized to reach those subgoals.

6 EXPERIMENTS
Start

1 N-1… N-20

(a)

(b)

Figure 2: (a) The NChain environment. (b) Re-
sults on the 64-link chain environment. Each
line is the mean of 20 runs with shaded regions
corresponding confidential intervals of 95%.

We conduct experiments to compare our approach
to existing state-of-the-art methods in HRL and
in efficient exploration. Firstly, we show on a
didactic example that LESSON can achieve the
most efficient state coverage among all the com-
pared subgoal representations. To demonstrate our
strengths in high-dimensional tasks, we then com-
pare with several baselines on a number of bench-
mark continuous-control tasks. After that, we an-
alyze the dynamic property of the learned subgoal
representation and provide an interpretation by vi-
sualization. Lastly, we show that both the subgoal
representation and the low-level policies learned
by our method are transferable.

6.1 DIDACTIC EXAMPLE: NCHAIN

The NChain environment was designed hard to ex-
plore by Osband et al. (2016), as shown in Figure
2(a). Starting from state 0, an agent can move for-
ward (blue arrow) to the next state in the chain or
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backward (green arrow) to the previous state. The state representation is encoded in binary, so the
low bits are features with fast dynamics. To make the problem harder, the effect of each action is
randomly swapped with a probability of 0.1. In this near-deterministic environment, we compare
the exploration ability of our method to HRL methods using other subgoal spaces with a dimension
k = 1. Baselines include the NOR subgoal space (Nachum et al., 2019), a randomly selected bit
of the state representation and the lowest bit (fast features). For pure exploration comparison, we
consider the circumstance of no external rewards, the same as the setting of our theoretical analysis
in Section 4. Figure 2(b) illustrates that using slow features as the subgoal space can achieve the
most efficient exploration with goal-conditioned HRL. As expected, the performance of fast features
as the subgoal space is the worst. Randomly selected features perform better than fast features. Al-
though NOR aims to bound the sub-optimality of the value function, our method outperforms NOR
in terms of exploration.

6.2 MUJOCO TASKS

We evaluate our proposed subgoal representation learning objective on a set of challenging MuJoCo
tasks that require a combination of locomotion and object manipulation. The details of our full
implementation and environments are available in Appendix B. We conduct experiments comparing
to the following methods in hierarchical learning and exploration, and all the learning curves in this
section are averaged over 10 runs.

(a) Point Maze (b) Ant Maze (c) Ant Push

(d) Ant Fall (e) Ant Maze (Images) (f) Ant Push (Images)

Figure 3: Performance of each method on a suite of MuJoCo environments.

• NOR: HRL with a learned subgoal space, which is optimized to bound the sub-optimality
of the hierarchical policy (Nachum et al., 2019).

• Oracle: HRL with the oracle subgoal space (x, y position of the agent) in navigation tasks.
• DCO: A hierarchical exploration method with deep covering options (Jinnai et al., 2020)4.
• EMI: A flat exploration method by predicting dynamics in a latent space (Kim et al., 2019).
• SAC: The base RL algorithm used in our method (Haarnoja et al., 2018).

Benefiting from a better exploration ability, our method with a temporally-coherent subgoal space
significantly outperforms baseline methods in terms of speed and quality of convergence. Even
when the raw observation is given by using top-down images, our method can achieve high success
rate, presented in Figure 3(e), (f). In the Ant Maze task, our method reaches a success rate of 100%
at only 1.5 million training steps, which is more than two times faster than the NOR algorithm.

4For a fair comparison, we use the online version of DCO, as the offline version needs a pretraining process.
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In the Point Maze task, the flat exploration method EMI shows an equal performance with our
approach. However, when the dynamic model is more complex (e.g., for the Ant robot), predicting
dynamics becomes much harder, and the performance of EMI degrades dramatically. We evaluate
NOR with its published code5, and results show its ineffectiveness of exploration in challenging
tasks. The online DCO method can hardly learn successful policies in those tasks, partly because
the pretraining of the second eigenfunction in their method is necessary.

6.3 ANALYSIS OF LEARNED REPRESENTATIONS

We visualize the subgoal representation and learned hierarchical policies of our method in the Ant
Push task in Figure 4. The learned subgoal space highly resembles the oracle (x, y) position space.
By setting subgoals in the learned latent space, the high-level policy guides the agent to jump out
of the local optimum of moving towards the goal. The Ant robot under the hierarchical policy
firstly moves to the left, then pushes the block to the right, and finally reaches the goal. In contrast,
the SAC agent without a hierarchical structure easily gets stuck into the local optimum of moving
directly to the goal, since the immediate extrinsic reward is given as the negative L2 distance to the
environment goal.

Start

Goal
Movable
block

(b) Trajectory in 𝑥, 𝑦 space (c) Trajectory in representation space 𝑘 = 2(a) Ant Push environment

Figure 4: The color gradient of the trajectory is based on episode timestep (red for the beginning of
an episode, blue for the end). Black arrows denoting high-level actions point to the subgoals from
the decision-making states. If the Ant robot moves directly towards the goal, it will fail to reach it,
as it will push the movable block into the path to the goal.

6.4 PARALLEL LEARNING OF THE REPRESENTATION FUNCTION AND POLICIES

We show the subgoal representation learning process in the Ant Push (Images) task in this section.
Figure 5 (a)∼(h) visualize trajectories to a hard goal in the representation spaces and the visited
areas in the x, y space at different learning stages. Along with the representation visualization, we
evaluate an easy goal as the midpoint of the trajectory to the hard goal.

The learning of the hierarchical policy and the subgoal representation could promote each other.
At about 0.2 million timesteps, with the distance-to-goal dense rewards, our method approximately
learns an inaccurate subgoal representation and the policy to reach the easy goal. Since the learned
representation is generalizable to the neighborhood of the explored areas to some extent, which
facilitates the exploration of the hierarchical policy, the explored areas are expanded little by lit-
tle. The newly collected samples in the expanded region could be utilized to improve the subgoal
representation further.

6.5 TRANSFERABILITY OF REPRESENTATIONS

Because of the generality of our representation learning objective with slow dynamics, the learned
subgoal space is transferable between different tasks of the same robot. The low-level policy in-
duced by the learned subgoal representation is transferable as well. To verify this transferability,
we initialize the representation network and the low-level policy network in a target task with those

5Code at https://github.com/tensorflow/models/tree/master/research/effici
ent-hrl

8

https://github.com/tensorflow/models/tree/master/research/efficient-hrl
https://github.com/tensorflow/models/tree/master/research/efficient-hrl


Published as a conference paper at ICLR 2021

Hard Goal

Easy
Goal

Start Hard-goal trajectoryEasy-goal trajectoryHard Goal
Easy Goal Steps (million)

(b) 0.1M (c) 0.15M (f) 0.5M(e) 0.35M(d) 0.2M(a) 0.05M

Trajectories in the representation spaces

Explored areas

(g) 1M (h) 2M

Figure 5: Subgoal representations at different learning stages in the Ant Push (Images) task. The red
transparent arrows denote the trajectories from the start to the midpoint (easy goal), while the blue
ones denote the trajectories to the hard goal. The explored areas are visualized by 1000 experiences
sampled from the replay buffer.
weights learned in a source task and further finetune them in the target task. The high-level policy
for the target task is randomly initialized. From Figure 6, we can see that transfer learning helps the
agent learn more efficiently and achieve better asymptotic performance.

(b) Ant MazeàAnt FourRooms (c) Ant PushàAnt FourRooms(a) Ant PushàAnt Fall

Figure 6: Ant FourRooms is a navigation task in a four-room maze. The source models are ran-
domly picked from the runs shown in Figure 3.

7 CONCLUSION

In this work, we propose a self-supervised subgoal representation learning method, LESSON. Our
approach is motivated by the slowness prior and supports iterative learning of the representation
function and hierarchical policies. In addition, we provide a theoretical grounding for the slowness
prior in hierarchical exploration. We test our method on a suite of high-dimensional, continuous
control tasks, and it significantly outperforms state-of-the-art HRL and exploration methods. Fur-
thermore, the subgoal representation and low-level policies learned by LESSON are transferable be-
tween different tasks. Since the low-level policy learning may result in a non-stationary high-level
transition function, combining LESSON with off-policy correction methods to reduce the variance
of off-policy learning might be a promising future direction. Furthermore, as the rewards for the
continuous control tasks are deceptive and dense, another challenging problem is learning a good
subgoal representation and hierarchical policies with extremely sparse rewards.
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A PROOF

Theorem 1. Assume p(x) is a multivariate Gaussian distribution: p(x) ∼ NI(x; 0,R), where R
is a diagonal matrix diag(r2) and r is large enough. Given a fixed subgoal space dimension k,
selecting the k slowest features for the subgoal space leads to the optimal hierarchical exploration.
Denote the distribution of the explored states in this case as qslow, we have:

qslow = q∗ = arg min
q∈Q

DKL(p‖q), (4)

whereQ is the sets of all distributions of explored states brought by different subgoal space selection.

First, we prove that q(x) is a multivariate Gaussian distribution regardless of the distribution of Xc
t .

Since there is no extrinsic reward, the high-level policy will set subgoals to the low-level randomly
every c steps, thus Xc

c,X
c
2c, . . . ,X

c
nc are independent and identically distributed with the same mean

vector µ = E [Xc
ic] ∈ RI and the same covariance matrix ΣI×I . Denote the average of Yn as

1

n
Yn =

1

n

n∑
i=1

Xc
ic = Xn. (5)

By Multidimensional Central limit theorem (Van der Vaart, 2000), we have
√
n
(
Xn − µ

) D→ NI(x; 0,Σ). (6)

Plug Eq. 5 into Eq. 6 and consider finite samples, we have

Yn
D→ NI (x;nµ, nΣ) . (7)

When n → ∞, the distribution of Yn converges to q(x), which means q(x) is a multivariate Gaus-
sian distribution. Without loss of generality, we consider the case when n = 1, i.e., NI (x;µ,Σ),
to compare different KL divergence induced by different subgoal representations. The exploration
process can be formulated as a random walk in the state space with continuous action space (Defi-
nition 2). The selection of the features for the subgoal space only changes the variance of the unit
action Xc

t in the random walk, furthermore, deciding the covariance matrix of q(x).

Next, we analyze the statistical characteristics of Xc
t . Since all features are independent, the joint

distribution is the product of all the marginal distributions: fXc
t
(x) = ΠI

i=1fi(x), where fXc
t
(x) is

the Probability density function (PDF) of Xc
t and fi(x) is the marginal PDF of Xc

t in dimension
i. As Assumption (c) indicates that xi ∈ [−ri, ri], if not selecting the i-th feature for the subgoal
space, fi(x) is a continuous uniform distribution U [−ri, ri], so the variance in dimension i can be
denoted as σ2

i =
r2i
3 .

However, if we select the i-th feature for the subgoal space, the distribution is modified since the
low-level policy is optimal (i.e., the agent moves to the subgoal as close as possible during c steps).
Besides, notice that by Assumption (d), the i-th element of subgoal gi is uniformly distributed in
[−rg, rg]. Therefore, when gi lies within the interval [−ri, ri], the agent can reach the subgoal
within c steps. When gi > ri (gi < −ri), the agent can only reach as far as ri (−ri). Denote the
changed Cumulative Distribution Function (CDF) of Xc

t in dimension i as F ′i (x), if rg > ri,

F ′i (x) =


0 x < −ri
rg−ri
2rg

+ 1
2rg

(x+ ri) −ri ≤ x < ri

1 ri ≤ x
. (8)

In contrast, if rg ≤ ri, the agent can reach any subgoal within the interval [−rg, rg], so we have

F ′i (x) =


0 x < −rg
x+rg
2rg

−rg ≤ x ≤ rg
1 rg < x

. (9)

In both cases, the mean vector µ is still 0, but the variance σ2
i will increase to r2i −

2r3i
3rg

when rg > ri

and σ2
i will decrease to

r2g
3 when rg ≤ ri. Denote the selection operation as an operator S, and we

14
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have

σ2
i =

r2i
3
,

S(σ2
i ) =

{
r2i −

2r3i
3rg

ri ≤ rg
r2g
3 ri > rg

.

(10)

Finally, we want to prove if and only if q(x) = qslow(x), DKL(p‖q) can reach the minimum
with the constraint of fixed subgoal space dimension k. Consider a distribution q(x) brought by
randomly selecting k features from the state space as the subgoal space, since p(x) and q(x) are
both multivariate Gaussian distribution (Assumption (b)), the KL divergence from q(x) to p(x) is

DKL(p‖q) =
1

2

[
log

det (Σq)

det (Σp)
− I + tr

(
Σ−1q Σp

)
+ (µq − µp)T Σ−1q (µq − µp)

]
, (11)

where I is the dimension of q(x), and tr stands for the trace of the matrix (Duchi, 2007). Now
we want to prove the KL divergence reaches the minimum if and only if q(x) = qslow(x). Since
the covariance matrix Σ is symmetric positive definite, there exists a full rank orthogonal matrix
U containing of the eigenvectors of Σ as its columns and a diagonal matrix Λ such that Σ =
UΛUT (Horn & Johnson, 2012). ThenNI can be transformed into a standard multivariate Gaussian
distribution through rotation and stretching.

Z = B−1(Y − µ),Z ∼ NI(0, I), (12)

where Y ∼ NI (x;µ,Σ),B = UΛ1/2, and Λ1/2 is a diagonal matrix whose entries are the square
roots of the corresponding entries from Λ (Do, 2008). Since q(x) is symmetrical, thus rotation won’t
change the KL divergence, so we only need to consider the case where Σ is a diagonal matrix, which
can be denoted as below.

Σ =


σ2
1 0 0 · · · 0

0 σ2
2 0 · · · 0

0 0 σ2
3 · · · 0

...
...

...
. . .

...
0 0 0 · · · σ2

I

 , (13)

where σ2
i is the variance in dimension i. Notice µi = 0, thus Eq. 11 can be rewritten as

DKL(p‖q) =
1

2

[
log

σ2
1σ

2
2 . . . σ

2
I

r2I
− I +

I∑
i=1

r2

σ2
i

+

I∑
i=1

µ2
i

r2

]

=
1

2

[
I∑
i=1

log
σ2
i

r2
− I +

I∑
i=1

r2

σ2
i

]

=
1

2

[
I∑
i=1

(
log

σ2
i

r2
+
r2

σ2
i

)
− I

]
.

(14)

Consider a function:

f(σ2
i ) = log

σ2
i

r2
+
r2

σ2
i

. (15)

It’s easy to find that f(σ2
i ) is monotonically decreasing when σ2

i ∈ (0, r2) (since r is large enough,
the condition is easily met), which means increasing the variance in dimension i will decrease
DKL(p‖q). Consider feature dimension i and feature dimension j, and ri ≤ rj . Then we prove

f(S(σ2
i )) + f(σ2

j ) ≤ f(σ2
i ) + f(S(σ2

j )), (16)

where σ2
i =

r2i
3 , σ2

j =
r2j
3 . We consider three cases:

(1) ri ≤ rg ≤ rj . Recall that selecting the i-th feature for the subgoal space can increase σ2
i

when rg > ri while decrease σ2
i when rg < ri. Therefore, we have:

f(S(σ2
i )) + f(σ2

j ) ≤ f(σ2
i ) + f(σ2

j ) ≤ f(σ2
i ) + f(S(σ2

j )). (17)
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(2) rg ≤ ri ≤ rj . Since f(S(σ2
i )) + f(σ2

j ) = f(
r2g
3 ) + f(σ2

j ), and f(σ2
i ) + f(S(σ2

j )) =

f(σ2
i ) + f(

r2g
3 ). Notice that f(σ2

j ) < f(σ2
i ), then Eq. 16 holds.

(3) ri ≤ rj ≤ rg . Rewrite Eq. 16 as

f(S(σ2
i ))− f(σ2

i ) ≤ f(S(σ2
j ))− f(σ2

j )

=⇒f
(
r2i −

2r3i
3rg

)
− f

(
σ2
i

)
≤ f

(
r2j −

2r3j
3rg

)
− f(σ2

j )

=⇒ log

(
3− 2ri

rg

)
+

6r2ri − 6r2rg
r2i (3rg − 2ri)

≤ log

(
3− 2rj

rg

)
+

6r2rj − 6r2rg
r2j (3rg − 2rj)

.

(18)

To prove Eq. 18, we consider another function:

g(x) = log (3− 2x) +
6t2x− 6t2

x2(3− 2x)
, (19)

where t = r
rg
>> 1. It’s easy to find that g′(x) > 0 when x ∈ (0, 1), which means g(x) is

monotonically increasing when x ∈ (0, 1). Therefore, Eq. 18 holds.

Now we have proved that Eq. 16 holds under all possible conditions, which means selecting the
slower features as the subgoal space will lead to a smaller KL divergence, i.e., better exploration.
Thus Theorem 1 follows immediately.

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

The environments of Point Maze, Ant Maze, Ant Push, and Ant Fall are as described in Nachum
et al. (2019), shown in Figure 7. In each navigation task, we create an environment composed of
4× 4× 4 blocks, some movable and some with fixed position. During training, the target locations
(x, y) are randomly selected by the environment from all possible points. Final results are evaluated
on a single challenging goal denoted by a small green block. For the ‘Images’ versions of these
environments, we zero-out the x, y coordinates in the observation and append a low-resolution
5× 5× 3 top-down view of the environment, equal to that used in Nachum et al. (2019).

Start

Goal

Ant (or Point) Maze

Start

Goal
Movable
block

Ant Push

Start

Movable
block

Goal

Ant Fall

Start

Goal

Ant FourRooms

Figure 7: A collection of environments that we use.

The Ant FourRooms task has a much larger maze structure, which is four times as large as the Ant
Maze task. So the maximal episode length for Ant FourRooms is also larger, which equals 1000.
The maximal episode lengths of the other tasks are 500.

B.2 NETWORK STRUCTURE

The actor network for each level is a Multi-Layer Perceptron (MLP) with two hidden layers of di-
mension 256 using ReLU activations. The critic network structure for each level is identical to that
of the actor network. We scale the outputs of the actor networks of both levels to the range of cor-
responding action space with tanh nonlinearities. The representation function φ(s) is parameterized
by an MLP with one hidden layer of dimension 100 using ReLU activations.
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B.3 TRAINING PARAMETERS

• Discount factor γ = 0.99 for both levels.
• Adam optimizer; learning rate 0.0002.
• Soft update targets τ = 0.005 for both levels.
• Replay buffer of size 1e6 for both levels.
• Reward scaling of 0.1 for both levels.
• Entropy coefficient of SAC α = 0.2 for both levels.
• Low-level policy length c = 10 for the Point robot and c = 20 for the Ant robot except for

the Ant Push task. In the Ant Push task, c = 50.
• Subgoal dimension of size 2. We train the high-level policy to output actions in [−10, 10]2

when c = 10 or c = 20 ([−20, 20]2 when c = 50). These actions correspond to desired
deltas in state representation.

We did not perform a grid search on hyper-parameters, therefore better performances might be
possible for these experiments.

B.4 EVALUATION

Learned hierarchical policies are evaluated every 25000 timesteps by averaging performance over
10 random episodes.

C ADDITIONAL EXPERIMENTAL RESULTS

Table 1 demonstrates that the dynamics of the features learned by our method are slow. NOR has a
relatively good performance in Ant Maze and Ant Maze (Images), since the NOR features in these
two tasks are slower than those in other tasks. The state space of the Point robot is low-dimensional
and contains little information other than the (x, y) position, so the slow features (positions) are easy
to be selected by a random strategy. But NOR projects the state space of the Point robot to a latent
space with fast dynamics, which results in unsatisfactory performance.

Point Maze Ant Maze Ant Push Ant Fall Ant Maze (Img) Ant Push (Img)
LESSON 0.05± 0.01 0.17±0.03 0.14±0.02 0.14±0.02 0.18±0.01 0.14±0.03

NOR 0.51±0.06 0.37±0.01 0.50±0.05 0.46±0.06 0.37±0.07 0.40±0.04
Random 0.03±0.04 0.94±0.11 0.86±0.21 0.90±0.08 0.38±0.84 0.46±1.00

Table 1: Slowness of different representations under the policy learned by LESSON, averaged over
5 randomly seeded trials with standard error. The slowness is estimated by one-step feature change
||φ(st)− φ(st+1)||2 of 100 randomly sampled transitions.

17



Published as a conference paper at ICLR 2021

(b) 0.1M (c) 0.15M (f) 0.5M(e) 0.35M(d) 0.2M(a) 0.05M (g) 1M (h) 2M

#1

#2
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#4

Figure 8: The representation learning process of four runs in the Ant Push (Images) task. Those
visualizations demonstrate the gradually learned subgoal representations.
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Figure 9: Early stopping the subgoal representation learning at early stages (0.2M, 0.35M, 0.5M and
1M timesteps) in the Ant Push task with visual observations. The early stopping hurts the learning
performance, verifying that the subgoal representation function is gradually learned.
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