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Abstract: We introduce Latent Action Pretraining for general Action mod-1

els (LAPA), the first unsupervised method for pretraining Vision-Language-2

Action (VLA) models without ground-truth robot action labels. Existing Vision-3

Language-Action models require action labels typically collected by human tele-4

operators during pretraining, which significantly limits possible data sources and5

scale. In this work, we propose a method to learn from internet-scale videos6

that do not have robot action labels. We first train an action quantization model7

leveraging VQ-VAE-based objective to learn discrete latent actions between im-8

age frames, then pretrain a latent VLA model to predict these latent actions from9

observations and task descriptions, and finally finetune the VLA on small-scale10

robot manipulation data to map from latent to robot actions. Experimental results11

demonstrate that our method outperforms the state-of-the-art VLA model trained12

with robotic action labels on real-world manipulation tasks that require language13

conditioning, generalization to unseen objects, and semantic generalization to un-14

seen instructions. Training only on human manipulation videos also shows pos-15

itive transfer, opening up the potential for leveraging web-scale data for robotics16

foundation model.17

Keywords: Vision-Language-Action Models, Unsupervised Learning18

1 Introduction19

Vision-Language-Action Models (VLA) for robotics [1, 2] are trained by aligning large language20

models with vision encoders, and then finetuning it on on diverse robot datasets [3]; this enables21

generalization to novel instructions, unseen objects, and distribution shifts [4]. However, diverse22

real-world robot datasets mostly require human teleoperation, which makes scaling difficult. In-23

ternet video data, on the other hand, offers abundant examples of human behavior and physical24

interactions at scale, presenting a promising approach to overcome the limitations of small, spe-25

cialized robotic datasets [5]. However, it is challenging to learn from internet video data for two26

major challenges: first, much of the raw data on the web lacks explicit action labels; second, the27

data distribution from the web is fundamentally different from the embodiments and environments28

of typical robotic systems [6]. We propose Latent Action Pretraining for General Action Models29

(LAPA), an unsupervised approach to pretraining a robotic foundation model without the need for30

ground-truth robot action labels.31

LAPA has two pretraining stages, followed by a fine-tuning stage to map the latent actions to real32

robot actions. In the first pretraining stage, we use a VQ-VAE-based objective [7] to learn quantized33

latent actions between raw image frames. Analogous to Byte Pair Encoding [8] used for language34

modeling, this can be seen as learning to tokenize atomic actions without requiring predefined action35

priors (e.g., end-effector positions, joint positions). In the second stage, we perform behavior cloning36

by pretraining a Vision-Language Model to predict latent actions derived from the first stage based37

on video observations and task descriptions. Finally, we fine-tune the model on a small-scale robot38
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Figure 1: Overview of LAPA. (1) Latent Action Quantization: We first learn discrete latent actions in a fully
unsupervised manner using the VQ-VAE objective. (2) Latent Pretraining: The VLM is trained to predict latent
actions, essentially performing behavior cloning. After pretraining, we finetune the LAPA model on a small set
of action-labeled trajectories to map the latent space to the end effector delta action space.

manipulation dataset with robot actions to learn the mapping from the latent actions to robot actions.39

In this work, we refer to both the proposed method and the resulting VLA models as LAPA.40

We measure performance on diverse manipulation videos, including existing robot video datasets41

(without utilizing ground-truth actions) and human manipulation datasets. On real-world manipula-42

tion tasks, our method leads to a new monolithic VLA model, outperforming OPENVLA, the current43

state-of-the-art model Vision Language Action (VLA) model trained on a diverse mixture of datasets44

with ground-truth actions. These results demonstrate the effectiveness of learning unified quantized45

latent action representations across diverse robotic datasets featuring different embodiments (shown46

in Appendix C). We further demonstrate that LAPA remains effective even when pretrained on only47

human manipulation video, outperforming models pretrained on Bridgev2, one of the largest open-48

sourced robotic datasets. We expect that our method opens up the potential for building foundation49

models for robotics by pretraining on much larger web-scale video data.50

Our main contributions and findings are as follows: (1) We propose Latent Action Pretraining for51

general Action models (LAPA), an unsupervised approach to pretraining a robotic foundation model52

to encode robotic skills from web-scale video data. (2) Experiments on simulation and real-world53

robot tasks show that our method not only significantly outperforms baseline methods for training54

robotic manipulation policies from actionless video, but also leads to a VLA model that outper-55

forms the current state-of-the-art VLA model trained with ground-truth actions (by +6.22%), while56

achieving over 30x greater pretraining efficiency.57

2 LAPA: Latent Action Pretraining for general Action models58

LAPA is divided into two stages: Latent Action Quantization and Latent Pretraining (Figure 1).59

2.1 Latent Action Quantization60

To learn latent actions in a fully unsupervised manner, we train a latent action quantization model61

following Bruce et al. [9] with a few modifications. Our latent action quantization model is an62

encoder-decoder architecture where the encoder takes the current frame xt and the future frame63

xt+H of a video with a fixed window size H and outputs the latent action zt. The decoder is trained64

to take the latent action zt and xt and reconstruct xt+H . Unlike Bruce et al. [9], we use cross at-65

tention to attend zt given xt instead of additive embedding, which empirically leads to capturing66

more semantically meaningful latent actions. Our quantization model is a variant of C-ViViT to-67

kenizer [10] where the encoder includes both spatial and temporal transformer while the decoder68

only contains spatial transformer since our model uses only two image frames as input. Further69

model details are provided in Appendix G. Our latent action quantization training model is based70

on the VQ-VAE objective [11]. The VQ-VAE objective enables the latent action zt to be discrete71

tokens (codebooks), making it easy for VLMs to predict zt. The latent action is represented using s72

sequences from |C| codebook vocabulary space. To avoid gradient collapse often observed in VQ-73

VAE, we utilize NSVQ [12] which replaces the vector quantization error to a product of original74
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Figure 2: Real-world Tabletop Manipulation Results. We evaluate on a total of 54 rollouts for each model
encompassing unseen object combinations, unseen objects and unseen instructions. Average success rate (%)
are shown (detailed results provided in Appendix L.3).

error and a normalized noise vector. We also apply codebook replacement technique from NSVQ75

during early training steps to maximize codebook utilization.76

2.2 Latent Pretraining77

We use the encoder of the latent action quantization model as an inverse dynamics model to label all78

xt, given xt+1, with zt. Then, we pretrain a VLM to predict the zt given the language instruction79

of a video clip and the current image xt. Instead of using the existing language model head of the80

VLM, we attach a separate latent action head of vocab size |C|. By default, we freeze only the vision81

encoder and unfreeze the language model during training. Since latent pretraining does not rely on82

ground truth actions, it opens the possibility of using any type of raw video paired with language83

instructions. Also, in contrast to traditional action granularity used in robotics (e.g. end-effector84

positions, joint positions, joint torques, etc.), our approach does not require any priors about the85

action hierarchy/granularity.86

2.3 Action Finetuning87

VLAs that are pretrained to predict latent actions are not directly executable on real-world robots88

since latent actions are not actual delta end-effector actions or joint actions. To map latent actions89

to actual robot actions, we finetune LAPA on a small set of labeled trajectories that contain ground90

truth actions (delta end-effector). For action prediction, we discretize the continuous action space91

for each dimension of the robot so that the number of data points allocated for each bin is equal92

following Kim et al. [2], Brohan et al. [1]. We discard the latent action head (a single MLP layer)93

and replace it with a new action head to generate ground truth actions. As with latent pretraining,94

we freeze the vision encoder and unfreeze all of the parameters of the underlying language model.95

3 Experiments96

In this section, we demonstrate the effectiveness of LAPA as a general-purpose pretaining method.97

Specifically, we focus on answering the following questions through a real-world tabletop manip-98

ulation setting: Q1. How does LAPA perform when there are cross-embodiment gaps between99

pretaining and fine-tuning? Q2. Can LAPA learn superior priors compared to using ground-truth100

actions during pretraining in a multi-embodiment setting? Q3. Can we create a performant LAPA101

solely from raw human manipulation videos? We provide details of experimental setups and base-102

line models in Appendix H and I. We also provide preliminary experiment results that compare the103

effect of LAPA with baseline methods of training manipulation policies from actionless videos on104

Language Table [13] and SIMPLER [14] in Appendix A and analysis regarding the scaling of LAPA105

in Appendix E.106

We pretrain our models on (1) Bridgev2 for cross-embodiment performance (WidowX to Franka107

embodiment) , (2) Open X-Embodiment Dataset [3] to measure the effect of pretraining in a multi-108

embodiment setting and (3) Something-Something V2 dataset [15] to see the potential of LAPA109

pretrained on human manipulation videos. Figure 2 shows the average success rate across the 3110
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tasks where each task encompasses unseen object combination, object, and instruction settings. We111

provide detailed results depending on the generalization type in Table 12 in Appendix L.3.112

Bridgev2 Pretraining We compare models that were pretrained on the Bridgev2 dataset. Similar113

to previous results, all models pretrained on Bridgev2 result in significant performance enhancement114

compared to SCRATCH. Furthermore, by comparing LAPA which does not leverage action-labeled115

trajectories during pretraining with models that use action-labeled trajectories during pretraining116

(ACTIONVLA and OPENVLA), we observe an interesting finding: LAPA outperform VLAs that117

use action labeled pretraining data on average success rate of the 3 tasks, unlike previous scenar-118

ios where VLAs pretrained on the ground-truth actions were upper bounds. LAPA significantly119

outperforms the other models in pick-and-place tasks; given that most tasks in Bridgev2 are pick-120

and-place, we hypothesize that VLA models pretrained on ground truth action labels have overfitted121

to the WidowX action space from the Bridgev2 dataset, hampering cross-embodiment adaptability122

to action distribution shifts during fine-tuning. In contrast, LAPA avoids this issue by not relying on123

ground truth action labels during pretraining.124

Open-X Pretraining From Figure 2, we see that VLAs pretrained on the Open-X dataset out-125

performs VLAs pretrained on the Bridgev2 dataset, showing that data scaling during pretraining126

demonstrates positive transfer for downstream tasks [3]. This also suggests there could be signif-127

icant further improvement when scaling the diversity and scale of the pretraining data, especially128

with large web-scale video data. When comparing LAPA with OPENVLA, we see that LAPA sig-129

nificantly outperforms OPENVLA on 2 out of 3 tasks (Figure 2). This highlights LAPA’s effective-130

ness in a multi-embodiment setting by showcasing its ability to leverage a shared latent action space131

during pretraining, akin to how language and image representations are utilized. In contrast, contem-132

porary action pretraining methods may suffer from reduced positive transfer between datasets due to133

the variability in action representation spaces across different embodiments and datasets. However,134

for pick and place task, LAPA underperforms OPENVLA. We observe that most failures of LAPA135

are due to early grasping. In fact, LAPA outperforms OPENVLA in reaching performance (83.33%136

vs 66.67%) (Appendix L.3). This suggests that, although LAPA possesses stronger language condi-137

tioning, there is room for improvement in skills such as grasping. Since grasping occurs only once138

or twice in each trajectory, the 150 labeled trajectories may not be sufficient for LAPA to accurately139

predict grasp actions based on the physical characteristics of diverse objects.140

Human Video Pretraining We report the real-world robot experiments in Figure 2. Surprisingly,141

we can see that LAPA trained with human videos outperforms OPENVLA (Bridge) on average.142

Despite the larger embodiment gap for LAPA (Human to robot vs. Robot to robot), it learns a143

better prior for robot manipulation. This result highlights the potential of raw human manipulation144

videos from the web compared to expensive robot manipulation data, which requires time-intensive145

teleoperation to collect. Results comparing LAPA (Sthv2) with baseline models also trained with146

human video are shown in Appendix A.3.147

4 Conclusion148

In this paper, we introduce LAPA, a scalable pretraining method for building VLAs using actionless149

videos. Across three benchmarks spanning both simulation and real-world robot experiments, we150

show that our method significantly improves transfer to downstream tasks compared to existing151

approaches. We also present a state-of-the-art VLA model that surpasses current models trained on152

970K action-labeled trajectories. Furthermore, we demonstrate that LAPA can be applied purely on153

human manipulation videos, where explicit action information is absent, and the embodiment gap is154

substantial. We also show the pretraining efficiency of LAPA in Appendix B and qualitative analysis155

in Appendix C. We believe our work can be extended to build scalable robot foundation models.156
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A Preliminary Experiments313

A.1 Language Table Results314

Table 1: Language Table Results. Average Success Rate (%) across the three different pretrain-finetune
combinations from the Language Table benchmark as described in Table 2. We also note the # of trajectories
used for fine-tuning next to each category.

In-domain (1k) Cross-task (7k) Cross-env (1k)
Seen Unseen Seen Unseen Seen Unseen

SCRATCH 15.6±9.2 15.2±8.3 27.2±13.6 22.4±11.0 15.6±9.2 15.2±8.3

UNIPI 22.0±12.5 13.2±7.7 20.8±12.0 16.0±9.1 13.6±8.6 12.0±7.5

VPT 44.0±7.5 32.8±4.6 72.0±6.8 60.8±6.6 18.0±7.7 18.4±9.7

LAPA 62.0±8.7 49.6±9.5 73.2±6.8 54.8±9.1 33.6±12.7 29.6±12.0

ACTIONVLA 77.0±3.5 58.8±6.6 77.0±3.5 58.8±6.6 64.8±5.2 54.0±7.0

In-Domain Performance First, we assess LAPA’s ability to learn from a small subset of in-315

domain action label data by pretraining on 181k trajectories and finetuning on 1k action-labeled316

trajectories (0.5%). As shown in Table 1, LAPA largely outperforms SCRATCH and narrows the317

gap with ACTIONVLA despite not using action labels during pretraining. Additionally, LAPA sur-318

passes UNIPI and VPT. Notably, while UNIPI handles simple tasks well, its diffusion model often319

generates incorrect plans for longer-horizon tasks, aligning with Du et al. [16]. VPT, with the same320

backbone VLM as LAPA, outperforms UNIPI, showing the superiority of the VLA model, but still321

underperforms LAPA, highlighting the effectiveness of latent actions.322

Cross-Task Performance We investigate whether LAPA’s broad skills can be retained after fine-323

tuning on a specific task. Pretraining LAPA on 181k trajectories and finetuning on only separate324

tasks (7k), we evaluate all 5 task categories, similar to the in-domain setup, to assess latent pretrain-325

ing’s benefits for unseen tasks. When comparing LAPA and SCRATCH in Table 1 and Table 6, 7326

in Appendix L.1, latent pretraining significantly benefits the separate task as well the other 4 task327

categories, resulting in a significant boost in both seen and unseen setups. Like before, UNIPI is328

constrained by its diffusion model’s planning limitations, while VPT performs strongly, even sur-329

passing ACTIONVLA in the unseen setting. This is likely due to using more labeled data (7k vs.330

1k), helping the IDM generate more accurate pseudo labels.331

Cross-Environment Performance We further investigate if LAPA benefits downstream perfor-332

mance when the pretraining and fine-tuning environments are different. We pretrain LAPA on 440k333

real-world trajectories, and then finetune on 1k simulation trajectories, which can be seen as testing334

on a setup where a real2sim gap is present (Figure 7 (a)). From Table 1, we observe that LAPA still335

significantly outperforms SCRATCH, showing that latent pretraining leads to positive transfer even336

on cross-environment setting. Notably, both UNIPI and VPT significantly underperforms LAPA,337

showing that learning to predict latent actions is more robust to cross-environment transfer. VPT338

only results in minor positive transfer, indicating that the IDM is not robust to environment shifts.339

A.2 SIMPLER Results340

We pretrain our models on the Bridgev2 [17] dataset and fine-tune on 100 trajectories collected from341

the SIMPLER environment [14]. As shown in Figure 3a, UNIPI significantly underperforms all342

other baselines on the SIMPLER Environment. We observe that, although the generated plans from343

the diffusion models are quite accurate, the IDM lacks the capability to predict 7 DOF continuous344

actions accurately when given only 100 action-labeled trajectories. This implies the effectivness345

of using VLAs in scenarios with insufficient action-labeled data. Similar to the results of Section346

A.1, LAPA outperforms baseline models that pretrain on actionless videos (UNIPI and VPT) and347

closes the performance gap with ACTIONVLA, which is pretrained on all of the 60K action-labeled348

trajectories from the Bridgev2 dataset. This highlights the effectiveness of LAPA, even when the349

complexity of the action space increases.350
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(b) Human to SIMPLER

Figure 3: SIMPLER Results. Average success rate (%) of LAPA and baselines pretrained on bridge and
fine-tuned on SIMPLER (left). We also pretrain on human manipluation videos where the embodiment and
environment gap is extreme and fine-tune on SIMPLER (right).

A.3 Human Manipulation Videos351

We first evaluate the performance of LAPA pretrained on human videos on SIMPLER. In addition352

to SCRATCH, we also compare with UNIPI and VPT pretrained with the same human video dataset.353

As shown in Figure 3b, LAPA outperforms SCRATCH, showing that although the distribution of the354

pretraining data is distinct from the deployment setup, leveraging human videos for latent action355

pretraining results in positive transfer. Also, consistent with the result of Section A.2, LAPA shows356

the best performance, implying that Latent Action Pretraining is robust to human to robot embodi-357

ment shifts. Note that it is impossible to train ACTIONVLA because the human videos do not have358

any robot action labels.359

B Pretraining Efficiency360

The benefit of LAPA extends beyond downstream task performance to include pretraining efficiency.361

For pretraining LAPA (Open-X), the best-performing model, we use 8 H100 GPUs for 34 hours with362

a batch size of 128 (total of 272 H100-hours). In contrast, OPENVLA required a total of 21,500363

A100-hours with a batch size of 2048. Despite being approximately 30-40 times more efficient for364

pretraining, LAPA still outperforms OPENVLA. We believe this efficiency stems from two factors.365

First, the training objective during LWM pretraining which corresponds to generating the next frame366

in a video, enables the model to implicitly understand high-level actions in a video. Notably, AC-367

TIONVLA (Bridge), which uses LWM as the backbone reaches optimal performance in significantly368

fewer epochs (3 epochs) compared to OPENVLA (Bridge), which uses Prismatic as the backbone369

(30 epochs). Second, the action space for LAPA is much smaller than that for OPENVLA (84 vs.370

2567), making learning the perception-and-language to action generation problem easier to learn.371

For all LAPA models (BridgeV2, Open-X, Human Videos), we observe that a single epoch of train-372

ing is sufficient to achieve optimal performance.373

C Latent Action Analysis374

We qualitatively analyze the alignment of quantized latent actions with real continuous actions. For375

interpretation, we condition the current image observation x1 and each latent action on the decoder376

of the latent action quantization model, and present the reconstructed images. In Language Table,377

we observe that each latent action corresponds to a distinct movement of the robot arm (shown378

in Figure 11, 12 of Appendix K). Next, for human manipulation videos, we observe that camera379

viewpoints also correspond to a latent action (shown in Figure 13 of Appendix K). We also analyze380

the latent actions learned from the Open-X embodiment, which encompasses multiple embodiments,381

tasks, and environments. As shown in Figure 4, even though the embodiment and environment382

differ, conditioning on the same latent action results in a similar action in the reconstructed image.383

This supports our previous claim that latent actions are learned in a shared representation space,384

facilitating stronger positive transfer across diverse datasets.385
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[1,1,3,2] [3,2,0,1] [4,2,4,1] [5,1,2,7] [5,3,5,2] [6,7,0,2]

Down, Left Up Right, Rotate Down Left, Rotate Up, LeftActions

Figure 4: Latent Action Analysis. We condition the current observation x1 and quantized latent action to
the decoder of the latent action quantization model. We observe that each latent action can be mapped into
a semantic action. For example, latent action [1,1,3,2] corresponds to going down and left while [3,2,0,1]
corresponds to going up a little bit.

We qualitatively analyze LAPA’s coarse-grained planning through a closed-loop rollout using a pre-386

trained model without action finetuning. Since latent actions aren’t directly executable, we condition387

the current observation x1 and LAPA’s predicted latent action with the decoder of the quantization388

model. As shown in Figure 10 in Appendix, when instructed to ”take the broccoli out of the pot,”389

LAPA generates robot trajectories that reach for the broccoli, grab it, and, as the arm moves away,390

the broccoli disappears. This demonstrates LAPA’s potential as a general-purpose robotic world391

model, predicting both actions and their outcomes.392

D Related Work393

Vision-Language-Action Models Vision-Language Models (VLMs), trained on large-scale inter-394

net datasets have shown strong capabilities in understanding and generating both text and mul-395

timodal data [18, 19, 20, 21]. Leveraging this, recent advancements have introduced Vision-396

Language-Action Models (VLAs), which extend VLMs by fine-tuning them with robotic action data397

[1, 2, 22, 3]. Incorporating auxiliary objectives, such as visual traces [23], language reasoning paths398

[4], or creating conversational-style instruction datasets [24], have further improved VLA perfor-399

mance. However, these methods remain dependent on labeled action data. In contrast, our approach400

reduces reliance on human-teleoperated data by requiring labeled actions only for fine-tuning.401

Training Robot Policies From Videos Videos offer rich data for robot learning, but most lack402

action labels [6]. Related work pretrains a vision encoder on egocentric human videos [25, 26,403

27], or video generative models to generate future robot trajectories [28, 29]. Methods also extract404

diverse features from human videos such as interactions [30], affordances [31, 32, 33, 34], or visual405

traces [35, 36]. Some perform retargeting of human motions to robot actions [37, 38, 34, 39, 40, 41]406

or motion capture systems [42]. Finally, some train inverse dynamics models (IDMs), optical flow,407

or reinforcement learning models that predict actions from future state rollouts generated by world408

models [43, 44, 45, 46, 47].409

Latent Actions Previous works have employed latent actions across diverse scenarios. GENIE [9]410

maps user inputs (ground-truth actions) to a latent space, allowing generative models to create in-411

teractive environments. We adopt a similar latent action model but apply it to label actionless data412

for training a VLA to solve robotic tasks. Similarly, some works use latent actions to pretrain and413

fine-tune policies for video games [48, 49, 50]. In contrast, we focus on learning latent actions414

from real-world human motions for more complex, continuous robotic tasks. Unlike other work that415

leverages latent actions by converting ground-truth actions into latent actions [51, 52, 53, 54], our416

approach derives latent actions directly from observations.417
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Figure 5: Scaling Ablation Results of LAPA. We scale 3 dimensions of LAPA: model parameters (in millions),
data size (ratio among Bridgev2), and the latent action representation space, and show the downstream average
success rate (%) on the SIMPLER fine-tuning tasks.

Large Language Models (LLMs) have demonstrated scaling laws [55], where performance improves419

with increases in model size, dataset size, and computational resources used for training. Similarly,420

we attempt to analyze whether LAPA benefits from scaling across three dimensions: latent action421

quantization model size, data size, and latent action representation space. For a controlled setup, we422

apply our method to Bridgev2 and then fine-tune it on SIMPLER except for Language Table result423

of Figure 5c.424

As shown in Figure 5, scaling benefits LAPA across the three dimensions. Interestingly, we observe425

that the optimal scale of the latent action space depends on the complexity of the action dimension426

contained in the pretraining dataset. For example, increasing the latent action size for Language427

Table pretraining eventually harms the performance after a certain point. Except for Language Table,428

we maintain the generation space of LAPA at 84 throughout all of our main experiments. These429

results imply that when scaling pretraining to Internet-scale videos that go beyond manipulation430

videos, scaling LAPA in terms of model, dataset, and latent action space could improve performance,431

especially to capture higher action dimensions such as whole-body locomotion and manipulation.432

F Limitations433

We still face certain limitations. First, LAPA underperforms compared to action pretraining when434

it comes to fine-grained motion generation tasks like grasping. We believe that increasing the la-435

tent action generation space could help address this issue. Second, similar to prior VLAs, LAPA436

also encounters latency challenges during real-time inference. Adopting a hierarchical architecture,437

where a smaller head predicts actions at a higher frequency, could potentially reduce latency and438

improve fine-grained motion generation. Lastly, while we qualitatively demonstrate that our latent439

action space captures camera movements (Figure 13), we have not yet explored the application of440

LAPA beyond manipulation videos, such as those from self-driving cars, navigation, or landscape441

scenes. We leave these explorations for future work. We hope that our work can help overcome the442

data bottleneck in robotics and accelerate the development of generalist robot policies.443

G Latent Action Quatization Model Details444

We show model architecture details of our latent action quantization model in Figure 6. We utilize445

the C-ViViT model architecture from Villegas et al. [56] to replicate the latent action model from446

GENIE [9]. After latent model training, we utilize the z2 as the latent action label for x1. The447

encoder can be seen as the inverse dynamics model and the decoder can be seen as the world model.448

H Experimental Setup449

We evaluate the effectiveness of LAPA on 9 different task categories in 2 different simulation envi-450

ronments and 3 different real-world robotic tasks. Table 2 shows an overview of the pretraining and451
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Figure 6: Model architecture of our Latent Action Quantization Model.

Table 2: Pretraining and fine-tuning dataset for each environment. Cross-Env denotes cross-environment,
Cross-Emb denotes cross-embodiment, and Multi-Emb denotes multi-embodiment. For fine-tuning, MT de-
notes multi-task training and MI denotes tasks with diverse multi-instructions.

Environment Category Pretraining Fine-tuning
Dataset # Trajs Dataset # Trajs

LangTable
In-Domain Sim (All 5 tasks) 181k 5 Tasks (MT, MI) 1k
Cross-Task Sim (All 5 tasks) 181k 1 Task (MI) 7k
Cross-Env Real (All 5 tasks) 442k 5 tasks (MT, MI) 1k

SIMPLER In-Domain Bridgev2 60k 4 Tasks (MT) 100
Cross-Emb Something v2 200k 4 Tasks (MT) 100

Real-World
Cross-Emb Bridgev2 60k 3 tasks (MI) 450
Multi-Emb Open-X 970k 3 tasks (MI) 450
Cross-Emb Something v2 200k 3 tasks (MI) 450

fine-tuning dataset for each setup and Figure 7 visualizes the simulation benchmark and real-world452

setups.453

Language Table [13] is a simulation where a robot performs 2 DOF actions to push blocks with 5454

subtask categories (see Figure 7) (a)). Figure 7 (a) shows examples of the Language Table setup.455

During evaluation, we evaluate models for both seen and unseen scenarios, where unseen includes456

new objects (color and shape) and unseen combinations of seen objects. It includes 5 subtask cate-457

gories: BlocktoBlock, BlocktoAbsolute, BlocktoBlockRelative, BlocktoRelative, and Separate. For458

Language Table experiments, we train VLA-based models to generate language directions (e.g.459

‘move up’) before actual actions following Belkhale et al. [57], which significantly improved the460
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(a) LANGUAGE TABLE (b) SIMPLER (c) REAL

Figure 7: Experimental Setups. (a) shows an example from the 440k real-world trajectories (top) and the 181k
simulation trajectories (bottom) from the Language Table Benchmark. (b) shows the 4 different evaluation tasks
we use with the SIMPLER environment. (c) shows the three different tasks that we perform in the real-world.

performance 1. For evaluation, we evaluate on 50 evaluation rollouts for each subtask category461

where the initial locations of the objects are randomized for each evaluation. Further details can be462

found in https://github.com/google-research/language-table.463

SIMPLER [14] is a set of simulated environments for evaluating generalist robot manipulation poli-464

cies. We assess our models on 4 tasks (Figure 7 (b)) using the 7 DOF WidowX robot arm. Since465

SIMPLER lacks fine-tuning trajectories, we collect 100 multi-task trajectories using successful roll-466

outs from a VLA model trained on BridgeV2 data [17]. Figure 7 (B) shows examples of the SIM-467

PLER setup. The SIMPLER environment does not provide any fine-tuning data for their evaluation468

pipeline, Thus, we first train our underlying VLM on the Bridgev2 dataset and perform zero-shot469

rollout on the 4 tasks in SIMPLER. Note that we use held-out trajectories differing in object orienta-470

tion and position from the evaluation setup. We filter 25 successful trajectories for each task (total of471

100) and use them as the fine-tuning dataset for all of our experiments. For evaluation, we evaluate472

on 24 rollouts per task while randomizing the initial object locations. We consider Bridgev2 and473

SIMPLER to be in-domain since they show a high correlation between real-world and simulation474

results with their simulation benchmark. Further details can be found in https://github.com/simpler-475

env/SimplerEnv.476

Real-World Tabletop Manipulation experiments used a 7 DOF Franka Emika Panda robot arm in477

three environments (shown in Figure 7 (c)). We utilize three pretraining data sources: Bridgev2 [17],478

Open-X [3], and Something Something v2 [15]. Following Kim et al. [2], we finetune on three multi-479

instruction tasks: (1) ‘Pick <object> into Sink’, (2) ‘Cover <object> with Towel’, and (3) ‘Knock480

<object> Over’. Each task involves 150 trajectories across 15 objects. We use a task-specific partial481

success criterion for evaluation, following Kim et al. [2]. Figure 7 (C) shows examples of the real-482

world tabletop manipulation experimental setup. For the teleoperation, we use the polymetis robotic483

stack2 to collect 150 trajectories for each of the tasks. All of the tasks require multi-instruction484

following capabilities since there are 3 objects in the scene and the model has to condition on the485

task description to infer which object to interact with. Figure 8 shows samples of each task. For486

each task, we aim to quantify 3 distinct capabilities:487

(1) We test the ability to infer the correct object from the task description between an unseen com-488

bination of seen objects during fine-tuninig, (2) We test the ability to infer the correct object from489

totally unseen objects during fine-tuning that may or may have not been observed during pretraining.490

1For 7 DOF robot experiments, we found the benefit of generating language directions to be marginal
compared to the increased inference cost. Therefore, we only generate delta end-effector actions on other
experiments.

2https://github.com/facebookresearch/polymetis
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Specifically, the knocking tasks was conducted with real-world objects that were highly unlikely to491

have been in any of the pertaining datasets. (3) We test the ability to infer the correct object (among492

seen objects, unseen combinations) from a totally unseen instruction that requires semantic reason-493

ing (e.g. Pick up a spicy object). For each evaluation criteria, 6 rollouts are performed for each494

models, resulting in a total of 18 rollouts for each task category. Since there are three tasks, each495

model is evaluated with 54 rollouts in the real-world. We provide the full list of all of the seen and496

unseen objects used for each rollout in Table 13, 14, 15, and the total average success rates in Table497

16.498

Furthermore, for a fair comparison, we match the image resolution during training of all of our499

models and use the exact same object initial positions for all of our evaluation, mostly on the same500

day to minimize variability. For evaluation metrics, we adapt a partial success criteria for fine-501

grained evaluation, following Kim et al. [2], which we describe in detail below.502

Knock down the <object>.503

For knocking, we give 0.5 partial score if the robot reaches to the correct object and 1 if the robot504

knocks down the correct object.505

Cover the <object> with a towel.506

For covering, we give 0.33 partial score if the robot picks up the towel correctly, 0.66 if the robot507

reaches to the correct object or if the towel partially covers the object, and 1 if the correct object is508

completely covered by the towel.509

Pick up the <object> and put it in the sink.510

For pick and place, we give 0.25 for reaching to the correct object, 0.5 for grasping the object, 0.75511

for grasping and moving the object towards the sink, but failing to place the object in the sink, and512

1 for placing the correct object in the sink.513

I Baseline Models514

For the underlying VLM, we use the 7B Large World Model (LWM-Chat-1M) [20].515

SCRATCH denotes the baseline model where we finetune our backbone VLM only on the down-516

stream tasks, to quantify the gains we get from the pretraining stage.517

UNIPI [43] uses a video diffusion model during pretraining to generate video rollouts given a lan-518

guage instruction, which does not require any action labels during pretraining similar to our ap-519

proach. For finetuning, an inverse dynamics model (IDM) is trained to extract the ground truth520

actions given adjacent frames. We also finetune the diffusion model on the downstream task to521

match the target distribution. We use diffusion model from Ko et al. [44] which can be trained on522

4 A100 GPUs. For all experiments, we train with 128 batch. We use the same inverse dynamics523

model as VPT during inference. To mediate estimation errors between the predicted video plans and524

executed actions being accumulated, we periodically conduct replanning by regenerating new video525

plans after executing two actions.526

VPT [47] trains an IDM on action labeled data, and uses the IDM model to extract pseudo actions527

on raw videos. Then, we use the pseudo actions labeled by the IDM to pretrain our backbone VLM528

on the pretraining data, identical to Latent Pretraining of LAPA. We use ResNet18 followed by an529

MLP layer for the inverse dynamics model(IDM). The IDM is trained to predict an action when530

given two frames on a single A6000 GPU using using Adam optimizer with a learning rate 1e-4.531

ACTIONVLA denotes the baseline that uses the actual ground-truth robot action labels during pre-532

training with the same backbone VLM. ACTIONVLA denotes the baseline that uses the actual533

ground-truth robot action labels during pretraining with the same backbone VLM. For ACTION-534

VLA and LAPA, we train with a batch size of 128 and with image augmentation for real-world535

finetuning. This may be seen as the upper bound, since it utilizes the actual ground-truth labels.536
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OPENVLA [2] is a state-of-the-art VLA model that was pretrained on 970k real-world robot demon-537

strations from the Open X-Embodiment Dataset and having a comparable model size to LAPA (7B).538

We compare against OPENVLA for real-world robot experiments by fine-tuning the pretrained539

OPENVLA on our downstream tasks. For OpenVLA (Bridge), we pretrain on Bridgev2 for 30540

epochs with a batch size of 1024. For OpenVLA (Open-X), we use the pretrained checkpoint from541

Kim et al. [2]. For finetuning, we use LoRA finetuning [58] with batch size of 32. We have observed542

that full-finetuning and lora finetuning leads to similar performance, so we use LoRA finetuning as543

default for efficient fine-tuning. We finetune the model until the training action accuracy reaches544

95%.545

J Experimental Result Analysis546

Table 3: Pretraining trajectories statistics for downstream tasks. Number of trajectories that are the same
task with evaluation task for each pretraining dataset: Bridgev2, Open-X, and Something Something V2 (Sthv2)
dataset.

Task Bridgev2 Open-X Sthv2

Knocking 2 7,969 6,655
Covering 898 5,026 6,824
Pick & Place 10,892 911,166 3,272

We further analyze the real-world robot results shown in Figures 2, focusing on how the task dis-547

tribution in pretraining data impacts downstream performance. Table 3 presents the number of tra-548

jectories corresponding to each evaluation task (Knocking, Covering, and Pick & Place) across pre-549

training datasets (Bridgev2, Open-X, and Something Something V2 (Sthv2)), determined through550

lexical matching. We expect future work to use other methods of analyzing the relationship between551

pertaining and fine-tuning task distributions that capture semantics of the task rather than simple lex-552

ical matching. We perform this analysis to get a sense of how the task distribution in the pretraining553

data affects downstream task performance.554

Knocking There are almost no knocking-related trajectories in Bridgev2. This scarcity may ex-555

plain why models trained on Bridgev2 performed worse compared to those trained on Sthv2, despite556

a larger embodiment gap in the Sthv2 dataset (Figure 2).557

Covering A similar trend is observed for the covering task. Given that the number of covering tra-558

jectories in Bridgev2 is relatively small compared to the Sthv2 dataset, models trained on Bridgev2559

occasionally underperform compared to LAPA trained on Sthv2.560

Pick & Place For the pick and place task, the trend reverses. The number of pick and place tasks561

in Sthv2 is relatively small compared to Bridgev2 and Open-X, which might explain why LAPA562

trained on Sthv2 significantly underperforms models trained on Bridgev2 or Open-X. Based on563

these results, we expect that pretraining on videos encompassing a wide range of skills will lead564

to a more robust generalist policy compared to training on robot videos with narrower skill sets.565

We also expect future research to provide a more in-depth analysis of the relationship between task566

distribution in pretraining data and performance on downstream tasks.567

We also present the win rate of LAPA (Open-X) against OpenVLA (Open-X). As illustrated in Fig-568

ure 9, LAPA outperforms OpenVLA in 65.4% when disregarding the ties. When considering the569

ties, LAPA outperforms OpenVLA in 31.5% of cases, while OpenVLA prevails in only 16.7%. In-570

terestingly, they tie in 51.9% of the trials, suggesting that in about half the instances, both models571

either fail or achieve a similar partial success score. Note that these evaluations were performed572

while ensuring that the target and distractor objects were in identical initial locations during eval-573

uation, alternating the models during evaluation. These results provide insight into the statistical574

significance of the comparison, supporting the use of multiple metrics to ensure a more compre-575
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hensive evaluation of physical robot performance in real-world scenarios [59], not only the average576

success-rate across all of the evaluation rollouts.577

K Detailed Latent Action Analysis578

We provide further qualitative analysis of LAPA. First, we analyze latent actions learned from Lan-579

guage Table with vocabulary size of 8 and sequence length of 1. In Figure 11, we show that each580

latent action corresponds to a semantic action (0: Move left and forward, 1: Move left and back,581

2: Move right and back, 3: Move right slightly, 4: Move right, 5: Move back, 6: Do not move,582

7: Move forward). We observe that increasing the latent action vocabulary size leads to capturing583

a more fine-grained information. We analyze the relationship between latent actions with ground-584

truth 2 DOF actions by mapping each instance into latent action space. As shown in Figure 12,585

we observe that latent actions are well-clustered in the actual 2D action space, indicating that latent586

actions are meaningful representations that are highly related to actual continuous actions.587

We further analyze the latent actions learned from human manipulation videos using the Something-588

Something V2 dataset. As illustrated in Figure 13, these latent actions capture not only hand move-589

ments but also camera movements. Since the camera viewpoint varies throughout the videos in the590

Something-Something V2 dataset due to the videos being egocentric, our latent action quantization591

model also learns to represent camera movements. For instance, latent actions [3,5,2,7] and [5,6,7,6]592

correspond to slight downward camera movement, [4,0,0,4] and [2,3,6,6] indicate rightward move-593

ment, and [4,2,0,0] and [5,7,0,5] represent subtle upward camera shifts.594

L Detailed Experimental Results595

L.1 Language Table596

We provide the detailed results of the experiments performed on the Language Table benchmark597

in Table 4, 5, 6, 7, 8, 9. For all of the tables in the appendix, we bold the best result among the598

comparisons and underline the second best. Each value denotes the success rate (%). 50 evaluation599

rollouts are performed for each task category, resulting in 250 total evaluation rollouts per model for600

each table.601

We also show the qualitative result of UNIPI where the diffusion model generates the correct plan602

for simple and short-horizon tasks (e.g. separate tasks). However, the diffusion model generates the603

wrong plan corresponding to the instruction when the task requires longer horizon planning (Figure604

14).605

Table 4: Language Table In-Domain Seen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 4.0 14.0 36.0 58.0 76.0
Block2Absolute 6.0 4.0 38.0 56.0 72.0
Block2BlockRelative 10.0 12.0 48.0 52.0 76.0
Block2Relative 6.0 10.0 26.0 48.0 70.0
Separate 52.0 72.0 70.0 96.0 90.0

AVG 15.6 22.4 43.6 62.0 76.8

L.2 SIMPLER606

We provide detailed results of various models evaluated on SIMPLER environment. Table 10 shows607

the setting where baseline models are pretrained on Bridgev2 and then finetuned on SIMPLER608

rollouts (100 videos). The results show detailed results for each task (stack green to yellow block,609

put carrot on plate, put spoon on otowel, put eggplant in basket) and subtasks (grasping and moving).610

We also provide detailed results of the setting where baseline models are pretrained on human ma-611

nipulation videos (Something Something V2 dataset) and then finetuned on SIMPLER rollouts (100612
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Table 5: Language Table In-Domain Unseen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 8.0 4.0 26.0 50.0 62.0
Block2Absolute 10.0 6.0 42.0 48.0 58.0
Block2BlockRelative 2.0 6.0 20.0 28.0 48.0
Block2Relative 8.0 6.0 32.0 38.0 44.0
Separate 48.0 44.0 44.0 84.0 82.0

AVG 15.2 13.2 32.8 49.6 58.8

Table 6: Language Table Cross-Task Seen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 18.0 12.0 74.0 74.0 76.0
Block2Absolute 8.0 6.0 56.0 62.0 72.0
Block2BlockRelative 6.0 2.0 62.0 72.0 76.0
Block2Relative 24.0 16.0 72.0 60.0 70.0
Separate 80.0 68.0 96.0 98.0 90.0

AVG 27.2 20.8 72.0 73.2 76.8

Table 7: Language Table Cross-Task Unseen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 16.0 4.0 66.0 46.0 62.0
Block2Absolute 10.0 10.0 56.0 52.0 58.0
Block2BlockRelative 8.0 10.0 46.0 48.0 48.0
Block2Relative 12.0 4.0 52.0 38.0 44.0
Separate 66.0 52.0 84.0 90.0 82.0

AVG 22.4 16.0 60.8 54.8 58.8

Table 8: Language Table Cross-Environment Seen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 4.0 4.0 16.0 26.0 66.0
Block2Absolute 6.0 4.0 8.0 16.0 58.0
Block2BlockRelative 10.0 8.0 6.0 20.0 62.0
Block2Relative 6.0 4.0 12.0 22.0 54.0
Separate 52.0 48.0 48.0 84.0 84.0
AVG 15.6 13.6 18.0 33.6 64.8

Table 9: Language Table Cross-Environment Unseen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 8.0 2.0 2.0 30.0 38.0
Block2Absolute 10.0 6.0 4.0 14.0 48.0
Block2BlockRelative 2.0 6.0 2.0 10.0 50.0
Block2Relative 8.0 4.0 40.0 18.0 54.0
Separate 48.0 42.0 44.0 76.0 80.0
AVG 15.2 12.0 18.4 29.6 54.0

videos) in Table 11. We only compare to UNIPI, VPT, and LAPA since ACTIONVLA could not be613

trained without ground-truth action labels.614

L.3 Real-world615

We provide the detailed result of real world evaluation depending on the generalization type: (1)616

seen objects but unseen combinations, (2) unseen objects, and (3) seen objects but unseen instruc-617

tions. The results are shown in Table 12. As shown in the table, LAPA (Open-X) outperforms618

OpenVLA (Open-X) on all types of generalization settings. Also, LAPA (Human Videos) shows619
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Table 10: SIMPLER results of Bridgev2 Pretraining. Success, Grasping, and Moving Rates (%) in SIM-
PLER environment. We pretrain UNIPI, VPT, and LAPA on Bridgev2 dataset without using ground-truth
action labels and ACTIONVLA on Bridgev2 using action labels. The main 4 tasks are: stack green to yellow
block, put carrot on plate, put spoon on towel, and put eggplant in basket. Best is bolded and second best is
underlined.

Success Rate SCRATCH UNIPI VPT LAPA ACTIONVLA

Stack G2Y 29.2 2.7 45.8 54.2 75.0
Carrot2Towel 29.2 2.7 37.5 45.8 58.0
Spoon2Plate 50.0 0.0 70.8 70.8 70.8
Eggplant2Bask 29.2 0.0 50.0 58.3 50.0
AVG 34.4 1.3 51.0 57.3 63.5
Grasping Rate
Grasp Green Block 66.6 20.8 62.5 62.5 87.5
Grasp Carrot 45.8 33.2 54.1 58.3 75.0
Grasp Spoon 70.8 22.2 79.2 83.3 83.3
Grasp Eggplant 62.5 16.0 70.8 83.3 75.0
AVG 61.4 23.1 66.7 71.9 80.2
Moving Rate
Move Green Block 58.3 29.1 58.3 66.6 91.6
Move Carrot 45.8 48.6 66.6 70.8 91.6
Move Spoon 70.8 34.6 79.2 83.3 79.2
Move Eggplant 87.5 58.0 70.8 87.5 91.6
AVG 65.6 42.6 68.7 77.1 88.5

Table 11: SIMPLER results of Human Manipulation Video Pretraining. Success, Grasping, and Moving
Rates (%) in SIMPLER environment. We pretrain UNIPI, VPT, and LAPA on Something-Something V2
dataset without using ground-truth action labels. The main 4 tasks are: stack green to yellow block, put carrot
on plate, put spoon on towel, and put eggplant in basket. Best is bolded and second best is underlined.

Success Rate VPT UNIPI LAPA

StackG2Y 50.0 0.0 50.0
Carrot2Towel 29.1 1.3 50.0
Spoon2Plate 37.5 1.3 50.0
Eggplant2Bask 66.6 0.0 58.3
AVG 45.8 0.7 52.1
Grasping Rate
Grasp Green Block 66.6 2.7 58.3
Grasp Carrot 45.8 31.7 62.5
Grasp Spoon 70.8 21.7 75.0
Grasp Eggplant 91.6 6.8 70.8
AVG 68.7 15.7 66.7

Moving Rate
Move Green Block 62.5 2.7 62.5
Move Carrot 58.3 37.5 70.8
Move Spoon 54.1 18.1 75.0
Move Eggplant 91.6 50.3 83.3
AVG 66.6 27.1 72.9

good generalization performance, especially for unseen objects. We conjecture that this is because620

Something Something V2 dataset interacts with much diverse objects compared to Bridgev2.621

We also provide the full list of objects and the partial success recorded for each of the evaluation622

rollout: Knocking (Table 13), Covering (Table 14), and Pick & Place (Table 15). The total average623

success rate is provided in Table 16).624
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Table 12: Evaluation Results divided into eval types. We average the success rate across the 3 tasks depending
on what capability we are trying to quantify: (1) seen objects but unseen combinations, (2) unseen objects, and
new instructions requiring semantic reasoning. Best is bolded and second best is underlined.

Seen Obj. Unseen Seen Obj. AVGUnseen Combo Obj. Unseen Instr.

SCRATCH 18.0 20.3 25.4 21.2

ACTIONVLA (Bridge) 38.3 31.8 27.7 32.6
OPENVLA (Bridge) 35.6 34.6 22.1 30.8
LAPA (Bridge) 43.4 31.4 35.6 36.8

OPENVLA (Open-X) 46.2 42.1 43.4 43.9
LAPA (Open-X) 57.8 43.9 48.5 50.1
LAPA (Human Videos) 36.5 37.4 28.1 34.0

Table 13: Knocking Task Results
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Seen
flamingo 0 0.5 0.5 0.5 0 0 0.5
pistachios 0.5 1 0.5 0 1 0 1
soft scrub 0 0 0 0 0.5 0 0.5
white cup 1 0 0 0.5 0.5 0.5 0
mustard 0 1 0 0 0 0 0
water bottle 1 1 0.5 0 0 0.5 0

SUM 2.5 3.5 1.5 1 2 1 2

Unseen
pringles 0.5 0.5 0.5 0 0 0 0
hersey’s chocolate syrup 0 0 0 0 0 0 0
popcorn 0 1 1 1 1 0 1
skittles 0 0 0 0 0 0 0
green board marker 0.5 0.5 0.5 0.5 0.5 0.5 0.5
paper towel 0 0 0 0 0 0 0

SUM 1 2 2 1.5 1.5 0.5 1.5

Seen Semantic
a drink that contains orange 0 0 0 0 0 0 0
food to eat with milk 0.5 0 0 0 0 0 0
a object used for cleaning 0 1 0 0 0 0 0
something to wash dishes 1 1 0 0.5 1 0.5 0
the nuts 1 1 0.5 1 1 0.5 1
rectangle object 1 1 0.5 0.5 0.5 0 1

SUM 3.5 4 1 2 2.5 1 2

Success Rate (Strict) 27.78% 44.44% 5.56% 11.11% 22.22% 0.00% 22.22%
Success Rate 38.89% 52.78% 25.00% 25.00% 33.33% 13.89% 30.56%
Reaching Success Rate 50.00% 61.11% 44.44% 38.89% 44.44% 27.78% 38.89%
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Figure 8: Real-world Tabletop Manipulation Examples.
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(a) Win rate (%) disregarding ties. (b) Win rate (%) with ties.

Figure 9: Pairwise win rate (%). We compare a pairwise win-rate of OpenVLA and LAPA across the 54
evaluation rollouts in the real-world. (a) shows the win-rate while ignoring the ties and (b) shows the ties
together with the individual wins.

x1 ̂x2

\hat{x}_2

̂x3 ̂x4 ̂x5 ̂x6 ̂x7 ̂x8

Figure 10: Closed loop rollout of LAPA. LAPA is conditioned on current image x1 and language instruction
of ‘take the broccoli out of the pot’. We generate rollout images by conditioning the decoder of Latent Action
Quantization Model with latent actions generated by LAPA.

0 1 2 3 4 5 6 7

Forward 
& Left

Back 
& Left

Back 
& Right

Right 
Slightly

Right Back Do not
Move

ForwardActions

Figure 11: Latent Action Analysis in Language Table. We condition the current observation x1 and quantized
latent action to the decoder of the latent action quantization model. We observe that each latent action can be
mapped into a semantic action. For example, latent action 0 corresponds to moving a bit left and forward and
corresponds to moving a bit left and back.

Figure 12: Correlation of latent action with ground-truth actions When we map latent actions to ground-
truth 2 DOF actions of Language Table, we observe that latent actions are well-clustered in the actual 2D action
space.
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[2,3,6,6] [3,5,2,7] [4,0,0,4] [4,2,0,0] [5,6,7,6] [5,7,0,5]

Camera View Right Down Right, Down Up Down Up, Left

Figure 13: Latent Action Analysis in Human Manipulation Videos. We condition the current observation x1

and quantized latent action to the decoder of the latent action quantization model. We observe that each latent
action can be mapped into a semantic action including camera movements. For example, latent action [3,5,2,7]
corresponds to moving the camera a bit down while [4,2,0,0] corresponds to moving the camera slightly up.

Figure 14: Success and Failure Cases of UNIPI. (Top) Given the instruction of ‘move the green block away
from the red cube and red pentagon’, the diffusion model of UNIPI successfully generates the plan. (Bottom)
Given the instruction of ‘put the blue moon toward the yellow block’, the diffusion model fails to generate the
correct plan.
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Table 14: Covering Task Results
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Seen
icecream 0.33 0.33 0.33 0.33 0.33 0.33 0
strawberry 0.33 1 0.33 1 0.33 1 1
pepper 0.33 0 0.33 0.33 0.33 0.33 0.33
watermelon 0.33 0.33 0.33 0.33 0.33 0 0.33
blue lego block 0.66 1 1 1 1 0.33 0.33
pink duck 0.33 1 0.33 0.33 0.33 0 0.33

SUM 2.31 3.66 2.65 3.32 2.65 1.99 2.32

Unseen
donut 0.33 1 0.66 1 0.66 0.66 0.33
orange 0.33 0.33 1 0 0.33 1 1
mushroom 0.33 0.33 0.33 0.33 0.33 0.33 0.33
yellow lego block 0.33 1 1 0.33 0 0.33 0.33
peas 1 0 0.66 1 1 0.33 1
egg 0 1 0.33 0 0.66 0 1

SUM 2.32 3.66 3.98 2.66 2.98 2.65 3.99

Seen Semantic
drink 0.33 0 0.66 1 0.33 0.33 0.66
yellow object 0.66 0.66 0 0 0.33 0 0.33
fruit 0.33 0.33 0.33 0.33 0.33 0.33 0.33
vegetable 0.33 0.33 0 0.33 0.33 0.33 0.33
edible object 0.33 0.33 0.66 0 0.33 1 0.33
condiment 0.33 0.33 0.33 0 0.33 0.33 0.33

SUM 2.31 1.98 1.98 1.66 1.98 2.32 2.31

Success Rate (Strict) 5.56% 33.33% 16.67% 27.78% 11.11% 16.67% 22.22%
Success Rate 38.56% 51.67% 47.83% 42.44% 42.28% 38.67% 47.89%
Reaching Success Rate 16.66% 38.89% 38.89% 27.78% 22.22% 22.22% 27.78%
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Table 15: Pick & Place Sink Task Results
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Seen
milk 1 1 1 1 1 0 1
orange lego block 1 1 0 1 0 0 0
ketchup 0.25 0.25 0.25 0.25 0 0 0
corn 1 0.75 1 0.25 0.25 0.25 0.25
icecream 0.25 0 0 0 1 0 1
salt 0 0.25 0 1 0 0 0

SUM 3.5 3.25 2.25 3.5 2.25 0.25 2.25

Unseen
carrot 1 0.25 0 0.25 1 0.25 0.25
yellow paprika 1 1 0 0.25 0.25 0 1
yellow cube 1 0.5 0.25 0.5 0 0 0
salmon sushi 0 0.25 0 0.5 0 0 0
orange 1 0 0 0 0 0.25 0
blue cube 0.25 0.25 0 0 0 0 0

SUM 4.25 2.25 0.25 1.5 1.25 0.5 1.25

Seen Semantic
an object that is yellow 1 1 0 1 0.25 0 0
an object that is round 0 0.25 0 0 0 0.25 0
an object that is a fruit 1 1 1 1 0 1 0.75
an object that you can drink 0 0.25 0 0.5 0 0 0
an object that is a vegetable 0 0 0 0 0 0 0
an object that is an animal 0 0.25 0 0.25 0.25 0 0

SUM 2 2.75 1 2.75 0.5 1.25 0.75

Success Rate (Strict) 50.00% 27.78% 16.67% 27.78% 16.67% 5.56% 16.67%
Success Rate 54.17% 45.83% 19.44% 43.06% 22.22% 11.11% 23.61%
Reaching Success Rate 66.67% 83.33% 27.78% 72.22% 38.89% 27.78% 33.33%

Table 16: Summary of Total Success Rates (%)
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Total Success Rate 43.87% 50.09% 30.76% 36.83% 32.61% 21.22% 34.02%
Total Success Rate (Strict) 27.78% 35.19% 12.96% 22.22% 16.67% 7.41% 20.37%
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