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Abstract
We investigate the problem of processing incom-
plete images by neural networks without replac-
ing missing values. To deal with this problem, we
first represent an image as a graph, in which miss-
ing pixels are entirely ignored. The graph image
representation is processed using SGCN – a type
of graph convolutional neural networks, which is
a proper generalization of classical CNNs operat-
ing on images. On one hand, our approach avoids
the problem of missing data imputation while, on
the other hand, there is a natural correspondence
between CNNs and SGCN. Experiments confirm
that our approach performs better than analogical
CNNs with the imputation of missing values on
typical classification and reconstruction tasks.

1. Introduction
Learning from missing data is one of the basic challenges
in machine learning and data analysis (Goodfellow et al.,
2016). In a typical pipeline, missing data are first replaced
by some values (imputation) and next the complete data are
used for training a given machine learning model (McK-
night et al., 2007). The above approach depends strictly on
the imputation procedure – if we accurately predict miss-
ing values, then the other model that operates on competed
inputs can obtain good performance. However, it is not
obvious how to select imputation method for a given prob-
lem, because it is difficult to validate its performance in a
real-life scenario. Thus, there appears a natural question:
can we learn from missing data directly without using any
imputation at preprocessing stage?

While it is difficult to answer this problem in general, a
few approaches have already been designed for particular
machine learning models (Dekel et al., 2010; Globerson &
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Roweis, 2006). In (Chechik et al., 2008) a modified SVM
classifier is trained by scaling the margin according to ob-
served features only. In (Grangier & Melvin, 2010), the
embedding mapping of feature-value pairs is constructed
together with a classification objective function. Pelckmans
et al. (2005) model the expected risk, which takes into ac-
count the uncertainty of the predicted outputs when missing
values are involved. In a similar spirit, a random forest
classifier is modified to adjust the voting weights of each
tree by estimating the influence of missing data on the de-
cision of the tree (Xia et al., 2017). The authors of (Hazan
et al., 2015) design an algorithm for kernel classification
that performs comparably to the classifier which has access
to complete data. Goldberg et al. (2010) treat class labels
as an additional column in the data matrix and fill missing
entries by matrix completion. The work (Śmieja et al., 2018)
shows how to generalize fully connected neural networks
to the case of missing data given only an imprecise Gaus-
sian estimate of missing data. Liu et al. (2018) introduce
partial convolutions, where the convolution is masked and
renormalized to be conditioned on only observed pixels.

In this paper we interpret the image as a graph, in which
each node coincides with a visible pixel, while edges con-
nect neighbor pixels. Since missing values are not mapped
to graph nodes, we avoid the problem of missing data im-
putation. In order to efficiently process such an image
representation, we use spatial graph convolutional neural
networks (SGCN) (Danel et al., 2020). In contrast to typi-
cal graph convolutions (Kipf & Welling, 2016; Veličković
et al., 2017), which consider graph as a structure invariant to
rotations and translations, SGCN introduces a theoretically-
justified mechanism to take into account spatial coordinates
of nodes. More precisely, it has been proven that SGCN
is a proper generalization of typical convolutional neural
networks (CNNs) that operate on images, i.e. every convolu-
tional layer can be represented as a spatial graph convolution.
This fact allows us to think about SGCN as a type of CNNs,
which is able, in particular, to process incomplete images
without imputation.

To verify the introduced procedure, we consider MNIST
(LeCun et al., 1998) and SVHN (Netzer et al., 2011) image
datasets. Experimental results show that SGCN performs
better than typical CNNs with imputations on the tasks
of image classification and reconstruction in the setting of
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missing at random (when the missingness pattern is condi-
tionally independent of the unobserved features given the
observations).

2. Graph-based model for processing
incomplete images

General idea. Images can be interpreted as vectors (ten-
sors) of fixed sizes. If the values of selected pixels are
unknown, then the vector structure is destroyed. To recover
this structure, we need to replace missing attributes with
some values. Substituting unknown inputs carries the risk of
introducing unreliable information and noise to initial data.
This may have negative consequences on data interpreta-
tion as well as can decrease the performance of subsequent
machine learning algorithms.

Our idea is to interpret incomplete image as a graph. Graphs
represent a relational structure, in which the number of
nodes and edges are not fixed. If some pixels in the image
are unknown, then the corresponding graph contains less
nodes, but the way it is processed does not change. In con-
sequence, graph-based representation of incomplete images
is more natural than using imputation.

It is well-known that CNNs are state-of-the-art feature ex-
tractors for images. However, as explained above, it is not
obvious how to apply CNNs to incomplete data without re-
placing missing values. In this paper, we use SGCN, which
is a type of graph convolutional networks (GCNs), that takes
spatial coordinates of nodes into account. It is proved that
SGCN can mimic any image convolution and, in conse-
quence, SGCN is able to work comparably to CNNs using
analogical network architecture (number of layers, size of
filters, etc.).

Graph-based representation of incomplete images.
Formally, the image is represented as a tensorH = (hijk) ∈
Rn×m×l, where n,m denote height and width of the image
and l is the number of channels. In the case of missing data,
we do not have information about pixels values at some
coordinates. Thus the incomplete image is denoted by a
pair (H, J), where J ⊂ {1, . . . , n} × {1, . . . ,m} indicates
pixels which are unknown. In other words, hijk is unknown
for every (i, j) ∈ J . Clearly, for a fully-observed image,
J = ∅.

To construct a graph-based image representation, we create
a node for every visible pixel of H, i.e.

V = {vij : (i, j) ∈ J ′},

where J ′ is the set of indices of the observed components.
The edge is defined only for nodes that represent adjacent
pixels. Formally,

E = {(vij , vpq) : (i, j)− (p, q) ∈ {−1, 0, 1}2}.

? ?
? ?

Figure 1. Graph construction for an incomplete image of the size
4× 4 with a missing region of the size 2× 2.
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Figure 2. Basic idea of GCNs. Every filter is responsible for defin-
ing a pattern used to aggregate feature vectors from neighbor
nodes.

Observe that for a complete image, every “non-boundary”
pixel (node) has exactly 8 neighbors. In the case of incom-
plete data, the number of neighbors can be smaller, as the
unknown pixels are not converted to nodes and, in conse-
quence, the corresponding edge is not created, see Figure 1.
The information about pixels brightness is supplied with a
feature vector hij ∈ Rl that corresponds to a node:

H = {hij : (i, j) ∈ J ′}.

For a gray-scale image, hij ∈ R, while for a color picture
hij ∈ R3.

Graph convolutions. Let G = (V,E,H) be a graph (rep-
resenting the image H) with n nodes. To avoid multiple
indexes in the following description, the node and the cor-
responding feature vector are denoted by vi and hi, respec-
tively, while eij is the edge between vi and vj . To make
a natural correspondence between graphs and images, we

put i =

(
ix
iy

)
to denote both pixel coordinates and index in

graph.

Basic idea of GCNs is to aggregate the information of fea-
ture vectors from neighbor nodes over multiple layers, see
Figure 2. To build a diverse set of patterns, GCNs use fil-
ters for defining a specific aggregation. Information from
higher-level neighborhoods are fused by combining many
layers together.

The above goal is realized by combining two operations.
For each node vi, feature vectors of its neighbors are first
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aggregated:
h̄i =

∑
(vi,vj)∈E

Uhj . (1)

Observe that the aggregation is performed only over neigh-
bor nodes, i.e (vi, vj) ∈ E. The weights U ∈ RO×I

are either trainable (Veličković et al., 2017) or determined
from a graph (Kipf & Welling, 2016), where I and O are
the input and output sizes respectively. Next, a standard
MLP is applied to transform the intermediate representation
H̄ = [h̄1. . . . , h̄n] into the final output of a given layer:

MLP(H̄ ;W ) = ReLU(W T H̄ + b), (2)

where a trainable weight matrix W = [w1, . . . ,wn] is
defined by column vectors wi. The dimension of wi deter-
mines the dimension of the output feature vectors. A typical
GCN is composed of a sequence of graph convolutional
layers (described above). Finally, its output is aggregated to
the network response depending on a given task, e.g. node
or graph classification.

Spatial graph convolutions. In contrast to typical GCNs
described above, SGCN uses spatial coordinates of nodes.
In the case of images, spatial coordinates allows to iden-
tify a given pixel in the image grid, which is not possible
using only the information about neighborhood. What is
more important, the convolution defined by SGCN is con-
structed so that it is able to reflect any convolutional filter of
typical CNNs. In other words, any image convolution can
be obtained by a specific parametrization of SGCN. This
makes a natural correspondence between SGCN and CNNs.
This property cannot be obtained by simply adding spatial
coordinates to feature vectors in classical GCNs.

From a formal side, SGCN replaces (1) by:

h̄i(U ,b) =
∑

(vi,vj)∈E

ReLU

(
U

[(
jx
jy

)
−
(
ix
iy

)]
+ b

)
�hj ,

(3)
where U ∈ RI×2, b ∈ RI are trainable, and I is the dimen-
sion of the previous layer vectors. The pair (U ,b) plays a
role of a convolutional filter which operates on the neighbor-
hood of vi. The operator � is element-wise multiplication.
The relative positions in the neighborhood are transformed
using a linear operation combined with non-linear ReLU
function. This scalar is used to weight the feature vectors
hj in a neighborhood. By the analogy with classical con-
volution, this transformation can be extended to multiple
filters. Let U = [U 1, . . . ,U k] and B = [b1, . . . ,bk] de-
fine k-filters. The intermediate representation h̄i is a vector
defined by:

H̄ i =
[
h̄i(U 1,b1), . . . , h̄i(U k,bk)

]
.

Finally, MLP transformation is applied in the same manner
as in (2) to transform these feature vectors.

3. Experiments
We evaluate our model on two machine learning tasks: clas-
sification and reconstruction of incomplete images.

For a comparison, we use vanilla GCN, which is one of the
simplest GCNs that ignores spatial coordinates1. Moreover,
we combine a typical CNN with various types of imputa-
tions: (i) mask, which is a zero imputation with an addi-
tional binary channel indicating unknown pixels (ii) mean
imputation, where absent attributes are replaced by mean
values for a given coordinate (iii) k-nn imputation, which
substitutes missing features with mean values of those fea-
tures computed from the k-nearest training samples (we use
k = 5). For a fair comparison, every architecture (GCN
and CNN) has the same structure, i.e. number of layers and
filters. In the mask variant, the input to the first layer has 2
channels while other variants have only one – the following
layers have the same number of input and output channels.
The inner layers, with 64 input and 64 output channels, have:
38 656 parameters in SGCN, 36 928 in CNN, and 4 160 in
GCN.

Classification. In this experiment, we use gray-scale
handwritten digits retrieved from MNIST database and
color house-number images of the SVHN dataset. For each
MNIST image of the size 28×28, we remove a square patch
of the size 13× 13. The location of the patch is uniformly
sampled for each image. In the case of SVHN images of
the size 32× 32, we use patches of the size 15× 15. This
setting corresponds to the features missing at random.

Classification network is composed of 8 convolutional lay-
ers. Each one contains 64 filters of the size 3 × 3. Batch
normalization is used after every convolutional layer. As
mentioned, we use analogical architecture for both graph
convolutions and typical image convolutions. We report test
errors.

It is evident from Table 1 (first two rows) that SGCN per-
forms significantly better than the other version of GCN.
It is not surprising because, in contrast to typical GCNs,
SGCN introduces information about spatial coordinates to
the model. Next observation is that SGCN gives lower er-
rors than CNNs combined with imputation strategies. While
the advantage of SGCN over the second best method in
the case of MNIST is slight, the difference is higher in the
case of SVHN, which is significantly harder dataset to clas-
sify. As can be seen, the knowledge about missing pixels
is crucial for the success of CNNs. Indeed, CNN (mask)
gives higher accuracy than using imputation strategies2. In
contrast to CNN (mask), which uses an additional binary

1We also experimented with graph attention net-
work (Veličković et al., 2017), but the results did not improve.

2We additionally verified that combining masking with mean/k-
nn imputation does not lead to further improvement of CNNs.
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Table 1. Classification error on two incomplete images.

Dataset SGCN GCN CNN (mask) CNN (mean) CNN (k-NN)

MNIST 4.6% 31.4% 4.9% 5.9% 5.7%
SVHN 16.6% 74.6% 18.6% 19.9% 22.4%

Table 2. Classification error on complete images.

Dataset SGCN GCN CNN

MNIST 0.4% 16.3% 0.5%
SVHN 4.3% 75.4% 5.1%

channel to pass the information about unknown values to
the neural model, SGCN directly ignores missing pixels,
which is more natural. We also verified that SGCN gives
satisfactory performance on complete images (no missing
values), Table 2. While the difference between SGCN and
CNN is slight, the test error of vanilla GCN is still very low.
An important thing is that the disproportion between SGCN
and CNN is higher for incomplete data than for complete
images, which suggests that our strategy for dealing with
missing values is beneficial.

Reconstruction. Reconstruction of incomplete images
finds applications in image inpainting as well as is use-
ful in restoring partially destroyed or low-quality images.
In this experiment, we consider images taken from MNIST
dataset and use the same size of removed patches as before.

We consider the auto-encoder architecture (AE). In the case
of graphs, the encoder is implemented as SGCN with 5
spatial convolutional layers while the decoder is a simple
deconvolutional neural network, which returns the image
in the form of tensor. For imputation methods, we use a
standard convolutional AE with identical number of layers
and filters as in the case of our model. We assume that the
complete data are not available in training phase. Therefore,
for all models, the loss is defined as the mean-square error
(MSE) calculated outside the missing region.

It can be seen from the Figure 3 that SGCN gives similar
results to CNN (mask). The reconstructions coincide on
average with ground-truth and are free of artifacts. There
was a problem in restoring digit ”9” (last row), but the same
holds for other methods. The results produced by CNN
(mean) and CNN (k-NN) are sometimes blurry. In contrast
to CNNs, our method is more stable, because it does not
depend on imputation strategy. In consequence, it may give
worse results than CNN when it is easy to predict missing
values, but, at the same time, it should perform better if the
imputation problem is more difficult. Another advantage
is that SGCN is trained end-to-end (no preprocessing of
missing values).

Figure 3. Reconstructions obtained for MNIST dataset (the first 10
images of test set).

4. Conclusion
We presented an alternative way of processing incomplete
images by neural networks, which does not require replac-
ing missing values at preprocessing stage. While graph
representation of incomplete images avoids the problem of
imputation, applying SGCN allows us to reflect the action of
classical CNNs. The applied graph-based approach gives at
least as good performance as typical CNNs combined with
imputation strategies. The main disadvantage of this ap-
proach is the computational cost of using GCNs. In contrast
to classical CNNs, the current implementations of GCNs are
less efficient and it is difficult to process high dimensional
images by very deep neural networks.
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