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Abstract
Federated sampling algorithms have recently
gained great popularity in the community of ma-
chine learning and statistics. This paper stud-
ies variants of such algorithms called Error Feed-
back Langevin algorithms (ELF). In particular,
we analyze the combinations of EF21 and EF21-
P with the federated Langevin Monte-Carlo. We
propose three algorithms: P-ELF, D-ELF, and B-
ELF that use, respectively, primal, dual, and bidi-
rectional compressors. We analyze the proposed
methods under Log-Sobolev inequality and pro-
vide non-asymptotic convergence guarantees.

1. Introduction
Sampling from high-dimensional distributions holds im-
mense significance in modern statistics and machine learn-
ing. This challenge is particularly relevant in Bayesian
inference (Robert, 2007), where sampling from high-
dimensional distributions poses difficulties. This paper fo-
cuses specifically on sampling from posteriors that arise
in Bayesian federated learning (Kassab & Simeone, 2022;
Vono et al., 2022; Liu & Simeone, 2022).

Federated learning is a machine learning framework that
assumes data is distributed across different devices/clients,
with a central server coordinating them. This scenario com-
monly arises in mobile applications, where each device pos-
sesses its own data and maintains a (limited) internet con-
nection with the server (Konečnỳ et al., 2016; McMahan
et al., 2017). Consequently, the communication complex-
ity becomes a computational bottleneck in most cases. The
objective is to train a global model by performing local up-
dates while minimizing the amount of information commu-
nicated.
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Mathematically, our problem can be formulated as follows.
The target distribution π is a continuous distribution de-
fined on the Euclidean space Rd. For convenience, we will
use π to refer to both the target distribution and its density
function, given by:

π(x) ∝ exp(−F (x)), (1)

where F : Rd → R is the potential function. In the general
Bayesian setting, F represents the logarithm of the poste-
rior distribution. In the federated setting, the potential func-
tion is assumed to be sum-decomposable, with each compo-
nent being stored on one of the clients or nodes/devices:

F (x) =
1

n

n∑
i=1

Fi(x),

where n is the number of nodes and Fi(x) represents the
potential function of the i-th node. Each node only has
access to its respective score, which is the gradient ∇Fi(x).

Building upon this framework, we propose three sampling
algorithms that combine Langevin Monte Carlo (LMC)
with well-known federated optimization techniques called
EF21 (Richtárik et al., 2021) and EF21-P (Gruntkowska
et al., 2022). The algorithms are as follows:

• D-ELF: LMC with dual compression;

• P-ELF: LMC with primal compression;

• B-ELF: LMC with bidirectional compression.

The first algorithm, D-ELF, focuses on client-to-server (up-
link) compression to reduce communication complexity.
This approach was initially proposed in early federated
learning papers like (Konečnỳ et al., 2016), where the as-
sumption was made that uplink communication is more
costly compared to server-to-client communication. How-
ever, more recent reports, such as one from Speedtest.net1,
indicate that the difference between uploading and down-
loading speeds is negligible (Philippenko & Dieuleveut,
2020). As a result, downlink compression becomes equally
important. The second algorithm, P-ELF, adopts the EF21
scheme for the primal space, applying compression to the

1https://www.speedtest.net/global-index
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server-to-client (downlink) communication (Gruntkowska
et al., 2022). This approach leverages compression in the
direction opposite to the traditional uplink compression.
The third algorithm, B-ELF, combines both uplink and
downlink compression, earning the term "bidirectional."
Bidirectional federated optimization has been explored by
several authors (Liu et al., 2020; Philippenko & Dieuleveut,
2020; Gruntkowska et al., 2022). However, this setting has
not yet been extensively developed and studied for sam-
pling problems. In this work, we focus on analyzing the
first federated sampling algorithm that incorporates bidirec-
tional compression.

1.1. Langevin sampling

A common way to solve this problem is based on dis-
cretizing a stochastic differential equation (SDE) called
Langevin diffusion (LD). LD was initially designed to
model the movement of particles in an environment with
friction (Risken, 1996). Mathematically, it is written as

dLt = −∇F (Lt)dt+
√
2dBt,

where Bt is the Brownian motion and F is the poten-
tial function from (1). The critical property of this SDE
is that it has a solution and is ergodic under mild condi-
tions. Moreover, the target π is its invariant distribution
(Bhattacharya, 1978). Langevin Monte-Carlo (LMC) is the
Euler-Maruyama discretization of the Langevin diffusion
(Parisi, 1981). That is,

xk+1 = xk − γ∇F (xk) +
√
2γZk, (2)

where (Zk)k is a sequence of i.i.d. standard Gaussians on
Rd that are independent of previous iterations. When the
score function is Lipschitz continuous, and the target sat-
isfies Log-Sobolev inequality, the distribution of the K-th
iterate converges to π (Vempala & Wibisono, 2019). See
Appendix B for more context on the LMC.

1.2. EF21 and EF21-P

The Error Feedback algorithm (EF) was initially introduced
as a stabilization mechanism for supervised learning using
contractive compressors (Seide et al., 2014). However, it
had limitations, including its inability to work in the dis-
tributed setting required for federated learning and the re-
liance on unrealistic assumptions for convergence analy-
sis (Alistarh et al., 2018; Stich et al., 2018; Horváth &
Richtárik, 2020).

The EF21 algorithm is an improved version of EF proposed
by Richtarik et al. (Richtárik et al., 2021). It addresses the
limitations of the original EF by compressing gradients be-
fore transmitting them to the server, making it suitable for
the distributed setting. EF21 is considered state of the art

in both theory and practice among error feedback methods
(Fatkhullin et al., 2021).

EF21-P is a primal error-feedback method inspired by
EF21. It acts as a reparametrization of the original method
and compresses algorithm iterates instead of gradients.
This approach reduces downlink communication complex-
ity, which is important for large models. EF21-P can also
be seen as an iteration perturbation method and finds appli-
cations in machine learning for generalization and smooth-
ing (Gruntkowska et al., 2022; Orvieto et al., 2022; Duchi
et al., 2012).

2. Problem setup
2.1. Preliminaries

We denote by Rd the d-dimensional Euclidean space en-
dowed with its usual scalar product and ℓ2-norm defined
by ⟨·, ·⟩ and ∥·∥. The gradient of the function H and
its Hessian evaluated at the point x ∈ Rd is denoted by
∇H(x) and ∇2H(x), respectively. As mentioned previ-
ously, we will repeatedly use the same notation for proba-
bility distributions and their corresponding densities. For
the asymptotic complexity of the algorithms we will use
the O and Õ notations. We say that f(t) = O(g(t)) when
t → +∞, if f(t) ≤ Mg(t), when t is large enough. Simi-
larly, f(t) = Õ(g(t)), if f(t) log(t) = O(g(t)).

2.2. Mathematical framework

The vast majority of optimization and sampling literature
relies on the L-smoothness assumption.
Definition 1 (L-smoothness). We say that a function is L-
smooth, if F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L

2 ∥x− y∥2.

EF21 and EF21-P rely on contractive compressors to re-
duce the communication complexity.
Definition 2 (Contractive compressor). A stochastic map-
ping Q : Rd → Rd is a contractive compression operator
with a coefficient α ∈ (0, 1] if for any x ∈ Rd,

E
[
∥Q(x)− x∥2

]
≤ (1− α)∥x∥2.

We denote it shortly as Q ∈ B(α).

We observe that unbiased compressors with bounded vari-
ance are commonly used in many federated learning algo-
rithms (Konečnỳ et al., 2016; Mishchenko et al., 2019; Gor-
bunov et al., 2021). However, it is worth noting that the
class of contractive compressors is more extensive. For ex-
ample the Top-k compressor (Alistarh et al., 2017), which
selects the k coordinates with the largest absolute values
from the input vector is a biased contractive compressor.

Our analysis relies on the interpretation of sampling as an
optimization problem over the space of measures. In order
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to reformulate our problem, let us first recall the definition
of the Kullback-Leibler divergence and Fisher information.

Definition 3 (KL divergence, Fisher information). The KL
divergence and, respectively, Fisher information between
two probability measures ν and π are defined as

Hπ (ν) :=

®∫
Rd log

Ä
ν(x)
π(x)

ä
ν(x)dx, if ν ≪ π;

+∞, otherwise;

Jπ (ν) :=

®∫
Rd

∥∥∇ log
(
ν
π

)∥∥2 ν(x)dx, if ν ≪ π;

+∞, otherwise.

We aim to construct approximate samples from π with ε
accuracy. That is to sample from some other distribution
ν such that Hπ (ν) < ε. Alternatively, it means that we
want to minimize the functional: minν∈P(Rd) Hπ (ν). In-
deed, the minimum of this functional is equal to zero and
is attained only when ν = π. To solve this problem we
borrow another well-known notion from optimization: PL-
inequality (Polyak, 1963; Lojasiewicz, 1963). In the prob-
lem of sampling, the objective functional is defined on the
space of measures P(Rd). One can define the usual no-
tions of differentiability and convexity on this space using
the Wasserstein distance (Ambrosio et al., 2008). Then,
the Langevin Monte-Carlo algorithm becomes a first or-
der minimization method for the KL divergence (Wibisono,
2018). Furthermore, Fisher information takes the role of
the square norm of the gradient. Since the minimum of
our functional is equal to zero, the Log-Sobolev inequality
(LSI) becomes the analog of PL inequality.

Definition 4 (Log-Sobolev inequality). We say that π sat-
isfies the Log-Sobolev inequality (LSI) with parameter µ,
if for every probability measure ν we have Hπ (ν) ≤
1
2µJπ (ν).

(Bakry & Émery, 1985) have shown that strongly log-
concave distributions satisfy LSI. Furthermore, from
Holley-Stroock’s theorem we know that sufficiently small
perturbations of strongly concave distributions still satisfy
LSI (Holley & Stroock, 1986). The latter distributions
can be non log-concave, which means that we deal with
a strictly larger class of probability measures using LSI.

3. The ELF algorithms
In this section, we describe the general scheme that we fol-
low to construct our algorithms. Generally, stochastic op-
timization algorithms can be described such as EF21 and
EF21-P can written as xk+1 = xk−γgk, where gk is an es-
timator of ∇F (xk). We replace the gradient term ∇F (xk)
at each iteration with the gradient estimator gk from the
corresponding error feedback method, and add independent
Gaussian noise Zk: xk+1 = xk − γgk +

√
2γZk. For the

sake of space, we defer the pseudocodes and other details
of all three algorithms to Appendix A.

3.1. A unified analysis of D-ELF and P-ELF

The key component of the analysis of both methods is defin-
ing proper a Lyapunov-type function. For the D-ELF al-
gorithm we define by GD

k the average squared estimation
error of the vectors gik:

GD
k :=

1

n

n∑
i

E
î∥∥gik −∇Fi(xk)

∥∥2ó . (3)

As we will later in Appendix C, this quantity arises in the
proof of the convergence rates. Important property of the
sequence Gk is the following recurrent identity.

Proposition 1. Let xk be the iterates of the D-ELF, gik be
the EF21 estimators and GD

k be defined as (3). Then the
following recurrent inequality is true:

GD
k+1 ≤ (1− p)GD

k +(1− p)βDE
î
∥xk+1 − xk∥2

ó
, (4)

where p := 1 − (1 − αD)(1 + sD) > 0, L̄ := 1
n

∑n
i=1 L

2
i

and βD :=
1+s−1

D

1+sD
L̄, for some sD > 0.

The Lyapunov term associated to the P-ELF is a simple
upper bound on GD. We denote it by GP

k and define with
the formula below:

GP
k := L̄E

î
∥wk − xk∥2

ó
, where L̄ :=

1

n

n∑
i=1

L2
i . (5)

Indeed, GD
k ≤ GP

k due to Li smoothness of each compo-
nent function Fi. See (26) in Appendix E.2 for the proof.
The following proposition proves a recurrent identity simi-
lar to (4).

Proposition 2. Let xk and wk be defined as in P-ELF and
GP be its Lyapunov term. Then the following recurrent
inequality is true:

GP
k+1 ≤ (1− p)GP

k + (1− p)βPE
î
∥xk+1 − xk∥2

ó
,

where p := 1− (1−αP)(1+ sP) > 0, βP :=
1+s−1

P

1+sP
L̄, for

some sP > 0.

The next theorem gives a unified bound for both D-ELF
and P-ELF. For the sake of space we use a general notation
M-ELF, where M ∈ {D,P}. This means, for example, that
the M-ELF refers to the D-ELF when M = D.

Theorem 1. Assume that LSI holds with constant µ > 0
and let xk be the iterates of the M-ELF algorithm, where
M ∈ {D,P}. We denote by ρk := L(xk) for every k ∈ N. If

0 < γ ≤ min

ß
1

14

…
p

(1 + βM)
,
p

6µ
,

1

2
√
2L

™
,
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then the following is true for the KL error of the M-ELF
algorithm:

Hπ (ρK) ≤ e−µKγΨ+
τ

µ
,

where p := 1 − (1 − αM)(1 + sM) > 0, τ =(
2L2 + C(1− p)βM

) (
16γ2d+ 4dγ

)
, Ψ = Hπ (ρ0) +

1−e−µγ

µ CGM
0 , and C = 8L2γ2+2

e−µγ−(1−p)(4γ2βM+1) .

We refer the reader to Appendix E.2 for the proof of the
theorem. The right-hand side consists of two terms. The
first term corresponds to the convergence error, while the
second term is the bias that comes from the discretization.
To make the error small, one would first need to choose γ
small enough so that τ/µ < ε. Then, the number of itera-
tions are chosen to be of order Õ(1/µγ). See Section 3.3 for
more on the complexity of D-ELF and P-ELF.

3.2. Convergence analysis of the B-ELF

The Lyapunov term for the B-ELF algorithm is the as for
the D-ELF, that is GD

k . However, the recurrent identity
of Proposition 1 is not valid in this case. Instead, another
bound is true which includes the term GP

k . The latter arises
because of the downlink compression. We present infor-
mally the new recurrent inequality. We refer the reader to
Proposition 4 in the Appendix for the complete statement.

Proposition 3 (Informal). If xk are the iterations of Algo-
rithm 3, GD

k and GP
k are defined as in (3) and (5), then

GD
k+1 ≤ λ1G

D
k + λ2E

î
∥xk − xk+1∥2

ó
+ λ3G

P
k ,

where λ1, λ2 and λ3 are positive numbers.

Theorem 2. Assume that LSI holds with constant µ > 0
and let xk be the iterates of the B-ELF algorithm. We de-
note by ρk := L(xk) for every k ∈ N. Let the step-size the
following condition:

γ ≤ min

αD

4µ
,
αP

4µ
,

αDαP

495
»(

1− αD

2

) (
1− αP

2

)
L̄

 .

Then, for every K ∈ N,

Hπ (νK) ≤ e−µγK

ï
Hπ (ρ0) +

1

µ

(
CGD

0 +DGP
0

)ò
+

τ

µ
,

where C,D > 0 are constants depend-
ing on the parameters of the algorithm and
C = 2.125

e−µγ−λ1
, D = Cλ3

e−µγ−(1−αP)(1+w) and

τ =
Ä
2L2 + 5Cλ2

αP

ä (
16γ2dL+ 4dγ

)
.

The exact definitions of the undefined constants are writ-
ten in the proof of the theorem, which is postponed to Ap-
pendix E.3.

3.3. Discussion on the communication complexity

Doing the computations as mentioned at the end of Sec-
tion 3.1, we can deduce the following.

Corollary 1. Under the assumptions of Theorem 1 and γ =

O
Ä

µpε
βMd

ä
, K = Ω

Ä
(1+βM)d

µ2pε log
(
Ψ
ε

)ä
, the primal and dual

ELF algorithms satisfy Hπ (ρK) ≤ ε.

Similarly, for the bidirectional ELF we have the below.

Corollary 2. If αP = αD < 1/2, under the conditions
of Theorem 2, the iteration complexity for the B-ELF is
Õ(dL̄/α4µ2ε).

The proof of Corollary 2 is in Appendix E.4. When α is
O(1), the rate of the LMC algorithm is recovered for all
three algorithms. In particular, the scaled unbiased com-
pressors, such as 8

9Q
nat, have a contractive coefficient of

8
9 . Our analysis may not match the usual LMC for other
compressors, as the communication complexity is Õ(d2/ε)
for LMC, while both the iteration and communication com-
plexity is Õ(d5/ε) for B-ELF with Top-1. Despite its
higher theoretical complexity, error feedback optimization
methods outperform gradient descent in practice (Richtárik
et al., 2021). ELF is expected to be superior to the usual
LMC in practice.

4. Conclusion
In this paper we proposed three error feedback based fed-
erated Langevin algorithms with dual, primal and bidirec-
tional compression. The first two are analyzed with one the-
orem and have similar theoretical performance. The third
algorithm uses bidirectional compression which is slower
due to the fact that EF21 and EF21-P do not couple. To
the best of our knowledge, this is the first study of the
federated sampling algorithms with bidirectional compres-
sion. Our theoretical findings show that the communica-
tion complexity of this algorithm is worse than the one
for the standard LMC. Nonetheless, in practice error feed-
back based methods outperform other compression meth-
ods (Fatkhullin et al., 2021). We believe that this phe-
nomenon shall also transfer to the sampling case.

4.1. Future work

An immediate continuation of our paper would be to con-
duct an experimental analysis of the ELF algorithms with
other federated sampling techniques on real data. One
would expect that one would observe the same behavior
as in the optimization case. That is, in practice the ELF
algorithms outperform the other methods, despite the theo-
retical analysis.

Another possible direction is the theoretical analysis of the
Langevin algorithm combined with EF21-P+DIANA. The
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latter is a bidirectional federated optimization algorithm
that uses DIANA gradient estimator for the uplink com-
pression instead of EF21. This method matches the per-
formance of the GD due to the coupling of two methods
(Gruntkowska et al., 2022).

Finally, there are yet many important algorithms of opti-
mization that are relevant to our setting. Adaptation of
these methods to the sampling setting can lead to fruitful
results.
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A. Formulations of the algorithms
In this section, we present two federated Langevin Monte-Carlo algorithms, combining EF21 and EF21-P with LMC. We
replace the gradient term ∇F (xk) at each iteration with the gradient estimator gk from the corresponding error feedback
method, and add independent Gaussian noise. Details can be found in Algorithm 1 and Algorithm 2. The pseudocode
distinguishes between optimization and sampling methods with a wave symbol.

A.1. Dual compression: D-ELF

The gradient estimator gk of the dual method is defined as the average of the vectors gik, where each gik is computed on
the i-th node and estimates the gradients ∇Fi(xk). The key component of this estimator is the contractive compression
operator QD ∈ B(αD). At the zeroth iteration, g0 = ∇F (x0). Then at iteration k, the server computes the new iterate
xk+1 = xk − γgk+

√
2γZk and broadcasts it parallelly to all the nodes. Each node updates gik with the formula:

gik+1 = gik +QD(∇Fi(xk+1)− gik),

and broadcasts the compressed term to the server. The server aggregates the received information and computes the
estimator of ∇Fi(xk+1):

gk+1 = gk +
1

n

n∑
i=1

QD(∇Fi(xk+1)− gik).

For the pseudocode of the D-ELF, please refer to Algorithm 1.

Algorithm 1 D-ELF

1: Input: Initialization x0 ∼ ρ0, gik = gk = ∇F (x0), step-size h, iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The server:
4: draws Zk ∼ N (0, Id);
5: ◦ xk+1 = xk − γgk+

√
2γZk;

6: broadcasts xk+1;
7: The devices in parallel:
8: ◦ QD(∇Fi(xk+1)− gik).
9: ◦ gik+1 = gik +QD(∇Fi(xk+1)− gik);

10: broadcast QD(∇Fi(xk+1)− gik);
11: The server:
12: ◦ gk+1 = gk + 1

n

∑n
i=1 QD(∇Fi(xk+1)− gik).

13: end for
14: Return: xK

A.2. Primal compression: P-ELF

The construction of the P-ELF algorithm is similar to the D-ELF. In particular, we take the EF21-P algorithm by (Grun-
tkowska et al., 2022) and add only the independent Gaussian term. See Algorithm 2 for the complete definition. To better
understand the comparison of the D-ELF and the P-ELF let us look at the simple one-node setting of the latter:

w0 := QP(x0)

wk+1 = wk +QP(xk+1 − wk)

xk+1 = xk − γ∇F (wk).

(6)

Here, x0 ∼ ρ0 is a random starting point and (Zk)k is a sequence of i.i.d. standard Gaussians on Rd. The auxiliary
sequence wk is meant to estimate to the iterate xk. We then use its gradient as the minimizing direction. The important
difference with the EF21 is that we apply the compressor QP on the term xk+1 − wk, instead of the gradient and its
estimator. Hence, the letter "P"-primal in the name of the algorithm.



ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression

Algorithm 2 P-ELF

1: Input: Starting point x0 = w0 ∼ ρ0, step-size h, number of iterations K
2: for k = 0, 1, 2, · · · ,K − 1 do
3: The server:
4: draws Zk ∼ N (0, Id);
5: ◦ ∇F (wk) =

1
n

∑n
i=1 ∇Fi(wk);

6: ◦ xk+1 = xk − γ∇F (wk)+
√
2γZk;

7: ◦ QP(xk+1 − wk);
8: ◦ wk+1 = wk +QP(xk+1 − wk);
9: broadcasts in parallel QP(xk+1 − wk).

10: The devices in parallel:
11: ◦ wk+1 = wk +QP(xk+1 − wk);
12: ◦ ∇Fi(wk+1);
13: broadcast ∇Fi(wk+1);
14: end for
15: Return: xK

A.3. Bidirectional compression: B-ELF

This section focuses on the bidirectional setting. We propose the B-ELF algorithm. The algorithm uses EF21 for the uplink
and EF21-P for the downlink compression. The details are presented in Algorithm 3.

Algorithm 3 B-ELF

1: Input: Starting point x0 = w0 ∼ ρ0, step-size h, number of iterations K, g0 = ∇f(x0), gi0 = ∇fi(x0).
2: for k = 0, 1, 2, · · · ,K − 1 do
3: The server:
4: draws a Gaussian vector Zk ∼ N (0, Id);
5: computes xk+1 = xk − γgk +

√
2γZk;

6: computes vk := QP(xk+1 − wk);
7: computes wk+1 = wk + vk;
8: broadcasts vk in parallel to the devices;
9: The device i (in parallel for all i = 1, . . . , n):

10: computes wk+1 = wk + vk;
11: computes hi

k+1 = QD(∇Fi(wk+1)− gik);
12: computes gik+1 = gik + hi

k+1;
13: broadcasts hk+1

i ;
14: The server:
15: computes gk+1 = gk + 1

n

∑n
i=1 h

i
k+1;

16: end for
17: Return: xK

B. Related work
In their seminal paper, Roberts & Tweedie (1996) study the convergence properties of the LMC algorithm. They argued
that a bias occurs when discretizing the continuous SDE. Thus, Langevin Monte-Carlo generates a homogeneous Markov
chain whose stationary distribution differs from the target π. They solve this issue with a Metropolis-Hastings adjustment
step at each iteration of the LMC, which modifies the chain to have π as its stationary distribution. The resulting algorithm
is called Metropolis Adjusted Langevin Algorithm (MALA), and it was studied by many (Roberts & Rosenthal, 1998;
Roberts & Stramer, 2002; Xifara et al., 2014; Dwivedi et al., 2018).

The bias of the LMC, however, depends on the discretization step γ. Dalalyan (2017) proved a bound on this error. Thus,
similar to the analysis of the SGD, controlling the step-size and taking enough iterations, one can make the error of the
LMC algorithm smaller than any ε. Later, different properties of the LMC were studied by many (Durmus & Moulines,
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2017; Cheng et al., 2018; Cheng & Bartlett, 2018; Dalalyan & Karagulyan, 2019; Durmus & Moulines, 2019; Vempala &
Wibisono, 2019).

Looking closely at (2), we observe its similarity with the gradient descent (GD) algorithm. In fact, (2) is an instance of the
stochastic gradient descent (SGD) with a Gaussian noise independent of the iterate. This similarity has been repetitively
exploited in various settings for sampling problems (see e.g. (Raginsky et al., 2017; Chatterji et al., 2018; Wibisono, 2019;
Salim et al., 2019; Karagulyan & Dalalyan, 2020)). In particular, a line of research has been initiated on federated sampling
Langevin algorithms, which combine LMC with existing optimization mechanisms: LMC+FedAvg (McMahan et al., 2017;
Deng et al., 2021; Plassier et al., 2022), LMC+MARINA (Gorbunov et al., 2021; Sun et al., 2022), LMC+QSGD (Alistarh
et al., 2017; Vono et al., 2022). Our work continues the logic of these papers by adding the error-feedback mechanisms
EF21 and EF21-P to the classic LMC algorithm in the federated setting.

As in the case of optimization, the strong convexity of the potential function plays an important role in the analysis of
Langevin Monte-Carlo. Non-convex optimization, however, has long been a central topic in the domain. We refer the
reader to (Jain et al., 2017) for an overview of non-convex optimization in machine learning. In comparison, sampling
from non-strongly log-concave distributions is less studied. Cheng et al. (2018) studied convergence of the LMC when the
potential strongly convex outside a ball. Dalalyan et al. (2019) and (Karagulyan & Dalalyan, 2020) proposed a penalization
of the convex potential to make it strongly convex and gave convergence bounds depending on the penalty. The analysis
of MALA in the non-convex regime can be found in (Mangoubi & Vishnoi, 2019). However, these results either do
not cover the general non-convex case or they require some conditions that scale poorly with the dimension. A more
efficient approach relies on isoperimetric inequalities. It is known that isoperimetry implies rapid mixture of the continuous
stochastic processes (Villani, 2008). Thus, one would assume that this property could be extended to their discretizations.
Vempala & Wibisono (2019) proved the convergence of the LMC under Log-Sobolev inequality. Later, Sun et al. (2022)
used this as a general scheme for LMC with stochastic gradient estimators in the context of federated Langevin sampling.
We simplify their proof and adapt it to our setting.

C. General scheme of the proofs and comparison of rates
For all three algorithms the update of the LMC iteration is a stochastic estimator of the gradient ∇F (xk). Generally, it
depends on xk and ξk, where ξk is a sequence of i.i.d. random variables defined on some probability space (Ξ,F ,P).
The sequence ξk comprises the randomness that arises at each step of the particular algorithm and it is independent of
xk. In order to prove convergence in KL divergence, we use the interpolation method proposed in (Vempala & Wibisono,
2019). The method is based on the Fokker-Planck equation of the Langevin diffusion. We state a lemma for general LMC
algorithms with stochastic drift terms. In particular, all our algorithms can be generally written as

xk+1 = xk − γfξk(xk) +
√
2γZk, (7)

where ξk are i.i.d. random variables defined on some probability space (Ξ,F ,P). On the other hand, each step can be seen
as a realization of a Langevin diffusion with a constant drift term fξk(xk):

dyt = −fξk(xk)dt+
√
2dBt, (8)

with y0 = xk and t ∈ [0, γ]. Indeed,

yγ = y0 −
∫ γ

0

fξk(y0)dt+
√
2(Bγ −B0)

= xk − γfξk(xk) +
√
2γZ1 = xk+1.

The interpolation method is based on analyzing the Fokker-Planck equation of this diffusion. In particular, we will upper
bound the time derivative of Hπ (ρt):

dHπ (ρt)

dt
=

∫
Rd

∂ρt(z)

∂t
log

(ρt
π

)
(z)dz. (9)

Here, the first term of the product under the integral can be computed using the abovementioned Fokker-Planck equation.
The following lemma is the cornerstone of our analysis.
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Lemma 1. If yt is the solution of the diffusion (8) and ρt = L(yt), then for every t ∈ [0, γ],

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

î
∥fξk(y0)−∇F (yt)∥2

ó
. (10)

The bound (10) was initially derived by Vempala & Wibisono (2019) for the standard Langevin Monte-Carlo. Its current
stochastic form was later proved in (Sun et al., 2022) for MARINA Langevin algorithm. The proof is postponed to
Appendix F.1.

Lemma 1 is valid for all our algorithms. We then insert the value of the gradient estimator for each method and bound
the last term by GD

k . Using the recurrent properties of the Lyapunov terms and replacing Fisher information term by
Kullback-Leibler divergence with LSI inequality we conclude the proof.

C.1. Table of comparison

Table 1: In this table we compare error-feedback methods in optimization and sampling. The rates are computed in the
case when αD = αP = α. The constant α for MARINA+LMC is defined differently. However, it takes the role of the
compression coefficient of our setting and often has the same order.

METHOD ERROR ASSUMPTION COMPLEXITY REFERENCE

GD L2 µ-S.C. Õ
Ä
dL
µε

ä
(NESTEROV, 2013)

EF21 L2 µ-S.C. Õ
Ä

L
αµε

ä
(RICHTÁRIK ET AL., 2021)

EF21-P L2 µ-S.C. Õ
Ä

L
αµε

ä
(GRUNTKOWSKA ET AL., 2022)

LMC KL µ-LSI Õ
(

L2d
µ2ε

)
(VEMPALA & WIBISONO, 2019)

MARINA+LMC KL µ-LSI Õ
(

Ld
αµ2ε

)
(SUN ET AL., 2022)

D-ELF KL µ-LSI Õ
(

L̄d
α2µ2ε

)
COROLLARY 1

P-ELF KL µ-LSI Õ
(

L̄d
α2µ2ε

)
COROLLARY 1

B-ELF KL µ-LSI Õ
(

L̄d
α4µ2ε

)
COROLLARY 2

D. Proofs of the propositions
D.1. Proof of Proposition 1

From the definition

GD
k+1 =

1

n

n∑
i=1

E
î∥∥gik+1 −∇Fi(xk+1)

∥∥2ó
=

1

n

n∑
i=1

E
î
E
î∥∥gik +QD(∇Fi(xk+1)− gik)−∇Fi(xk+1)

∥∥2 | x1, . . . , xk+1

óó
≤ 1− αD

n

n∑
i=1

E
î∥∥gik −∇Fi(xk+1)

∥∥2ó .
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Applying Cauchy-Schwartz and the Lipschitz continuity of the function ∇Fi(·), we obtain

GD
k+1 ≤ (1− αD)(1 + sD)

n

n∑
i=1

E
î∥∥gik −∇Fi(xk)

∥∥2ó
+

(1− αD)(1 + s−1
D )

n

n∑
i=1

E
î
∥∇Fi(xk)−∇Fi(xk+1)∥2

ó
≤ (1− αD)(1 + sD)G

D
k +

(1− αD)(1 + s−1
D )

n

n∑
i=1

L2
iE
î
∥xk − xk+1∥2

ó
≤ (1− αD)(1 + sD)G

D
k + (1− αD)(1 + s−1

D )L̄E
î
∥xk − xk+1∥2

ó
≤ (1− pD)G

D
k + (1− pD)βDE

î
∥xk − xk+1∥2

ó
.

This concludes the proof.

D.2. Proof of Proposition 2

From the definition

GP
k+1 = L2E

î
∥wk+1 − xk+1∥2

ó
= L2E

î∥∥wk − xk+1 −QP(wk − xk+1)
∥∥2ó

= (1− αP)L
2E
î
∥wk − xk+1∥2

ó
= (1− αP)L

2E
î
∥wk − xk + xk − xk+1∥2

ó
≤ (1− αP)(1 + s)L2E

î
∥wk − xk∥2

ó
+ (1− αP)(1 + s−1)L2E

î
∥xk − xk+1∥2

ó
.

(11)

Choosing s small enough, we can make the coefficient (1 − αP)(1 + s) smaller than one. Thus, defining p = 1 − (1 −
αP)(1 + s), we conclude the proof.

D.3. Full statement of Proposition 3 and its proof

We state now the complete version of Proposition 3.

Proposition 4. The Lyapunov term GD
k of the bidirectional Langevin algorithm satisfies the following recurrent inequality:

GD
k+1 ≤ λ1G

D
k + λ2E

î
∥xk − xk+1∥2

ó
+ λ3G

P
k ,

where GP
k := L̄E

î
∥wk − xk∥2

ó
is the Lyapunov term for P-ELF and

λ1 = (1− αD)(1 + s)(1 + q);

λ2 = (1− αD)(1 + s)(1 + q−1)(1 + u)L̄

+
(
(1− αD)(1 + s)(1 + q−1)(1 + u−1) + (1 + s−1)

)
(1− αP)(1 + w−1)L̄;

λ3 =
(
(1− αD)(1 + s)(1 + q−1)(1 + u−1) + (1 + s−1)

)
(1− αP)(1 + w).

(12)

Here, s, q, u, w are any positive numbers.
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Proof. From the definition of GD
k and Young’s inequality we have

GD
k+1 =

1

n

n∑
i=1

E
î∥∥gik+1 −∇Fi(xk+1)

∥∥2ó
=

1

n

n∑
i=1

E
î
E
î∥∥gik +QD(∇Fi(wk+1)− gik)−∇Fi(xk+1)

∥∥2 | x1, . . . , xk+1

óó
≤ 1

n

n∑
i=1

{
(1 + s)E

î
E
î∥∥gik +QD(∇Fi(wk+1)− gik)−∇Fi(wk+1)

∥∥2 | x1, . . . , xk+1

óó
+ (1 + s−1)E

î
∥∇Fi(wk+1)−∇Fi(xk+1)∥2

ó}
.

The contractivity of QD implies

GD
k+1 ≤ 1

n

n∑
i=1

(1− αD)(1 + s)E
î∥∥gik −∇Fi(wk+1)

∥∥2ó+ (1 + s−1)L̄E
î
∥wk+1 − xk+1∥2

ó
≤ 1

n

n∑
i=1

(1− αD)(1 + s)(1 + q)E
î∥∥gik −∇Fi(xk)

∥∥2ó+ (1− αD)(1 + s)(1 + q−1)E
î
∥∇Fi(xk)−∇Fi(wk+1)∥2

ó
+ (1 + s−1)L̄E

î
∥wk+1 − xk+1∥2

ó
≤ (1− αD)(1 + s)(1 + q)GD

k + (1− αD)(1 + s)(1 + q−1)L̄E
î
∥xk − wk+1∥2

ó
+ (1 + s−1)GP

k+1.

Applying Young’s inequality to the second term, we deduce

L̄E
î
∥xk − wk+1∥2

ó
≤ (1 + u)L̄E

î
∥xk − xk+1∥2

ó
+ (1 + u−1)L̄E

î
∥xk+1 − wk+1∥2

ó
= (1 + u)L̄E

î
∥xk − xk+1∥2

ó
+ (1 + u−1)GP

k+1.

Therefore,

GD
k+1 ≤ (1− αD)(1 + s)(1 + q)GD

k + (1− αD)(1 + s)(1 + q−1)(1 + u)L̄E
î
∥xk − xk+1∥2

ó
+ (1− αD)(1 + s)(1 + q−1)(1 + u−1)GP

k+1 + (1 + s−1)GP
k+1.

Let us now bound the auxiliary term GP
k+1. We notice that GP

k is the Lyapunov term of the P-ELF algorithm. Thus, from
Proposition 2 we have

GP
k+1 = L̄E

î
∥wk+1 − xk+1∥2

ó
≤ (1− αP)(1 + w)GP

k + (1− αP)(1 + w−1)L̄E
î
∥xk − xk+1∥2

ó
.

(13)

Recalling the definitions of λ1, λ2, λ3 we deduce

GD
k+1 ≤ λ1G

D
k + λ2E

î
∥xk − xk+1∥2

ó
+ λ3G

P
k .

This concludes the proof of the proposition.

E. Proofs of the main theorems
E.1. Some technical lemmas

We will use repeatedly, sometimes without even mentioning, a simple inequality which is a consequence of Young’s
inequality. It goes as follows.

Lemma 2. For any two vectors x, y ∈ Rd and any s > 0

∥x+ y∥2 ≤ (1 + s) ∥x∥2 + (1 + s−1) ∥y∥2 .
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Proof.
∥x+ y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2

≤ (1 + s) ∥x∥2 + (1 + s−1) ∥y∥2 .

The second passage is due to Young’s inequality.

We also use two lemmas from the literature, which we present below without proofs. The first one is an instance of
Grönwall’s inequality in its integral form. Its proof can be found in (Amann, 2011).

Lemma 3 (Grönwall’s Inequality). Assume ϕ,B : [0, T ] → R are bounded non-negative measurable function and C :
[0, T ] → R is a non-negative integrable function with the property that

ϕ(t) ≤ B(t) +

∫ t

0

C(τ)ϕ(τ)dτ for all t ∈ [0, T ]. (14)

Then

ϕ(t) ≤ B(t) +

∫ t

0

B(s)C(s) exp

Ç∫ t

s

C(τ)dτ

å
ds for all t ∈ [0, T ].

The second is a technical lemma borrowed from Chewi et al. (2021).

Lemma 4. Suppose that ∇F is L-Lipschitz. Then for any probability measure ν, the following inequality is satisfied:

Eν

[
∥∇F∥2

]
≤ Eν

ï∥∥∥∇ log
(ν
π

)∥∥∥2ò+ 2dL = Jπ (ν) + 2dL.

E.2. Proof of Theorem 1

We follow the scheme described in Appendix C. Let us recall the initial setting first. The update rule of both D-ELF and
P-ELF can be abstractly defined by

xk+1 = xk − γgk +
√
2γZk.

The vector gk is a stochastic estimator of the potential function’s gradient at the k-th iterate: ∇F (xk). On the other hand,
for each k the next iteration can be computed using the following SDE:

dyt = −gkdt+
√
2dBt, (15)

with y0 = xk and t ∈ [0, γ]. Then, as shown in Appendix C, yγ = xk+1. Denote by ρt the distribution of yt. Lemma 1
yields:

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

î
∥fξk(y0)−∇F (yt)∥2

ó
≤ −3

4
Jπ (ρt) + E

î
∥gk −∇F (yt)∥2

ó
.

(16)

The proof for D-ELF: The Lyapunov term for the D-ELF algorithm is defined as

GD
k :=

1

n

n∑
i

E
î∥∥gik −∇Fi(xk)

∥∥2ó .
Next lemma bounds the second term in (16) using GD

k .

Lemma 5. If fξk(xk) is the gradient estimator gk from Algorithm 1, then ρt satisfies

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + 2L2E

î
∥xk+1 − xk∥2

ó
+ 2GD

k . (17)
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Let us now add CGD
k+1 to both sides of the inequality (17), where C > 0 is a constant to be determined later:

dHπ (ρt)

dt
+ CGD

k+1 ≤ −3

4
Jπ (ρt) + 2L2E

î
∥xk+1 − xk∥2

ó
+ 2GD

k + CGD
k+1.

Combining Proposition 1 and (18) we deduce

dHπ (ρt)

dt
+ CGD

k+1 ≤ −3

4
Jπ (ρt) + 2L2E

î
∥xk+1 − xk∥2

ó
+ 2GD

k

+ C
Ä
(1− p)GD

k + (1− p)βDE
î
∥xk+1 − xk∥2

óä
= −3

4
Jπ (ρt) +

(
2L2 + C(1− p)βD

)
E
î
∥xk+1 − xk∥2

ó
+ (2 + C(1− p))GD

k

The lemma below bounds the term E
î
∥xk+1 − xk∥2

ó
.

Lemma 6. If γ ≤ 1
2
√
2L

, then the iterates of the stochastic LMC algorithm (7) satisfy the following inequality, where GD
k

is the Lyapunov term of D-ELF algorithm defined in (3):

E
î
∥xk+1 − xk∥2

ó
≤ 8γ2E

î
∥∇F (yt)∥2

ó
+ 4γ2GD

k + 4dγ. (18)

Lemma 6 yields the following

dHπ (ρt)

dt
+ CGD

k+1≤− 3

4
Jπ (ρt) +

(
2L2 + C(1− p)βD

) Ä
8γ2E

î
∥∇F (yt)∥2

ó
+ 4γ2GD

k + 4dγ
ä

+ (2 + C(1− p))GD
k .

Let us now apply Lemma 4 to the right-hand side. We obtain

dHπ (ρt)

dt
+ CGD

k+1 ≤ −3

4
Jπ (ρt) +

(
2L2 + C(1− p)βD

) (
8γ2 (Jπ (ρt) + 2dL) + 4γ2GD

k + 4dγ
)

+ (2 + C(1− p))GD
k

= −
Å
3

4
− 8γ2

(
2L2 + C(1− p)βD

)ã
Jπ (ρt)

+
(
8L2γ2 + C(1− p)

(
4γ2βD + 1

)
+ 2

)
GD

k

+
(
2L2 + C(1− p)βD

) (
16Lγ2d+ 4dγ

)
.

From the definition of τ we obtain the following:

dHπ (ρt)

dt
+ CGD

k+1 ≤ −
Å
3

4
− 8γ2

(
2L2 + C(1− p)βD

)ã
Jπ (ρt)

+
(
8L2γ2 + C(1− p)

(
4γ2βD + 1

)
+ 2

)
GD

k + τ.

(19)

Let C =
(
8L2γ2 + C(1− p)

(
4γ2βD + 1

)
+ 2

)
eµγ . Solving this linear equation w.r.t. C, we get

C =
8L2γ2 + 2

e−µγ − (1− p) (4γ2βD + 1)
. (20)

Without loss of generality we may assume that µγ < 1 and thus we have eµγ ≤ 1 + 2µγ. In order for C to be positive, we
need to assure that

1− (1− p)
(
4βDγ

2 + 1
)
(1 + 2µγ) > 0.

The latter is equivalent to
1− p

p
8µβDγ

3 +
1− p

p
4βDγ

2 +
1− p

p
2µγ < 1.
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A simple solution to this inequality is to make all three terms smaller than 1/3. The latter is equivalent to

γ < min

®Å
p

24µβD(1− p)

ã1/3
,

Å
p

12βD(1− p)

ã1/2
,

p

6µ(1− p)

´
. (21)

On the other hand, we will require the coefficient of Jπ (ρt) in (19) to be negative. This is to ensure contraction. That
means

8γ2
(
2L2 + C(1− p)βD

)
= 8γ2

Å
2L2 +

(8L2γ2 + 2)(1− p)βD

e−µγ − (1− p) (4γ2βD + 1)

ã
≤ 1

4
.

Solving this inequality we get

γ ≤ 1

2

 
1− (1− p)eµγ

(16 + (1− p)(17βD − 16)eµγ)
. (22)

From (21), we know that γ < p
6µ(1−p) , so eµγ ≤ 1 + 2µγ ≤ 1 + p

3(1−p) . Inserting this upper bound into (22), we get a
lower bound on the right hand side. That is

1

2

 
2p

[17βD(3− 2p) + 32p]
=

1

2

Ã
1− (1− p)(1 + p

3(1−p) )Ä
16 + (1− p)(17βD − 16)(1 + p

3(1−p) )
ä

≤ 1

2

 
1− (1− p)eµγ

(16 + (1− p)(17βD − 16)eµγ)
.

So we need

γ < min

®
1

2

 
2p

[17βD(3− 2p) + 32p]
,

Å
p

24µβD(1− p)

ã1/3
,

Å
p

12βD(1− p)

ã1/2
,

p

6µ(1− p)

´
.

We can further simplify this inequality. The first and third terms are larger than a := 1
14

»
p

(1+βD) , while as the fourth term
is larger than b := p

6µ . On the other hand, min{a, b} is less than the second term. Indeed,

min{a, b} ≤ a2/3b1/3 =

Å
p2

1176µ(1 + βD)

ã1/3
≤
Å

p

24µβD(1− p)

ã1/3
.

Summing up, we obtain the following bound on the step-size that guarantees C ≥ 0 and (22):

γ ≤ min

ß
1

14

…
p

(1 + βD)
,
p

6µ

™
.

Therefore, the above the conditions are satisfies. This yields the following:

dHπ (ρt)

dt
+ CGD

k+1 ≤ −1

2
Jπ (ρt) + e−µγCGD

k + Cτ. (23)

Since π satisfies Log-Sobolev inequality, we deduce

dHπ (ρt)

dt
+ CGD

k+1 ≤ −µHπ (ρt) + e−µγCGD
k + τ. (24)

One may check that the equivalent integral form of (24) satisfies (14) with ϕ(t) = Hπ (ρt) , B(t) =(
e−µγCGD

k − CGD
k+1 + τ

)
t+Hπ (ρkγ) , C(t) = −µ. Therefore, from Lemma 3 we deduce

Hπ (ρt) ≤ e−µtHπ (ρkγ) +
1− e−µt

µ

(
e−µγCGD

k − CGD
k+1 + τ

)
,
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let t = γ and β = eµγ , then we have

Hπ

(
ρ(k+1)γ

)
+

1− e−µγ

µ
CGD

k+1 ≤ e−µγ

Å
Hπ (ρkγ) + eµγ

1− e−µγ

µ
β−1CGD

k

ã
+

1− e−µγ

µ
τ

= e−µγ

Å
Hπ (ρkγ) +

1− e−µγ

µ
CGD

k

ã
+

1− e−µγ

µ
τ.

(25)

Repeating this step for k = 0, 1, 2, · · · ,K − 1, we obtain

HK ≤ e−KµγH0 +
1− e−Kµγ

µ
τ.

This proves Theorem 1 for D-ELF.

The proof for P-ELF: The gradient estimator ∇fξk(xk) in this case is equal to

∇fξk(xk) = ∇F (wk) =
1

n

n∑
i=1

∇Fi(wk).

From Li-smoothness of the i-th component function Fi we deduce the following relation:

GD
k =

1

n

n∑
i

E
î
∥∇Fi(wk)−∇Fi(xk)∥2

ó
≤ 1

n

n∑
i

E
î
L2
i ∥wk − xk∥2

ó
= GP

k .

(26)

Therefore, combining this inequality with Lemma 5 we obtain

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + 2L2E

î
∥xk+1 − xk∥2

ó
+ 2GD

k

≤ −3

4
Jπ (ρt) + 2L2E

î
∥xk+1 − xk∥2

ó
+ 2GP

k .

The latter means that we can repeat exactly the rest of the proof of D-ELF by replacing GD
k with GP

k and using Proposition 2
instead of Proposition 1. Therefore,

HK ≤ e−KµγH0 +
1− e−Kµγ

µ
τ.

This concludes the proof of Theorem 1.

E.3. Proof of Theorem 2

We recall the definition of the Lyapunov term GD
k :

GD
k :=

1

n

n∑
i

E
î∥∥gik −∇Fi(xk)

∥∥2ó .
As described in Appendix C, we use the interpolation proof scheme. That is for the k-th iteration we define the process yt
as in (8). Thus, from Lemma 1 we have

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

î
∥fξk(y0)−∇F (yt)∥2

ó
= −3

4
Jπ (ρt) + E

î
∥g0 −∇F (yt)∥2

ó
.
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Combining this with Proposition 4 and (13), we obtain

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −3

4
Jπ (ρt) + 2L2E

î
∥xk+1 − xk∥2

ó
+ 2GD

k + CGD
k+1 +DGP

k+1

≤ −3

4
Jπ (ρt) + 2L2E

î
∥xk+1 − xk∥2

ó
+ 2GD

k + C
Ä
λ1G

D
k + λ2E

î
∥xk − xk+1∥2

ó
+ λ3G

P
k

ä
+D

Ä
(1− αP)(1 + w)GP

k + (1− αP)(1 + w−1)L̄E
î
∥xk − xk+1∥2

óä
= −3

4
Jπ (ρt) +

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

)
E
î
∥xk − xk+1∥2

ó
+ (2 + Cλ1)G

D
k + (Cλ3 +D(1− αP)(1 + w))GP

k .

Lemma 6 yields
E
î
∥xk+1 − xk∥2

ó
≤ 8γ2E

î
∥∇F (yt)∥2

ó
+ 4γ2GD

k + 4dγ,

for γ < 1/8L. The latter condition on the step-size is a consequence of our assumptions from the statement of Theorem 2.
Therefore,

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −3

4
Jπ (ρt) +

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) Ä
8γ2E

î
∥∇F (yt)∥2

ó
+ 4γ2GD

k + 4dγ
ä

+ (2 + Cλ1)G
D
k + (Cλ3 +D(1− αP)(1 + w))GP

k .

Applying Lemma 4 we deduce

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −3

4
Jπ (ρt) +

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) (
8γ2 [Jπ (ρt) + 2dL] + 4γ2GD

k + 4dγ
)

+ (2 + Cλ1)G
D
k + (Cλ3 +D(1− αP)(1 + w))GP

k

=

Å
−3

4
+ 8γ2

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

)ã
Jπ (ρt)

+
{
2 + Cλ1 + 4γ2

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

)}
GD

k + (Cλ3 +D(1− αP)(1 + w))GP
k

+
(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) (
16γ2dL+ 4dγ

)
.

Let us choose C and D to satisfy

C =
2.125

e−µγ − λ1
and D =

2.125λ3

(e−µγ − λ1) (e−µγ − (1− αP)(1 + w))
, (27)

where µ is the constant from Log-Sobolev inequality. In order for C and D to be positive we need λ1 and (1−αP)(1+w)
to be smaller than e−µγ . We will choose w and q = s as solutions to the following equations:

λ1 = (1− αD)(1 + q)2 = 1− αD

2
;

(1− αP)(1 + w) = 1− αP

2
.

(28)

Then,
e−µγ > 1− µγ > max {1− αD/4, 1− αP/4} (29)

thus the denominators are positive. Furthermore,

D =
2.125λ3

(e−µγ − λ1) (e−µγ − (1− αP)(1 + w))
≤ 4Cλ3

αP
.
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Recall that the definitions of λ2 and λ3 are given in (12). Since (1− αP)(1 + w) < 1, from the definition of λ3 we have

λ3 =
(
2(1− αD)(1 + q)(1 + q−1) + (1 + q−1)

)
(1− αP)(1 + w)

≤
(
2(1− αD)(2 + q + q−1) + (1 + q−1)

)
(1− αP)(1 + w)

≤
(
2(1− αD)(2 + q + q−1) + (1 + q−1)

)
.

Therefore, (12) implies

λ3(1− αP)(1 + w−1)L̄ =
(
2(1− αD)(2 + q + q−1) + (1 + q−1)

)
(1− αP)(1 + w−1)L̄ ≤ λ2.

Thus,

γ2
(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

)
≤ γ2

Å
2L2 + Cλ2 +

4Cλ3

αP
(1− αP)(1 + w−1)L̄

ã
≤ γ2

Å
2L2 + Cλ2 +

4Cλ2

αP

ã
≤ γ2

Å
2L2 +

5Cλ2

αP

ã
.

The next lemma bounds the right hand side of the previous inequality by a constant. This will allow us to get a negative
coefficient for the Jπ (ρt) term.

Lemma 7. Suppose u = 1, q = s, C and D are defined as in (27). Let (28) and (29) also be true. Under the assumptions
of Theorem 2, the step-size satisfies the following inequality:

γ2

Å
2L2 +

5Cλ2

αP

ã
<

1

32
.

The proof is postponed to Appendix F.4. Applying Lemma 7 to the first term we finally obtain the following recurrent
inequality

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −1

2
Jπ (ρt) + (2.125 + Cλ1)G

D
k + (Cλ3 +D(1− αP)(1 + w))GP

k

+
(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) (
16γ2dL+ 4dγ

)
≤ −1

2
Jπ (ρt) + (2.125 + Cλ1)G

D
k + (Cλ3 +D(1− αP)(1 + w))GP

k

+

Å
2L2 +

5Cλ2

αP

ã (
16γ2dL+ 4dγ

)
︸ ︷︷ ︸

:=τ

.

Then, inserting the values of C and D, we get

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1 ≤ −1

2
Jπ (ρt) + e−µγCGD

k + e−µγDGP
k + τ.

Let us now apply LSI:

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1 ≤ −µHπ (ρt) + e−µγCGD

k + e−µγDGP
k + τ.

Hence, the derivative of the function Hπ (ρt) is bounded by itself plus a term that does not depend on t. Lemma 3 yields
the following:

Hπ (ρt) ≤ e−µtHπ (ρ0) +
1− e−µt

µ

(
e−µγCGD

k + e−µγDGP
k − CGD

k+1 −DGP
k+1 + τ

)
.
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In particular, for t = γ, we have

Hπ (ργ) +
1− e−µγ

µ

(
CGD

k+1 +DGP
k+1

)
≤ e−µγHπ (ρ0) +

1− e−µγ

µ

(
e−µγCGD

k + e−µγDGP
k + τ

)
= e−µγ

ï
Hπ (ρ0) +

1− e−µγ

µ

(
CGD

k +DGP
k

)ò
+

1− e−µγ

µ
τ.

We first recall that ργ = νK+1 and ρ0 = νK . Repeating this inequality recurrently we deduce the following bound:

Hπ (νK) +
1− e−µγ

µ

(
CGD

K +DGP
K

)
≤ e−µγK

ï
Hπ (ρ0) +

1− e−µγ

µ

(
CGD

0 +DGP
0

)ò
+

τ

µ
.

This concludes the proof of Theorem 2.

Remark 1. One may check, that repeating the analysis for the case when one of the compressor operators (α = 1) is the
identity, we will recover the previously known algorithms.

E.4. Proof of Corollary 2

First let us upper bound τ . Similar to the proof of Corollary 1,
(
16γ2dL+ 4dγ

)
< 5dγ. Thus,

τ ≤
Å
2L2 +

5Cλ2

αP

ã
5dγ ≤ 45λ2

αDαP
5dγ

= O
Ç (

1− αD

2

) (
1− αP

2

)
qwαDαP (1− αP) (1− αD)

L̄dγ

å
= O

Å
L̄dγ

qwαDαP

ã
.

F. Proofs of the lemmas
F.1. Proof of Lemma 1

Let ρ0t denote the joint distribution of (y0, ξ, yt), which we write in terms of the conditionals and marginals as

ρ0t (z, y0, ξ) = ρ0 (y0, ξ) ρt|0 (z | y0, ξ) = ρt (z) ρ0|t (y0, ξ | z) .

Conditioning on (y0, ξ), the drift vector field fξk(y0) is a constant, so the Fokker-Planck formula for the conditional density
ρt|0 (z | y0, ξ) is given by

∂ρt|0 (z | y0, ξ)
∂t

= ∇z ·
(
ρt|0 (z | y0, ξ) fξ (y0)

)
+∆ρt|0 (z | y0, ξ) .

To derive the evolution of ρt, we integrate w.r.t. (y0, ξ) ∼ ρ0:

∂ρt(z)

∂t
=

∫
Rd×Ξ

∂ρt|0 (z | y0, ξ)
∂t

ρ0 (y0, ξ) dy0dξ

=

∫
Rd×Ξ

(
∇z ·

(
ρt|0 (z | y0, ξ) fξ (y0)

)
+∆ρt|0 (z | y0, ξ)

)
ρ0 (y0, ξ) dy0dξ

=

∫
Rd×Ξ

(∇z · (ρ0t (z, y0, ξ) fξ (y0)) + ∆ρ0t (z, y0, ξ)) dy0dξ

= ∇z ·
Å
ρt(z)

∫
Rd×Ξ

ρ0|t (y0, ξ | z) fξ (y0) dy0dξ
ã
+∆ρt(z)

= ∇z ·
Ä
ρt(z)Eρ0|t [fξ (y0) | yt = z]

ä
+∆ρt(z).

(30)
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Writing down the definition of KL divergence and using Fubini’s theorem, we deduce

dHπ (ρt)

dt
=

∫
Rd

∂ρt(z)

∂t
log

(ρt
π

)
(z)dz

=

∫
Rd

Ä
∇z ·

Ä
ρt(z)Eρ0|t [fξ (y0) | yt = z]

ä
+∆ρt(z)

ä
log

(ρt
π

)
(z)dz

= −
∫
Rd

〈
Eρ0|t [fξ (y0) | yt = z] +∇ log(ρt)(z),∇ log

(ρt
π

)
(z)

〉
ρt(z)dz

= −
∫
Rd

(
∇ log

(ρt
π

)
(z)−∇ log

(ρt
π

)
(z) + Eρ0|t [fξ (y0) | yt = z] +∇ log(ρt)(z)

)⊤

×∇ log
(ρt
π

)
(z)ρt(z)dz

= −
∫
Rd

〈
∇ log

(ρt
π

)
(z) + Eρ0|t [fξ (y0) | yt = z]−∇F (z),∇ log

(ρt
π

)
(z)

〉
ρt(z)dz.

(31)

We recall the definition of Fisher information to bound the first term of the scalar product:

dHπ (ρt)

dt
≤ −Jπ (ρt)−

∫
Rd

〈
Eρ0|t [fξ (y0) | yt = z]−∇F (z),∇ log

(ρt
π

)
(z)

〉
ρt(z)dz. (32)

From the Cauchy-Schwartz inequality, we deduce

dHπ (ρt)

dt
≤ −Jπ (ρt) +

1

4
Jπ (ρt) +

∫
Rd

∥∥Eρ0|t [fξ (y0) | yt = z]−∇F (z)
∥∥2 ρt(z)dz

= −3

4
Jπ (ρt) + E

î
∥E [fξk(y0)−∇F (yt) | yt]∥2

ó
≤ −3

4
Jπ (ρt) + E

î
E
î
∥fξk(y0)−∇F (yt)∥2 | yt

óó
= −3

4
Jπ (ρt) + E

î
∥fξk(y0)−∇F (yt)∥2

ó
.

(33)

This concludes the proof of the lemma.

F.2. Proof of Lemma 5

If we replace fξk(y0) by g0 in (10), we will have

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

î
∥∇F (yt)− g0∥2

ó
≤ −3

4
Jπ (ρt) + 2E

î
∥∇F (yt)−∇F (y0)∥2

ó
+ 2E

î
∥∇F (x0)− g0∥2

ó
= −3

4
Jπ (ρt) + 2E

î
∥∇F (yt)−∇F (x0)∥2

ó
+ 2E

∥∥∥∥∥ 1n
n∑

i=1

{
∇Fi(x0)− gi0

}∥∥∥∥∥
2


≤ −3

4
Jπ (ρt) + 2E

î
∥∇F (yt)−∇F (x0)∥2

ó
+ 2GD

0 .

Here the last implication is due to Jensen’s inequality. Let us bound the second term. The smoothness of the gradient yields

E
î
∥∇F (yt)−∇F (x0)∥2

ó
≤ L2E

î
∥yt − x0∥2

ó
= L2E

ï∥∥∥tg0 +√
2 (Bt −B0)

∥∥∥2ò . (34)

Since the Brownian process has independent increments we get

E
î
∥∇F (yt)−∇F (x0)∥2

ó
≤ L2t2 ∥g0∥2 + 2tL2d

≤ L2γ2 ∥g0∥2 + 2hL2d

= L2E
î
∥x1 − x0∥2

ó
.

(35)

This concludes the proof.



ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression

F.3. Proof of Lemma 6

Let us apply Lemma 4 to bound the term E
î
∥xk+1 − xk∥2

ó
:

E
î
∥xk+1 − xk∥2

ó
= γ2E

î
∥gk∥2

ó
+ 2dγ

≤ 2γ2
Ä
E
î
∥∇F (xk)∥2

ó
+ E
î
∥∇F (xk)− gk∥2

óä
+ 2dγ

≤ 2γ2E
î
∥∇F (xk)∥2

ó
+ 2γ2GD

k + 2dγ

≤ 4γ2
Ä
E [∥∇F (yt)∥] + E

î
∥∇F (yt)−∇F (xk)∥2

óä
+ 2γ2GD

k + 2dγ

≤ 4γ2E [∥∇F (yt)∥] + 4L2γ2E
î
∥xt − xk∥2

ó
+ 2γ2GD

k + 2dγ

≤ 4γ2E [∥∇F (yt)∥] + 4L2γ2E
î
∥xk+1 − xk∥2

ó
+ 2γ2GD

k + 2dγ.

Regrouping the terms we obtain

(1− 4L2γ2)E
î
∥xk+1 − xk∥2

ó
≤ 4γ2E [∥∇F (yt)∥] + 2γ2GD

k + 2dγ.

Dividing both sides on 1− 4L2γ2 and recalling that 2
√
2Lγ < 1, we conclude the proof.

F.4. Proof of Lemma 7

Is sufficient to show that

γ2 ≤ min

ß
1

192L2
,

αP

240Cλ2

™
.

From the assumption of the theorem, we know that γ2 ≤ 1
192L2 . Thus it remains to show that γ2 is bounded by the

minimum of the other two terms:

γ2 ≤ αP

240Cλ2
=

αP (e−µγ − λ1)

510λ2
.

Since u = 1 and s = q we have the following bound on λ2:

λ2 ≤
[
2(1 + q)(1 + q−1) +

(
2(1 + q)(1 + q−1) + (1 + q−1)

)
(1 + w−1)

]
L̄

=
[
2(2 + q + q−1) +

(
2(2 + q + q−1) + (1 + q−1)

)
(1 + w−1)

]
L̄

=
1

q

[
2(2q + q2 + 1) +

(
2(2q + q2 + 1) + (q + 1)

)
(1 + w−1)

]
L̄

≤ 1

qw
5(q + 1)2(1 + w)L̄

≤ 5

qw

(
1− αD

2

) (
1− αP

2

)
(1− αP) (1− αD)

L̄.

Therefore, we have an upper bound on λ2. This means that it is sufficient for us to prove

γ2 ≤ αP (e−µγ − λ1)

510 5
qw

(1−αD
2 )(1−αP

2 )
(1−αP)(1−αD) L̄

=
qwαP (e−µγ − λ1)

2550L̄
· (1− αP) (1− αD)(

1− αD

2

) (
1− αP

2

) .
From µγ < min {αD, αP} /4 and et > 1 + t, we deduce e−µγ − λ1 > αD/4. Combining these inequalities with (28), we
deduce that it is sufficient to prove

γ2 ≤ qwαDαP (1− αP) (1− αD)

10200
(
1− αD

2

) (
1− αP

2

)
L̄
.

Finally, using (28) once again, we derive
qw ≥ αPαD

24(1− αP)(1− αD)
.
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Therefore,

γ2 ≤ α2
Dα

2
P

244800
(
1− αD

2

) (
1− αP

2

)
L̄
.

Taking square root on both sides we obtain

γ ≤ αDαP

495
»(

1− αD

2

) (
1− αP

2

)
L̄
.

This concludes the proof.
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