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Abstract

Animation techniques bring digital 3D worlds and char-
acters to life. However, manual animation is tedious and
automated techniques are often specialized to narrow shape
classes. In our work, we propose a technique for automatic
re-animation of various 3D shapes based on a motion prior
extracted from a video diffusion model. Unlike existing 4D
generation methods, we focus solely on the motion, and we
leverage an explicit mesh-based representation compatible
with existing computer-graphics pipelines. Furthermore, our
utilization of diffusion features enhances accuracy of our
motion fitting. We analyze efficacy of these features for ani-
mation fitting and we experimentally validate our approach
for two different diffusion models and four animation mod-
els. Finally, we demonstrate that our time-efficient zero-shot
method achieves a superior performance re-animating a di-
verse set of 3D shapes when compared to existing techniques
in a user study.

1. Introduction

Animation is an important component of video games, simu-
lators, and movies. It makes otherwise rigid environments
come to life and is often a result of a tedious motion-data
capture coupled to skilled manual editing [17]. However,
this does not scale well for applications involving large vir-
tual worlds with thousands of individual entities or for in-
dividual objects that are difficult to motion capture due to
their physical size or real-world inaccessibility. For this
reason, we propose an end-to-end generative method that
re-animates static 3D objects using a pre-trained Video Diffu-
sion Model [5, 21, 24, 91, 93] (VDM) without any additional
training (Fig. 1).

We build on the success of Diffusion models [23, 79].
Beyond producing nearly photo-realistic 2D images [52,
66, 71, 74], diffusion was also adapted for 3D [35, 64] and
4D shape synthesis [2, 28, 42, 68, 78, 90, 96, 100, 101].

However, the associated methods suffer from either a high
optimization cost and low diversity [40] of the mode-seeking
Stochastic Distillation Sampling [64] (SDS), or, as we show,
they are susceptible to the visual artifacts in RGB outputs
of existing VDMs. Furthermore, our method generates a
unique animation as a sequence of object poses in a matter
of minutes rather than hours common for end-to-end 4D
generative methods. This is a feature crucial for processing
of larger sample sets with subsequent filtering based on
subjective preferences. Therefore, we position our approach
into a category distinct from end-to-end 4D generation.

Instead of iterative SDS, we leverage the surprising ver-
satility of semantic features extracted from diffusion models
for down-stream tasks such as one-shot segmentation [32]
or semantic feature matching [12, 80], which we adapt for
motion fitting. We rely on a classical surface mesh rep-
resentation in combination with diverse animation mod-
els [1, 38, 45, 103] to obtain animated 3D shapes that are fast
to render, compatible with existing rendering frameworks
and versatile across object classes.

In summary, we present the following contributions: 1.
We introduce a novel zero-shot generative method for 3D
mesh animation based on rendering in the semantic feature
space of pre-trained VDMs. 2. We analyze effectiveness of
VDM features for pose estimation to validate our method
and design choices. 3. We evaluate two VDMs and four
animation models and demonstrate a preference of our 3D
animations to existing generative approaches in a user study.

2. Related Work
Our method exploits VDMs to create novel animations of 3D
objects. Here we discuss relevant work on video generation
and existing approaches for 3D shape representation and
animation.

2.1. Video generation

Generative visual models have advanced rapidly from Vari-
ational Auto-Encoders [34], Normalizing Flows [10, 69]
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Figure 1. Our Zero-shot 3D mesh animations. From top to bottom: The desired motion description, the resulting animated mesh with motion
contours, the driving video from a pre-trained video diffusion model. Notice robustness of our method to the temporal identity shift (a) and to
the geometric distortions (b). Diverse shapes are supported through a range of animation models including a) FLAME [38], b) Neural Jacobian
Fields [1] and c) SMAL [103]. Examples are shown on our project page: https://graphics.tudelft.nl/MotionDreamer.

and Generative Adversarial Models [18] to Diffusion Mod-
els [23, 79] and Continuous Normalizing Flows [43] achiev-
ing a nearly photorealistic image synthesis [52, 66, 71, 74]
as well as state-of-the-art video synthesis [5, 21, 24, 91, 93].
Surprisingly, the features learned by the U-Net [73] of many
diffusion models exhibit semantic properties useful for down-
stream tasks such as segmentation [32] and feature match-
ing [46, 80, 97]. Consequently, we analyze utility of two
such models [91, 93] for our motion fitting, while we leave
opportunities presented by recent large VDMs [7, 9] utilizing
Visual Transformers [11] as an avenue for future research.

2.2. Shape and pose representations

There exist many ways for representing 3D shapes from clas-
sical explicit representations including point-clouds, vox-
els or surface meshes favored in real-time applications, to
implicit neural shape representations [51, 55, 84] enabling
photorealistic 3D scene reconstruction. In the middle, 3D
Gaussians [31] have been shown to combine advantages of
both at an increased storage cost. In this paper we focus on
surface meshes for their fast rendering, efficient storage and
wide application support.

While animation of object poses can be encoded as a
sequence of static representations [48], specialized repre-
sentations ease editing for both arbitrary and class-specific
shapes. In the first category, deformation fields offer maxi-
mal flexibility for dense volumetric optimization [65], Neu-
ral Jacobian Fields (NJFs) [1] offer space-time continuity
and smoothness for surface optimization and external cages
reduce the control space for easier editing [94]. In the sec-
ond category, low-dimensional templates support manual
animation and motion capture by combining Linear Blend
Skinning [36] and Blend Shapes [56, 57] for specific classes
of shapes such as faces [4, 38], bodies [45, 59], hands [72],
or even animals [103]. Our method is agnostic to the choice
of an animation model, which we test on high-dimensional

NJFs [1] and on low-dimensional templates [38, 45, 103].

2.3. 3D motion and animation

Capture Motion, most often for humans, can be di-
rectly captured [54] using sparse inertial sensors [81] or
dense visual observations [25] either with tracking mark-
ers [77] or without them [76]. For a monocular video,
we can estimate 2D poses [8, 60, 85] and uplift them to
3D [6, 47, 50, 75, 99] thanks to data priors [59, 63] based
on large motion datasets [26, 29, 49]. However, the spe-
cific training for each class limits generalization. In contrast,
recent advances in neural rendering [31, 51, 84] enabled
class-agnostic 4D reposable reconstructions [53, 86, 95].
Our method is similarly based on class-agnostic differen-
tiable pose optimization but differently from a direct image
supervision, we exploit diffusion features of a monocular
video rather than multi-view observations.

Generation Learned priors can also be used for text-
conditioned motion synthesis [102]. However, this is in
practice limited to human domain [20, 27, 82, 83] where
annotated 3D motion datasets exist [19, 61] or to other
skeletal shapes [30] if at least 2D annotations are avail-
able. Alternatively, image and video generative models
enabled class-agnostic joint shape and motion 4D gener-
ation [2, 28, 42, 68, 78, 90, 96, 100, 101] is usually based on
Stochastic Distillation Sampling (SDS) [64] which, however,
narrows the sampled distribution [40] due it its mode-seeking
behavior. Closest to us, Ren et al. [68] extract motion from
a full video input. Our method shares the idea of extract-
ing motion from a video model but thanks to utilizing the
feature space it produces more natural motion with fewer
visual artifacts. Furthermore, we do not use 3D uplifting
methods requiring background masks such as Zero-1-to-3
[44]. Additionally, by focusing on motion alone we achieve
faster sampling. Finally, both captured or generated motion

https://graphics.tudelft.nl/MotionDreamer


can be transferred from one shape to another [16], either
based on morphological similarity [41, 88] or data-driven
domain matching [39, 70]. We experimentally show that our
method is preferable when neither of the two conditions can
be satisfied.

3. Preliminaries
Our method exploits internal representation of VDMs. Here,
we provide a brief summary of these models and semantic
information encoded in their internal features.

3.1. Video Diffusion Models

VDMs are a type of a generative model producing video
sequences by gradual denoising [23, 79] of a Gaussian-noise
image sequence z ∈ RL×H×W×Dlat , where L is the frame
count, H,W the spatial dimensions, and Dlat is 3 for RGB
models or the latent feature dimension for Latent Diffu-
sion [71]. The forward diffusion process q(zt|z0, t) grad-
ually transports z0 ≡ z to the Gaussian-noise prior over
T steps such that zT ∼ N (0, I). This is used to learn a
denoising function fθ(zt, t, c) as a θ-parameterized network
approximating the reverse process pθ(zt−1|zt, t, c). A com-
monly used ϵ-prediction training procedure minimizes an
objective

∑
t,c,z,ϵ ∥ϵ− fθ(zt, t, c)∥22 across data and noise

samples z ∼ pdata and ϵ ∼ N (0, I). Finally, sampling the
noise prior N (0, I) and reversing the diffusion yields video
generation. The conditioning vector c ∈ RN is often a
text embedding, image embedding or both, and it steers the
process, often with a classifier-free guidance [22].

3.2. Semantic Diffusion Features

Intermediate activations of image diffusion networks have
been shown to encode semantic features and provide ro-
bust correspondences across image samples [46, 80, 97].
We adopt the methodology of Tang et al. [80], where fθ
is parameterized by a U-Net. The semantic feature maps
Au ∈ RHu×Wu×Au are extracted from the intermediate ac-
tivations of a U-Net layer u with height, width and feature
size Hu, Wu, and Au.

Given a pair of images with feature maps Au,Bu and a
chosen spatial location ϕA ∈ R2 in the first image, we find
a semantically corresponding spatial location ϕB ∈ R2 in
the other image as ϕB = argmaxϕB κ(Au[ϕ

A],Bu[ϕ
B ]),

where

κ(a,b) =
aTb

||a||2||b||2
(1)

is a cosine similarity κ : RAu × RAu → R and x[ϕ] de-
notes spatial sampling of a map x at location ϕ, which we
implement as a bilinear interpolation. For video, we treat
each frame as an image with its own feature map, and we
optimize semantic correspondences of reposed meshes using
Eq. 1.

4. Method
Our methods accepts an unseen 2-manifold 3D mesh in
an arbitrary pose and uses a pre-trained VDM to generate a
temporal sequence of animation parameters (see Fig. 2 for an
overview). We first describe our method for a general VDM
and animation model before discussing specific realizations
in Sec. 4.4.

Definitions We define the input mesh M as a tuple of N
vertices and M triangular faces M := ({un ∈ R3|n =
0, ..., N − 1}, {fm ∈ N3|m = 0, ...,M − 1}). Next, we
define τ : (M,p) → M′ as a function transforming vertices
to produce a mesh M′ := ({u′

n}, {fm}) with a novel pose
described by animation parameters p ∈ RP . We refer to
pinit as the input pose where τ(M,pinit) ≡ M and, without
a loss of generality, we assume it matches the first frame.
Finally, rrgb : (M, C, T ,B) → Irgb is a rendering function
producing an RGB image Irgb ∈ RH×W×3 of the mesh M
for a manually defined canonical camera C, surface texture
T , and a background image B ∈ RH×W×3.

4.1. Single-View Texturing

While the visual datasets used to train existing VDMs are
very large, they favor natural looking textured images with
backgrounds (see Appendix D.1 for examples). We reduce
the domain gap for our rendered image by automatically
generating an RGB texture T and a semantically fitting back-
ground image B. First, we render a depth map and a fore-
ground mask ψ for a single fixed viewpoint of M. Next, we
style-transfer the depth map using a pre-trained ControlNet
diffusion model [98] conditioned by a user-provided textual
description to obtain a textured RGB image S. Then, we crop
the foreground texture T = unproject(S⊙ ψ) and apply it
to the mesh M0 using projective texturing [92]. Importantly,
we do not strive for a complete texture of the entire mesh, but
merely for a stylization of the single-view VDM input image.
Finally, we obtain the background image B by inpainting the
remainder of S outside of the foreground bounding box us-
ing Stable Diffusion XL [62]. See Appendix B.2 for prompt
details.

4.2. Motion Generation

The motion produced by our method originates from a
VDM conditioned by our rendered mesh image I0rgb =

rrgb(M0, C, T ,B) and an embedding of the intended mo-
tion text description. We sample the generator in a multi-step
diffusion process over T steps denoted as t ∈ [0, ..., T − 1]
with scheduling details specific to each VDM. Because the
temporally incoherent visual artifacts in RGB video outputs
make motion tracking difficult (see Fig. 1), we extract se-
mantically meaningful U-Net features At

u at time step t = t̂
and U-Net layer u = û as explained in Sec. 3.2, and we
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Figure 2. A diagram of our method. First, we automatically texture the input mesh M to reduce the domain gap to the VDM prior (Sec. 4.1).
Second, we condition the VDM by a rendered image Irgb to produce a video with motion and to extract features Â for all L frames from its
internal U-Net (Sec. 4.2). Finally, we reproject the input frame features Â0 on the mesh surface and we optimize mesh animation parameters
p to match the reposed mesh features to the video (Sec. 4.3). produce

show that this improves the fitting accuracy. We motivate
our choice of t̂ and û in Sec. 5.3, and will omit the suffixes
from now on for brevity, such that Â ∈ RL×Ĥ×Ŵ×Â ≡ At̂

û

and Âl selects the video frame l of L. We further assume
Â0 corresponds to the input image I0rgb (see Appendix A.1
for a discussion).

4.3. Motion fitting

Given the known correspondence of the mesh M, initial
pose pinit, image I0rgb and features Â0 for the input frame
l = 0, we aim to recover all animation parameters pl for
l ∈ [0, ..., L− 1].We achieve this by optimizing p to match
reprojections of the input Â0 to Âl extracted from the video.
To this goal, we first reproject Â0 to new poses pl and
optimize these poses using a gradient descent.

Feature Reprojection Our mesh pose fitting is based on re-
projection of Â0 to any new pose pl. First, we use projective
texturing to map Â0 to M. We obtain per-vertex features
{an} by mapping each mesh vertex un to the image plane
of the camera C and sampling Â0 as an = Â0[P (un, C)],
where P (.) is a world space to image plane projection func-
tion and [.] is a bilinear sampler. Finally, we transform M
to Ml = τ(M,pl) for a given novel pose pl and we render
a feature image

IlA = rA(Ml, C, {an},BA) (2)

where rA is a rasterization function interpolating the vertex
attributes {an} and BA is a background feature map pro-
duced by inpainting the background Â0 ⊙ (1 − ψ) with a
mean of valid features. Notice that Eq. 2 implies an approxi-
mate identity I0A ≈ Â0, and we optimize p to improve this
match for the full animation.

Mesh Pose Optimization We observe that direct opti-
mization of each pl independently is prone to local min-
ima. Instead, we exploit the implicit bias of Multi-Layer-
Perceptrons (MLPs) towards smooth functions, and regress
pl as a frame-dependent offset from an initial pose pinit such
that pl = αmω(γ(l)) + pinit, where α = 0.01 is a scaling
constant, γ is a frequency encoding [51], and m(.) is an
MLP with learnable parameters ω. We optimize ω by gra-
dient descent to enforce semantic correspondences between
the animated mesh and the video, i.e. Ilfeat ≈ Âl, using the
rendering loss:

Lr = 1− 1

LĤŴ

L−1∑
l=0

∑
i∈ΩA

κ(Ilfeat[i], Â
l[i]), (3)

where κ() is the cosine similarity (Eq. 1), ΩA is the spatial
domain of Â and [i] a spatial sampler.

Regularization losses First, our monocular video provides
only a limited supervision for motion-in-depth. We discour-
age the optimization from explaining spatial deformation
artifacts in the input video via motion-in-depth by per-vertex
regularization loss

Ld =
1

LN

L−1∑
l=0

N−1∑
n=0

||(d̄0 − d0n)− (d̄l − dln)||1, (4)

where dln is the projected depth of vertex un in frame l, and
d̄l = 1/N

∑N−1
n=0 d

l
n. Second, we enforce temporal smooth-

ness beyond the MLP’s implicit bias to further reduce jitter
using the smoothness loss Ls = 1/((L−1)N)

∑L−2
l=0 ||pl−

pl+1||1. Lastly, we penalize propagation of local spatial
distortions from video by suppressing large deformations



using the fidelity loss Lf = 1/(LN)
∑L−1
l=0 ||pl||1. Con-

sequently, our complete optimization objective is L =
wrLr + wdLd + wsLs + wfLf with wr = 5, wd = 0.01,
ws = 0.1, wf = 0.01.

4.4. Implementations Details

We implement our method in PyTorch [58] with Py-
Torch3D [67] mesh rasterizer, and we optimize the poses
with the Adam optimizer [33] for 1 000 steps. We discuss
further details in Appendix A.

Animation Models We experiment with four animation
models for poses p. For domain specific shapes, we use low-
dimensional articulated models SMPL [45] (for humans),
SMAL [103] (animals) and FLAME [38] (faces), where
pl are the joint angles and the other shape parameters are
fixed. For other meshes, we use Neural Jacobian Fields
(NJF) [1], which encodes the pose pl by surface Jacobians,
in combination with a single global translation and rotation -
see Appendix A.2 for details and for an additional rigidity
regularizer Lj applied for NJF.

VDMs We evaluate 2 VDMs: VideoComposer [91] (VC)
and DynamiCrafter [93] (DC) with Â resolution of (160, 88)
and (128, 72) respectively (1/8 of their outputs). We use
their recommended inference schedulers with T = 50 steps.
Our assumption of Â0 ∼ I0rgb is satisfied by design for VC,
and we present a solution for DC in Appendix A.1. We
empirically find VC performs better for images with the
background B, while DC performs well even with a uniform
white background. Additionally, we assessed another VDM,
Stable Video Diffusion [5], but we discarded it due to its low
motion quality (see Appendix D.1, D.5).

5. Experiments
We compare our zero-shot motion generation to other meth-
ods in a user study. Further, we quantitatively evaluate our
pose fitting algorithm on a synthetic human motion dataset
and measure the contribution of the individual components
in an ablation study.

5.1. User Study

We compare our method to two other approaches for zero-
shot 3D motion synthesis. First, we compare to DG4D [68]
as an end-to-end shape-and-motion generative method based
on image and video diffusion. Second, in absence of a
class-agnotic method, we compare to a human motion diffu-
sion model (MDM) [83] combined with motion retargeting
(MT) [41]. We provide an additional qualitative comparison
to a contemporary end-to-end generative method Consis-
tent4D [28] in Appendix D.2. We run our method with both
VC and DC backbones and use the same generated videos

as inputs for DG4D (see Appendix B.1 for details). We use
9 meshes and a total of 12 prompts combined to obtain 2
human stimuli (using the SMPL mesh), 2 horses (SMAL),
2 faces (FLAME) and 4 other stimuli each with a unique
mesh (NJF). See Fig. 1, Fig. 3, and the supplemental video
for visual examples, Appendix B.2 for a complete list.

12 participants aged 24–41, naïve to the purpose of the
experiment and with a normal or corrected-to-normal vision,
participated in a ∼ 20min low-risk IRB approved study,
after signing an informed consent without any compensation.
16 frame (1 second) long video pairs from different methods
were presented side-by-side in random order. Each displayed
the same untextured animated shape from two viewpoints
to clearly display the motion. Videos were looped until
a binary answer was entered using a keyboard. The same
stimuli were used for three different questions in three blocks.
See Appendix B.3 for details.

In Fig. 4 (Left), we observe a statistically significant pref-
erence for our method compared to both DG4D and MDM-
MT in terms of having “more natural motion”, “fewer visual
artifacts” and “capturing the prompt better” (p < 0.001,
binomial test). We provide a break-down for individual
shapes in Appendix B.4. As expected, the human-specific
MDM-MT approach excels for human stimuli but fails for
morphologically distinct shapes, where correspondences are
difficult to establish, which results in semantically incorrect
and visually distracting motion (see Fig. 3 “Bunny”). In
contrast, the other class-agnostic model, DG4D, struggles
to accurately represent the video motion sequences leading
to noisy reconstructions (see Fig. 3 “Raptor”). Moreover,
the motion optimization in DG4D (Stage 2) takes 233 ± 5
seconds on an NVIDIA RTX 3090, while our method lever-
ages fast rasterization and performs pose optimization in
only 148 ± 39 seconds. Fig. 1, Fig. 3, Appendix B.4, and
our video show more examples.

Input Accuracy After the main study, we asked each par-
ticipant to additionally compare our textured output to the
full DG4D color rendering and to the unprocessed VDM
videos for overall preference (see the last bars Fig. 4 Left).
The participants strongly prefer our method to DG4D, likely
due to the more accurate geometry (Fig. 3). There was no
effect when comparing to the VDMs, suggesting that our
method closely preserves characters of the generated videos
and should, therefore, benefit from future VDMs with a more
accurate motion depiction.

5.2. Pose Optimization

We observe that the limiting factor of our method is the VDM
motion quality. To remove this influence, we quantitatively
evaluate performance of our pose fitting component using a
captured human dancing motion dataset AIST++ [37] with
known poses. First, we randomly select 20 test sequences
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untextured views of the last frame with one one additional textured image for reference. The contours convey the motion trajectory.
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u extracted across U-Net layers
u with bars showing standard deviations.

and re-render the first 20 frames from each using the avail-
able SMPL mesh to simulate a perfect VDM. Then, we use
VC to extract Â from the rendered video following Tang
et al. [80] and optimize p for the SMPL model (Sec. 4.3)
before evaluating the common metrics [75]: the Mean Per
Joint Position Error (MPJPE), the Procrustes-aligned MPJPE
(PA-MPJPE), the Per Vertex Error (PVE), and finally the Ac-
celeration error (Accel) for smoothness.

We conduct three comparisons. First, we compare our
single-view texturing (textured, Sec. 4.1) to a uniform gray
shading (untextured). Second, we compare our semantic
features Â (Ours) to RGB features (RGB) extracted directly
from the input videos. Finally, we additionally test a state-
of-the-art human pose estimation method WHAM [75] as a
domain-specific reference. Since our method always starts
with known pinit, we emulate the same for WHAM by mea-
suring its first-frame per-joint error and transform all predic-
tions accordingly. This empirically improves WHAM scores
relative to the unprocessed outputs. Appendix C provides
details and alternative alignment strategies.

Results As summarized in Tbl. 1, Ours consistently
achieves better results with textured inputs than with un-
textured inputs, which motivates our Single-View Textur-
ing (Sec. 4.1). Furthermore, Ours (full) with semantic fea-
tures Â achieves lower errors than the variant with RGB
features, which documents the utility of these features for
our task. Moreover, Ours (full) compares favorably even
to the WHAM pose estimator despite the lack of human-
specific training. This might be explained by the artificial
appearance of our input videos which differ from common
human pose estimation datasets. We do not claim general
supremacy of our method for human pose estimation. This
is showcased in Fig. 8 (right), where our method struggles
to avoid physiologically implausible poses. Finally, in Fig. 6
we compare both features qualitatively in our full genera-
tive method and confirm that our semantic features lead to a
better motion fit with fewer artifacts. See Appendix D.3 for
more examples.

MPJPE PA-MPJPE PVE Accel
Textured (default)
WHAM .059 ± .029 .042 ± .016 .075 ± .036 7.9 ± 9.0
RGB .044 ± .051 .044 ± .042 .077 ± .059 7.5 ± 16.7
Ours (full) .041 ± .036 .039 ± .035 .063 ± .057 5.0 ± 7.2
Untextured
WHAM .057 ± .028 .039 ± .015 .070 ± .035 7.4 ± 9.1
RGB .146 ± .056 .126 ± .043 .203 ± .074 3.2 ± 3.0
Ours .051 ± .037 .044 ± .034 .073 ± .054 4.7 ± 5.7

Table 1. The pose fitting performance of WHAM [75] and variants
of our method for re-rendered AIST++ human body sequences [37].
Less is better for all metrics (see Sec. 5.2).
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Figure 5. Left: PA-MPJPE ↓ with a standard deviation range for
features At

û extracted for different diffusion steps t. Right: Depth
regularization prevents undesirable motion-in-depth explanations.

MPJPE PA-MPJPE PVE Accel
no Ls .027 ± .016 .025 ± .016 .053 ± .036 2.72 ± 2.19
no Lf .026 ± .017 .025 ± .018 .103 ± .044 2.52 ± 2.28
no Ld .025 ± .006 .024 ± .008 .046 ± .016 2.46 ± 2.04
Full .027 ± .016 .025 ± .016 .053 ± .036 2.50 ± 2.36

Table 2. Performance of our ablated method variants in pose fitting.
Notable performance impacts highlighted in red.

5.3. Ablations

We reuse the pose optimization experiment to validate our
design choices. To this end, we follow the same procedure
for 6 of the same AIST++ sequences [37]. First, we analyze
the choice of û (Fig. 4 right) and t̂ (Fig. 5 left) for extraction
of Â using PA-MPJPE. We observe the best performance
for û = 3, which we consequently use for both VDMs in
our other experiments. We further find our method is not
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sensitive to the choice of t̂ above t ≈ 15. Therefore, we
select t̂ = 20 for VC and t̂ = 40 for DC.

Next, we ablate our regularization losses (Tbl. 2). As
expected, the smoothness of Ls reduces the Acceleration
error, while Lf reduces shape distortions recorded by the
Per-Vertex Error. In contrast, the depth regularization of Ld
does not lead to an improvement in performance metrics, but
we observe that it discourages perceptually-objectionable
depth errors (Fig. 5 right).

Finally, in Fig. 7 we ablate the mesh resolution in our
method with NJF. We find that the output quality degrades
gracefully and predictably with reduced vertex count. See
Appendix D.4 for an extended discussion.

6. Discussion

Limitations and Future Work Single-view motion super-
vision struggles to resolve motion-in-depth or occlusions,
which we mitigate using regularization at a risk of overall
motion reduction (see Fig. 5 right). We acknowledge this
as a limitation and a motivation for further research which
could offer an improvement through multi-view supervision
at the cost of additional training data [30]. We demonstrate
a zero-shot method supporting a range of animation mod-
els, but we acknowledge that the high degree-of-freedom in
NJF permits undesired distortions (see Fig. 8a). These could
be potentially remedied though a static shape supervision
inspired by 3D generative models [35] with a possible di-
versity reduction stemming from SDS [40]. On top of this,
the motion produced by the current VDMs might not adhere
to the prompt or might contain physically impossible transi-
tions (see Fig. 8b). To counter this, the fast run-time of our

500 Vertices 4000 Vertices

Figure 7. Effect of number of vertices on our method. Model
source: Jaka Ardian 3D art / model from Indonesia.

3D Motion

Frame 1

(a)

(b)

3D MotionFrame 10 Frame 16

Frame 6 Frame 7 Last Frame

Figure 8. Failure cases showing frames of the VC VDM output and
our fitted motion. (a) The VDM produces fast motion accompanied
by ear disappearance that our model explains as an undesired head
deformation. (b) The VDM suddenly flips body orientation by 180
degrees which confuses our tracking and leads to self-intersections.

method could be combined with a suitable rejection heuris-
tic. Furthermore, we expect to benefit from future VDM
improvements [7, 9]. This will also allow for generating
longer sequences, necessitating memory off-loading, which
is currently absent in our implementation. Finally, an inter-
esting future direction is to constrain the VDM generation
with our simultaneously optimized 3D animation model in
order to prevent any distortions from emerging.

Conclusion We presented a novel generative method for
zero-shot 3D animation. Despite its limitations stemming
from the single-view supervision, we demonstrated that it
produces visually preferable motions across diverse unseen
3D shapes at computation cost lower than end-to-end 4D
generative methods. We see our method as a capable tool
for analysis of motion spaces in VDMs, and for affordable
re-animation of static 3D assets in virtual environments.

Ethical Considerations Our method produces novel poses
for 3D objects including human bodies and faces, but we do
not focus on realistic appearance modeling. The biases in
backbone VDMs can influence our method and are a priority
research interest to the community.
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