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ABSTRACT

Concept vectors aim to enhance model interpretability by linking internal repre-
sentations with human-understandable semantics, but their utility is often limited
by noisy and inconsistent activations. In this work, we uncover a clear pattern
within this noise, which we term the SuperActivator Mechanism: while in-
concept and out-of-concept activations overlap considerably, the token activations
in the extreme high tail of the in-concept distribution provide a clear, reliable
signal of concept presence. We demonstrate the generality of this mechanism
by showing that SuperActivator tokens consistently outperform standard vector-
based and prompting concept detection approaches—achieving up to a 14% higher
F1 score—across diverse image and text modalities, model architectures, model
layers, and concept extraction techniques. Finally, we leverage these SuperActi-
vator tokens to improve feature attributions for concepts. 1

1 INTRODUCTION

Modern transformer-based models, while increasingly powerful and ubiquitous (Minaee et al.,
2025), remain opaque and can behave in ways that are unpredictable or harmful (Greenblatt et al.,
2024; Roose). This opacity hinders our ability to identify and debug undesirable representa-
tions—such as spurious correlations (Zhou et al., 2024b), biases Yang et al. (2024), or fragile rea-
soning Berglund et al. (2024)—or to intervene when models produce undesirable outputs.

Concept vectors (Kim et al., 2018; Zhou et al., 2018), or semantically meaningful directions in a
model’s latent space, provide a lightweight tool for examining and influencing internal representa-
tions. They have been used to uncover hidden model failures (Abid et al., 2022; Yeh et al., 2020),
and to steer model behavior away from hallucinations (Rimsky et al., 2023; Suresh et al., 2025), un-
safe responses (Liu et al., 2023; Xu et al., 2024), and toxic language (Turner et al., 2024; Nejadgholi
et al., 2022). Unsupervised concept extraction is especially powerful, since labeled data is costly
and such methods have the potential to uncover and explain new model behaviors, contributing to
scientific discoveries (Lindsey et al., 2025).

To analyze the presence of concepts within a sample, we typically rely on their activation scores—a
measure of alignment between an input token’s embedding and a concept vector. However, these
scores are often noisy and unreliable, and as a result misrepresent true concept presence. For in-
stance, prior works have found that concepts frequently activate on unintended semantics Olah et al.
(2020); Bricken et al. (2023), generate overlapping signals for correlated concepts Goh et al. (2021);
Olah et al. (2020), and exhibit unstable activation patterns across different model layers Nicolson
et al. (2025). The example in Figure 1 provides an illustration of such activation ambiguity on an
image of a dog in a car mirror. The activation heatmaps for both the Animal and Person concepts
appear to highlight the same region, even though only the former is present. Moreover, it is evident
that many tokens on the car itself fail to activate for the Car concept. Such noisy signals makes it
difficult to reliably detect or localize concepts.

To better understand the source of this noise, we examined the global activation distributions of
in-concept and out-of-concept tokens and found that while they overlap considerably, there is clear
separation in the extreme tail of the in-concept distribution. Notably, these tail-end activations are
well-distributed across true-concept samples, allowing them to reliably distinguish concept presence

1https://anonymous.4open.science/r/superactivator-E02D/
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Original Animal Car Bench

Person Motorcycle Chair

Activation Score 

 SuperActivators

Figure 1: The SuperActivator Mechanism concentrates concept information into a sparse set of
high-activation signals; by focusing on these signals, one can distinguish the true concepts in an
image even when token activations are misleading, spuriously highlighting absent concepts and
providing incomplete recall of the true ones. This example shows LLaMA-3.2-11B-Vision-Instruct
linear separator concept activations on a COCO image; examples for a variety of image and text
datasets are provided in Appendix A.

even when token activation maps are misleading or ambiguous (see Figure 1). We term this behavior
the SuperActivator Mechanism and show it is a general property of how transformers encode
semantics. Our analysis demonstrates that this mechanism more accurately detects concepts than
standard concept-vector and prompting methods across various image and text modalities, model
architectures, model layers, and concept extraction techniques. We also show that leveraging these
localized signals leads to improved concept attributions.

Our key contributions are summarized as follows:

• SuperActivator Mechanism: By analyzing the global concept activation distributions, we dis-
cover that the highly activated tokens in the tail of the true-concept distribution are reliable indi-
cators of concept presence. Using just a small set of these extreme activations, our method con-
sistently outperforms standard vector and prompt-based concept detection methods, consistently
yielding improved F1 scores by up to 14%.

• Broad Generality: We show the SuperActivator Mechanism is a fundamental property of how
transformers encode semantics, consistent across text and image modalities, model architectures,
model layers, and both supervised and unsupervised concept extraction techniques.

• Application for Improved Concept Attributions: By localizing concept signals with the Super-
Activator Mechanism, we obtain attribution maps with stronger alignment to ground-truth anno-
tations and superior insertion/deletion performance relative to global concept-vector baselines.

2 CONCEPT VECTOR PRELIMINARIES

This section introduces the basic formalism for representing inputs, defining concept vectors, and
computing activation scores; additional mathematical details are provided in Appendix D.

Let f be a trained transformer model that processes an input sample x ∈ X (an image or a text
sequence) through its layers. From any given layer of f , we can extract token-level embeddings
(ztok

1 (x), . . . , ztok
n(x)(x)) ∈ (Rd)n(x) and a sample-level embedding zcls(x) ∈ Rd. The number of

tokens, n(x), is sample dependent since it is influenced by text lengths and image sizes. For any
semantic concept c, we associate a concept vector vc ∈ Rd, which represents a direction in the
embedding space (see Section 4.1 for extraction methods). The concept activation score of an em-
bedding z with respect to concept c is defined as sc(z) = ⟨z, vc⟩, where positive scores indicate
alignment with the concept.

2
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Comment (Labeled Joy):

Someone shared a story about a random act of kindness they experienced during
their daily commute. I love reading positive stories!! Happy for you, OP!

Joy Activations:

Someone shared a story about a random act of kindness they experienced during
their daily commute. I love reading positive stories!! Happy for you, OP!

Concept Activation →
SuperActivators 2 0 2 4

Concept Activation (s)

Fr
eq

ue
nc

y

SuperActivator

Sample: Out-of-Concept
Global: Out-of-Concept

Sample: In-Concept
Global: In-Concept

Figure 2: Transformers distribute concept signals unevenly across ground-truth regions, leading to
substantial overlap between the concept-positive activation scores and supp(Dout

c ). In this example
from the Augmented GoEmotions dataset, the ground-truth span for joy is highlighted in a Reddit
comment, with token-level activations from a Llama-Vision-Instruct model shown both as a heatmap
over the text and as distributions. While a few true-concept tokens (separated by a blue dotted line)
exhibit extremely high activations, most remain indistinguishable from non-concept tokens within
the sample and across the global test set (supp(Dout

c )).

We are interested in characterizing concept activation scores globally across many samples. There-
fore, for each concept c we define the in-concept distribution Din

c as the collection of activation
scores from tokens labeled concept-positive for c, and the out-of-concept distribution Dout

c as those
from tokens labeled concept-negative. Formally, let Z denote the set of tokens across samples and
Sc = { sc(z) : z ∈ Z } the corresponding collection of activation scores. If Z in

c ⊆ Z are the tokens
containing c and Zout

c = Z \ Z in
c , then

Din
c = { sc(z) : z ∈ Z in

c }, Dout
c = { sc(z) : z ∈ Zout

c }.

Note that Zout
c excludes all tokens from samples containing c, even those not labeled with the con-

cept, in order to prevent self-attention from leaking concept information into the out-of-concept
distribution.

The support of a distribution is the set of values with nonzero probability, and the tail refers to its
extreme regions with small probability mass. To quantify how much Din

c and Dout
c overlap, we use

the overlap coefficient (OVL), defined as the shared probability mass between the two distributions:

OVL(Din
c , D

out
c ) =

∫ ∞

−∞
min

(
pin(s), pout(s)

)
ds,

where pin and pout are their densities. Large values of OVL indicate that most in-concept activations
lie within the overlapping support supp(Din

c )∩supp(Dout
c ) and are thus statistically indistinguishable

from out-of-concept activations, whereas small values arise when only the high-activation tail of Din
c

extends beyond Dout
c , yielding clearer separation.

One primary application of concept activation scores is concept detection (Wu et al., 2025; Rückert
et al., 2023; Groza et al., 2024), which aims to determine whether a concept is present in a sample.
Standard methods apply an aggregation operator G : Rn(x)+1 → R to obtain a per-sample concept
activation score:

sagg
c (x) = G

(
sc(z

tok
1 (x)), . . . , sc(z

tok
n(x)(x)), sc(z

cls(x))
)
.

The concept is considered detected if sagg
c (x) exceeds a threshold, typically obtained via calibration.

There is no consensus on the best choice of aggregation operator G. Common strategies include us-
ing the score of the [CLS] token (Nejadgholi et al., 2022; Yu et al., 2024), applying mean (McKenzie
et al., 2025; Benou & Riklin-Raviv, 2025) or max-pooling (Tillman & Mossing, 2025; Wu et al.,
2025), or using the score of the last token (Chen et al., 2025; Tillman & Mossing, 2025).

Concept activations are also useful for concept localization (or attribution), which seeks to answer
where a concept is located within a sample Santis et al. (2024). When evaluating concept localiza-
tions, we desire attribution maps that align with ground-truth annotations—segmentation masks for
images or span-level labels for text. At the same time, attributions should be faithful (Zhang et al.,
2023), meaning that they accurately reflect the features the model actually relies on.

3
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Figure 3: As concept signals evolve across transformer layers, Din
c and Dout

c become more dis-
tinct with depth, though the separation is concentrated in a small subset of tokens in the tail of
Din

c . Shown here are activation distributions for linear separator concepts from LLAMA-3.2-11B-
VISION-INSTRUCT on the OpenSurfaces dataset (Metal, Rubber, and Fabric); additional examples
across datasets, models, and concept types are provided in Appendix B.

3 THE SuperActivator MECHANISM YIELDS CLEAR CONCEPT SIGNAL
WITHIN NOISY CONCEPT ACTIVATIONS

3.1 CONCEPT ACTIVATIONS ARE NOISY AND INCONSISTENT

Concept vectors promise interpretability but they often deliver noisy activations that are hard to
extract meaningful insights from. On the global image/sentence level, it is now well documented
that concept vectors can encode spurious correlations and blur important context-specific distinc-
tions (Abid et al., 2022; Zhou et al., 2021). These issues are further maintained at the local level
of individual tokens leading to issues including entanglement (co-activation of related concepts)
and polysemanticity (a single vector representing unrelated concepts) (Goh et al., 2021; Olah et al.,
2020; Bricken et al., 2023).

We identify an additional challenge: transformers distribute concept signals non-uniformly across
true-concept regions. This is illustrated in Figure 2 where a few tokens exhibit strong activations
clearly aligned with the concept Joy, but many other positively labeled tokens have indistinguishable

0% 25% 50% 75% 100%
% Through Model

0%

25%

50%

75%

100%

% In-Concept Images w/ a 
 Token Act > 99% Dout

c

Per-Concept
Average

Figure 4: Most true-concept images in
the OpenSurfaces dataset have at least
one activation in the high-activation tail
of Din

c , well separated from Dout
c .

activations from those of non-concept tokens. As shown
on the right of Figure 2, the true-concept token acti-
vations significantly overlap with non-concept activa-
tions, both within the sample and relative to the broader
supp(Dout

c ). Consequently, even if a few key tokens
are correctly identified, a single global threshold cannot
cleanly separate in-concept tokens from out-of-concept
ones.

To understand how these noisy activations arise, we ex-
amine Din

c and Dout
c across transformer layers. Dout

c
remains roughly normal and centered near zero, while
early-layer Din

c overlaps heavily with it, yielding high
OVL(Din

c , D
out
c ), as shown in Figure 3. With depth,

overlap decreases and stabilizes in middle layers, con-
sistent with prior findings that concept representations
become more separable in intermediate layers and some-
times collapse in the final layer due to task-specific com-
pression (Saglam et al., 2025; Yu et al., 2024; Dalvi
et al., 2022).
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The separation between Din
c and Dout

c does not arise from a uniform shift of all in-concept activations.
Instead, while many scores remain overlapping with supp(Dout

c ) and are thus indistinguishable from
noise, Din

c develops a heavy tail as a small subset of extreme activations become increasingly sepa-
rable with depth.

Notably, we find that the high-activation tail of Din
c provides good coverage: most true-concept

samples contain at least one activation above this threshold. We define the tail as scores within Din
c

that exceed the 99th percentile of Dout
c . This effect is shown for linear separator concepts on the

OpenSurfaces dataset in Figure 4, and we show that it holds across datasets, models, and concept
vector types in Appendix B.

3.2 INTRODUCING THE SuperActivator MECHANISM

A reliable concept signal should be clear, with activations that stand out from noise, and accurate,
with high precision and broad coverage across true-concept samples. We find that such signals arise
sparsely but consistently in the high-activation tail of Din

c : they lie well outside Dout
c (Figure 3) and

appear in most concept-positive samples (Figure 4). These results hold cross modalities, architec-
tures, and concept vector types, suggesting it is a general property of transformer representations.

We term this the SuperActivator Mechanism: a small set of extreme token activations carries the
concept signal with both clarity (separation from Dout

c ) and coverage (broad per-sample presence).

Defining SuperActivators. Let S+
val,c = { sc(z) : z ∈ Z in

c from a validation set } be the empirical
activation scores for concept c. For a sparsity level N ∈ [1, 100], we define the SuperActivator
threshold as

τ super
c,N = Q1−N/100

(
S+

val,c

)
,

where Qq(S) denotes the q-quantile of a set of scores S. Tokens whose activations exceed this
threshold form the set of SuperActivators,

T super
c,N = { z ∈ Z in

c : sc(z) ≥ τ super
c,N }.

Intuitively, this means we are isolating the top N% of the in-concept distribution Din
c , i.e. tokens in

its high-activation tail.

Leveraging SuperActivators for Concept Detection. We develop a SuperActivator-based aggre-
gator that predicts the presence of c in a sample x if it contains at least one SuperActivator for
that concept. Concretely, we apply a max-pooling operator Gmax over token activations, predicting
concept presence if Gmax(sc(z

tok
1 (x)), . . . , sc(z

tok
n(x)(x))) ≥ τ super

c,N .

This approach is closely related to the standard max aggregator (Wu et al., 2025; Xie et al., 2025),
which we compare against in F. This design enables direct control over sparsity, letting us study
how detection performance varies with N (Appendix G). We find that SuperActivator detection is
most effective at very low N , showing that the most reliable concept information is concentrated in
a small high-activation tail of Din

c . For final evaluation, we calibrate N per-concept on the validation
set to maximize detection F1.

4 CONCEPT DETECTION AND LOCALIZATION WITH SUPERACTIVATORS

4.1 EXPERIMENTAL SETUP

We evaluate our framework across different modalities, models and concept types.

Datasets. Vision datasets include CLEVR (Johnson et al., 2017), COCO (Lin et al., 2014), and
the PASCAL (Everingham et al., 2010) and OPENSURFACES (Bell et al., 2013) sections of the BRO-
DEN dataset (Bau et al., 2020). For text, where token-level labels are scarce, we construct three
datasets: SARCASM, AUGMENTED ISARCASM (Oprea & Magdy, 2020), and AUGMENTED GOE-
MOTIONS (Demszky et al., 2020). Full details are provided in Appendix C.3.

Models. For images, we extract both patch and CLS token embeddings from the CLIP ViT-
L/14 (Radford et al., 2021) and LLAMA-3.2-11B-VISION-INSTRUCT (Meta, 2024). For text,

5
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Table 1: Our SuperActivator-based method outperforms concept vector-based and prompt-
ing baselines on concept detection F1 scores. The results shown here are for linear separator
concepts using the LLaMA-Vision-Instruct model, where we improve performance by up to 14%
over the best baseline. This trend generally holds across models and concept types, as detailed in
Appendix E. Bold indicates the best score; underline marks the second best score.

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct
Chen et al. (2025) (McKenzie et al., 2025) (Yu et al., 2024) (Wu et al., 2025) (Ours)

CLEVR 0.97 ± 0.09 0.88 ± 0.00 0.92 ± 0.00 0.96 ± 0.02 0.99 ± 0.01 1.00 ± 0.00
COCO 0.61 ± 0.01 0.68 ± 0.01 0.55 ± 0.01 0.57 ± 0.01 0.69 ± 0.05 0.83 ± 0.01
Surfaces 0.44 ± 0.01 0.41 ± 0.01 0.39 ± 0.01 0.46 ± 0.01 0.49 ± 0.06 0.56 ± 0.02
Pascal 0.66 ± 0.01 0.60 ± 0.01 0.59 ± 0.01 0.65 ± 0.01 0.68 ± 0.05 0.82 ± 0.01

Sarcasm 0.66 ± 0.06 0.68 ± 0.05 0.66 ± 0.06 0.74 ± 0.06 0.68 ± 0.07 0.87 ± 0.04
iSarcasm 0.89 ± 0.04 0.72 ± 0.03 0.79 ± 0.03 0.91 ± 0.03 0.79 ± 0.05 0.92 ± 0.03
GoEmot 0.37 ± 0.03 0.31 ± 0.03 0.19 ± 0.03 0.32 ± 0.03 0.25 ± 0.10 0.46 ± 0.03

Figure 5: SuperActivator-based concept detection is most effective when using only a small
fraction of the most highly activated SuperActivators (5–10% of tokens). Shown here are the
numbers of linear separator concepts from LLaMA-Vision-Instruct across datasets that achieve
their strongest F1 scores at each sparsity level N ; comprehensive results appear in Appendix E.

we use LLAMA-3.2-11B-VISION-INSTRUCT, GEMMA-2-9B (Team et al., 2024), and QWEN3-
EMBEDDING-4B (Zhang et al., 2025). Since these models lack an explicit [CLS] token for text
inputs, we approximate a [CLS]-style representation by averaging token embeddings, a strategy
found to be quite effective (Choi et al., 2021; Tang & Yang, 2024; Dosovitskiy et al., 2020; Reimers
& Gurevych, 2019).

Concept Types. We compute concepts at both the input token and [CLS]-level using the methods
detailed in Appendix C.2: (1) mean prototypes (Zou et al., 2023), (2) labeled linear separators (Kim
et al., 2018), (3) k-means (Ghorbani et al., 2019; Dalvi et al., 2022), (4) cluster-based separators
(clusters as pseudo-labels), and (5) Sparse Autoencoders (Bricken et al., 2023). We incorporate the
unsupervised concepts into our evaluation by matching each ground-truth concept with the discov-
ered concept that is most reliable at detecting it. All methods in the following experiments make
use of the same underlying concept vectors; detection strategies differ only in how activations are
aggregated, while localization strategies generate attributions with respect to the same vectors.

4.2 SUPERACTIVATORS ARE RELIABLE INDICATORS OF CONCEPT PRESENCE

We now demonstrate that the SuperActivator tokens serve as more reliable indicators of concept
presence than both concept-vector baselines and prompting methods.

We compare against several baseline aggregation strategies: GCLS, which selects the [CLS] acti-
vation; Gmean, which averages input token activations; Glast, which selects the final input token
activation; and Grand, which selects a random token activation. We also include a prompting base-

6
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(a) Original Image (b) Global Concept ‘Person’ (c) SuperActivators for ‘Person’

Figure 6: SuperActivators produce attribution masks that align more closely with the ground
truth concept region. In (a), the yellow outline denotes the ground truth mask for the concept per-
son. Compared to the Global Concept Objective (b), which yields noisier maps that miss parts of the
person and highlight irrelevant regions, the SuperActivators Objective (c) provides local attribution.
The green boxes in (c) mark the SuperActivators for the concept person, with their average embed-
ding used for the objective. Results are shown for LIME-based attribution on the COCO dataset
using the LLaMA model. Red indicates positive contributions and blue negative contributions.

line, where LLaMA-Vision-Instruct is directly queried about the presence of each concept, bypassing
concept vectors altogether (Wu et al., 2025; Robicheaux et al., 2025; Tillman & Mossing, 2025).

For each concept, the model layer is calibrated on the validation set to maximize F1-score, and final
results are averaged across concepts weighted by the number of test samples. This follows prior
work showing that concepts become more or less distinguishable at different layers (Dorszewski
et al., 2025; Alain & Bengio, 2018; Arps et al., 2022), so we select the best-performing layer per
concept independently for all baselines (except prompting). To make this computationally feasible,
calibration is performed over a fixed grid of layers (see Appendix C.1 for details).

As shown in Table 1, our SuperActivator method consistently outperforms all other detection strate-
gies on linear separator concepts from the LLaMA-Vision-Instruct model. Prompting is typically
the next strongest method, with CLS-token aggregators also showing competitive performance in
certain settings.

Notably, Figure 5 shows that performance typically peaks when using only a very small fraction
of the most activated tokens—2–10% for COCO, OPENSURFACES, and GOEMOTIONS, while IS-
ARCASM peaks at a moderately higher 40%. This pattern highlights that only a sparse subset of
tokens carry the strongest and most reliable concept information; including additional, weaker ac-
tivations introduces noise from overlapping supports with Dout

c , which dilutes performance rather
than improving it. We note one nuance with Sparse Autoencoder concepts, where peak performance
occurs at higher N levels, likely because SAEs already enforce sparsity during training. Detailed
SAE-specific results and discussion are provided in Appendix N.1.

Tuning N enabled us to experimentally validate that the most reliable concept signals lie in the
extreme in-concept tail. Leveraging this insight, we evaluate a more practical detection procedure
that fixes N at the tail in Appendix L. We simply set N = 10%—a sparsity level that performs
well across all concepts generally (see Appendix G)—and retain only the top-activated tokens per
sample for each concept. Using only sample-level labels, we then train a threshold on these selected
activations to separate those from in-concept and out-of-concept samples. This fixed-N detector
nearly matches the performance of the fully tuned SuperActivator method and outperforms all other
baselines across datasets, providing a simple and effective way to leverage the highly informative
tail for concept detection.

We perform several ablations to analyze how SuperActivator-based detection behaves across layers
and sparsity levels. Appendix F shows heatmaps of average detection F1 (weighted across con-
cepts) for each model and dataset as a function of model depth, providing a global view of where
concept signals are strongest. Appendix I summarizes the distribution of best-performing layers
across concepts, revealing how different concepts peak at varying depths. To study sparsity, Ap-
pendix H reports histograms of optimal sparsity levels δ across model layers, while Appendix G
plots F1 as a function of δ at each concept’s best-performing layer, showing how average Super-
Activator detection performance varies with sparsity. Appendix J further analyzes the distribution

7
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Table 2: SuperActivators yield more accurate and faithful attributions than global concept vec-
tors. Accuracy is measured by attribution F1 (alignment with ground-truth masks), while faithful-
ness is measured by insertion scores (↑ is better) and deletion scores (↓ is better). Results are shown
for COCO (images) with CLIP and iSarcasm (text) with Gemma, comparing LinSep–Concept with
SuperActivators. Similar patterns hold across other image datasets (CLEVR, OpenSurfaces, Pascal)
and text datasets (Sarcasm, GoEmotions).

Attribution Method Dataset Attribution F1 (↑ is better) Insertion Score (↑ is better) Deletion Score (↓ is better)

Concept Super
Activators Concept Super

Activators Concept Super
Activators

LIME COCO 0.29±0.02 0.40±0.03 0.333±0.009 0.367±0.008 0.010±0.001 0.007±0.001
(Ribeiro et al., 2016) iSarcasm 0.76±0.02 0.89±0.01 0.383±0.008 0.412±0.009 0.009±0.000 0.005±0.004

SHAP COCO 0.35±0.01 0.37±0.02 0.334±0.004 0.365±0.004 0.010±0.001 0.008±0.002
(Lundberg & Lee, 2017) iSarcasm 0.77±0.03 0.90±0.02 0.384±0.008 0.410±0.003 0.009±0.001 0.006±0.001

RISE COCO 0.35±0.02 0.38±0.03 0.328±0.004 0.354±0.007 0.012±0.002 0.009±0.000
(Petsiuk et al., 2018) iSarcasm 0.81±0.01 0.94±0.03 0.382±0.005 0.409±0.009 0.008±0.001 0.005±0.002

SHAP IQ COCO 0.34±0.01 0.37±0.01 0.330±0.005 0.358±0.008 0.011±0.002 0.009±0.001
(Fel et al., 2023) iSarcasm 0.79±0.02 0.92±0.01 0.379±0.004 0.407±0.004 0.009±0.001 0.006±0.001

IntGrad COCO 0.28±0.00 0.35±0.04 0.326±0.003 0.359±0.005 0.013±0.003 0.010±0.003
(Sundararajan et al., 2017) iSarcasm 0.72±0.02 0.84±0.01 0.375±0.004 0.405±0.009 0.011±0.001 0.008±0.003

GradCAM COCO 0.37±0.01 0.38±0.02 0.329±0.005 0.352±0.004 0.012±0.003 0.010±0.001
(Selvaraju et al., 2017) iSarcasm 0.74±0.02 0.87±0.03 0.377±0.004 0.403±0.008 0.010±0.001 0.007±0.001

FullGrad COCO 0.43±0.01 0.43±0.00 0.331±0.006 0.357±0.010 0.011±0.001 0.009±0.002
(Srinivas & Fleuret, 2019) iSarcasm 0.73±0.03 0.85±0.01 0.376±0.005 0.402±0.010 0.010±0.001 0.007±0.001

CALM COCO 0.42±0.01 0.42±0.01 0.332±0.010 0.360±0.004 0.011±0.002 0.008±0.000
(Mahajan et al., 2021) iSarcasm 0.78±0.01 0.91±0.02 0.380±0.007 0.408±0.004 0.009±0.001 0.006±0.001

MFABA COCO 0.33±0.01 0.39±0.03 0.339±0.005 0.374±0.006 0.006±0.001 0.004±0.001
(Srinivas & Fleuret, 2019) iSarcasm 0.77±0.02 0.90±0.03 0.391±0.002 0.420±0.009 0.006±0.001 0.003±0.001

of SuperActivators within each sample using cumulative distribution functions, showing that only
a small fraction of in-concept tokens tend to be SuperActivators. Finally, Appendix K evaluates
positional dependencies and shows that SuperActivators do not depend on token position.

Across image and text datasets, model architectures, and concept vector types, the same pattern
emerges: the most reliable concept signals reside in the sparse, high-activation tail of Din

c . The Su-
perActivator Mechanism thereby reflects a core principle of how transformers represent semantics.

4.3 SUPERACTIVATORS IMPROVE ATTRIBUTIONS FOR CONCEPTS

Standard concept attribution typically evaluates relevance with respect to a single global concept
vector aggregated over many samples. While this captures broad concept information, it often blurs
local context and introduces spurious correlations. In contrast, SuperActivators provide more con-
sistent concept signals for detection (see Section 4.2), are tied to the specific local context of each
sample, and avoid averaging across disparate occurrences. We hypothesize that using SuperActi-
vators as the attribution objective improves attribution across three metrics: accuracy measuring
average F1 against ground truth, and insertion and deletion score based on the faithfulness metric.

To test this, we compare two attribution objectives: (1) the standard global concept vector and (2) our
proposed method, which averages the embeddings of local SuperActivators within each instance.

We generate attribution maps following the standard procedures described in Appendix M.1, where
attribution scores estimate each token’s effect on changes in a given objective. Conventional concept
attribution methods use the alignment between token embeddings and the global concept vector as
this objective. We introduce one key modification: attribution is computed relative to the mean
embedding of local SuperActivators. Each SuperActivator is defined using the sparsity level δ that
achieves the highest detection F1 score on the validation set. For each concept c, attribution scores
are then binarized into c-positive or c-negative using the threshold that maximizes validation F1. If a
sample contains no SuperActivators associated with concept c, all tokens are assigned as c-negative.

This approach yields attributions more closely aligned with ground-truth segmentation masks than
global concept vectors. Across datasets and attribution methods, local SuperActivators consistently
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improve F1, outperforming the global baseline on both COCO and ISARCASM (Table 2), with simi-
lar gains across four image and three text datasets (Tables 5–11). Figure 6 illustrates this advantage:
SuperActivators for person provide more complete coverage of the target object while avoiding irrel-
evant regions incorrectly highlighted by the global vector. In addition, SuperActivators-based attri-
butions consistently achieve higher insertion and lower deletion scores than global vectors, demon-
strating improved attribution based on the faithfulness metric (Table 2).

These findings persist in the unsupervised setting, where clusters that best detect ground-truth con-
cepts in the detection phase also produce higher attribution F1 when explanations are generated
using SuperActivators, with consistent improvements observed across all datasets (Tables 12–18).

5 RELATED WORK

Concept-Based Interpretability: Concept-based interpretability links model internals with human-
understandable features. Approaches include defining concept vectors as linear separators (e.g.,
TCAV; (Kim et al., 2018)), or as centroid embeddings from labeled examples (Zou et al., 2023). Un-
supervised discovery methods include ACE (Ghorbani et al., 2019), hierarchical clustering (Dalvi
et al., 2022), matrix factorization approaches (Zhang & Zhang, 2017; Fel et al., 2022), and sparse au-
toencoders (Cunningham et al., 2023; Gao et al., 2024a). Across these works, concepts are assumed
to be recoverable as structured vectors, clusters, or basis elements within representation space.

Challenges in Concept Representations: Many open questions remain concerning the structure of
concept representations. The linearity hypothesis posits that concepts correspond to directions in
activation space, linearly separable and recoverable with simple probes (Mikolov et al., 2013; El-
hage et al., 2022). Empirically, however, activations are often entangled, firing on tokens or samples
where the concept is absent or bleeding into related but unintended semantics (Goh et al., 2021; Olah
et al., 2020), polysemantic, where a single neuron or direction encodes multiple features (Bricken
et al., 2023; O’Mahony et al., 2023), and unstable, with concept signals shifting across layers, spa-
tial locations, exemplar sets, and random seeds (Wu et al., 2025; Mahinpei et al., 2021; Nicolson
et al., 2025; Mikriukov et al., 2023). These properties can amplify failure modes such as spurious
correlations (Zhou et al., 2024b) and concept leakage (Parisini et al., 2025), undermining both de-
tection and attribution. In response, some approaches enforce more interpretable or disentangled
concept structures (Chen et al., 2020; Wang et al., 2024). Our work takes a different perspective:
rather than redesigning representations, we identify a sparse and reliable signal that already exists
within otherwise noisy activation distributions.

Concept Detection: Concept detection is a central task in concept-based interpretability (Wu et al.,
2025), with practical importance wherever one needs to determine whether a given concept is present
in a sample—for example, detecting clinical or radiological concepts in medical images and reports
(Rückert et al., 2023; Groza et al., 2024) or identifying undesirable online behavior (Liu et al., 2023;
Nejadgholi et al., 2022). Most approaches instantiate a concept as a vector (e.g., a prototype or
separator) and then score a sample by its alignment to that vector. This can be done using a global
representation—such as the [CLS] token or pooled embeddings—which can be effective but often
dilute sparse, fine-grained signals (Choi et al., 2021; Tang & Yang, 2024). When token or patch
embeddings are available, methods instead compute token-level activations and aggregate them into
a single alignment score; common choices include [CLS]-based scoring (Nejadgholi et al., 2022;
Stein et al., 2024; Yu et al., 2024; Behrendt et al., 2025), mean pooling (McKenzie et al., 2025;
Benou & Riklin-Raviv, 2025; Suresh et al., 2025), max pooling (Tillman & Mossing, 2025; Wu et al.,
2025; Lim et al., 2025; Xie et al., 2025), or last-token scoring (Chen et al., 2025; Tillman & Mossing,
2025; Tang & Yang, 2024). Beyond vector scoring, concept bottleneck models implicitly encode
detection within a supervised concept layer designed for downstream tasks (Koh et al., 2020). More
recently, high-performing vision–language models have enabled zero-shot prompting that bypasses
explicit concept vectors altogether, with strong results from CLIP and newer multimodal LMs (e.g.,
GPT-4o-mini) (Wu et al., 2025; Robicheaux et al., 2025; Tillman & Mossing, 2025).

Feature Attributions for Concepts: Feature attributions for concept tell us where a concept is
located within a sample Santis et al. (2024), which is useful for tasks such as debugging spurious
correlations Wu et al. (2023). Traditional attribution methods such as Integrated Gradients (Sun-
dararajan et al., 2017) and Grad-CAM (Selvaraju et al., 2017), along with concept-based adaptations
(Kim et al., 2018; Santis et al., 2024; Yu et al., 2024; Fel et al., 2022), have been used to connect
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predictions to concepts. Beyond these, various works generate localization maps via direct align-
ment with raw activation scores (Benou & Riklin-Raviv, 2025; Lim et al., 2025; Zhou et al., 2024a;
Lim et al., 2025) and attention values (Gandelsman et al., 2023). Recent work extends CAVs to
concept-level feature attribution, by producing sample-level localization maps (Shukla et al., 2023),
and improving localization stability through cross-layer CAVs (He et al., 2025).

6 DISCUSSION AND FUTURE WORK

In this work, we introduced and characterized the SuperActivator Mechanism, demonstrating that
transformers concentrate reliable concept evidence into a sparse set of highly activated tokens.
Leveraging this property enabled us to cut through the noise of globally aggregated concept vector
activations and uncover more reliable signals of concept presence, which in turn serve as a stronger
basis for concept localization. In the future, investigating how SuperActivators arise during training
may provide deeper insight into how this mechanism emerges. Moreover, applying these principles
in real-world settings for improved concept detection and localization offers the potential to make
model interpretability more actionable in practice.
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A SUPERACTIVATOR VISUAL EXAMPLES

This section presents visual examples of SuperActivators in test samples across multiple image
and text datasets. The heatmaps illustrate the activation score between the token embeddings and
the labeled concept vectors, where red indicates high alignment, blue indicates low alignment, and
a green rectangle indicates SuperActivators. The concepts used in these visualizations are linear
separators trained on LLaMA-3.2-11B-Vision-Instruct embeddings at the model depth that achieved
the highest validation performance, with SuperActivators defined at the sparsity level δ that yielded
the best validation F1 for each concept.

Original Blue Green Red

Cube Cylinder Sphere

Activation Score 

 SuperActivators

Figure 7: CLEVR – Visualization of Concept Activations and SuperActivators

Original Animal Car Bench

Person Motorcycle Chair

Activation Score 

 SuperActivators

Figure 8: COCO – Visualization of Concept Activations and SuperActivators
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Figure 9: OpenSurfaces – Visualization of Concept Activations and SuperActivators
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Figure 10: Pascal – Visualization of Concept Activations and SuperActivators
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Original Text (No Labeled Concept):

Regrettably, my morning coffee spilled all over my fresh white shirt. I was running late for work and in my rush, I
knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

Sarcasm Activations:
Regrettably, my morning coffee spilled all over my fresh white shirt. I was running late for work and in my rush, I
knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

(a) Non-Sarcastic Version

Original Text (Sarcasm highlighted):

It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

Sarcasm Activations:
It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

(b) Sarcastic Version

Figure 11: Sarcasm – Visualization of Concept Activations and SuperActivators (sarcastic and non-
sarcastic version of same sentiment)

Original Text (No Labeled Concept):

the worst way to wake up is when the alarm is too loud. it makes me feel really startled first thing in the morning.
#NeedCoffee

Sarcastic Activations:
the worst way to wake up is when the alarm is too loud. it makes me feel really startled first thing in the morning.
#NeedCoffee

(a) Non-Sarcastic Sample

Original Text (Sarcastic highlighted):

there's no better way to wake up than having one dog jump directly on your stomach and knock the wind out of
you while the other drop a dead rodent on the end of the bed. i really need to start closing the bedroom door at
night. #morningchaos

Sarcastic Activations:
there's no better way to wake up than having one dog jump directly on your stomach and knock the wind out of
you while the other drop a dead rodent on the end of the bed.  i really need to start closing the bedroom door at
night. #morningchaos

(b) Sarcastic Sample

Figure 12: Sarcasm – Visualization of Concept Activations and SuperActivators (non-sarcastic and
sarcastic text samples)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Original Text (Anger highlighted):

WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Anger Activations:
WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Love Activations:
WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Gratitude Activations:
WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Figure 13: Augmented GoEmotions SuperActivator Example

B MOTIVATION FOR SUPERACTIVATOR

In this section, we motivate our focus on the highly-aligned activations in the tail of the in-concept
activation distribution, Din

c . For this initial inquiry, we consider a token separable from the empirical
out-of-concept activation distribution Dout

c if its concept activation is greater than 99% of the out-
of-concept token activations, q0.99(Dout

c ). Then, for each dataset, on the left we plot the percent
of in-concept token activations that are separable from out-of-concept activations (averaged across
concepts) as a function of model depth. On the right, we plot the percentage of in-concept samples
(images, comments, tweets, etc) that contain at least one token that is separable from the out-of-
concept distribution as a function of model depth (again, averaged across concepts). In Figure 14,
we report results across various datasets and models, as well as both average and linear separator
concept vectors.

Generally, as shown in the leftmost plots, the percentage of well-separated in-concept token acti-
vations gradually increases throughout the model. However, the majority of the in-concept token
activations typically do not exceed q0.99(D

out
c ) even at the most distinguishing layers, indicating a

fundamental problem with separability. This problem is particularly severe for the text datasets. For
the image concepts, most of the true-concept images have at least one well-separated token activa-
tion, and this separation generally also increases with model depth. In the text setting, while not
all in-concept samples contain an activated patch, a substantial proportion do—indicating that some
concept signal is present, albeit more diffuse. This likely reflects the specific text datasets used here,
where concepts such as sarcasm and emotion are more subjective and nuanced than the object and
texture annotations in image data. The main takeaway from these results is that across all image and
text datasets, models, and concept types, there appears to be activations in the tail of Din

c that are
well-separated from Din

c and carry signals of concept presence.
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(e) Sarcasm
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(f) iSarcasm
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(g) GoEmotions

Figure 14: Across all image and text datasets, models, and concept types, there appears to be high
magnitude in-concept activations that are well-separated from Din

c and carry signals of concept pres-
ence.
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C EXPERIMENTAL CONFIGURATIONS

C.1 EMBEDDING MODELS

We extract both input patch and [CLS] token embeddings from the CLIP ViT-L/14 (Radford
et al., 2021) and LLAMA-3.2-11B-VISION-INSTRUCT (Meta, 2024). For text, we use LLAMA-
3.2-11B-VISION-INSTRUCT, GEMMA-2-9B (Team et al., 2024), and QWEN3-EMBEDDING-
4B (Zhang et al., 2025). Since these text models lack an explicit [CLS] token for text inputs, we
approximate a [CLS]-style representation by averaging token embeddings (Choi et al., 2021; Tang
& Yang, 2024; Dosovitskiy et al., 2020; Reimers & Gurevych, 2019). For each model, we obtain
embeddings across multiple layers. To ensure comparability, we normalize and mean-center each
layer’s embeddings using statistics computed from the training set.

To make the computation feasible, we evaluate models at a fixed set of default percentage depths
through the network, rather than at every layer. The chosen checkpoints are:

• Vision Models: CLIP: [4, 25, 46, 67, 88, 100]; LLaMA-Vision: [2, 15, 28, 40, 52, 65, 78,
90, 100]

• Text Models: LLaMA-Text: [3, 19, 34, 50, 66, 81, 97, 100]; Gemma: [4, 21, 39, 57, 75,
93, 100]; Qwen: [3, 19, 34, 50, 66, 81, 97, 100]

These default layer subsets balance coverage of early, middle, and late representations while avoid-
ing the prohibitive costs of evaluating every model layer.

C.2 CONCEPT EXTRACTION METHODS

Throughout, let x denote a sample (image or text), and z(x) ∈ Rd its embedding obtained from the
underlying model. For a ground-truth concept c, let X+

c denote the set of samples labeled positive
for c. We use vc ∈ Rd to denote the concept vector associated with c, and vj to denote candidate
concept vectors discovered by an unsupervised method. All concepts are constructed only using
embeddings from the training set.

We extract concepts using supervised methods, unsupervised methods, and a prompting baseline.
Concept representations are computed at both the token level, using embeddings from input tokens,
and the [CLS] level, using embeddings from the [CLS] tokens, which lie in a distinct representational
space optimized for sequence-level summarization.

Supervised Methods:

1. Mean Prototypes (Zou et al., 2023): Each concept vector is defined as the average embed-
ding of all positive examples,

vc =
1

|X+
c |

∑
x∈X+

c

z(x).

2. Linear Separators (LinSep) (Kim et al., 2018): For each concept c, we train a linear
model (without bias) to distinguish positives from negatives. Training balances positive
and negative samples and uses BCEWithLogitsLosswith the Adam optimizer (learning
rate 0.01). We train for up to 100 epochs with a batch size of 32, apply weight decay of
1e−4, and decay the learning rate by a factor of 0.5 every 10 epochs. Early stopping is used
with a patience of 15 epochs and a tolerance of 3, which sets the minimum improvement
required to continue training. The resulting normal vector of the separating hyperplane is
used as the concept vector:

vc = wc.

Unsupervised Methods:

1. K-Means Prototypes (Ghorbani et al., 2019; Dalvi et al., 2022): We cluster embeddings
using FAISS GPU (Johnson et al., 2019) with Euclidean distance, a maximum of 300 it-
erations, and k=1000 for token-level embeddings and k=50 for [CLS] embeddings. The
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choice of k was determined experimentally using an elbow curve. Token-level embed-
dings are finer-grained and therefore benefit from a larger number of clusters. Each cluster
centroid is used as a concept vector:

vj = µj =
1

|Cj |
∑
x∈Cj

z(x).

2. Cluster-Based Separators (K-LinSep): We first assign soft labels to embeddings based
on their K-means cluster membership, then train linear separators with the same procedure
described above to predict whether an embedding belongs to a given cluster. The normal
vectors of these separators are treated as concept directions:

vij = wij .

3. Sparse Autoencoders (SAEs) (Bricken et al., 2023): SAEs learn a sparse reconstruction
z(x) ≈ Wh(x), h(x) ∈ Rm sparse, vj = wj ,

where each column wj of W corresponds to a candidate concept. Because SAE training is
computationally expensive, we use pretrained SAEs; see Appendix N for architectural and
implementation details.

To ensure we can evaluate against unsupervised methods, each ground-truth concept c is matched to
the unsupervised unit vj that achieves the highest validation F1 score for detecting c:

vc = argmax
vj

Fval
1 (c, vj).

Prompt Baseline: As a non-concept vector baseline, we query LLAMA-3.2-11B-VISION-
INSTRUCT directly. For each sample x and concept c, we prompt:

“Is the concept of c present in the following? x”.
Prior works have employed this baseline successfully (Wu et al., 2025; Robicheaux et al., 2025;
Tillman & Mossing, 2025).

C.3 DATASET OVERVIEW

CLEVR (Single-Object) (Johnson et al., 2017): A synthetic dataset of 1,000 images, each contain-
ing a red, green, or blue object with shape sphere, cylinder, or cube. Images and segmentation masks
are generated programmatically, allowing fine-grained control over object properties and patch-level
annotations.

COCO (Lin et al., 2014): We use the 2017 validation set, containing 5,500 images with everyday
scenes involving people, objects, and natural contexts. Each image comes with human-annotated
segmentations, providing dense labels for both object categories and broader supercategories.

Broden–Pascal (Everingham et al., 2010) and Broden–OpenSurfaces (Bell et al., 2013): We use
4,503 samples from Pascal and 3,578 samples from OpenSurfaces. These are subsets of the Broden
dataset (Bau et al., 2020), which unifies multiple segmentation datasets into a single benchmark for
concept-based interpretability research. Pascal primarily contains natural images with segmented
objects from diverse categories such as animals, vehicles, and household items, while OpenSurfaces
emphasizes fine-grained material and surface property annotations (e.g., wood, fabric, metal). These
subsets focus on patch-level segmentation where concepts do not necessarily span the entire image.

Sarcasm (Fully Synthetic): We generate a dataset of 1,446 paragraphs, where roughly half contain
exactly one sarcastic sentence surrounded by neutral sentences.

iSarcasm (Augmented): We adapt 1,734 samples from the original iSarcasm dataset (Oprea &
Magdy, 2020), which provides sarcastic tweets alongside non-sarcastic rewrites conveying the same
meaning (both provided by the original authors). We augment these by embedding sarcastic and non-
sarcastic sentences into short paragraphs of neutral context, with sarcastic spans explicitly marked.

GoEmotions (Augmented): We use 5,427 samples from the GoEmotions dataset (Demszky et al.,
2020), a human-annotated collection of Reddit comments labeled with 27 emotion categories. We
augment selected samples by embedding emotional sentences within surrounding neutral context,
tagging the emotional span while preserving natural paragraph flow.
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C.4 TEXT AUGMENTATION PIPELINES AND PROMPTS

This section describes the augmentation pipelines used for generating and adapting text datasets,
along with the exact prompts. Our goal was to create datasets with localized token-level concept
spans, since most publicly available text datasets only provide unit-level (sentence, tweet, comment,
etc) labels. Generation and augmentation are performed via controlled prompting of GPT-4o (Ope-
nAI, 2024).

C.4.1 SARCASM (FULLY SYNTHETIC)

Pipeline: We generate entirely new paragraphs containing exactly one sarcastic sentence. The sar-
castic sentence is wrapped in <SARCASM> tags, while all other sentences are neutral. This ensures
that each paragraph contains exactly one labeled sarcastic span, with natural context surrounding
it. By constraining sarcastic content to a single line, we obtain a controlled setup where token-level
supervision is precise and unambiguous.

Prompt:

Write 10 short paragraphs (4{8 sentences each). Each paragraph must include
**exactly one sarcastic sentence**, wrapped in <SARCASM> ... </SARCASM> tags.

Guidelines:
- The sarcastic sentence should be subtle, deadpan, or context-dependent.
- All other sentences must be sincere and literal.
- Vary topic, tone, and structure across paragraphs.

Only the sarcastic line may be wrapped in tags.

Return only the 10 numbered paragraphs.

Example: Jane always prided herself on her cooking abilities. <SARCASM>Indeed, the local fire
department must have also appreciated her culinary exploits, given the number of times they’ve had
to rush to her house.</SARCASM> Still, she was not deterred and continued to experiment in the
kitchen, determined to perfect her skills. She understood that learning anything new involved a
process of trial and error.

C.4.2 ISARCASM AUGMENTATION

Dataset Overview: The original iSarcasm dataset contains sarcastic tweets paired with author-
provided sincere rewrites conveying the same meaning. We extend this dataset synthetically by
surrounding the sarcastic tweets with literal, neutral context, ensuring precise span-level supervision.
Only sarcastic samples are selected for augmentation, and for each sarcastic input we generate both
a sarcastic augmented post and a non-sarcastic rewrite.

Augmentation Pipeline: Each sarcastic input is expanded into casual, paragraph-like text using
controlled prompting of GPT-4.0. To introduce variation, random structural features are applied:

• 20% chance of forcing a [Sarcasm][Trigger] structure.

• 15% chance of adding emojis or hashtags.

• Otherwise, a random choice among [Sarcasm][Trigger],
[Trigger][Sarcasm], or [Trigger][Sarcasm][Trigger].

Sarcastic Augmentation Prompt:

You are a data annotation machine. Your only goal is to produce perfectly literal
text that follows the rules. You must not be creative or clever. You must not
generate any figurative language outside of the provided tags.
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Your Task:
You will be given a sarcastic tweet and its true meaning. Rewrite the tweet by
embedding it within a strictly literal train of thought that matches the original’s
casual tone.

Structure: [Randomly choose or force specific structure]
[Optional emoji/hashtag instruction if selected]

Constraints Checklist:
- The tone is casual and informal.
- The added text is not redundant.
- Outside <SARCASM> tags is strictly literal and descriptive.
- The original sarcastic tweet is fully preserved within <SARCASM> tags.
- Output contains ONLY the final post.

Input Sarcastic Tweet: "{sarcastic_tweet}"
Sincere Meaning (for your context): "{rephrased_text}"

Your Output:

Non-Sarcastic Augmentation Prompt.

You are a data annotation machine. Your only goal is to produce perfectly literal
text that follows the rules. You must not be creative or clever. You must not
invent new details.

Your Task:
Take a sincere idea and expand it slightly into a personal, casual post,
remaining 100% faithful to the original meaning.

[Optional emoji/hashtag instruction if selected]

Constraints Checklist:
- The tone is casual and informal.
- The entire post is strictly literal and descriptive.
- No sarcasm, irony, overstatement, or rhetorical questions.
- The post must be 100% faithful to the meaning of the original idea.
- Output contains ONLY the final post.

Input Sincere Idea: "{rephrased_text}"

Your Output:

Verification Process: Outputs are verified via flexible matching with progressively lenient checks:
exact matching (case-insensitive), whitespace normalization, URL/punctuation removal, and word-
overlap thresholds. If all attempts fail, the original tweet is wrapped in <SARCASM> tags as a
fallback.

Example:

Input sarcastic tweet: “The only thing I got from college is a caffeine addiction.”
Input sincere rephrase: “College is really difficult, expensive, tiring, and I often
question if a degree is worth the stress.”

Sarcastic augmentation: “I just checked my calendar and saw how many
assignments are due this week. ¡SARCASM¿the only thing i got from college is
a caffeine addiction¡/SARCASM¿”
Non-sarcastic rewrite: “college is really difficult. it’s also expensive and tiring.
sometimes i find myself questioning if getting a degree is worth all the stress.”
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C.4.3 GOEMOTIONS AUGMENTATION

Dataset Overview: GoEmotions is a large-scale dataset of Reddit comments labeled with up to 27
fine-grained emotions. We extend it synthetically by surrounding the original emotional comment
with strictly neutral filler context, ensuring the emotional span remains localized and clearly marked
with <EMOTION> tags.

Augmentation Pipeline: Every comment in GoEmotions is augmented without filtering, follow-
ing a two-step process:

1. Step 1: Generation. A “Neutral Filler Machine” prompt is used to generate five diverse
neutral-context options embedding the original emotional comment.

2. Step 2: Selection. A “Grader” prompt evaluates the five drafts and selects the best single
option according to neutrality and naturalness.

To increase variation, a random structure is sampled per comment:

• 50% chance: [Emotion][Context]

• 25% chance: [Context][Emotion]

• 25% chance: [Context][Emotion][Context]

Step 1 — Neutral Filler Prompt:

You are a Neutral Filler Machine. Your task is to generate neutral,
non-emotional text to surround a given Reddit comment.

Task:
- Preserve the original emotional comment exactly inside <EMOTION> tags.
- Generate five unique and diverse neutral contexts that flow naturally.
- All options must follow the required structure.

Constraints:
- Text outside <EMOTION> must be strictly neutral (no emotion leakage).
- Sound natural and casual like a Reddit post.
- No redundancy with the emotional comment.

Input Emotional Comment: "{emotional_comment}"
Primary Emotion(s): "{emotion_labels_str}"
Required Structure: "{structure_choice}"

Your Output: Five options, each in the correct structure.

Step 2 — Selection Prompt.

You are a data annotation quality assurance specialist.
Your task is to select the best draft among five options.

Checklist:
- Context must be strictly neutral (no emotions).
- Flow naturally as a Reddit comment.
- No contradiction or redundancy.
- Only output the single best final option.

Draft Options:
{draft_options}

Your Final, Best Output:
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Verification Process: The augmented comments are verified using flexible string matching to en-
sure that the original text is preserved inside <EMOTION> tags. We allow up to five retry attempts
with progressively lenient checks. If all attempts fail, the fallback is to wrap the original comment
directly in <EMOTION> tags.

Example:

Original emotional comment (gratitude): “I didn’t know that, thank you for
teaching me something today!”
Augmented output: “A comment explained the process behind recycling plastics
and how it affects the environment. ¡EMOTION¿I didn’t know that, thank you for
teaching me something today!¡/EMOTION¿”

C.5 CONCEPTS USED IN EXPERIMENTS

For the MS-COCO, GoEmotions, and Broden datasets, we filter concepts using minimum sample
thresholds (100–300 samples, depending on the dataset) to ensure sufficient data for reliable concept
construction, though future work could examine SuperActivators in underfit settings. The semantics
concepts used in our experiments is listed here:

• CLEVR: blue, green, red, cube, cylinder, sphere

• COCO: accessory, animal, appliance, bench, book, bottle, bowl, bus, car, chair, couch,
cup, dining table, electronic, food, furniture, indoor, kitchen, motorcycle, outdoor, person,
pizza, potted plant, sports, train, truck, tv, umbrella, vehicle

• Broden–OpenSurfaces: brick, cardboard, carpet, ceramic, concrete, fabric, food, fur,
glass, granite, hair, laminate, leather, metal, mirror, painted, paper, plastic-clear, plastic-
opaque, rock, rubber, skin, tile, wallpaper, wicker, wood

• Broden–Pascal: airplane, bicycle, bird, boat, body, book, building, bus, cap, car, cat, cup,
dog, door, ear, engine, grass, hair, horse, leg, mirror, motorbike, mountain, painting, person,
pottedplant, saddle, screen, sky, sofa, table, track, train, tvmonitor, wheel, wood, arm, bag,
beak, bottle, box, cabinet, ceiling, chain wheel, chair, coach, curtain, eye, eyebrow, fabric,
fence, floor, foot, ground, hand, handle bar, head, headlight, light, mouth, muzzle, neck,
nose, paw, plant, plate, plaything, pole, pot, road, rock, rope, shelves, sidewalk, signboard,
stern, tail, torso, tree, wall, water, windowpane, wing

• Sarcasm: sarcasm.

• iSarcasm: sarcastic.

• GoEmotions: confusion, joy, sadness, anger, love, caring, optimism, amusement, curios-
ity, disapproval, approval, annoyance, gratitude, admiration

D CONCEPT FORMALISMS IN MORE DETAIL

We provide a detailed formalization of concept detection and activation aggregation strategies. We
limit our analysis to transformer models given their demonstrated effectiveness across modalities.

Model Representations. Let f be a trained transformer model that processes an input x ∈ X
(an image or a text sequence) into a set of hidden representations. At a given layer ℓ, we extract
token-level embeddings

fℓ(x) = { ztok
1 (x), . . . , ztok

n(x)(x), z
cls(x) }, ztok

i (x), zcls(x) ∈ Rd.

Here ztok
i (x) denotes the representation of the i-th token (or image patch), and zcls(x) denotes the

[CLS]-style representation summarizing the full input.
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Concept Vectors and Activation Scores. For any semantic concept c, we define a concept vector
vc ∈ Rd, extracted via one of the techniques in Appendix C.2. Intuitively, vc represents a direction
in embedding space along which the concept c is encoded. The activation score of an embedding z
with respect to concept c is defined as

sc(z) = ⟨z, vc⟩.

If vc is derived as a cluster centroid, this corresponds to cosine similarity (for normalized embed-
dings). If vc is derived from a linear separator, it corresponds to the signed distance from the sepa-
rating hyperplane. Interpretively, sc(z) measures the alignment of z with concept c: large positive
values indicate that z strongly encodes features associated with c, while negative values suggest
opposition or absence.

We are further interested in characterizing these activation scores globally across many samples. For
each concept c, we define the in-concept distribution Din

c as the collection of activation scores from
tokens labeled concept-positive for c, and the out-of-concept distribution Dout

c as those from tokens
labeled concept-negative. Formally, let Z denote the set of tokens across samples and Sc = { sc(z) :
z ∈ Z } the corresponding collection of activation scores. If Z in

c ⊆ Z are the tokens containing c
and Zout

c = Z \ Z in
c , then

Din
c = { sc(z) : z ∈ Z in

c }, Dout
c = { sc(z) : z ∈ Zout

c }.

Note that Zout
c excludes all tokens from samples containing c, even those not labeled with the con-

cept, in order to prevent self-attention from leaking concept information into the out-of-concept
distribution.

The support of a distribution is the set of values where it assigns nonzero probability, and the tail
refers to its extreme regions with small probability mass. To quantify how much Din

c and Dout
c

overlap, we use the overlap coefficient (OVL), defined as the shared probability mass between the
two distributions:

OVL(Din
c , D

out
c ) =

∫ ∞

−∞
min

(
pin(s), pout(s)

)
ds,

where pin and pout are their densities. Large values of OVL indicate that most in-concept activations
lie within the overlapping support supp(Din

c )∩supp(Dout
c ) and are thus statistically indistinguishable

from out-of-concept activations, whereas small values arise when only the high-activation tail of Din
c

extends beyond Dout
c , yielding clearer separation.

Concept Detection. The goal of concept detection is to determine whether a sample x contains
a concept c (Wu et al., 2025). Transformer models produce a collection of activation scores at the
token level, but for detection we require a single score per sample. This necessitates an aggregation
operator that interprets the set of token-level activations as a sample-level score.

Let Sc(x) = {sc,1(x), . . . , sc,n(x)(x), sc,cls(x)} denote the set of activation scores for concept c on
input x, where sc,i(x) is the score for the i-th token and sc,cls(x) is the score for the [CLS] token.
An aggregation operator is any function

G : Rn(x)+1 → R, sagg
c (x) = G(Sc(x)).

Given a calibrated threshold τc, detection is performed by

ŷc(x) = 1[ sagg
c (x) ≥ τc ] .

Because prior work has shown that different concepts may emerge at different layers of a trans-
former (Saglam et al., 2025; Yu et al., 2024; Dalvi et al., 2022), we calibrate the layer separately for
each concept to avoid enforcing a strict shared choice. This calibration is also performed indepen-
dently for each aggregation strategy, ensuring that no operator is unfairly advantaged or disadvan-
taged due to layer-specific biases.

Standard Aggregation Strategies. Prior work has considered several choices of G, each operat-
ing on the same token-level activations (with the exception of [CLS], which uses separately trained
concept vectors since sample-level and input token-level representations occupy different spaces):
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• [CLS]-only (Gcls):
Gcls(Sc(x)) = sc,cls(x).

Uses only the [CLS] token score. Since CLS tokens are trained to attend to all inputs, they
are natural candidates for summarizing sample-level concepts, and this strategy has been
widely adopted (Nejadgholi et al., 2022; Yu et al., 2024; Behrendt et al., 2025).

• Mean pooling (Gmean):

Gmean(Sc(x)) =
1

n(x)

n(x)∑
i=1

sc,i(x).

Averages over all tokens. This ensures that no part of the input is ignored and can capture
distributed concept signals, a technique used in multiple studies (Benou & Riklin-Raviv,
2025; Suresh et al., 2025; Siddique et al., 2025).

• Max pooling (Gmax):
Gmax(Sc(x)) = max{sc,1(x), . . . , sc,n(x)(x), sc,cls(x)}.

Takes the strongest activation across input tokens. This is effective for isolating the most
distinct concept signals (Tillman & Mossing, 2025; Wu et al., 2025; Lim et al., 2025; Xie
et al., 2025).

• Last token (Glast):
Glast(Sc(x)) = sc,n(x)(x).

Uses the last input token activation. For autoregressive models, the final token often
encodes sequence-level information, making it a plausible summary for concept detec-
tion (Chen et al., 2025; Tillman & Mossing, 2025; Tang & Yang, 2024).

• Random token (Grand):
Grand(Sc(x)) = sc,j(x), j ∼ Unif{1, . . . , n(x)}.

Selects an input token activation uniformly at random. While a weak baseline, self-
attention mechanisms distribute information broadly, so even a randomly chosen token
may retain meaningful concept cues.

These operators differ only in how they interpret activations; they do not alter how concept vectors
are trained. Thresholds τc are determined using a validation set (e.g., from a fixed grid of per-
centiles), and detection at test time is performed by applying the same G to the sample activations
and comparing against τc.

SuperActivator Aggregation. We develop an aggregation strategy that takes advantage of the
SuperActivators mechanism we identified, using the highest-activation tokens in the global true-
concept distribution as the basis for concept detection.

Formally, let
S+

val,c =
{
sc,i(x)

∣∣ x ∈ X+
val,c, i ∈ {1, . . . , n(x)}

}
be the set of all token-level activations for c from validation samples where c is present. For a chosen
percentile N (selected from a fixed grid), we define the SuperActivator threshold as

τ super
c = Q1−N

(
S+

val,c

)
,

so that only the top N% of in-concept activations exceed τ super
c . Unlike traditional max pooling

approaches, which calibrate thresholds based on the single maximum activation per sample, our
approach looks at the highest activations generally in the in-concept distribution, allowing us to
consider multiple high-fidelity token activations per sample where calibrating.

At test time, we aggregate using a max operator,
Gsuper(Sc(x)) = maxSc(x),

and predict presence if this maximum exceeds the calibrated SuperActivator threshold:
ŷsuper
c (x) = 1[Gsuper(Sc(x)) ≥ τ super

c ] .

N is calibrated per concept on the validation set to maximize detection F1. Beyond providing thresh-
olds for reporting overall detection scores, this calibration also allows us to analyze how varying the
sparsity level of the SuperActivators mechanism impacts performance.
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E COMPREHENSIVE DETECTION RESULTS

The following tables show the average F1 detection scores (weighted across concepts) for all mod-
els, sample type (SuperActivators vs CLS), and concept extracton method (mean prototype, linear
separator, K-Means, linear separator on K-Means clusters) across datasets. Table 3 provides random
and constant-predictor detection performances for all dataset–model combinations for reference. In
each table, the top-performing concept detection method for each dataset is in bold and the second
best-performing is underlined.

On the image datasets (i.e., CLEVR, MS-Coco, OpenSurfaces, and Pascal), our SuperActivator
method consistently outperforms all other concept detection methods, except for a couple instances
in the very simple CLEVR dataset, where prompting achieves the highest performance by a small
margin. Though sometimes the CLS-based achieves near-equivalent performance, zero-shot prompt-
ing is most consistently the next best detection method. For the text datasets, (i.e., Sarcasm, Aug-
mented iSarcasm, and Augmented GoEmotions), our SuperActivator also achieves consistently high
detection performance across configurations. However, particularly for the Augmented iSarcasm
dataset, CLS-based methods are able to outperform our SuperActivator, though usually by a very
small amount that falls within the margin of error.

Overall, these results confirm that across image and text modalities, model families, and concept
types, SuperActivator tokens provide a highly reliable signal of concept presence.

Table 3: Baseline concept detection F1 scores: Constant Positive and Random Predictors.
Dataset Model Concept Detection Baselines

Constant Positive Random

CLEVR Llama 0.502 ± 0.077 0.414 ± 0.102
CLIP 0.502 ± 0.077 0.397 ± 0.101

COCO CLIP 0.317 ± 0.029 0.262 ± 0.039
Llama 0.316 ± 0.036 0.262 ± 0.048

OpenSurfaces Llama 0.341 ± 0.035 0.282 ± 0.046
CLIP 0.341 ± 0.035 0.285 ± 0.045

Pascal Llama 0.380 ± 0.032 0.310 ± 0.041
CLIP 0.380 ± 0.032 0.308 ± 0.041

Sarcasm
Llama 0.658 ± 0.052 0.519 ± 0.070
Gemma 0.658 ± 0.052 0.514 ± 0.072
Qwen 0.658 ± 0.052 0.496 ± 0.071

iSarcasm
Llama 0.676 ± 0.044 0.507 ± 0.062
Gemma 0.676 ± 0.044 0.487 ± 0.062
Qwen 0.676 ± 0.044 0.515 ± 0.062

GoEmotions
Gemma 0.102 ± 0.024 0.104 ± 0.035
Llama 0.102 ± 0.024 0.095 ± 0.034
Qwen 0.102 ± 0.024 0.098 ± 0.034
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Concept detection F1 for the CLEVR dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.526 ± 0.028 0.542 ± 0.027 0.684 ± 0.020 0.957 ± 0.017 0.987 ± 0.009 0.986 ± 0.009
Linsep 0.745 ± 0.009 0.706 ± 0.008 0.840 ± 0.009 0.963 ± 0.015 0.987 ± 0.009 0.991 ± 0.007
K-Means 0.727 ± 0.013 0.878 ± 0.016 0.976 ± 0.013 0.959 ± 0.016 0.987 ± 0.009 0.991 ± 0.007
K-Linsep 0.737 ± 0.017 0.848 ± 0.017 0.907 ± 0.019 0.965 ± 0.015 0.987 ± 0.009 0.950 ± 0.015

Llama

Avg 0.645 ± 0.018 0.591 ± 0.019 0.660 ± 0.018 0.955 ± 0.017 0.987 ± 0.009 0.998 ± 0.003
Linsep 0.967 ± 0.090 0.879 ± 0.004 0.920 ± 0.004 0.961 ± 0.015 0.987 ± 0.009 0.997 ± 0.004
K-Means 0.775 ± 0.089 0.946 ± 0.090 0.955 ± 0.013 0.928 ± 0.021 0.987 ± 0.009 0.959 ± 0.013
K-Linsep 0.717 ± 0.024 0.910 ± 0.016 0.910 ± 0.015 0.962 ± 0.015 0.987 ± 0.009 0.989 ± 0.008

Concept detection F1 for the COCO dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.575 ± 0.012 0.503 ± 0.012 0.494 ± 0.013 0.685 ± 0.012 0.686 ± 0.050 0.721 ± 0.012
Linsep 0.606 ± 0.011 0.687 ± 0.011 0.592 ± 0.011 0.702 ± 0.011 0.686 ± 0.050 0.787 ± 0.011
K-Means 0.525 ± 0.013 0.517 ± 0.013 0.337 ± 0.012 0.583 ± 0.012 0.686 ± 0.050 0.694 ± 0.012
K-Linsep 0.486 ± 0.012 0.523 ± 0.012 0.333 ± 0.011 0.571 ± 0.013 0.686 ± 0.050 0.696 ± 0.012

Llama

Avg 0.485 ± 0.011 0.457 ± 0.012 0.378 ± 0.012 0.534 ± 0.013 0.686 ± 0.050 0.746 ± 0.012
Linsep 0.606 ± 0.011 0.680 ± 0.011 0.551 ± 0.011 0.566 ± 0.013 0.686 ± 0.050 0.829 ± 0.010
K-Means 0.510 ± 0.012 0.491 ± 0.012 0.373 ± 0.011 0.447 ± 0.013 0.686 ± 0.050 0.747 ± 0.011
K-Linsep 0.493 ± 0.011 0.477 ± 0.012 0.363 ± 0.011 0.430 ± 0.013 0.686 ± 0.050 0.716 ± 0.011

Concept detection F1 for the OpenSurfaces dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.438 ± 0.014 0.419 ± 0.013 0.403 ± 0.014 0.484 ± 0.014 0.491 ± 0.063 0.538 ± 0.014
Linsep 0.470 ± 0.014 0.470 ± 0.014 0.427 ± 0.014 0.492 ± 0.014 0.491 ± 0.063 0.551 ± 0.014
K-Means 0.443 ± 0.015 0.441 ± 0.015 0.373 ± 0.013 0.444 ± 0.010 0.491 ± 0.063 0.544 ± 0.014
K-Linsep 0.432 ± 0.013 0.454 ± 0.012 0.365 ± 0.011 0.443 ± 0.009 0.491 ± 0.063 0.543 ± 0.012

Llama

Avg 0.404 ± 0.012 0.375 ± 0.012 0.361 ± 0.012 0.446 ± 0.014 0.491 ± 0.063 0.534 ± 0.014
Linsep 0.438 ± 0.014 0.410 ± 0.014 0.390 ± 0.014 0.456 ± 0.013 0.491 ± 0.063 0.558 ± 0.015
K-Means 0.443 ± 0.010 0.431 ± 0.011 0.360 ± 0.010 0.423 ± 0.005 0.491 ± 0.063 0.545 ± 0.009
K-Linsep 0.439 ± 0.010 0.416 ± 0.011 0.360 ± 0.010 0.409 ± 0.011 0.491 ± 0.063 0.545 ± 0.008

Concept detection F1 for the Pascal dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.612 ± 0.006 0.546 ± 0.006 0.594 ± 0.006 0.721 ± 0.006 0.680 ± 0.048 0.788 ± 0.006
Linsep 0.723 ± 0.005 0.674 ± 0.005 0.678 ± 0.005 0.740 ± 0.006 0.680 ± 0.048 0.826 ± 0.005
K-Means 0.533 ± 0.005 0.623 ± 0.002 0.490 ± 0.005 0.652 ± 0.003 0.680 ± 0.048 0.770 ± 0.001
K-Linsep 0.574 ± 0.005 0.577 ± 0.004 0.466 ± 0.005 0.633 ± 0.004 0.680 ± 0.048 0.756 ± 0.002

Llama

Avg 0.536 ± 0.006 0.510 ± 0.006 0.502 ± 0.006 0.619 ± 0.007 0.680 ± 0.048 0.786 ± 0.006
Linsep 0.659 ± 0.006 0.602 ± 0.006 0.590 ± 0.006 0.645 ± 0.006 0.680 ± 0.048 0.822 ± 0.005
K-Means 0.507 ± 0.006 0.601 ± 0.006 0.481 ± 0.006 0.568 ± 0.007 0.680 ± 0.048 0.792 ± 0.005
K-Linsep 0.499 ± 0.006 0.550 ± 0.006 0.443 ± 0.006 0.558 ± 0.007 0.680 ± 0.048 0.784 ± 0.006
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Concept detection F1 for the Sarcasm dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

Llama

Avg 0.659 ± 0.052 0.706 ± 0.051 0.659 ± 0.052 0.694 ± 0.060 0.679 ± 0.074 0.818 ± 0.051
Linsep 0.659 ± 0.060 0.683 ± 0.048 0.659 ± 0.060 0.737 ± 0.055 0.679 ± 0.074 0.870 ± 0.039
K-Means 0.659 ± 0.061 0.659 ± 0.061 0.659 ± 0.061 0.665 ± 0.053 0.679 ± 0.074 0.818 ± 0.049
K-Linsep 0.659 ± 0.054 0.670 ± 0.050 0.659 ± 0.052 0.658 ± 0.053 0.679 ± 0.074 0.826 ± 0.048

Qwen

Avg 0.662 ± 0.055 0.659 ± 0.066 0.659 ± 0.066 0.687 ± 0.055 0.679 ± 0.074 0.679 ± 0.060
Linsep 0.659 ± 0.055 0.662 ± 0.051 0.659 ± 0.055 0.750 ± 0.054 0.679 ± 0.074 0.857 ± 0.046
K-Means 0.659 ± 0.054 0.659 ± 0.054 0.659 ± 0.054 0.640 ± 0.059 0.679 ± 0.074 0.717 ± 0.062
K-Linsep 0.659 ± 0.054 0.716 ± 0.057 0.659 ± 0.054 0.675 ± 0.053 0.679 ± 0.074 0.769 ± 0.057

Gemma

Avg 0.659 ± 0.058 0.659 ± 0.058 0.659 ± 0.058 0.665 ± 0.059 0.679 ± 0.074 0.727 ± 0.056
Linsep 0.659 ± 0.059 0.668 ± 0.051 0.670 ± 0.051 0.686 ± 0.057 0.679 ± 0.074 0.810 ± 0.051
K-Means 0.659 ± 0.053 0.659 ± 0.053 0.659 ± 0.053 0.658 ± 0.053 0.679 ± 0.074 0.659 ± 0.052
K-Linsep 0.659 ± 0.054 0.682 ± 0.054 0.659 ± 0.054 0.670 ± 0.053 0.679 ± 0.074 0.659 ± 0.052

Concept detection F1 for the Augmented iSarcasm dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

Llama

Avg 0.677 ± 0.043 0.676 ± 0.043 0.676 ± 0.043 0.867 ± 0.038 0.789 ± 0.047 0.818 ± 0.043
Linsep 0.885 ± 0.035 0.717 ± 0.029 0.791 ± 0.029 0.912 ± 0.031 0.789 ± 0.047 0.924 ± 0.029
K-Means 0.737 ± 0.048 0.677 ± 0.055 0.677 ± 0.055 0.809 ± 0.041 0.789 ± 0.047 0.787 ± 0.044
K-Linsep 0.811 ± 0.038 0.828 ± 0.040 0.708 ± 0.045 0.802 ± 0.041 0.789 ± 0.047 0.866 ± 0.038

Qwen

Avg 0.676 ± 0.041 0.679 ± 0.041 0.678 ± 0.041 0.890 ± 0.034 0.789 ± 0.047 0.757 ± 0.041
Linsep 0.814 ± 0.041 0.711 ± 0.038 0.739 ± 0.041 0.917 ± 0.030 0.789 ± 0.047 0.895 ± 0.034
K-Means 0.676 ± 0.076 0.676 ± 0.076 0.676 ± 0.076 0.856 ± 0.038 0.789 ± 0.047 0.788 ± 0.046
K-Linsep 0.749 ± 0.044 0.676 ± 0.043 0.676 ± 0.043 0.878 ± 0.036 0.789 ± 0.047 0.832 ± 0.042

Gemma

Avg 0.735 ± 0.045 0.686 ± 0.039 0.702 ± 0.045 0.899 ± 0.032 0.789 ± 0.047 0.839 ± 0.038
Linsep 0.853 ± 0.031 0.789 ± 0.035 0.789 ± 0.035 0.904 ± 0.033 0.789 ± 0.047 0.892 ± 0.034
K-Means 0.676 ± 0.073 0.676 ± 0.073 0.676 ± 0.044 0.827 ± 0.040 0.789 ± 0.047 0.810 ± 0.045
K-Linsep 0.676 ± 0.043 0.679 ± 0.046 0.754 ± 0.043 0.864 ± 0.038 0.789 ± 0.047 0.825 ± 0.044

Concept detection F1 for the Augmented GoEmotions dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

Llama

Avg 0.293 ± 0.027 0.216 ± 0.027 0.216 ± 0.026 0.277 ± 0.028 0.252 ± 0.100 0.383 ± 0.028
Linsep 0.372 ± 0.028 0.307 ± 0.027 0.193 ± 0.029 0.320 ± 0.029 0.252 ± 0.100 0.459 ± 0.029
K-Means 0.305 ± 0.028 0.281 ± 0.029 0.117 ± 0.028 0.192 ± 0.022 0.252 ± 0.100 0.417 ± 0.028
K-Linsep 0.426 ± 0.027 0.365 ± 0.027 0.327 ± 0.028 0.213 ± 0.022 0.252 ± 0.100 0.448 ± 0.028

Qwen

Avg 0.277 ± 0.026 0.214 ± 0.026 0.151 ± 0.026 0.347 ± 0.028 0.252 ± 0.100 0.431 ± 0.027
Linsep 0.305 ± 0.028 0.248 ± 0.025 0.199 ± 0.026 0.357 ± 0.028 0.252 ± 0.100 0.458 ± 0.027
K-Means 0.341 ± 0.028 0.284 ± 0.027 0.111 ± 0.026 0.192 ± 0.021 0.252 ± 0.100 0.451 ± 0.027
K-Linsep 0.390 ± 0.026 0.373 ± 0.027 0.365 ± 0.026 0.191 ± 0.022 0.252 ± 0.100 0.453 ± 0.028

Gemma

Avg 0.336 ± 0.024 0.313 ± 0.023 0.151 ± 0.022 0.366 ± 0.029 0.252 ± 0.100 0.394 ± 0.026
Linsep 0.352 ± 0.026 0.301 ± 0.026 0.190 ± 0.027 0.361 ± 0.029 0.252 ± 0.100 0.420 ± 0.028
K-Means 0.294 ± 0.028 0.213 ± 0.025 0.132 ± 0.025 0.218 ± 0.020 0.252 ± 0.100 0.422 ± 0.026
K-Linsep 0.339 ± 0.028 0.315 ± 0.024 0.360 ± 0.025 0.205 ± 0.019 0.252 ± 0.100 0.414 ± 0.028
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F ABLATION: HOW DOES CONCEPT DETECTION PERFORMANCE VARY WITH
DEPTH?

In this section, we investigate how average concept detection performance evolves throughout model
depth. Figures 15 and 16 visualize heatmaps of the average detection F1 scores as a function of
transformer layer depth for image and text datasets, respectively. Each heatmap reports the mean
F1 score across all datasets for each model, concept type, and detection scheme, computed over a
grid of model depths. These heatmaps help illustrate how concept signals emerge and strengthen at
different stages within the network.

In the vision domain, detection performance generally increases with depth, plateauing around the
middle layers and declining slightly at the final layer. This behavior aligns with findings from prior
work (Saglam et al., 2025; Yu et al., 2024; Dalvi et al., 2022), which report that mid-level and
late-level layers often capture the richest and most separable semantic information. A similar trend
can be observed in text-based models, though with greater variability across datasets and concept
types. These results highlight that the most reliable concept signals tend to emerge most clearly
past intermediate layers, and that SuperActivator-based detection consistently distinguishes concept
presence better than baselines.
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Figure 15: SuperActivator detection across image datasets.
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Figure 16: SuperActivator detection across text datasets.
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G ABLATION: HOW DOES SPARSITY AFFECT AVERAGE SUPERACTIVATOR
DETECTION PERFORMANCE?

In this section, we evaluate SuperActivator-based concept detection performance across vary-
ing sparsity levels. The sparsity level N corresponds to the N in the SuperActivator defini-
tion—thresholds are calibrated using the top N percent of in-concept token activations. Reported F1

values represent the average of the per-concept detection F1, each computed using the correspond-
ing N , weighted by concept frequency and evaluated at each concept’s best-performing layer on the
validation set.

Across all model–dataset combinations, we observe that concepts generally achieve their strongest
detection performance at low sparsity levels. This supports our broader finding that concept signals
are highly concentrated: incorporating additional tokens beyond this sparse subset tends to degrade
detection performance.
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Figure 17: Image Domain – Detection F1 over Sparsity Level δ
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Figure 18: Text Domain – Detection F1 over Sparsity Level δ
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H ABLATION: HOW DOES OPTIMAL SPARSITY FOR SUPERACTIVATOR
DETECTION VARY ACROSS MODEL LAYERS?

Next, we analyze how the optimal sparsity levels, Ns, for SuperActivator-based concept detection
varies across layers in the model. Figures ?? and ?? visualize these results across layers for each
model: at every layer, we report the frequency of concepts whose optimal detection occurs at each
sparsity level N , with different colors demarcating the datasets the concepts came from.

Early in the model, the best concept detection via SuperActivators occurs at extremely high sparsity
levels (N ≈ 0.02–0.05) for most concepts. However, as shown in Appendix F, these early-layer
activations are not yet reliable indicators of concept presence. As we move deeper through the
transformer, the best-performing SuperActivators tend to occur at higher N , meaning that more
tokens contribute to concept detection. Even so, the activations remain far from dense, typically
involving fewer than half of the true in-concept tokens. Our main takeaway is that the concept
signals are expressed most reliably by a small set of activations, no matter the depth that the concepts
were extracted from.

Figure 19: Image Domain – Optimal Sparsity over Layers
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Figure 20: Text Domain – Optimal Sparsity over Layers
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I ABLATION: WHICH MODEL LAYERS YIELD THE MOST SEPARABLE
CONCEPTS?

In this section, we seek to identify where in the model concepts are most separable, that is, at which
layers concept vectors achieve their highest detection performance. For each dataset, we plot the
frequency of concept vectors that achieve their best F1 detection scores at each model layer. These
trends are shown for the SuperActivator detection scheme as well as for [CLS]-, mean-, and last-
token–based detection methods. All results in this analysis use linear separator concept vectors
derived from the LLaMA-3.2-11B-Vision-Instruct model.

For image datasets with primarily high-level object concepts, such as COCO and Pascal, the best-
performing concept vectors tend to appear in later layers. A similar but less pronounced pattern
is observed in OpenSurfaces, which contains both high-level objects and lower-level texture con-
cepts. In contrast, CLEVR—whose concepts include lower-level properties like color and slightly
higher-level ones like shape—shows strong detection performance from both early and late layers,
suggesting that different types of concepts emerge at different depths. For the text datasets Sarcasm,
iSarcasm, and GoEmotions, a comparable pattern arises: the best-detecting concept vectors most
often originate from later layers, though earlier layers also capture meaningful signals for certain
concepts.
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Figure 21: What Layers in Model Concepts are Best Detected in CLEVR via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models using
average and linear separator concepts.

2% 4% 15% 25% 28% 40% 46% 52% 65% 67% 78% 88% 90% 100%
% Through Model

0
15
30
45
60
75
90

105

#
 o

f C
on

ce
pt

s

SuperTok
CLS
MeanTok
LastTok

Figure 22: What Layers in Model Concepts are Best Detected in Coco via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models using
average and linear separator concepts.
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Figure 23: What Layers in Model Concepts are Best Detected in OpenSurfaces via SuperActivator,
CLS, Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models
using average and linear separator concepts.
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Figure 24: What Layers in Model Concepts are Best Detected in Pascal via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models using
average and linear separator concepts.
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Figure 25: What Layers in Model Concepts are Best Detected in Sarcasm via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from Llama-Vision-Instruct, Qwen, and Gemma models
using average and linear separator concepts.
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Figure 26: What Layers in Model Concepts are Best Detected in iSarcasm via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from Llama-Vision-Instruct, Qwen, and Gemma models
using average and linear separator concepts.
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Figure 27: What Layers in Model Concepts are Best Detected in GoEmotions via SuperActivator,
CLS, Mean, and Last tokens. Concepts extracted from Llama-Vision-Instruct, Qwen, and Gemma
models using average and linear separator concepts.
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J ABLATION: HOW MANY SUPERACTIVATORS DO MOST SAMPLES HAVE?

Figure 28 shows cumulative distribution functions for the LLaMA-3.2-11B-Vision-Instruct linear-
separator concepts, using each concept’s validation-selected model layer and optimal sparsity level
δ on the test set. For each in-concept sample, we plot the ratio of SuperActivators in the sample
to the number of in-concept tokens, which normalizes for varying concept-span lengths and allows
SuperActivators to appear anywhere in the sequence.

In COCO, OpenSurfaces, Pascal, and iSarcasm, more than half of in-concept samples have a ratio
below 0.2—that is, fewer than one SuperActivator for every five in-concept tokens. For CLEVR,
Sarcasm, and iSarcasm, the ratios are roughly twice as high, but still represent only a minority of the
in-concept tokens present in each sample. Overall, these plots indicate that most in-concept samples
only have a small set of reliable concept signals, relative to the amount of in-concept tokens.
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(a) CLEVR
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(b) COCO
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(c) OpenSurfaces
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(d) Pascal
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(e) Sarcasm
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(f) iSarcasm
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Figure 28: Cumulative distribution functions showing, for each concept and on average across a
dataset, the ratio of SuperActivators to in-concept tokens in each test sample.
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K ABLATION: DO SUPERACTIVATORS HAVE A POSITIONAL DEPENDENCE?

To check whether the SuperActivator Mechanism is driven by positional dependencies rather than
genuine concept sensitivity, we plot the distribution of SuperActivators across image (Figure 29) and
text (Figure 30) test splits. For each dataset, we use Llama-3.2-11B-Vision-Instruct linear separator
concept SuperActivators, defined at the concept-specific model depth and sparsity level δ that yield
the best detection performance on the validation set. The left panels show absolute SuperActivator
token positions, while the right panels show relative positions normalized to the length of each
sample.

In general, we observe no significant evidence of positional bias. The SuperActivators are not uni-
formly distributed, but there is no particular index or position where SuperActivators are much more
common.

200 400 600 800 1000
Absolute Token Position

D
en

si
ty

SuperActivator Absolute Positions

20 40 60 80 100
% Through Sample

D
en

si
ty

SuperActivator Relative Positions

(a) CLEVR

500 1000 1500
Absolute Token Position

D
en

si
ty

SuperActivator Absolute Positions

20 40 60 80 100
% Through Sample

D
en

si
ty

SuperActivator Relative Positions

(b) COCO

500 1000 1500
Absolute Token Position

D
en

si
ty

SuperActivator Absolute Positions

20 40 60 80 100
% Through Sample

D
en

si
ty

SuperActivator Relative Positions

(c) Broden-OpenSurfaces

500 1000 1500
Absolute Token Position

D
en

si
ty

SuperActivator Absolute Positions

20 40 60 80 100
% Through Sample

D
en

si
ty

SuperActivator Relative Positions

(d) Broden-Pascal

Figure 29: Image Domain – SuperActivator Position Distribution
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Figure 30: Text Domain – SuperActivator Position Distribution
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L TAIL-FOCUSED SUPERACTIVATOR-BASED CONCEPT DETECTION

Section 4.2 showed that the most reliable indicators of concept presence consistently lie in the ex-
treme high tail of the in-concept activation distribution. Building on this observation, we evaluate a
simplified and practical variant of our SuperActivator detection method that operationalizes sparsity
directly and requires only sample-level labels.

Leveraging the experimental results of our sparsity ablation in Appendix G, which found that a fixed
sparsity of 10% performs well across datasets for Llama-3.2-11B-Vision-Instruct linear-separator
concepts, we adopt this value for all datasets. Using the validation set, we estimate that this corre-
sponds to selecting approximately 0.75% of all tokens per sample in image datasets and approxi-
mately 2% of tokens per sample in text datasets.

Then, for each sample, we retain only the top 0.75% of the highest image token activations (roughly
12 per sample) and 2% of the highest text token activations (roughly 2 per sample). Using only
sample-level labels, we then learn a single threshold per concept that best separates selected tokens
from positive versus negative samples. Tokens above this threshold are treated as SuperActivators,
and a sample is predicted positive if it contains at least one. This procedure requires no segmentation
masks and avoids any tuning of N.

The results for this method, which we denote as N@Tail are presented in Table 4, alongside the
original baseline detection results and the previous SuperActivator-based results that employed N
tuning. In this table we focus specifically on Llama-3.2-11B-Vision-Instruct linear separator con-
cepts across all datasets. In terms of performance, the N@Tail variant achieves results that closely
match the fully tuned version and still decisively outperforms all other baseline detection methods
across datasets. This demonstrates that the practical value of the SuperActivator mechanism does
not rely on extensive tuning; simply isolating the extreme tail of activations and learning a single
weakly supervised threshold already captures most of the benefit.

Table 4: Weakly Supervised Tail-Only SuperActivator Detection Nearly Matches Tuned Perfor-
mance

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct
(N tuned)

SuperAct
(N@tail)

CLEVR 0.967 ± 0.090 0.879 ± 0.004 0.920 ± 0.004 0.961 ± 0.015 0.987 ± 0.009 0.997 ± 0.004 0.995 ± 0.005

COCO 0.606 ± 0.011 0.680 ± 0.011 0.551 ± 0.011 0.566 ± 0.013 0.686 ± 0.050 0.829 ± 0.010 0.751 ± 0.069

Surfaces 0.438 ± 0.014 0.410 ± 0.014 0.390 ± 0.014 0.456 ± 0.013 0.491 ± 0.063 0.507 ± 0.079 0.495 ± 0.077

Pascal 0.659 ± 0.006 0.601 ± 0.006 0.594 ± 0.006 0.648 ± 0.006 0.680 ± 0.048 0.822 ± 0.005 0.735 ± 0.058

Sarcasm 0.659 ± 0.060 0.683 ± 0.048 0.659 ± 0.060 0.737 ± 0.055 0.679 ± 0.074 0.870 ± 0.039 0.869 ± 0.039

iSarcasm 0.885 ± 0.035 0.717 ± 0.029 0.791 ± 0.029 0.912 ± 0.031 0.789 ± 0.047 0.924 ± 0.029 0.918 ± 0.030

GoEmot 0.372 ± 0.028 0.307 ± 0.027 0.193 ± 0.029 0.320 ± 0.029 0.252 ± 0.100 0.459 ± 0.029 0.446 ± 0.102
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M CONCEPT ATTRIBUTION

M.1 ATTRIBUTION METHODS

This section provides a brief overview of several attribution methods in which the objective is defined
either by a global concept vector vc or by the average embedding of local SuperActivators.

• LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016) ex-
plains an individual prediction by approximating the complex model with a simpler, in-
terpretable model (e.g., a linear model) in the local vicinity of the prediction. It achieves
this by generating a new dataset of perturbed samples around the instance being explained
and learning the simpler model on this new dataset, weighted by proximity to the original
instance.

• SHAP (SHapley Additive exPlanations) (Lundberg & Lee, 2017) assigns an importance
value to each feature for a particular prediction. Based on cooperative game theory, this
value represents the feature’s marginal contribution to the model’s output, ensuring the
sum of all values explains the difference between the model’s prediction and a baseline.

• RISE (Randomized Input Sampling for Explanation) (Petsiuk et al., 2018) generates
a visual explanation by probing the model with numerous randomly masked versions of
an input image. The final importance map is a weighted average of these random masks,
where weights are determined by the model’s output confidence for each corresponding
masked image.

• SHAP IQ (SHAP Interaction-aware exPlanations for Quantifying feature impor-
tance) (Fel et al., 2023) extends the SHAP framework to quantify the effects of feature
interactions. Beyond calculating the main effect of each feature, it also computes interac-
tion indices to provide a more complete picture of how combinations of features jointly
influence a prediction.

• IntGrad (Integrated Gradients) (Sundararajan et al., 2017) calculates the importance of
each input feature by integrating the gradients of the model’s output with respect to the
feature’s inputs. This integration is performed along a straight-line path from a baseline
input (e.g., a black image) to the actual input, satisfying key axioms like sensitivity.

• Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju et al., 2017) pro-
duces a coarse localization map for CNNs by using the gradients of the target class score
with respect to the feature maps of the final convolutional layer. These gradients are used
to compute a weighted combination of the activation maps, highlighting important image
regions.

• FullGrad (Srinivas & Fleuret, 2019) enhances gradient-based explanations by aggregating
gradient information from all layers of a neural network. It combines the input gradients
with bias gradients from all intermediate feature maps to capture more comprehensive fea-
ture representations, resulting in more detailed saliency maps.

• CALM (Class Activation Latent Mapping) (Mahajan et al., 2021) improves on Class
Activation Mapping (CAM) by introducing a probabilistic latent variable that directly rep-
resents the location of the most important visual cue for a model’s prediction. Trained
with the Expectation-Maximization (EM) algorithm, the method outputs a probability map
showing the likelihood that each pixel is the critical cue for the decision.

• MFABA (More Faithful and Accelerated Boundary-based Attribution) (Zhu et al.,
2024) is a boundary-based attribution method that constructs a path from an input toward
the decision boundary. Along this path, it uses a second-order Taylor expansion of the loss
function to better approximate how the model’s output or loss changes. The resulting at-
tribution scores reflect how much each feature contributes to pushing the input toward or
away from the boundary.

M.2 ADDITIONAL RESULTS FOR CONCEPT ATTRIBUTION

This section presents the full results for concept attribution across all experimental configurations,
which were summarized in Table 2 in the main text. These detailed tables are provided to demon-
strate that our main findings are consistent across all individual concepts and experimental settings.
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As these results confirm, using the average embedding of SuperActivators as the explanation objec-
tive consistently leads to better performance than using the concept vector directly. Moreover, linear
separators generally outperform simple clustering for concept representation.

We present our results across fourteen tables, evaluating two concept representations (clustering-
based vs. linear separators) and two attribution objectives (global concept vector vs. average local
SuperActivatorspatch embedding). Each table reports the average F1 score across all concepts,
weighted by concept frequency in the test set (Appendix C.5). The tables are organized as follows:

• Supervised Setting: We provide results across seven tables. Four tables correspond to
image tasks (Tables 5, 6, 7, and 8), and three correspond to text tasks (Tables 9, 10, and
11). The concept types for this setting are detailed in Appendix C.2.

• Unsupervised Setting: We provide results across seven tables. Four tables correspond
to image tasks (Tables 12, 13, 14, and 15), and three correspond to text tasks (Tables 16,
17, and 18). Here, concepts are derived from k-means clusters, and for each concept, we
evaluate the best-performing cluster out of 1000 candidates. The concept types are detailed
in Appendix C.2.

Table 5: Average F1 for the CLEVR Dataset (Supervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.60 ± 0.02 0.60 ± 0.01 0.78 ± 0.01 0.55 ± 0.03
LinSep 0.65 ± 0.01 0.61 ± 0.03 0.85 ± 0.02 0.54 ± 0.01

LIME Clustering 0.49 ± 0.02 0.55 ± 0.04 0.76 ± 0.03 0.81 ± 0.02
LinSep 0.49 ± 0.00 0.68 ± 0.01 0.70 ± 0.01 0.85 ± 0.01

SHAP Clustering 0.51 ± 0.01 0.53 ± 0.02 0.75 ± 0.02 0.80 ± 0.03
LinSep 0.52 ± 0.03 0.58 ± 0.01 0.75 ± 0.01 0.80 ± 0.01

RISE Clustering 0.53 ± 0.02 0.53 ± 0.03 0.55 ± 0.03 0.56 ± 0.02
LinSep 0.58 ± 0.01 0.59 ± 0.02 0.60 ± 0.02 0.63 ± 0.01

SHAP IQ Clustering 0.52 ± 0.04 0.53 ± 0.01 0.55 ± 0.01 0.58 ± 0.02
LinSep 0.58 ± 0.02 0.58 ± 0.03 0.60 ± 0.03 0.61 ± 0.01

IntGrad Clustering 0.46 ± 0.01 0.53 ± 0.03 0.77 ± 0.02 0.80 ± 0.02
LinSep 0.49 ± 0.03 0.55 ± 0.01 0.72 ± 0.01 0.78 ± 0.03

GradCAM Clustering 0.45 ± 0.02 0.48 ± 0.01 0.50 ± 0.03 0.52 ± 0.01
LinSep 0.48 ± 0.01 0.48 ± 0.02 0.50 ± 0.02 0.52 ± 0.02

FullGrad Clustering 0.46 ± 0.02 0.46 ± 0.03 0.47 ± 0.01 0.49 ± 0.02
LinSep 0.50 ± 0.01 0.52 ± 0.02 0.51 ± 0.02 0.55 ± 0.01

CALM Clustering 0.48 ± 0.03 0.52 ± 0.01 0.49 ± 0.03 0.53 ± 0.02
LinSep 0.55 ± 0.02 0.56 ± 0.02 0.57 ± 0.01 0.57 ± 0.03

MFABA Clustering 0.50 ± 0.01 0.51 ± 0.01 0.51 ± 0.02 0.53 ± 0.01
LinSep 0.55 ± 0.03 0.55 ± 0.02 0.56 ± 0.01 0.58 ± 0.03

M.3 QUALITATIVE EXAMPLE SHOWING SUPERACTIVATORS FOR IMPROVED CONCEPT
ATTRIBUTION

Figure 6 further illustrates the advantage: attribution using SuperActivators for the concept person
provides better coverage for the full target object while avoiding irrelevant regions such as tables,
which the global vector incorrectly highlights.
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Table 6: Average F1 for the COCO Dataset (Supervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.43 ± 0.03 0.40 ± 0.02 0.36 ± 0.02 0.37 ± 0.01
LinSep 0.52 ± 0.02 0.45 ± 0.00 0.46 ± 0.03 0.44 ± 0.02

LIME Clustering 0.32 ± 0.01 0.38 ± 0.02 0.47 ± 0.01 0.51 ± 0.02
LinSep 0.29 ± 0.02 0.40 ± 0.03 0.49 ± 0.02 0.50 ± 0.03

SHAP Clustering 0.34 ± 0.03 0.38 ± 0.01 0.48 ± 0.03 0.51 ± 0.01
LinSep 0.35 ± 0.01 0.37 ± 0.02 0.49 ± 0.02 0.55 ± 0.04

RISE Clustering 0.34 ± 0.01 0.34 ± 0.02 0.36 ± 0.01 0.38 ± 0.01
LinSep 0.35 ± 0.02 0.38 ± 0.03 0.35 ± 0.03 0.40 ± 0.02

SHAP IQ Clustering 0.33 ± 0.03 0.35 ± 0.02 0.35 ± 0.02 0.36 ± 0.01
LinSep 0.34 ± 0.01 0.37 ± 0.01 0.36 ± 0.01 0.38 ± 0.03

IntGrad Clustering 0.30 ± 0.02 0.33 ± 0.02 0.42 ± 0.03 0.45 ± 0.01
LinSep 0.28 ± 0.00 0.35 ± 0.04 0.43 ± 0.02 0.48 ± 0.01

GradCAM Clustering 0.31 ± 0.03 0.31 ± 0.01 0.32 ± 0.02 0.35 ± 0.03
LinSep 0.37 ± 0.01 0.38 ± 0.02 0.37 ± 0.01 0.37 ± 0.02

FullGrad Clustering 0.33 ± 0.02 0.32 ± 0.01 0.35 ± 0.03 0.38 ± 0.01
LinSep 0.43 ± 0.01 0.43 ± 0.00 0.39 ± 0.01 0.39 ± 0.03

CALM Clustering 0.32 ± 0.02 0.32 ± 0.03 0.30 ± 0.01 0.29 ± 0.02
LinSep 0.42 ± 0.01 0.42 ± 0.01 0.38 ± 0.02 0.41 ± 0.01

MFABA Clustering 0.31 ± 0.04 0.37 ± 0.02 0.33 ± 0.03 0.34 ± 0.02
LinSep 0.33 ± 0.01 0.39 ± 0.03 0.35 ± 0.02 0.39 ± 0.01

Table 7: Average F1 for the OpenSurfaces Dataset (Supervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.22 ± 0.01 0.18 ± 0.04 0.19 ± 0.03 0.15 ± 0.02
LinSep 0.28 ± 0.03 0.22 ± 0.02 0.23 ± 0.01 0.17 ± 0.01

LIME Clustering 0.42 ± 0.03 0.50 ± 0.01 0.55 ± 0.03 0.62 ± 0.01
LinSep 0.46 ± 0.01 0.50 ± 0.03 0.60 ± 0.01 0.68 ± 0.02

SHAP Clustering 0.40 ± 0.02 0.42 ± 0.04 0.53 ± 0.02 0.57 ± 0.03
LinSep 0.42 ± 0.02 0.44 ± 0.01 0.55 ± 0.03 0.56 ± 0.01

RISE Clustering 0.40 ± 0.04 0.42 ± 0.01 0.51 ± 0.02 0.52 ± 0.03
LinSep 0.43 ± 0.01 0.45 ± 0.02 0.53 ± 0.01 0.55 ± 0.02

SHAP IQ Clustering 0.40 ± 0.02 0.43 ± 0.01 0.51 ± 0.03 0.53 ± 0.02
LinSep 0.42 ± 0.03 0.45 ± 0.02 0.52 ± 0.01 0.52 ± 0.02

IntGrad Clustering 0.43 ± 0.01 0.51 ± 0.02 0.46 ± 0.02 0.47 ± 0.03
LinSep 0.44 ± 0.02 0.49 ± 0.02 0.56 ± 0.01 0.62 ± 0.02

GradCAM Clustering 0.41 ± 0.02 0.43 ± 0.03 0.45 ± 0.01 0.46 ± 0.02
LinSep 0.44 ± 0.01 0.46 ± 0.01 0.45 ± 0.03 0.51 ± 0.01

FullGrad Clustering 0.38 ± 0.03 0.41 ± 0.02 0.40 ± 0.02 0.41 ± 0.01
LinSep 0.42 ± 0.04 0.45 ± 0.01 0.43 ± 0.01 0.47 ± 0.02

CALM Clustering 0.33 ± 0.01 0.35 ± 0.01 0.35 ± 0.02 0.37 ± 0.01
LinSep 0.35 ± 0.02 0.38 ± 0.03 0.36 ± 0.01 0.41 ± 0.03

MFABA Clustering 0.42 ± 0.02 0.44 ± 0.03 0.44 ± 0.01 0.44 ± 0.02
LinSep 0.45 ± 0.01 0.48 ± 0.01 0.44 ± 0.02 0.47 ± 0.03
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Table 8: Average F1 for the Pascal Dataset (Supervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.42 ± 0.02 0.35 ± 0.01 0.40 ± 0.01 0.29 ± 0.04
LinSep 0.54 ± 0.01 0.42 ± 0.03 0.46 ± 0.02 0.33 ± 0.03

LIME Clustering 0.50 ± 0.02 0.52 ± 0.02 0.69 ± 0.02 0.71 ± 0.03
LinSep 0.51 ± 0.03 0.55 ± 0.01 0.71 ± 0.03 0.72 ± 0.01

SHAP Clustering 0.48 ± 0.01 0.52 ± 0.03 0.65 ± 0.01 0.70 ± 0.02
LinSep 0.50 ± 0.00 0.52 ± 0.02 0.69 ± 0.02 0.72 ± 0.01

RISE Clustering 0.50 ± 0.03 0.51 ± 0.01 0.52 ± 0.01 0.55 ± 0.03
LinSep 0.54 ± 0.03 0.54 ± 0.02 0.55 ± 0.02 0.58 ± 0.01

SHAP IQ Clustering 0.50 ± 0.01 0.51 ± 0.03 0.52 ± 0.01 0.55 ± 0.04
LinSep 0.52 ± 0.02 0.53 ± 0.04 0.53 ± 0.03 0.54 ± 0.01

IntGrad Clustering 0.48 ± 0.03 0.51 ± 0.01 0.69 ± 0.01 0.71 ± 0.02
LinSep 0.49 ± 0.01 0.52 ± 0.03 0.67 ± 0.03 0.71 ± 0.01

GradCAM Clustering 0.43 ± 0.04 0.45 ± 0.02 0.45 ± 0.02 0.45 ± 0.03
LinSep 0.44 ± 0.03 0.47 ± 0.01 0.47 ± 0.02 0.50 ± 0.01

FullGrad Clustering 0.41 ± 0.01 0.44 ± 0.03 0.40 ± 0.01 0.42 ± 0.03
LinSep 0.44 ± 0.02 0.45 ± 0.01 0.44 ± 0.02 0.44 ± 0.02

CALM Clustering 0.42 ± 0.03 0.42 ± 0.02 0.44 ± 0.03 0.45 ± 0.01
LinSep 0.46 ± 0.01 0.48 ± 0.01 0.48 ± 0.02 0.52 ± 0.01

MFABA Clustering 0.50 ± 0.02 0.52 ± 0.02 0.50 ± 0.03 0.51 ± 0.01
LinSep 0.53 ± 0.02 0.55 ± 0.03 0.51 ± 0.01 0.52 ± 0.02

Table 9: Average F1 for the Sarcasm Dataset (Supervised).

Attribution
Method

Concept
Type

Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim Cluster 0.39 ± 0.01 0.25 ± 0.03 0.38 ± 0.02 0.26 ± 0.03 0.42 ± 0.03 0.25 ± 0.02
LinSep 0.63 ± 0.02 0.37 ± 0.01 0.58 ± 0.01 0.37 ± 0.02 0.57 ± 0.01 0.40 ± 0.03

LIME Cluster 0.34 ± 0.01 0.46 ± 0.03 0.33 ± 0.03 0.45 ± 0.01 0.36 ± 0.02 0.50 ± 0.01
LinSep 0.52 ± 0.02 0.70 ± 0.02 0.51 ± 0.02 0.65 ± 0.03 0.54 ± 0.01 0.63 ± 0.03

SHAP Cluster 0.35 ± 0.03 0.47 ± 0.01 0.34 ± 0.01 0.46 ± 0.02 0.37 ± 0.03 0.51 ± 0.02
LinSep 0.53 ± 0.01 0.71 ± 0.03 0.52 ± 0.03 0.66 ± 0.01 0.55 ± 0.02 0.64 ± 0.01

RISE Cluster 0.39 ± 0.02 0.52 ± 0.01 0.38 ± 0.02 0.50 ± 0.03 0.42 ± 0.01 0.55 ± 0.03
LinSep 0.57 ± 0.01 0.76 ± 0.02 0.56 ± 0.01 0.71 ± 0.02 0.59 ± 0.03 0.69 ± 0.02

SHAP IQ Cluster 0.36 ± 0.03 0.49 ± 0.01 0.36 ± 0.03 0.48 ± 0.01 0.39 ± 0.02 0.53 ± 0.01
LinSep 0.55 ± 0.01 0.73 ± 0.03 0.54 ± 0.02 0.68 ± 0.03 0.57 ± 0.01 0.66 ± 0.03

IntGrad Cluster 0.27 ± 0.02 0.40 ± 0.01 0.27 ± 0.01 0.39 ± 0.02 0.29 ± 0.02 0.43 ± 0.01
LinSep 0.39 ± 0.01 0.64 ± 0.02 0.38 ± 0.03 0.59 ± 0.01 0.41 ± 0.01 0.58 ± 0.02

GradCAM Cluster 0.31 ± 0.01 0.44 ± 0.03 0.30 ± 0.02 0.43 ± 0.03 0.33 ± 0.03 0.47 ± 0.01
LinSep 0.43 ± 0.02 0.68 ± 0.01 0.42 ± 0.01 0.63 ± 0.02 0.45 ± 0.02 0.62 ± 0.03

FullGrad Cluster 0.28 ± 0.03 0.41 ± 0.02 0.28 ± 0.03 0.40 ± 0.01 0.30 ± 0.01 0.44 ± 0.02
LinSep 0.40 ± 0.01 0.65 ± 0.03 0.39 ± 0.02 0.60 ± 0.03 0.42 ± 0.02 0.59 ± 0.01

CALM Cluster 0.34 ± 0.02 0.47 ± 0.01 0.33 ± 0.01 0.46 ± 0.02 0.36 ± 0.02 0.50 ± 0.03
LinSep 0.52 ± 0.01 0.71 ± 0.02 0.51 ± 0.03 0.66 ± 0.01 0.54 ± 0.01 0.65 ± 0.02

MFABA Cluster 0.33 ± 0.03 0.46 ± 0.01 0.32 ± 0.02 0.45 ± 0.03 0.35 ± 0.03 0.49 ± 0.01
LinSep 0.51 ± 0.01 0.70 ± 0.03 0.50 ± 0.01 0.65 ± 0.02 0.53 ± 0.02 0.64 ± 0.03
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Table 10: Average F1 for the iSarcasm Dataset (Supervised).

Attribution
Method

Concept
Type

Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim Cluster 0.70 ± 0.02 0.65 ± 0.01 0.57 ± 0.01 0.55 ± 0.02 0.65 ± 0.01 0.60 ± 0.03
LinSep 0.81 ± 0.03 0.74 ± 0.02 0.74 ± 0.03 0.65 ± 0.01 0.83 ± 0.02 0.71 ± 0.01

LIME Cluster 0.71 ± 0.02 0.78 ± 0.01 0.63 ± 0.02 0.67 ± 0.03 0.67 ± 0.03 0.73 ± 0.02
LinSep 0.79 ± 0.01 0.87 ± 0.02 0.71 ± 0.01 0.80 ± 0.02 0.76 ± 0.02 0.89 ± 0.01

SHAP Cluster 0.72 ± 0.03 0.79 ± 0.01 0.64 ± 0.03 0.68 ± 0.01 0.68 ± 0.01 0.74 ± 0.03
LinSep 0.80 ± 0.02 0.88 ± 0.01 0.72 ± 0.02 0.81 ± 0.03 0.77 ± 0.03 0.90 ± 0.02

RISE Cluster 0.76 ± 0.01 0.83 ± 0.03 0.67 ± 0.01 0.73 ± 0.02 0.72 ± 0.02 0.79 ± 0.01
LinSep 0.84 ± 0.02 0.92 ± 0.01 0.76 ± 0.03 0.85 ± 0.01 0.81 ± 0.01 0.94 ± 0.03

SHAP IQ Cluster 0.74 ± 0.02 0.81 ± 0.02 0.65 ± 0.02 0.70 ± 0.03 0.70 ± 0.03 0.76 ± 0.02
LinSep 0.82 ± 0.01 0.90 ± 0.02 0.74 ± 0.01 0.83 ± 0.03 0.79 ± 0.02 0.92 ± 0.01

IntGrad Cluster 0.66 ± 0.03 0.71 ± 0.01 0.56 ± 0.03 0.58 ± 0.01 0.61 ± 0.01 0.66 ± 0.03
LinSep 0.75 ± 0.02 0.82 ± 0.03 0.66 ± 0.02 0.75 ± 0.03 0.72 ± 0.02 0.84 ± 0.01

GradCAM Cluster 0.69 ± 0.01 0.75 ± 0.02 0.59 ± 0.01 0.62 ± 0.02 0.64 ± 0.03 0.70 ± 0.01
LinSep 0.78 ± 0.03 0.86 ± 0.01 0.69 ± 0.03 0.78 ± 0.01 0.74 ± 0.02 0.87 ± 0.03

FullGrad Cluster 0.67 ± 0.02 0.72 ± 0.01 0.57 ± 0.02 0.60 ± 0.01 0.62 ± 0.01 0.67 ± 0.02
LinSep 0.76 ± 0.01 0.83 ± 0.02 0.67 ± 0.01 0.76 ± 0.03 0.73 ± 0.03 0.85 ± 0.01

CALM Cluster 0.71 ± 0.03 0.78 ± 0.01 0.61 ± 0.03 0.66 ± 0.01 0.66 ± 0.02 0.73 ± 0.01
LinSep 0.81 ± 0.01 0.89 ± 0.03 0.73 ± 0.02 0.81 ± 0.03 0.78 ± 0.01 0.91 ± 0.02

MFABA Cluster 0.70 ± 0.02 0.77 ± 0.01 0.60 ± 0.02 0.65 ± 0.01 0.65 ± 0.03 0.72 ± 0.01
LinSep 0.80 ± 0.01 0.88 ± 0.02 0.72 ± 0.01 0.80 ± 0.02 0.77 ± 0.02 0.90 ± 0.03

Table 11: Average F1 for the GoEmotions Dataset (Supervised).

Attribution
Method

Concept
Type

Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim Cluster 0.18 ± 0.03 0.16 ± 0.02 0.25 ± 0.03 0.23 ± 0.01 0.19 ± 0.02 0.16 ± 0.01
LinSep 0.29 ± 0.01 0.25 ± 0.03 0.31 ± 0.02 0.28 ± 0.03 0.25 ± 0.03 0.23 ± 0.02

LIME Cluster 0.20 ± 0.03 0.25 ± 0.01 0.27 ± 0.01 0.31 ± 0.02 0.21 ± 0.01 0.24 ± 0.03
LinSep 0.29 ± 0.02 0.34 ± 0.03 0.33 ± 0.03 0.37 ± 0.01 0.28 ± 0.03 0.30 ± 0.02

SHAP Cluster 0.21 ± 0.02 0.26 ± 0.02 0.28 ± 0.02 0.32 ± 0.03 0.22 ± 0.02 0.25 ± 0.01
LinSep 0.30 ± 0.01 0.35 ± 0.04 0.34 ± 0.01 0.38 ± 0.02 0.29 ± 0.01 0.31 ± 0.03

RISE Cluster 0.24 ± 0.03 0.30 ± 0.01 0.30 ± 0.03 0.35 ± 0.01 0.25 ± 0.03 0.28 ± 0.02
LinSep 0.33 ± 0.01 0.39 ± 0.02 0.37 ± 0.02 0.42 ± 0.03 0.32 ± 0.02 0.35 ± 0.01

SHAP IQ Cluster 0.22 ± 0.02 0.28 ± 0.03 0.29 ± 0.01 0.33 ± 0.02 0.23 ± 0.01 0.26 ± 0.03
LinSep 0.31 ± 0.03 0.37 ± 0.01 0.35 ± 0.03 0.40 ± 0.01 0.30 ± 0.03 0.33 ± 0.02

IntGrad Cluster 0.17 ± 0.01 0.19 ± 0.02 0.24 ± 0.02 0.26 ± 0.03 0.17 ± 0.01 0.20 ± 0.01
LinSep 0.26 ± 0.02 0.30 ± 0.01 0.29 ± 0.01 0.32 ± 0.02 0.24 ± 0.02 0.26 ± 0.03

GradCAM Cluster 0.19 ± 0.03 0.23 ± 0.01 0.26 ± 0.03 0.29 ± 0.01 0.19 ± 0.03 0.22 ± 0.02
LinSep 0.28 ± 0.02 0.34 ± 0.02 0.31 ± 0.02 0.36 ± 0.03 0.27 ± 0.02 0.29 ± 0.01

FullGrad Cluster 0.18 ± 0.01 0.21 ± 0.03 0.25 ± 0.01 0.27 ± 0.02 0.18 ± 0.01 0.21 ± 0.02
LinSep 0.27 ± 0.03 0.31 ± 0.02 0.30 ± 0.03 0.33 ± 0.01 0.25 ± 0.03 0.27 ± 0.02

CALM Cluster 0.21 ± 0.02 0.26 ± 0.01 0.27 ± 0.02 0.32 ± 0.03 0.22 ± 0.02 0.25 ± 0.01
LinSep 0.30 ± 0.02 0.36 ± 0.03 0.34 ± 0.01 0.39 ± 0.02 0.29 ± 0.01 0.32 ± 0.03

MFABA Cluster 0.20 ± 0.01 0.25 ± 0.03 0.26 ± 0.03 0.31 ± 0.01 0.21 ± 0.03 0.24 ± 0.01
LinSep 0.29 ± 0.02 0.35 ± 0.01 0.33 ± 0.02 0.38 ± 0.03 0.28 ± 0.02 0.31 ± 0.03
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Table 12: Average F1 for the CLEVR Dataset (Unsupervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.63 ± 0.02 0.64 ± 0.01 0.46 ± 0.01 0.43 ± 0.03
LinSep 0.60 ± 0.01 0.59 ± 0.03 0.38 ± 0.02 0.33 ± 0.01

LIME Clustering 0.52 ± 0.03 0.61 ± 0.01 0.76 ± 0.01 0.81 ± 0.02
LinSep 0.52 ± 0.02 0.77 ± 0.03 0.68 ± 0.03 0.83 ± 0.01

SHAP Clustering 0.51 ± 0.01 0.53 ± 0.02 0.75 ± 0.02 0.80 ± 0.01
LinSep 0.52 ± 0.03 0.58 ± 0.01 0.75 ± 0.01 0.80 ± 0.03

RISE Clustering 0.53 ± 0.02 0.53 ± 0.01 0.55 ± 0.03 0.56 ± 0.02
LinSep 0.58 ± 0.01 0.59 ± 0.03 0.60 ± 0.01 0.63 ± 0.02

SHAP IQ Clustering 0.52 ± 0.03 0.53 ± 0.02 0.55 ± 0.02 0.58 ± 0.01
LinSep 0.58 ± 0.01 0.58 ± 0.02 0.60 ± 0.01 0.61 ± 0.03

IntGrad Clustering 0.47 ± 0.02 0.47 ± 0.01 0.56 ± 0.03 0.58 ± 0.02
LinSep 0.58 ± 0.01 0.59 ± 0.03 0.62 ± 0.01 0.64 ± 0.02

GradCAM Clustering 0.41 ± 0.03 0.45 ± 0.02 0.50 ± 0.02 0.47 ± 0.01
LinSep 0.48 ± 0.01 0.46 ± 0.02 0.48 ± 0.01 0.49 ± 0.03

FullGrad Clustering 0.45 ± 0.02 0.42 ± 0.01 0.42 ± 0.03 0.45 ± 0.02
LinSep 0.49 ± 0.01 0.49 ± 0.03 0.50 ± 0.01 0.53 ± 0.02

CALM Clustering 0.44 ± 0.03 0.50 ± 0.02 0.46 ± 0.02 0.48 ± 0.01
LinSep 0.50 ± 0.01 0.54 ± 0.02 0.53 ± 0.01 0.54 ± 0.03

MFABA Clustering 0.45 ± 0.02 0.48 ± 0.01 0.47 ± 0.03 0.52 ± 0.02
LinSep 0.51 ± 0.01 0.50 ± 0.03 0.54 ± 0.01 0.55 ± 0.02

Table 13: Average F1 for the COCO Dataset (Unsupervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.34 ± 0.03 0.37 ± 0.02 0.22 ± 0.02 0.28 ± 0.01
LinSep 0.33 ± 0.02 0.36 ± 0.01 0.23 ± 0.03 0.26 ± 0.02

LIME Clustering 0.36 ± 0.02 0.38 ± 0.03 0.45 ± 0.03 0.52 ± 0.01
LinSep 0.38 ± 0.01 0.41 ± 0.02 0.49 ± 0.02 0.55 ± 0.03

SHAP Clustering 0.34 ± 0.03 0.38 ± 0.01 0.48 ± 0.03 0.51 ± 0.01
LinSep 0.35 ± 0.02 0.37 ± 0.03 0.49 ± 0.02 0.53 ± 0.01

RISE Clustering 0.34 ± 0.03 0.34 ± 0.02 0.36 ± 0.01 0.38 ± 0.03
LinSep 0.35 ± 0.02 0.38 ± 0.01 0.35 ± 0.03 0.40 ± 0.02

SHAP IQ Clustering 0.33 ± 0.01 0.35 ± 0.03 0.35 ± 0.02 0.36 ± 0.01
LinSep 0.34 ± 0.03 0.37 ± 0.01 0.36 ± 0.02 0.38 ± 0.01

IntGrad Clustering 0.28 ± 0.03 0.31 ± 0.02 0.48 ± 0.01 0.47 ± 0.03
LinSep 0.31 ± 0.02 0.35 ± 0.01 0.38 ± 0.03 0.39 ± 0.01

GradCAM Clustering 0.28 ± 0.01 0.31 ± 0.03 0.31 ± 0.03 0.33 ± 0.02
LinSep 0.35 ± 0.03 0.36 ± 0.01 0.36 ± 0.02 0.34 ± 0.01

FullGrad Clustering 0.29 ± 0.03 0.31 ± 0.02 0.30 ± 0.01 0.33 ± 0.03
LinSep 0.35 ± 0.02 0.39 ± 0.01 0.37 ± 0.03 0.34 ± 0.01

CALM Clustering 0.29 ± 0.01 0.29 ± 0.03 0.26 ± 0.02 0.25 ± 0.02
LinSep 0.35 ± 0.02 0.39 ± 0.01 0.35 ± 0.02 0.36 ± 0.01

MFABA Clustering 0.29 ± 0.03 0.33 ± 0.02 0.28 ± 0.01 0.32 ± 0.03
LinSep 0.30 ± 0.02 0.35 ± 0.01 0.33 ± 0.03 0.36 ± 0.01
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Table 14: Average F1 for the OpenSurfaces Dataset (Unsupervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.19 ± 0.01 0.19 ± 0.03 0.14 ± 0.03 0.15 ± 0.02
LinSep 0.19 ± 0.03 0.18 ± 0.02 0.15 ± 0.01 0.14 ± 0.03

LIME Clustering 0.37 ± 0.01 0.41 ± 0.02 0.37 ± 0.02 0.37 ± 0.03
LinSep 0.39 ± 0.03 0.41 ± 0.01 0.38 ± 0.01 0.39 ± 0.02

SHAP Clustering 0.40 ± 0.02 0.42 ± 0.03 0.53 ± 0.02 0.57 ± 0.03
LinSep 0.42 ± 0.01 0.44 ± 0.02 0.55 ± 0.03 0.56 ± 0.01

RISE Clustering 0.40 ± 0.01 0.42 ± 0.03 0.51 ± 0.02 0.52 ± 0.01
LinSep 0.43 ± 0.03 0.45 ± 0.02 0.53 ± 0.01 0.55 ± 0.02

SHAP IQ Clustering 0.40 ± 0.02 0.43 ± 0.01 0.51 ± 0.03 0.53 ± 0.02
LinSep 0.42 ± 0.02 0.45 ± 0.03 0.52 ± 0.01 0.52 ± 0.02

IntGrad Clustering 0.33 ± 0.01 0.34 ± 0.03 0.32 ± 0.02 0.35 ± 0.01
LinSep 0.35 ± 0.03 0.35 ± 0.02 0.34 ± 0.02 0.35 ± 0.03

GradCAM Clustering 0.36 ± 0.02 0.40 ± 0.01 0.43 ± 0.01 0.42 ± 0.03
LinSep 0.42 ± 0.02 0.43 ± 0.03 0.44 ± 0.01 0.46 ± 0.02

FullGrad Clustering 0.36 ± 0.01 0.37 ± 0.03 0.36 ± 0.02 0.38 ± 0.01
LinSep 0.38 ± 0.03 0.40 ± 0.02 0.41 ± 0.01 0.44 ± 0.02

CALM Clustering 0.29 ± 0.02 0.32 ± 0.01 0.33 ± 0.01 0.36 ± 0.03
LinSep 0.32 ± 0.02 0.34 ± 0.03 0.34 ± 0.02 0.39 ± 0.01

MFABA Clustering 0.40 ± 0.01 0.40 ± 0.03 0.42 ± 0.01 0.41 ± 0.02
LinSep 0.43 ± 0.03 0.45 ± 0.02 0.42 ± 0.03 0.44 ± 0.01

Table 15: Average F1 for the Pascal Dataset (Unsupervised).

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Clustering 0.27 ± 0.02 0.33 ± 0.01 0.22 ± 0.01 0.24 ± 0.03
LinSep 0.24 ± 0.01 0.30 ± 0.03 0.22 ± 0.02 0.24 ± 0.01

LIME Clustering 0.33 ± 0.03 0.34 ± 0.01 0.33 ± 0.01 0.32 ± 0.02
LinSep 0.36 ± 0.02 0.35 ± 0.03 0.33 ± 0.03 0.33 ± 0.01

SHAP Clustering 0.48 ± 0.01 0.52 ± 0.02 0.65 ± 0.02 0.70 ± 0.01
LinSep 0.50 ± 0.03 0.52 ± 0.01 0.69 ± 0.01 0.72 ± 0.03

RISE Clustering 0.50 ± 0.02 0.51 ± 0.01 0.52 ± 0.01 0.55 ± 0.03
LinSep 0.54 ± 0.01 0.54 ± 0.03 0.55 ± 0.02 0.58 ± 0.01

SHAP IQ Clustering 0.50 ± 0.03 0.51 ± 0.02 0.52 ± 0.01 0.55 ± 0.02
LinSep 0.52 ± 0.01 0.53 ± 0.02 0.53 ± 0.03 0.54 ± 0.01

IntGrad Clustering 0.33 ± 0.02 0.33 ± 0.01 0.34 ± 0.02 0.35 ± 0.01
LinSep 0.34 ± 0.01 0.34 ± 0.03 0.34 ± 0.01 0.34 ± 0.02

GradCAM Clustering 0.42 ± 0.03 0.40 ± 0.02 0.43 ± 0.02 0.40 ± 0.01
LinSep 0.43 ± 0.01 0.45 ± 0.02 0.44 ± 0.01 0.47 ± 0.03

FullGrad Clustering 0.37 ± 0.02 0.42 ± 0.01 0.38 ± 0.03 0.38 ± 0.02
LinSep 0.43 ± 0.01 0.42 ± 0.03 0.42 ± 0.02 0.43 ± 0.01

CALM Clustering 0.37 ± 0.03 0.37 ± 0.02 0.41 ± 0.01 0.43 ± 0.02
LinSep 0.43 ± 0.01 0.46 ± 0.02 0.45 ± 0.02 0.49 ± 0.01

MFABA Clustering 0.46 ± 0.02 0.50 ± 0.01 0.48 ± 0.03 0.47 ± 0.02
LinSep 0.51 ± 0.01 0.49 ± 0.03 0.49 ± 0.01 0.47 ± 0.02
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Table 16: Average F1 for the Sarcasm Dataset (Unsupervised).

Attribution
Method

Concept
Type

Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim Cluster 0.28 ± 0.01 0.28 ± 0.03 0.26 ± 0.02 0.25 ± 0.01 0.24 ± 0.03 0.23 ± 0.02
LinSep 0.28 ± 0.02 0.28 ± 0.01 0.24 ± 0.01 0.24 ± 0.03 0.24 ± 0.02 0.23 ± 0.01

LIME Cluster 0.29 ± 0.01 0.50 ± 0.02 0.31 ± 0.02 0.45 ± 0.01 0.33 ± 0.01 0.51 ± 0.02
LinSep 0.50 ± 0.03 0.74 ± 0.01 0.53 ± 0.01 0.60 ± 0.03 0.55 ± 0.03 0.66 ± 0.01

SHAP Cluster 0.30 ± 0.02 0.46 ± 0.01 0.30 ± 0.03 0.45 ± 0.02 0.35 ± 0.02 0.46 ± 0.01
LinSep 0.54 ± 0.01 0.74 ± 0.03 0.54 ± 0.01 0.68 ± 0.02 0.51 ± 0.01 0.67 ± 0.03

RISE Cluster 0.40 ± 0.03 0.49 ± 0.02 0.39 ± 0.02 0.52 ± 0.01 0.46 ± 0.03 0.55 ± 0.02
LinSep 0.59 ± 0.01 0.72 ± 0.02 0.53 ± 0.01 0.74 ± 0.03 0.60 ± 0.01 0.70 ± 0.02

SHAP IQ Cluster 0.38 ± 0.02 0.46 ± 0.01 0.37 ± 0.03 0.45 ± 0.02 0.40 ± 0.02 0.51 ± 0.01
LinSep 0.52 ± 0.01 0.74 ± 0.03 0.52 ± 0.01 0.70 ± 0.02 0.59 ± 0.01 0.66 ± 0.03

IntGrad Cluster 0.39 ± 0.03 0.27 ± 0.02 0.38 ± 0.02 0.29 ± 0.01 0.41 ± 0.03 0.27 ± 0.02
LinSep 0.38 ± 0.01 0.67 ± 0.02 0.41 ± 0.01 0.58 ± 0.03 0.39 ± 0.01 0.58 ± 0.02

GradCAM Cluster 0.31 ± 0.02 0.45 ± 0.01 0.33 ± 0.03 0.44 ± 0.02 0.34 ± 0.02 0.48 ± 0.01
LinSep 0.44 ± 0.01 0.70 ± 0.03 0.42 ± 0.01 0.65 ± 0.02 0.46 ± 0.01 0.62 ± 0.03

FullGrad Cluster 0.28 ± 0.03 0.39 ± 0.02 0.26 ± 0.02 0.43 ± 0.01 0.29 ± 0.03 0.41 ± 0.02
LinSep 0.38 ± 0.01 0.65 ± 0.02 0.41 ± 0.01 0.58 ± 0.03 0.42 ± 0.01 0.60 ± 0.02

CALM Cluster 0.34 ± 0.02 0.49 ± 0.01 0.34 ± 0.03 0.46 ± 0.02 0.36 ± 0.02 0.49 ± 0.01
LinSep 0.51 ± 0.01 0.72 ± 0.03 0.50 ± 0.01 0.67 ± 0.02 0.56 ± 0.01 0.66 ± 0.03

MFABA Cluster 0.34 ± 0.03 0.48 ± 0.02 0.35 ± 0.02 0.43 ± 0.01 0.32 ± 0.03 0.50 ± 0.02
LinSep 0.54 ± 0.01 0.71 ± 0.02 0.52 ± 0.01 0.66 ± 0.03 0.51 ± 0.01 0.65 ± 0.02

Table 17: Average F1 for the iSarcasm Dataset (Unsupervised).

Attribution
Method

Concept
Type

Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim Cluster 0.56 ± 0.02 0.57 ± 0.01 0.59 ± 0.03 0.59 ± 0.02 0.60 ± 0.01 0.60 ± 0.03
LinSep 0.60 ± 0.03 0.60 ± 0.02 0.57 ± 0.02 0.58 ± 0.01 0.60 ± 0.03 0.60 ± 0.02

LIME Cluster 0.68 ± 0.03 0.75 ± 0.01 0.61 ± 0.02 0.62 ± 0.03 0.72 ± 0.01 0.69 ± 0.02
LinSep 0.76 ± 0.02 0.80 ± 0.03 0.76 ± 0.01 0.83 ± 0.02 0.76 ± 0.02 0.94 ± 0.01

SHAP Cluster 0.69 ± 0.03 0.83 ± 0.02 0.65 ± 0.01 0.71 ± 0.03 0.65 ± 0.03 0.78 ± 0.02
LinSep 0.81 ± 0.02 0.88 ± 0.01 0.69 ± 0.02 0.79 ± 0.01 0.74 ± 0.01 0.92 ± 0.03

RISE Cluster 0.80 ± 0.01 0.80 ± 0.03 0.64 ± 0.01 0.75 ± 0.02 0.74 ± 0.02 0.81 ± 0.01
LinSep 0.84 ± 0.03 0.84 ± 0.01 0.75 ± 0.03 0.89 ± 0.01 0.84 ± 0.01 0.85 ± 0.02

SHAP IQ Cluster 0.74 ± 0.02 0.85 ± 0.01 0.61 ± 0.02 0.71 ± 0.03 0.67 ± 0.02 0.80 ± 0.01
LinSep 0.85 ± 0.01 0.83 ± 0.02 0.74 ± 0.01 0.82 ± 0.02 0.80 ± 0.01 0.82 ± 0.03

IntGrad Cluster 0.74 ± 0.01 0.68 ± 0.03 0.56 ± 0.03 0.53 ± 0.02 0.65 ± 0.01 0.63 ± 0.02
LinSep 0.75 ± 0.02 0.74 ± 0.01 0.66 ± 0.02 0.77 ± 0.01 0.74 ± 0.02 0.88 ± 0.01

GradCAM Cluster 0.67 ± 0.03 0.72 ± 0.02 0.56 ± 0.01 0.61 ± 0.03 0.63 ± 0.01 0.68 ± 0.02
LinSep 0.70 ± 0.02 0.74 ± 0.01 0.70 ± 0.01 0.71 ± 0.02 0.76 ± 0.02 0.78 ± 0.01

FullGrad Cluster 0.66 ± 0.01 0.73 ± 0.02 0.56 ± 0.02 0.63 ± 0.01 0.61 ± 0.03 0.65 ± 0.02
LinSep 0.73 ± 0.02 0.82 ± 0.01 0.64 ± 0.01 0.75 ± 0.03 0.70 ± 0.02 0.87 ± 0.01

CALM Cluster 0.74 ± 0.03 0.72 ± 0.02 0.61 ± 0.01 0.64 ± 0.03 0.66 ± 0.02 0.65 ± 0.01
LinSep 0.80 ± 0.02 0.82 ± 0.01 0.72 ± 0.02 0.73 ± 0.01 0.75 ± 0.01 0.79 ± 0.03

MFABA Cluster 0.73 ± 0.01 0.75 ± 0.02 0.62 ± 0.01 0.66 ± 0.03 0.66 ± 0.03 0.71 ± 0.02
LinSep 0.81 ± 0.02 0.85 ± 0.01 0.74 ± 0.02 0.79 ± 0.01 0.80 ± 0.01 0.88 ± 0.03
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Table 18: Average F1 for the GoEmotions Dataset (Unsupervised).

Attribution
Method

Concept
Type

Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim Cluster 0.18 ± 0.03 0.18 ± 0.02 0.23 ± 0.01 0.26 ± 0.03 0.15 ± 0.02 0.15 ± 0.01
LinSep 0.18 ± 0.01 0.19 ± 0.03 0.23 ± 0.03 0.25 ± 0.02 0.14 ± 0.01 0.16 ± 0.03

LIME Cluster 0.18 ± 0.02 0.26 ± 0.01 0.28 ± 0.02 0.26 ± 0.03 0.23 ± 0.02 0.25 ± 0.01
LinSep 0.25 ± 0.01 0.35 ± 0.02 0.34 ± 0.01 0.38 ± 0.02 0.24 ± 0.01 0.31 ± 0.03

SHAP Cluster 0.22 ± 0.01 0.27 ± 0.03 0.32 ± 0.02 0.37 ± 0.01 0.19 ± 0.03 0.27 ± 0.02
LinSep 0.27 ± 0.02 0.31 ± 0.01 0.33 ± 0.01 0.40 ± 0.02 0.29 ± 0.01 0.28 ± 0.03

RISE Cluster 0.21 ± 0.03 0.27 ± 0.02 0.32 ± 0.02 0.38 ± 0.01 0.24 ± 0.02 0.27 ± 0.01
LinSep 0.36 ± 0.01 0.36 ± 0.02 0.37 ± 0.01 0.42 ± 0.03 0.32 ± 0.01 0.34 ± 0.02

SHAP IQ Cluster 0.20 ± 0.02 0.27 ± 0.01 0.28 ± 0.01 0.31 ± 0.02 0.24 ± 0.03 0.22 ± 0.01
LinSep 0.34 ± 0.01 0.35 ± 0.03 0.35 ± 0.02 0.38 ± 0.01 0.29 ± 0.02 0.35 ± 0.03

IntGrad Cluster 0.23 ± 0.01 0.19 ± 0.02 0.27 ± 0.03 0.25 ± 0.01 0.18 ± 0.01 0.19 ± 0.02
LinSep 0.28 ± 0.02 0.29 ± 0.01 0.27 ± 0.02 0.32 ± 0.03 0.24 ± 0.02 0.23 ± 0.01

GradCAM Cluster 0.20 ± 0.01 0.21 ± 0.03 0.25 ± 0.02 0.31 ± 0.01 0.20 ± 0.03 0.21 ± 0.02
LinSep 0.27 ± 0.02 0.34 ± 0.01 0.33 ± 0.01 0.35 ± 0.02 0.25 ± 0.01 0.26 ± 0.03

FullGrad Cluster 0.18 ± 0.03 0.19 ± 0.02 0.23 ± 0.01 0.26 ± 0.03 0.16 ± 0.02 0.22 ± 0.01
LinSep 0.26 ± 0.02 0.30 ± 0.01 0.29 ± 0.02 0.32 ± 0.01 0.27 ± 0.01 0.25 ± 0.03

CALM Cluster 0.23 ± 0.01 0.24 ± 0.02 0.28 ± 0.01 0.30 ± 0.02 0.22 ± 0.02 0.25 ± 0.01
LinSep 0.29 ± 0.02 0.35 ± 0.01 0.33 ± 0.02 0.37 ± 0.01 0.27 ± 0.01 0.30 ± 0.03

MFABA Cluster 0.19 ± 0.01 0.26 ± 0.03 0.27 ± 0.02 0.34 ± 0.01 0.23 ± 0.02 0.26 ± 0.01
LinSep 0.28 ± 0.02 0.36 ± 0.01 0.32 ± 0.01 0.36 ± 0.03 0.29 ± 0.03 0.34 ± 0.02
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Table 19: Detection F1 (avg. across concepts) from SAE concepts: 92% through CLIP for image
datasets and 81% through Gemma for text datasets.

Concept Detection Methods

CLS RandTok LastTok MeanTok SuperTok (Ours)

CLEVR 0.898 ± 0.135 0.504 ± 0.077 0.504 ± 0.077 0.609 ± 0.083 0.992 ± 0.090
COCO 0.462 ± 0.064 0.335 ± 0.049 0.339 ± 0.049 0.591 ± 0.069 0.582 ± 0.000
Surfaces 0.419 ± 0.062 0.345 ± 0.042 0.344 ± 0.042 0.479 ± 0.074 0.501 ± 0.085
Pascal 0.570 ± 0.063 0.398 ± 0.049 0.404 ± 0.053 0.601 ± 0.060 0.662 ± 0.000
Sarcasm 0.662 ± 0.075 0.659 ± 0.052 0.659 ± 0.052 0.659 ± 0.052 0.659 ± 0.052
iSarcasm 0.706 ± 0.069 0.676 ± 0.044 0.676 ± 0.044 0.703 ± 0.051 0.777 ± 0.054
GoEmotions 0.159 ± 0.067 0.124 ± 0.062 0.124 ± 0.062 0.350 ± 0.106 0.395 ± 0.093

N SPARSE AUTOENCODERS

N.1 SAES FOR CONCEPT DETECTION

Sparse autoencoders (Goh et al., 2021) (SAEs) have recently been proposed as a mechanism for un-
covering latent concepts in large models. By training an encoder–decoder architecture with sparsity
constraints, SAEs aim to discover a set of basis features that are both interpretable and disentan-
gled. This approach is attractive for concept analysis because sparsity encourages individual hidden
units to capture relatively specific and semantically meaningful directions in representation space.
In principle, such units could act as natural “concept detectors” without additional supervision.

Despite these benefits, SAEs come with notable limitations. Training them at scale is extremely
resource-intensive, and thus only a small number of pretrained SAEs have been made publicly avail-
able. These models are typically trained on very specific layers of particular architectures and cannot
be easily transferred to other checkpoints or layers. For this reason, we restrict our comparisons to
what is currently feasible: an SAE trained on the penultimate residual stream of CLIP (Radford
et al., 2021; Schuhmann et al., 2022; Ilharco et al., 2021) (covering 92% of the model depth for im-
ages) and SAEs trained on intermediate layers of Gemma (Team et al., 2024; Lieberum et al., 2024)
(covering 81% of the depth for text). A second practical issue is that SAEs output thousands of
candidate units, which makes automatic labeling more difficult. To address this, we filtered out units
that activated on nearly all samples or no samples (Cywiński & Deja, 2025), or with insufficient
activation strength (Gao et al., 2024b).

After filtering, we evaluated the retained SAE units as potential unsupervised concept detectors. We
apply the same SuperActivator paradigm for detection, treating CLS and token-alignment with the
retined SAE units as concept activation scores.

Table 19 shows the F1 concept detection performance for the best-perfoming SAE units for each
ground truth concept. Our SuperActivators method performs quite well across all datasets. How-
ever, we note in Figure 31 that our method achieved peak performance by just using a much larger
subset of the most activated tokens (larger N%). We suspect this is due to the sparsity constraint in
SAE training objectives. By penalizing high activations, SAEs eliminate weak and noisy responses
and shrink the scale of the surviving ones. With less contrast between the strongest and moderate
responses, concept evidence becomes spread across more activated tokens and less concentrated in
the tail.

N.2 SAES FOR CONCEPT ATTRIBUTION

Having established that SAEs can act as competitive unsupervised detectors, we next evaluate
whether they can also support concept attribution. Tables 20 and 21 report average attribution F1

across both image (using CLIP model) and text (using Gemma model) datasets.

Across all methods, we observe a consistent pattern: SuperActivators pooling yields stronger attribu-
tion performance than CLS pooling. On image datasets, SuperActivators improves scores in nearly
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Figure 31: For SAEs The strongest globally applicable concept signals are not concentrated in a
very sparse set of signals.

every setting, often by non-trivial margins. Similar trends appear in text, where SuperActivators
again provides the strongest performance in most cases.

While the average F1 across all concepts remains modest relative to supervised baselines, the results
highlight a consistent trend: even for SAEs, SuperActivators consistently provides a more accurate
signal for both concept detection and attribution than global CLS-based pooling. This suggests that
fine-grained, token-level alignment is crucial for extracting interpretable signals from unsupervised
representations.

Table 20: Average Attribution F1 for SAEs on Image Datasets with CLIP model.

(a) CLEVR and COCO Dataset

Attribution Method CLEVR COCO

CLS SuperActivators CLS SuperActivators

LIME 0.45 ± 0.04 0.49 ± 0.01 0.32 ± 0.03 0.33 ± 0.04
SHAP 0.47 ± 0.05 0.51 ± 0.03 0.31 ± 0.03 0.34 ± 0.02
RISE 0.44 ± 0.03 0.48 ± 0.03 0.30 ± 0.02 0.33 ± 0.01
SHAP IQ 0.46 ± 0.04 0.46 ± 0.02 0.28 ± 0.05 0.33 ± 0.04
IntGrad 0.40 ± 0.05 0.44 ± 0.04 0.27 ± 0.04 0.31 ± 0.03
GradCAM 0.36 ± 0.05 0.40 ± 0.05 0.26 ± 0.05 0.30 ± 0.04
FullGrad 0.37 ± 0.04 0.41 ± 0.02 0.32 ± 0.03 0.31 ± 0.04
CALM 0.44 ± 0.02 0.49 ± 0.04 0.27 ± 0.05 0.32 ± 0.03
MFABA 0.44 ± 0.03 0.49 ± 0.02 0.28 ± 0.04 0.30 ± 0.03

(b) OpenSurfaces and Pascal Dataset

Attribution Method OpenSurfaces Pascal

CLS SuperActivators CLS SuperActivators

LIME 0.41 ± 0.04 0.43 ± 0.04 0.40 ± 0.05 0.44 ± 0.04
SHAP 0.31 ± 0.03 0.35 ± 0.02 0.41 ± 0.04 0.45 ± 0.03
RISE 0.36 ± 0.05 0.40 ± 0.02 0.40 ± 0.05 0.44 ± 0.05
SHAP IQ 0.37 ± 0.04 0.41 ± 0.05 0.41 ± 0.05 0.45 ± 0.01
IntGrad 0.39 ± 0.02 0.43 ± 0.02 0.46 ± 0.05 0.50 ± 0.02
GradCAM 0.32 ± 0.05 0.36 ± 0.02 0.34 ± 0.03 0.38 ± 0.04
FullGrad 0.34 ± 0.03 0.38 ± 0.03 0.36 ± 0.05 0.40 ± 0.02
CALM 0.26 ± 0.05 0.30 ± 0.02 0.35 ± 0.04 0.39 ± 0.03
MFABA 0.39 ± 0.04 0.39 ± 0.02 0.41 ± 0.03 0.46 ± 0.02
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Table 21: Average Attribution F1 for SAEs on Text Datasets with Gemma Model.

Attribution
Method Sarcasm iSarcasm GoEmotions

CLS Super
Activators CLS Super

Activators CLS Super
Activators

LIME 0.37 ± 0.05 0.36 ± 0.02 0.62 ± 0.03 0.65 ± 0.04 0.16 ± 0.04 0.20 ± 0.04
SHAP 0.33 ± 0.04 0.37 ± 0.04 0.59 ± 0.05 0.64 ± 0.01 0.18 ± 0.03 0.23 ± 0.02
RISE 0.37 ± 0.05 0.42 ± 0.03 0.68 ± 0.04 0.72 ± 0.04 0.20 ± 0.05 0.22 ± 0.02
SHAP IQ 0.40 ± 0.05 0.40 ± 0.02 0.68 ± 0.05 0.69 ± 0.02 0.18 ± 0.04 0.23 ± 0.02
IntGrad 0.31 ± 0.05 0.35 ± 0.04 0.52 ± 0.05 0.57 ± 0.04 0.10 ± 0.04 0.15 ± 0.05
GradCAM 0.34 ± 0.04 0.39 ± 0.03 0.53 ± 0.03 0.58 ± 0.01 0.16 ± 0.05 0.20 ± 0.02
FullGrad 0.28 ± 0.05 0.33 ± 0.03 0.59 ± 0.04 0.59 ± 0.03 0.14 ± 0.03 0.18 ± 0.04
CALM 0.37 ± 0.04 0.39 ± 0.04 0.56 ± 0.05 0.60 ± 0.04 0.16 ± 0.03 0.21 ± 0.02
MFABA 0.33 ± 0.03 0.38 ± 0.03 0.55 ± 0.04 0.60 ± 0.02 0.18 ± 0.03 0.23 ± 0.02
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