Under review as a conference paper at ICLR 2026

SUPERACTIVATORS: TRANSFORMERS CONCENTRATE
CONCEPT SIGNALS IN JUST A HANDFUL OF TOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Concept vectors aim to enhance model interpretability by linking internal repre-
sentations with human-understandable semantics, but their utility is often limited
by noisy and inconsistent activations. In this work, we uncover a clear pattern
within this noise, which we term the SuperActivator Mechanism: while in-
concept and out-of-concept activations overlap considerably, the token activations
in the extreme high tail of the in-concept distribution provide a clear, reliable
signal of concept presence. We demonstrate the generality of this mechanism
by showing that SuperActivator tokens consistently outperform standard vector-
based and prompting concept detection approaches—achieving up to a 14% higher
F1 score—across diverse image and text modalities, model architectures, model
layers, and concept extraction techniques. Finally, we leverage these SuperActi-
vator tokens to improve feature attributions for concepts. []_-]

1 INTRODUCTION

Modern transformer-based models, while increasingly powerful and ubiquitous (Minaee et al.,
2025)), remain opaque and can behave in ways that are unpredictable or harmful (Greenblatt et al.,
2024; Roose). This opacity hinders our ability to identify and debug undesirable representa-
tions—such as spurious correlations(Zhou et al.l 2024b), biases |Yang et al.[ (2024), or fragile rea-
soning Berglund et al.|(2024)—or to intervene when models produce undesirable outputs.

Concept vectors (Kim et al., 2018; Zhou et al. 2018), or semantically meaningful directions in a
model’s latent space, provide a lightweight tool for examining and influencing internal representa-
tions. They have been used to uncover hidden model failures (Abid et al.l [2022; |Yeh et al.| [2020),
and to steer model behavior away from hallucinations (Rimsky et al.|[2023}; [Suresh et al., 2025)), un-
safe responses (Liu et al., 2023 |Xu et al.,2024), and toxic language (Turner et al., 2024; Nejadgholi
et al., [2022). Unsupervised concept extraction is especially powerful, since labeled data is costly
and such methods have the potential to uncover and explain new model behaviors, contributing to
scientific discoveries (Lindsey et al., 2025).

To analyze the presence of concepts within a sample, we typically rely on their activation scores—a
measure of alignment between an input token’s embedding and a concept vector. However, these
scores are often noisy and unreliable, and as a result misrepresent true concept presence. For in-
stance, prior works have found that concepts frequently activate on unintended semantics|Olah et al.
(2020); Bricken et al.|(2023)), generate overlapping signals for correlated concepts|Goh et al.| (2021);
Olah et al.|(2020), and exhibit unstable activation patterns across different model layers [Nicolson
et al.| (2025). The example in Figure [T] provides an illustration of such activation ambiguity on an
image of a dog in a car mirror. The activation heatmaps for both the Animal and Person concepts
appear to highlight the same region, even though only the former is present. Moreover, it is evident
that many tokens on the car itself fail to activate for the Car concept. Such noisy signals makes it
difficult to reliably detect or localize concepts.

To better understand the source of this noise, we examined the global activation distributions of
in-concept and out-of-concept tokens and found that while they overlap considerably, there is clear
separation in the extreme tail of the in-concept distribution. Notably, these tail-end activations are
well-distributed across true-concept samples, allowing them to reliably distinguish concept presence
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Figure 1: The SuperActivator Mechanism concentrates concept information into a sparse set of
high-activation signals; by focusing on these signals, one can distinguish the true concepts in a
COCO image even when token activations are misleading, spuriously highlighting absent concepts
and providing incomplete recall of the true ones.

even when token activation maps are misleading or ambiguous (see Figure[T). We term this behavior
the SuperActivator Mechanism and show it is a general property of how transformers encode
semantics. Our analysis demonstrates that this mechanism more accurately detects concepts than
standard concept-vector and prompting methods across various image and text modalities, model
architectures, model layers, and concept extraction techniques. We also show that leveraging these
localized signals leads to improved concept attributions.

Our key contributions are summarized as follows:

* SuperActivator Mechanism: By analyzing the global concept activation distributions, we dis-
cover that the highly activated tokens in the tail of the true-concept distribution are reliable indi-
cators of concept presence. Using just a small set of these extreme activations, our method con-
sistently outperforms standard vector and prompt-based concept detection methods, consistently
yielding improved F} scores by up to 14%.

* Broad Generality: We show the SuperActivator Mechanism is a fundamental property of how
transformers encode semantics, consistent across text and image modalities, model architectures,
model layers, and both supervised and unsupervised concept extraction techniques.

* Application for Improved Concept Attributions: By localizing concept signals with the Super-
Activator Mechanism, we obtain attribution maps with stronger alignment to ground-truth anno-
tations and superior insertion/deletion performance relative to global concept-vector baselines.

2 CONCEPT VECTOR PRELIMINARIES

This section introduces the basic formalism for representing inputs, defining concept vectors, and
computing activation scores; additional mathematical details are provided in Appendix [C}

Let f be a trained transformer model that processes an input sample z € X’ (an image or a text
sequence) through its layers. From any given layer of f, we can extract token-level embeddings
(2iK(z), . .. z“’kw)(:z:)) € (RY)™*) and a sample-level embedding 2**(z) € R?. The number of

) n(
tokens, n(z), is sample dependent since it is influenced by text lengths and image sizes. For any
semantic concept ¢, we associate a concept vector v, € R, which represents a direction in the
embedding space (see Section 1] for extraction methods). The concept activation score of an em-
bedding z with respect to concept ¢ is defined as s.(z) = (z,v.), where positive scores indicate
alignment with the concept.

We are interested in characterizing concept activation scores globally across many samples. There-
fore, for each concept ¢ we define the in-concept distribution D' as the collection of activation
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Figure 2: Transformers distribute concept signals unevenly across ground-truth regions, leading to
substantial overlap between the concept-positive activation scores and supp (D). In this example
from the Augmented GoEmotions dataset, the ground-truth span for joy is highlighted in a Reddit
comment, with token-level activations from a Llama-Vision-Instruct model shown both as a heatmap
over the text and as distributions. While a few true-concept tokens (separated by a blue dotted line)
exhibit extremely high activations, most remain indistinguishable from non-concept tokens within
the sample and across the global test set (supp(D™)).

scores from tokens labeled concept-positive for ¢, and the out-of-concept distribution D" as those
from tokens labeled concept-negative. Formally, let Z denote the set of tokens across samples and
S. = {s.(2) : 2 € Z} the corresponding collection of activation scores. If Z" C Z are the tokens
containing ¢ and Z" = Z \ ZI", then

DM ={s.(2):2€ 2"}, DM ={s.(2):2€ ZM}.

Note that Z%" excludes all tokens from samples containing ¢, even those not labeled with the con-
cept, in order to prevent self-attention from leaking concept information into the out-of-concept
distribution.

The support of a distribution is the set of values with nonzero probability, and the tail refers to its
extreme regions with small probability mass. To quantify how much DI and D™ overlap, we use
the overlap coefficient (OVL), defined as the shared probability mass between the two distributions:

o}

VLD, D) = [ min(p"(s). 5(5)) s,

— 00

where p'" and p°* are their densities. Large values of OVL indicate that most in-concept activations
lie within the overlapping support supp(D;!)Nsupp(D¢") and are thus statistically indistinguishable
from out-of-concept activations, whereas small values arise when only the high-activation tail of D'

extends beyond D", yielding clearer separation.

One primary application of concept activation scores is concept detection (Wu et al.| 2025} Riickert
et al.l 2023} |Groza et al.| |2024])), which aims to determine whether a concept is present in a sample.
Standard methods apply an aggregation operator G : R™(®)+1 — R to obtain a per-sample concept
activation score:

se8(2) = G(sc(2(2)), ., selzmn(ey (@), (2 (2))).
The concept is considered detected if s¢* () exceeds a threshold, typically obtained via calibration.
There is no consensus on the best choice of aggregation operator G. Common strategies include us-
ing the score of the [CLS] token (Nejadgholi et al., 2022} Yu et al.,[2024)), applying mean (McKenzie
et al.} 2025; |Benou & Riklin-Raviv, |2025) or max-pooling (Tillman & Mossing, [2025; Wu et al.,
2025)), or using the score of the last token (Chen et al. 2025} Tillman & Mossing, 2025).

Concept activations are also useful for concept localization (or attribution), which seeks to answer
where a concept is located within a sample [Santis et al.[(2024). When evaluating concept localiza-
tions, we desire attribution maps that align with ground-truth annotations—segmentation masks for
images or span-level labels for text. At the same time, attributions should be faithful (Zhang et al.,
2023)), meaning that they accurately reflect the features the model actually relies on.
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Figure 3: As concept signals evolve across transformer layers, D" and D% become more dis-
tinct with depth, though the separation is concentrated in a small subset of tokens in the tail of
D", Shown here are activation distributions for linear separator concepts from LLAMA-3.2-11B-
VISION-INSTRUCT on the OpenSurfaces dataset (Metal, Rubber, and Fabric); additional examples
across datasets, models, and concept types are provided in Appendix@

3 THE SuperActivator MECHANISM YIELDS CLEAR CONCEPT SIGNAL
WITHIN NOISY CONCEPT ACTIVATIONS

3.1 CONCEPT ACTIVATIONS ARE NOISY AND INCONSISTENT

Concept vectors promise interpretability but they often deliver noisy activations that are hard to
extract meaningful insights from. On the global image/sentence level, it is now well documented
that concept vectors can encode spurious correlations and blur important context-specific distinc-
tions (Abid et al., 2022} [Zhou et al., [2021)). These issues are further maintained at the local level
of individual tokens leading to issues including entanglement (co-activation of related concepts)
and polysemanticity (a single vector representing unrelated concepts) (Goh et al.,|2021; |Olah et al.,
2020; Bricken et al., [2023).

We identify an additional challenge: transformers distribute concept signals non-uniformly across
true-concept regions. This is illustrated in Figure 2| where a few tokens exhibit strong activations
clearly aligned with the concept Joy, but many other positively labeled tokens have indistinguishable

activations from those of non-concept tokens. As shown
on the right of Figure [2] the true-concept token acti-
vations significantly overlap with non-concept activa-
tions, both within the sample and relative to the broader
supp(D°™). Consequently, even if a few key tokens
are correctly identified, a single global threshold cannot 75%
cleanly separate in-concept tokens from out-of-concept

% In-Concept Images w/ a
Token Act > 99% D2t

100%

ones 50%
X . . Per-Concept
To understand how these noisy activations arise, we ex- 25% -8~ Average
amine D" and D™ across transformer layers. D™ 0% ! T T
remains roughly normal and centered near zero, while 0% 25% 50% 75% 100%
early-layer DI overlaps heavily with it, yielding high % Through Model

OVL(D", D), as shown in Figure 3  With depth,

overlap decreases and stabilizes in middle layers, con- Figure 4: Most true-concept images in
sistent with prior findings that concept representations o OpenSurfaces dataset have at least
become more separable in intermediate layers and some- .. octivation in the high-activation tail
times collapse in the final layer due to task-specific com- ¢ pin (e separated from DO,
pression (Saglam et all, 2023} [Yu et al] 2024} [Dalvi ¢’ ¢

et al., [2022).
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The separation between D" and D" does not arise from a uniform shift of all in-concept activations.
Instead, while many scores remain overlapping with supp(DS") and are thus indistinguishable from
noise, D" develops a heavy tail as a small subset of extreme activations become increasingly sepa-
rable with depth.

Notably, we find that the high-activation tail of D" provides good coverage: most true-concept
samples contain at least one activation above this threshold. We define the tail as scores within DIt
that exceed the 99th percentile of D%™. This effect is shown for linear separator concepts on the
OpenSurfaces dataset in Figure ] and we show that it holds across datasets, models, and concept
vector types in Appendix [A]

3.2 INTRODUCING THE SuperActivator MECHANISM

A reliable concept signal should be clear, with activations that stand out from noise, and accurate,
with high precision and broad coverage across true-concept samples. We find that such signals arise
sparsely but consistently in the high-activation tail of D": they lie well outside D" (Figure and
appear in most concept-positive samples (Figure d)). These results hold cross modalities, architec-
tures, and concept vector types, suggesting it is a general property of transformer representations.

We term this the SuperActivator Mechanism: a small set of extreme token activations carries the
concept signal with both clarity (separation from D) and coverage (broad per-sample presence).

Defining SuperActivators. Let Sfal,c = {s.(2) : 2 € ZI" from a validation set } be the empirical

activation scores for concept c. For a sparsity level N € [1,100], we define the SuperActivator
threshold as

super +

on = Quony100(Siiie)
where (Q4(S) denotes the g-quantile of a set of scores S. Tokens whose activations exceed this
threshold form the set of SuperActivators,

M= (e 2 2 T,

Intuitively, this means we are isolating the top N % of the in-concept distribution D", i.e. tokens in
its high-activation tail.

Leveraging SuperActivators for Concept Detection. We develop a SuperActivator-based aggre-
gator that predicts the presence of ¢ in a sample x if it contains at least one SuperActivator for
that concept. Concretely, we apply a max-pooling operator G, Over token activations, predicting
concept presence if Guax (sc(21%(2)), .. ., sc(zg’%‘w)(:p))) > N

This approach is closely related to the standard max aggregator (Wu et al., 2025} Xie et al.,2025)), but
instead of thresholding on the most activated token within each sample, thresholds are derived from
the globally most activated tokens across samples. This design enables direct control over sparsity,
letting us study how detection performance varies with N (Appendix[E). We find that SuperActivator
detection is most effective at very low N, showing that the most reliable concept information is
concentrated in a small high-activation tail of DI, For final evaluation in the following section, we
calibrate IV per-concept on the validation set to maximize detection F.

4 CONCEPT DETECTION AND LOCALIZATION WITH SUPERACTIVATORS

4.1 EXPERIMENTAL SETUP

We evaluate our framework across different modalities, models and concept types.

Datasets. Vision datasets include CLEVR (Johnson et al., 2017), COCO (Lin et al.| 2014), and
the PASCAL (Everingham et al.,|2010) and OPENSURFACES (Bell et al.| [2013) sections of the BRO-
DEN dataset (Bau et al.l [2020). For text, where token-level labels are scarce, we construct three
datasets: SARCASM, AUGMENTED ISARCASM (Oprea & Magdy, 2020), and AUGMENTED GOE-
MOTIONS (Demszky et al,2020). Full details are provided in Appendix

Models. For images, we extract both patch and CLS token embeddings from the CLIP ViT-
L/14 (Radford et al.l |2021) and LLAMA-3.2-11B-VISION-INSTRUCT (Meta, 2024). For text,
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Table 1: Our SuperActivator-based method outperforms concept vector-based and prompt-
ing baselines on concept detection F; scores. The results shown here are for linear separator
concepts using the LLaMA-Vision-Instruct model, where we improve performance by up to 14%
over the best baseline. This trend generally holds across models and concept types, as detailed in
Appendix D] Bold indicates the best score; underline marks the second best score.

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct
Chen et al.|(2025) (McKenzie et al.}|2025) (Yu et al.};[2024)  (Wu et al.,[2025) (Ours)

CLEVR 097+0.09 0.88+0.00 0.92 +0.00 096+0.02 0.99+0.01 1.000.00
COCO 0.61+0.01 0.68+£0.01 0.55+0.01 0.57+0.01 0.69+0.05 0.83+0.01
Surfaces 0.44+0.01  0.41+0.01 0.39 +£0.01 0.46 = 0.01 049+0.06 0.56 +0.02
Pascal 0.66+0.01  0.60+0.01 0.59 +£0.01 0.65+0.01 0.68+0.05 0.82+0.01

Sarcasm  0.66 £0.06  0.68 +0.05 0.66 £ 0.06 0.74+0.06 0.68+0.07 0.87 +0.04
iSarcasm 0.89+0.04 0.72+0.03 0.79 £0.03 091+0.03 0.79+0.05 0.92+0.03
GoEmot 0.37+0.03 0.31+0.03 0.19 £0.03 032+0.03 025+0.10 0.46+0.03
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Figure 5: SuperActivator-based concept detection is most effective when using only a small
fraction of the most highly activated SuperActivators (5-10% of tokens). Shown here are the
numbers of linear separator concepts from LLaMA-Vision-Instruct across datasets that achieve
their strongest F scores at each sparsity level N; comprehensive results appear in Appendix @

we use LLAMA-3.2-11B-VISION-INSTRUCT, GEMMA-2-9B (Team et al.| [2024), and QWEN3-
EMBEDDING-4B (Zhang et al., 2025). Since these models lack an explicit [CLS] token for text
inputs, we approximate a [CLS]-style representation by averaging token embeddings, a strategy
found to be quite effective (Choi et al.,2021; |Tang & Yang|, 2024; Dosovitskiy et al.| [2020; [Reimers
& Gurevych, 2019).

Concept Types. We compute concepts at both the input token and [CLS]-level using the methods
detailed in Appendix[B.2} (1) mean prototypes (Zou et al.,[2023), (2) labeled linear separators (Kim
et al., 2018)), (3) k-means (Ghorbani et al.l [2019; [Dalvi et al., 2022)), (4) cluster-based separators
(clusters as pseudo-labels), and (5) Sparse Autoencoders (Bricken et al.[2023)). We incorporate the
unsupervised concepts into our evaluation by matching each ground-truth concept with the discov-
ered concept that is most reliable at detecting it. All methods in the following experiments make
use of the same underlying concept vectors; detection strategies differ only in how activations are
aggregated, while localization strategies generate attributions with respect to the same vectors.

4.2 SUPERACTIVATORS ARE RELIABLE INDICATORS OF CONCEPT PRESENCE

We now demonstrate that the SuperActivator tokens serve as more reliable indicators of concept
presence than both concept-vector baselines and prompting methods.

We compare against several baseline aggregation strategies: Gcrs, which selects the [CLS] acti-
vation; Gpean, Which averages input token activations; Giag, Which selects the final input token
activation; and Gyang, Which selects a random token activation. We also include a prompting base-
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(a) Original Image (b) Global Concept ‘Person’ (c) SuperActivators for ‘Person’

Figure 6: SuperActivators produce attribution masks that align more closely with the ground
truth concept region. In (a), the yellow outline denotes the ground truth mask for the concept per-
son. Compared to the Global Concept Objective (b), which yields noisier maps that miss parts of the
person and highlight irrelevant regions, the SuperActivators Objective (c) provides local attribution.
The green boxes in (c) mark the SuperActivators for the concept person, with their average embed-
ding used for the objective. Results are shown for LIME-based attribution on the COCO dataset
using the LLaMA model. Red indicates positive contributions and blue negative contributions.

line, where LLaMA-Vision-Instruct is directly queried about the presence of each concept, bypassing
concept vectors altogether (Wu et al.| 2025} [Robicheaux et al, 2025} [Tillman & Mossing}, [2025).

For each concept, the model layer is calibrated on the validation set to maximize F1-score, and final
results are averaged across concepts weighted by the number of test samples. This follows prior
work showing that concepts become more or less distinguishable at different layers
let all, 2025}, [Alain & Bengiol 2018}, [Arps et all, [2022)), so we select the best-performing layer per
concept independently for all baselines (except prompting). To make this computationally feasi-
ble, calibration is performed over a fixed grid of layers (see Appendix [B.I|for details). We report
additional ablations that evaluate average detection performance across layers (See Appendix [B),
optimal sparsity levels across layers (See Appendix [G), and the best-performing layers across con-
cepts (See Appendix [H).

As shown in Table[I] our SuperActivator method consistently outperforms all other detection strate-
gies on linear separator concepts from the LLaMA-Vision-Instruct model. Prompting is typically
the next strongest method, with CLS-token aggregators also showing competitive performance in
certain settings. Figure[5|shows that performance typically peaks when using only a very small frac-
tion of the most activated tokens—2—-10% for COCO, OPENSURFACES, and GOEMOTIONS, while
ISARCASM peaks at a moderately higher 40%. This pattern highlights that only a sparse subset
of tokens carry the strongest and most reliable concept information; including additional, weaker
activations introduces noise from overlapping supports with D", which dilutes performance rather
than improving it. We note one nuance with Sparse Autoencoder concepts, where peak performance
occurs at higher IV levels, likely because SAEs already enforce sparsity during training. Detailed
SAE-specific results and discussion are provided in Appendix [J.T}

Across image and text datasets, model architectures, and concept vector types, the same pattern
emerges: the most reliable concept signals reside in the sparse, high-activation tail of D'. The Su-
perActivator Mechanism thereby reflects a core principle of how transformers represent semantics.

4.3 SUPERACTIVATORS IMPROVE ATTRIBUTIONS FOR CONCEPTS

Standard concept attribution typically evaluates relevance with respect to a single global concept
vector aggregated over many samples. While this captures broad concept information, it often blurs
local context and introduces spurious correlations. In contrast, SuperActivators provide more con-
sistent concept signals for detection (see Section [£.2), are tied to the specific local context of each
sample, and avoid averaging across disparate occurrences. We hypothesize that using SuperActi-
vators as the attribution objective improves attribution across three metrics: accuracy measuring
average F) against ground truth, and insertion and deletion score based on the faithfulness metric.

To test this, we compare two attribution objectives: (1) the standard global concept vector and (2) our
proposed method, which averages the embeddings of local SuperActivators within each instance.



Under review as a conference paper at ICLR 2026

Table 2: SuperActivators yield more accurate and faithful attributions than global concept vec-
tors. Accuracy is measured by attribution F; (alignment with ground-truth masks), while faithful-
ness is measured by insertion scores (7 is better) and deletion scores ({ is better). Results are shown
for COCO (images) with CLIP and iSarcasm (text) with Gemma, comparing LinSep—Concept with
SuperActivators. Similar patterns hold across other image datasets (CLEVR, OpenSurfaces, Pascal)
and text datasets (Sarcasm, GoEmotions).

Attribution Method Dataset  Attribution F} (T is better) Insertion Score (1 is better) Deletion Score (/. is better)

Super Super Super

Concept Activators Concept Activators Concept Activators
LIME COCO  0.2940.02  0.40+0.03 0.3334+0.009 0.367+0.008 0.0104-0.001 0.00740.001
(Ribeiro et al.J[2016] iSarcasm 0.76+0.02  0.89+0.01 0.3834+0.008 0.4124+0.009 0.00940.000 0.005+4-0.004
SHAP COCO  0.35+0.01 0.37£0.02 0.33440.004 0.365+0.004 0.01040.001 0.008+-0.002
(Lundberg & Leel2017]  iSarcasm 0.7740.03  0.90+£0.02 0.384+0.008 0.410+0.003 0.009+0.001 0.006+0.001
RISE COCO  0.35+0.02 0.38+0.03  0.32840.004 0.35440.007 0.01240.002 0.009+-0.000
(Petsiuk et al.|[2018] iSarcasm 0.814+0.01  0.94+0.03  0.3824+0.005 0.409+0.009 0.0084+0.001 0.005+40.002
SHAP 1Q COCO  0.344+0.01 0.37£0.01 0.33040.005 0.358+0.008 0.01140.002 0.009+0.001
(Fel et al..[2023] iSarcasm 0.79+£0.02  0.924+0.01 0.37940.004 0.407+£0.004 0.009+0.001 0.006+0.001
IntGrad COCO  0.2840.00 0.35+0.04 0.32640.003 0.35940.005 0.01340.003 0.0104-0.003
(Sundararajan et al.}2017] iSarcasm 0.7240.02  0.84+0.01 0.3754+0.004 0.40540.009 0.0114-0.001 0.008+-0.003
GradCAM COCO  0.374+0.01 0.38+0.02 0.32940.005 0.3524+0.004 0.01240.003 0.010+-0.001
(Selvaraju et al.}2017} iSarcasm 0.74+0.02 0.8740.03 0.37740.004 0.403+0.008 0.010+0.001 0.007+0.001
FullGrad COCO  0.43£0.01 0.43£0.00 0.3314+0.006 0.35740.010 0.01140.001 0.009+4-0.002
(Srinivas & Fleuret/2019] iSarcasm 0.73+0.03  0.85+0.01 0.376+0.005 0.402+0.010 0.01040.001 0.007+0.001
CALM COCO  0.4240.01 0.42+0.01 0.33240.010 0.360+0.004 0.01140.002 0.008+4-0.000
(Mahajan et al.[2021) iSarcasm 0.784+0.01  0.91+0.02 0.380+0.007 0.408+0.004 0.00940.001 0.006+-0.001
MFABA COCO  0.33£0.01 0.39£0.03 0.33940.005 0.37440.006 0.0064-0.001 0.0044-0.001

(Srinivas & Fleuret)2019] iSarcasm 0.774+0.02  0.90+0.03  0.391£0.002 0.420+0.009 0.006=0.001 0.003+0.001

We define SuperActivators using the N% that yielded the most accurate detection capabilities on
the validation set. Attribution maps are then generated using standard methods (Appendix [L.T),
but instead of explaining predictions as in the conventional setting, adapted to explain the average
embedding of local SuperActivators. Scores are binarized with the threshold maximizing validation
F , and samples without SuperActivators for a concept have all patches marked negative.

This approach yields attributions more closely aligned with ground-truth segmentation masks than
global concept vectors. Across datasets and attribution methods, local SuperActivators consistently
improve F}, outperforming the global baseline on both COCO and ISARCASM (Table[2)), with sim-
ilar gains across four image and three text datasets (Tables[3H9). Figure[f]illustrates this advantage:
SuperActivators for person provide more complete coverage of the target object while avoiding irrel-
evant regions incorrectly highlighted by the global vector. In addition, SuperActivators-based attri-
butions consistently achieve higher insertion and lower deletion scores than global vectors, demon-
strating improved attribution based on the faithfulness metric (Table[2).

These findings persist in the unsupervised setting, where clusters that best detect ground-truth con-
cepts in the detection phase also produce higher attribution F; when explanations are generated
using SuperActivators, with consistent improvements observed across all datasets (Tables[TOHI6).

5 RELATED WORK

Concept-Based Interpretability: Concept-based interpretability links model internals with human-
understandable features. Approaches include defining concept vectors as linear separators (e.g.,
TCAV; (Kim et al.,[2018))), or as centroid embeddings from labeled examples (Zou et al., 2023). Un-
supervised discovery methods include ACE (Ghorbani et al.l [2019), hierarchical clustering (Dalvi
et al.,|2022)), matrix factorization approaches (Zhang & Zhang| 2017} Fel et al.,[2022), and sparse au-
toencoders (Cunningham et al., 2023} Gao et al.,[2024a). Across these works, concepts are assumed
to be recoverable as structured vectors, clusters, or basis elements within representation space.

Challenges in Concept Representations: Many open questions remain concerning the structure of
concept representations. The linearity hypothesis posits that concepts correspond to directions in
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activation space, linearly separable and recoverable with simple probes (Mikolov et al., 2013} [EI-
hage et al.,2022). Empirically, however, activations are often entangled, firing on tokens or samples
where the concept is absent or bleeding into related but unintended semantics (Goh et al.| 2021} Olah
et al., 2020), polysemantic, where a single neuron or direction encodes multiple features (Bricken
et al.,|2023; (O’ Mahony et al.,|2023)), and unstable, with concept signals shifting across layers, spa-
tial locations, exemplar sets, and random seeds (Wu et al., 2025; Mahinpei et al., 2021} [Nicolson
et al., 2025; Mikriukov et al.l [2023)). These properties can amplify failure modes such as spurious
correlations (Zhou et al., [2024b) and concept leakage (Parisini et al.| [2025)), undermining both de-
tection and attribution. In response, some approaches enforce more interpretable or disentangled
concept structures (Chen et al 2020; Wang et al., [2024). Our work takes a different perspective:
rather than redesigning representations, we identify a sparse and reliable signal that already exists
within otherwise noisy activation distributions.

Concept Detection: Concept detection is a central task in concept-based interpretability (Wu et al.,
2025]), with practical importance wherever one needs to determine whether a given concept is present
in a sample—for example, detecting clinical or radiological concepts in medical images and reports
(Riickert et al., 2023} |Groza et al.,[2024)) or identifying undesirable online behavior (Liu et al.,|[2023;
Nejadgholi et al., 2022). Most approaches instantiate a concept as a vector (e.g., a prototype or
separator) and then score a sample by its alignment to that vector. This can be done using a global
representation—such as the [CLS] token or pooled embeddings—which can be effective but often
dilute sparse, fine-grained signals (Choi et al.l 2021} Tang & Yang, 2024). When token or patch
embeddings are available, methods instead compute token-level activations and aggregate them into
a single alignment score; common choices include [CLS]-based scoring (Nejadgholi et al.l 2022}
Yu et al) [2024; Behrendt et al., 2025), mean pooling (McKenzie et al., [2025; Benou & Riklin-
Raviv, 2025} [Suresh et al.| 2025), max pooling (Tillman & Mossing, 2025 [Wu et al.| [2025; |[Lim
et al.l 2025} Xie et al., [2025)), or last-token scoring (Chen et al., 2025} [Tillman & Mossing, 2025}
Tang & Yang| 2024)). Beyond vector scoring, concept bottleneck models implicitly encode detection
within a supervised concept layer designed for downstream tasks (Koh et al., 2020). More recently,
high-performing vision—language models have enabled zero-shot prompting that bypasses explicit
concept vectors altogether, with strong results from CLIP and newer multimodal LMs (e.g., GPT-
4o-mini) (Wu et al.| [ 2025; Robicheaux et al, 2025} Tillman & Mossing} 2025).

Feature Attributions for Concepts: Feature attributions for concept tell us where a concept is
located within a sample [Santis et al|(2024). Traditional attribution methods such as Integrated
Gradients (Sundararajan et al., 2017) and Grad-CAM (Selvaraju et al. [2017), along with concept-
based adaptations (Kim et al., [2018}; |Santis et al.l 2024; |Yu et al., 2024; [Fel et al., [2022)), have been
used to connect predictions to concepts. Beyond these, various works generate localization maps via
direct alignment with raw activation scores (Benou & Riklin-Raviv, 2025} [Lim et al., 2025} Zhou
et al.l [2024a;|Lim et al.l|2025)) and attention values (Gandelsman et al., [2023)).

6 DISCUSSION AND FUTURE WORK

In this work, we introduced and characterized the SuperActivator Mechanism, demonstrating that
transformers concentrate reliable concept evidence into a sparse set of highly activated tokens.
Leveraging this property enabled us to cut through the noise of globally aggregated concept vector
activations and uncover more reliable signals of concept presence, which in turn serve as a stronger
basis for concept localization. In the future, investigating how SuperActivators arise during training
may provide deeper insight into how this mechanism emerges. Moreover, applying these principles
in real-world settings for improved concept detection and localization offers the potential to make
model interpretability more actionable in practice.
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A MOTIVATION FOR SUPERACTIVATOR

In this section we motivate our focus on high concept-alignment tokens. For this intial inquiry, we
consider a token separable from the non-concept activation distribution if its concept activation is
greater than 99% of the non-concept token activations. Then, we plot (Left) the percent of true-
concept tokens that are separable from non-concept tokens, averaged across concepts in a dataset
for various models and concept extraction configurations (average and linear separator) throughout
model layers. On the right we plot the percentage of in-concept samples (images, comments, tweets,
etc) that contain at least one token that is separable from the out-of-concept distribution throughout
model layers.

In the leftmost plots, the percentage of separated true-concept tokens gradually increases throughout
the model, though the majority of the tokens are typically indistinguishable from noise. This is par-
ticularly true in the text datasets, which we found to be more challenging for the models and there-
fore it makes sense that they are less separable. For the image concepts, most of the true-concept
images have at least one separable token activation, which generally also increases throughout layers
in the model. In the text setting, though not necessarily the majority of in-concept samples have an
activated patch, a substantial amount of samples do contain one.
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B EXPERIMENTAL CONFIGURATIONS

B.1 EMBEDDING MODELS

We extract both input patch and [CLS] token embeddings from the CLIP ViT-L/14 (Radford
et al., 2021) and LLAMA-3.2-11B-VISION-INSTRUCT (Meta, 2024). For text, we use LLAMA-
3.2-11B-VISION-INSTRUCT, GEMMA-2-9B (Team et al., [2024), and QWEN3-EMBEDDING-
4B (Zhang et al.,|2025)). Since these text models lack an explicit [CLS] token for text inputs, we
approximate a [CLS]-style representation by averaging token embeddings (Choi et al., 2021} [Tang
& Yang, 2024; [Dosovitskiy et al., 2020; Reimers & Gurevychl [2019). For each model, we obtain
embeddings across multiple layers. To ensure comparability, we normalize and mean-center each
layer’s embeddings using statistics computed from the training set.

To make the computation feasible, we evaluate models at a fixed set of default percentage depths
through the network, rather than at every layer. The chosen checkpoints are:

e Vision Models: CLIP: [4, 25, 46, 67, 88, 100]; LLaMA-Vision: [2, 15, 28, 40, 52, 65, 78,
90, 100]

e Text Models: LLaMA-Text: [3, 19, 34, 50, 66, 81, 97, 100]; Gemma: [4, 21, 39, 57, 75,
93, 100]; Qwen: [3, 19, 34, 50, 66, 81, 97, 100]

These default layer subsets balance coverage of early, middle, and late representations while avoid-
ing the prohibitive costs of evaluating every model layer.

B.2 CONCEPT EXTRACTION METHODS

Throughout, let = denote a sample (image or text), and z(x) € R¢ its embedding obtained from the
underlying model. For a ground-truth concept ¢, let X denote the set of samples labeled positive
for c. We use v, € R? to denote the concept vector associated with ¢, and v; to denote candidate
concept vectors discovered by an unsupervised method. All concepts are constructed only using
embeddings from the training set.

We extract concepts using supervised methods, unsupervised methods, and a prompting baseline.
Concept representations are computed at both the token level, using embeddings from input tokens,
and the [CLS] level, using embeddings from the [CLS] tokens, which lie in a distinct representational
space optimized for sequence-level summarization.

Supervised Methods:

1. Mean Prototypes (Zou et al.l|2023): Each concept vector is defined as the average embed-
ding of all positive examples,

1
Ve = o1 Z z(x).
|XC | zEXS
2. Linear Separators (LinSep) (Kim et al., |2018)): For each concept ¢, we train a linear

model (without bias) to distinguish positives from negatives. Training balances positive
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and negative samples and uses BCEWithLogit sLoss with the Adam optimizer (learning
rate 0.01). We train for up to 100 epochs with a batch size of 32, apply weight decay of
le—4, and decay the learning rate by a factor of 0.5 every 10 epochs. Early stopping is used
with a patience of 15 epochs and a tolerance of 3, which sets the minimum improvement
required to continue training. The resulting normal vector of the separating hyperplane is
used as the concept vector:

Ve = We.

Unsupervised Methods:

1. K-Means Prototypes (Ghorbani et al.| 2019} Dalvi et al., 2022)): We cluster embeddings
using FAISS GPU (Johnson et al., 2019) with Euclidean distance, a maximum of 300 it-
erations, and k=1000 for token-level embeddings and k=50 for [CLS] embeddings. The
choice of k was determined experimentally using an elbow curve. Token-level embed-
dings are finer-grained and therefore benefit from a larger number of clusters. Each cluster
centroid is used as a concept vector:

2. Cluster-Based Separators (K-LinSep): We first assign soft labels to embeddings based
on their K-means cluster membership, then train linear separators with the same procedure
described above to predict whether an embedding belongs to a given cluster. The normal
vectors of these separators are treated as concept directions:

Uij = wij.
3. Sparse Autoencoders (SAEs) (Bricken et al.,[2023): SAEs learn a sparse reconstruction
z(z) =~ Wh(z), h(z)e€ R™ sparse, v; =wj,

where each column w; of W corresponds to a candidate concept. Because SAE training is
computationally expensive, we use pretrained SAEs; see Appendix [J| for architectural and
implementation details.

To ensure we can evaluate against unsupervised methods, each ground-truth concept ¢ is matched to
the unsupervised unit v; that achieves the highest validation F; score for detecting c:

v, = argmax F}¥(c, v ).
v N

Prompt Baseline: As a non-concept vector baseline, we query LLAMA-3.2-11B-VISION-
INSTRUCT directly. For each sample = and concept ¢, we prompt:

“Is the concept of ¢ present in the following? x”.

Prior works have employed this baseline successfully (Wu et al., 2025; Robicheaux et al.l 2025;
Tillman & Mossing} [2025).

B.3 DATASET OVERVIEW

CLEVR (Single-Object) (Johnson et al.,2017): A synthetic dataset of 1,000 images, each contain-
ing a red, green, or blue object with shape sphere, cylinder, or cube. Images and segmentation masks
are generated programmatically, allowing fine-grained control over object properties and patch-level
annotations.

COCO (Lin et al., 2014): We use the 2017 validation set, containing 5,500 images with everyday
scenes involving people, objects, and natural contexts. Each image comes with human-annotated
segmentations, providing dense labels for both object categories and broader supercategories.

Broden—Pascal (Everingham et al.,[2010) and Broden—OpenSurfaces (Bell et al., 2013): We use
4,503 samples from Pascal and 3,578 samples from OpenSurfaces. These are subsets of the Broden
dataset (Bau et al., [2020), which unifies multiple segmentation datasets into a single benchmark for

19



Under review as a conference paper at ICLR 2026

concept-based interpretability research. Pascal primarily contains natural images with segmented
objects from diverse categories such as animals, vehicles, and household items, while OpenSurfaces
emphasizes fine-grained material and surface property annotations (e.g., wood, fabric, metal). These
subsets focus on patch-level segmentation where concepts do not necessarily span the entire image.

Sarcasm (Fully Synthetic): We generate a dataset of 1,446 paragraphs, where roughly half contain
exactly one sarcastic sentence surrounded by neutral sentences.

iSarcasm (Augmented): We adapt 1,734 samples from the original iSarcasm dataset (Oprea &
Magdy, 2020), which provides sarcastic tweets alongside non-sarcastic rewrites conveying the same
meaning (both provided by the original authors). We augment these by embedding sarcastic and non-
sarcastic sentences into short paragraphs of neutral context, with sarcastic spans explicitly marked.

GoEmotions (Augmented): We use 5,427 samples from the GoEmotions dataset (Demszky et al.,
2020), a human-annotated collection of Reddit comments labeled with 27 emotion categories. We
augment selected samples by embedding emotional sentences within surrounding neutral context,
tagging the emotional span while preserving natural paragraph flow.

B.4 TEXT AUGMENTATION PIPELINES AND PROMPTS

This section describes the augmentation pipelines used for generating and adapting text datasets,
along with the exact prompts. Our goal was to create datasets with localized token-level concept
spans, since most publicly available text datasets only provide unit-level (sentence, tweet, comment,
etc) labels. Generation and augmentation are performed via controlled prompting of GPT-40 (Ope-
nAl, 2024).

B.4.1 SARCASM (FULLY SYNTHETIC)

Pipeline: We generate entirely new paragraphs containing exactly one sarcastic sentence. The sar-
castic sentence is wrapped in <SARCASM> tags, while all other sentences are neutral. This ensures
that each paragraph contains exactly one labeled sarcastic span, with natural context surrounding
it. By constraining sarcastic content to a single line, we obtain a controlled setup where token-level
supervision is precise and unambiguous.

Prompt:

Write 10 short paragraphs (4{8 sentences each). Each paragraph must include
*xexactly one sarcastic sentencex**, wrapped in <SARCASM> ... </SARCASM> tags.
Guidelines:

— The sarcastic sentence should be subtle, deadpan, or context-dependent.
— All other sentences must be sincere and literal.
- Vary topic, tone, and structure across paragraphs.

Only the sarcastic line may be wrapped in tags.

Return only the 10 numbered paragraphs.

Example: Jane always prided herself on her cooking abilities. <SARCASM>Indeed, the local fire
department must have also appreciated her culinary exploits, given the number of times they’ve had
to rush to her house.</SARCASM> Still, she was not deterred and continued to experiment in the
kitchen, determined to perfect her skills. She understood that learning anything new involved a
process of trial and error.

B.4.2 ISARCASM AUGMENTATION
Dataset Overview: The original iSarcasm dataset contains sarcastic tweets paired with author-

provided sincere rewrites conveying the same meaning. We extend this dataset synthetically by
surrounding the sarcastic tweets with literal, neutral context, ensuring precise span-level supervision.
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Only sarcastic samples are selected for augmentation, and for each sarcastic input we generate both
a sarcastic augmented post and a non-sarcastic rewrite.

Augmentation Pipeline: Each sarcastic input is expanded into casual, paragraph-like text using
controlled prompting of GPT-4.0. To introduce variation, random structural features are applied:

* 20% chance of forcing a [ Sarcasm] [Trigger] structure.
* 15% chance of adding emojis or hashtags.

¢ Otherwise, a random choice among [Sarcasm] [Trigger],
[Trigger] [Sarcasm],or [Trigger] [Sarcasm] [Trigger].

Sarcastic Augmentation Prompt:

You are a data annotation machine. Your only goal is to produce perfectly literal
text that follows the rules. You must not be creative or clever. You must not
generate any figurative language outside of the provided tags.

Your Task:

You will be given a sarcastic tweet and its true meaning. Rewrite the tweet by
embedding it within a strictly literal train of thought that matches the original’s
casual tone.

Structure: [Randomly choose or force specific structure]
[Optional emoji/hashtag instruction if selected]

Constraints Checklist:

— The tone is casual and informal.

— The added text is not redundant.

— Outside <SARCASM> tags is strictly literal and descriptive.

— The original sarcastic tweet is fully preserved within <SARCASM> tags.
- Output contains ONLY the final post.

Input Sarcastic Tweet: "{sarcastic_tweet}"
Sincere Meaning (for your context): "{rephrased_text}"

Your Output:

Non-Sarcastic Augmentation Prompt.

You are a data annotation machine. Your only goal is to produce perfectly literal
text that follows the rules. You must not be creative or clever. You must not
invent new details.

Your Task:
Take a sincere idea and expand it slightly into a personal, casual post,
remaining 100% faithful to the original meaning.

[Optional emoji/hashtag instruction if selected]

Constraints Checklist:

— The tone is casual and informal.

— The entire post is strictly literal and descriptive.

- No sarcasm, irony, overstatement, or rhetorical questions.

— The post must be 100% faithful to the meaning of the original idea.
- Output contains ONLY the final post.

Input Sincere Idea: "{rephrased_text}"

Your Output:
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Verification Process: Outputs are verified via flexible matching with progressively lenient checks:
exact matching (case-insensitive), whitespace normalization, URL/punctuation removal, and word-
overlap thresholds. If all attempts fail, the original tweet is wrapped in <SARCASM> tags as a
fallback.

Example:

Input sarcastic tweet: “The only thing I got from college is a caffeine addiction.”
Input sincere rephrase: “College is really difficult, expensive, tiring, and I often
question if a degree is worth the stress.”

Sarcastic augmentation: I just checked my calendar and saw how many
assignments are due this week. {SARCASM,the only thing i got from college is
a caffeine addictionj/SARCASM;”

Non-sarcastic rewrite: “college is really difficult. it’s also expensive and tiring.
sometimes i find myself questioning if getting a degree is worth all the stress.”

B.4.3 GOEMOTIONS AUGMENTATION

Dataset Overview: GoEmotions is a large-scale dataset of Reddit comments labeled with up to 27
fine-grained emotions. We extend it synthetically by surrounding the original emotional comment
with strictly neutral filler context, ensuring the emotional span remains localized and clearly marked
with <EMOTION> tags.

Augmentation Pipeline: Every comment in GoEmotions is augmented without filtering, follow-
ing a two-step process:

1. Step 1: Generation. A “Neutral Filler Machine” prompt is used to generate five diverse
neutral-context options embedding the original emotional comment.

2. Step 2: Selection. A “Grader” prompt evaluates the five drafts and selects the best single
option according to neutrality and naturalness.

To increase variation, a random structure is sampled per comment:

* 50% chance: [Emotion] [Context]
* 25% chance: [Context] [Emotion]
* 25% chance: [Context] [Emotion] [Context]

Step 1 — Neutral Filler Prompt:

You are a Neutral Filler Machine. Your task is to generate neutral,
non-emotional text to surround a given Reddit comment.

Task:

— Preserve the original emotional comment exactly inside <EMOTION> tags.
— Generate five unique and diverse neutral contexts that flow naturally.
— All options must follow the required structure.

Constraints:

- Text outside <EMOTION> must be strictly neutral (no emotion leakage).
— Sound natural and casual like a Reddit post.

— No redundancy with the emotional comment.

Input Emotional Comment: "{emotional_comment}"
Primary Emotion(s): "{emotion_labels_str}"
Required Structure: "{structure_choice}"

Your Output: Five options, each in the correct structure.
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Step 2 — Selection Prompt.

You are a data annotation quality assurance specialist.
Your task is to select the best draft among five options.

Checklist:

- Context must be strictly neutral (no emotions).
- Flow naturally as a Reddit comment.

— No contradiction or redundancy.

- Only output the single best final option.

Draft Options:
{draft_options}

Your Final, Best Output:

Verification Process: The augmented comments are verified using flexible string matching to en-
sure that the original text is preserved inside <EMOTION> tags. We allow up to five retry attempts
with progressively lenient checks. If all attempts fail, the fallback is to wrap the original comment
directly in <EMOTION> tags.

Example:

Original emotional comment (gratitude): “I didn’t know that, thank you for
teaching me something today!”

Augmented output: “A comment explained the process behind recycling plastics
and how it affects the environment. {EMOTION,I didn’t know that, thank you for
teaching me something today!;/EMOTION;”

B.5 CONCEPTS USED IN EXPERIMENTS

For the MS-COCO, GoEmotions, and Broden datasets, we filter concepts using minimum sample
thresholds (100-300 samples, depending on the dataset) to ensure sufficient data for reliable concept
construction, though future work could examine SuperActivators in underfit settings. The semantics
concepts used in our experiments is listed here:

* COCO: accessory, animal, appliance, bench, book, bottle, bowl, bus, car, chair, couch,
cup, dining table, electronic, food, furniture, indoor, kitchen, motorcycle, outdoor, person,
pizza, potted plant, sports, train, truck, tv, umbrella, vehicle.

* Broden—Pascal: object::airplane, object::bicycle, object::bird, object::boat, object::body,
object::book, object::building, object::bus, object::cap, object::car, object::cat, ob-
ject::cup, object::dog, object::door, object::ear, object::engine, object::grass, ob-
ject::hair, object::horse, object::leg, object::mirror, object::motorbike, object::mountain,
object::painting, object::person, object::pottedplant, object::saddle, object::screen, ob-
ject::sky, object::sofa, object::table, object::track, object::train, object::tvmonitor, ob-
ject::wheel, object::wood, part::arm, part::bag, part::beak, part::bottle, part::box,
part::cabinet, part::ceiling, part::chain wheel, part::chair, part::coach, part::curtain,
part::eye, part::eyebrow, part::fabric, part::fence, part::floor, part::foot, part::ground,
part:thand, part::handle bar, part::head, part::headlight, part::light, part::mouth,
part::muzzle, part::neck, part::nose, part::paw, part::plant, part::plate, part::plaything,
part::pole, part::pot, part::road, part::;rock, part::rope, part::shelves, part::sidewalk,
part::signboard, part::stern, part::tail, part::itorso, part::tree, part::wall, part::water,
part::windowpane, part::wing.

* Broden-OpenSurfaces: material::brick, material::cardboard, material::carpet, mate-
rial::ceramic, material::concrete, material::fabric, material::food, material::fur, mate-
rial::glass, material::granite, material::hair, material::laminate, material::leather, ma-
terial::metal, material::mirror, material::painted, material::paper, material::plastic-clear,
material::plastic-opaque, material::rock, material::rubber, material::skin, material::tile, ma-
terial::wallpaper, material::wicker, material::wood.
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CLEVR: color::blue, color::green, color::red, shape::cube, shape::cylinder, shape::sphere.
* Sarcasm: sarcasm.
* iSarcasm: sarcastic.

* GoEmotions: confusion, joy, sadness, anger, love, caring, optimism, amusement, curios-
ity, disapproval, approval, annoyance, gratitude, admiration.

C CONCEPT FORMALISMS IN MORE DETAIL

We provide a detailed formalization of concept detection and activation aggregation strategies. We
limit our analysis to transformer models given their demonstrated effectiveness across modalities.

Model Representations. Let f be a trained transformer model that processes an input z € X
(an image or a text sequence) into a set of hidden representations. At a given layer ¢, we extract
token-level embeddings

fe(@) = {2(x), ., 290 (2), 20 (@) ), 2% (@), 2% (x) € RY.
tok

Here 2!°%(z) denotes the representation of the i-th token (or image patch), and 2°*(z) denotes the
[CLS]-style representation summarizing the full input.

Concept Vectors and Activation Scores. For any semantic concept ¢, we define a concept vector
ve € RY, extracted via one of the techniques in Appendix Intuitively, v, represents a direction
in embedding space along which the concept c is encoded. The activation score of an embedding z
with respect to concept c is defined as

se(2) = (2, ve).

If v, is derived as a cluster centroid, this corresponds to cosine similarity (for normalized embed-
dings). If v, is derived from a linear separator, it corresponds to the signed distance from the sepa-
rating hyperplane. Interpretively, s.(z) measures the alignment of z with concept ¢: large positive
values indicate that z strongly encodes features associated with ¢, while negative values suggest
opposition or absence.

We are further interested in characterizing these activation scores globally across many samples. For
each concept ¢, we define the in-concept distribution Dicrl as the collection of activation scores from
tokens labeled concept-positive for ¢, and the out-of-concept distribution D" as those from tokens
labeled concept-negative. Formally, let Z denote the set of tokens across samples and S. = { s.(z) :
z € Z} the corresponding collection of activation scores. If ZI" C Z are the tokens containing ¢
and Z" = Z \ Z", then

Din ={s.(2):z € Zi“ 1 DM = {s.(2):2€ Z2"}.

Note that Z2" excludes all tokens from samples containing ¢, even those not labeled with the con-
cept, in order to prevent self-attention from leaking concept information into the out-of-concept
distribution.

The support of a distribution is the set of values where it assigns nonzero probability, and the tail
refers to its extreme regions with small probability mass. To quantify how much D" and D"
overlap, we use the overlap coefficient (OVL), defined as the shared probability mass between the

two distributions:
oo

OVL(DI", D) = / min (p"(s), p(s)) ds,

where p'" and p°* are their densities. Large values of OVL indicate that most in-concept activations

lie within the overlapping support supp(DI")Nsupp(D2") and are thus statistically indistinguishable
from out-of-concept activations, whereas small values arise when only the high-activation tail of D}
extends beyond D", yielding clearer separation.

(&
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Concept Detection. The goal of concept detection is to determine whether a sample = contains
a concept ¢ (Wu et al.| [2025). Transformer models produce a collection of activation scores at the
token level, but for detection we require a single score per sample. This necessitates an aggregation
operator that interprets the set of token-level activations as a sample-level score.

Let So(x) = {5¢,1(2), .-+, Sc,n(a) (%), Sc,cis() } denote the set of activation scores for concept ¢ on
input x, where s. ;(x) is the score for the i-th token and s. ¢s(x) is the score for the [CLS] token.
An aggregation operator is any function

G :R"™F LR %8 () = G(S.(x)).
Given a calibrated threshold 7., detection is performed by
Jel(a) = 1 s (z) = 7c ]

Because prior work has shown that different concepts may emerge at different layers of a trans-
former (Saglam et al.| 2025} |Yu et al.|[2024; [Dalvi et al., 2022])), we calibrate the layer separately for
each concept to avoid enforcing a strict shared choice. This calibration is also performed indepen-
dently for each aggregation strategy, ensuring that no operator is unfairly advantaged or disadvan-
taged due to layer-specific biases.

Standard Aggregation Strategies. Prior work has considered several choices of GG, each operat-
ing on the same token-level activations (with the exception of [CLS], which uses separately trained
concept vectors since sample-level and input token-level representations occupy different spaces):

* [CLS]-only (Gus):
Gcls(sc(l‘)) = Sc,cls(x)~
Uses only the [CLS] token score. Since CLS tokens are trained to attend to all inputs, they

are natural candidates for summarizing sample-level concepts, and this strategy has been
widely adopted (Nejadgholi et al., [2022} |Yu et al., {2024} |Behrendt et al., 2025)).

¢ Mean pooling (Gean):

()
Grmean(Sc (7)) = ﬁ Z Sc,i(T).
i=1

Averages over all tokens. This ensures that no part of the input is ignored and can capture
distributed concept signals, a technique used in multiple studies (Benou & Riklin-Raviv,
2025; Suresh et al., 2025; Siddique et al., [2025).

¢ Max pooling (Gayx):

Gmax(Se(7)) = max{sc1(2), ..., Scn(a)(T), Sces(T)}.
Takes the strongest activation across input tokens. This is effective for isolating the most
distinct concept signals (Tillman & Mossing, [2025; [Wu et al., 2025} [Lim et al.} 2025; [Xie
et al., [2025).
¢ Last token (Glas1):
Glast(Sc(x)) = Se,n(x) (33)

Uses the last input token activation. For autoregressive models, the final token often
encodes sequence-level information, making it a plausible summary for concept detec-
tion (Chen et al., 2025} Tillman & Mossing, |2025; Tang & Yang] 2024).

¢ Random token (Gyang):
Grand(Sc(x)) = sc j(x), j~ Unif{l,... ,n(z)}.

Selects an input token activation uniformly at random. While a weak baseline, self-
attention mechanisms distribute information broadly, so even a randomly chosen token
may retain meaningful concept cues.

These operators differ only in how they interpret activations; they do not alter how concept vectors
are trained. Thresholds 7. are determined using a validation set (e.g., from a fixed grid of per-
centiles), and detection at test time is performed by applying the same G to the sample activations
and comparing against 7.
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SuperActivator Aggregation. We develop an aggregation strategy that takes advantage of the
SuperActivators mechanism we identified, using the highest-activation tokens in the global true-
concept distribution as the basis for concept detection.

Formally, let
S;:LC = {su(x) | T € Xv'g]’c, ie{l,... ,n(x)}}

be the set of all token-level activations for ¢ from validation samples where c is present. For a chosen
percentile N (selected from a fixed grid), we define the SuperActivator threshold as

T = Q1-n(Se),

so that only the top N% of in-concept activations exceed 7 *°. Unlike traditional max pooling

approaches, which calibrate thresholds based on the single maximum activation per sample, our
approach looks at the highest activations generally in the in-concept distribution, allowing us to
consider multiple high-fidelity token activations per sample where calibrating.

At test time, we aggregate using a max operator,
Giuper(Se(2)) = max Se(z),
and predict presence if this maximum exceeds the calibrated SuperActivator threshold:
9P (@) = 1 Gaper(Se()) = 7]

N is calibrated per concept on the validation set to maximize detection F;. Beyond providing thresh-
olds for reporting overall detection scores, this calibration also allows us to analyze how varying the
sparsity level of the SuperActivators mechanism impacts performance.

D COMPREHENSIVE DETECTION RESULTS

The following tables show the average Fi detection scores (weighted across concepts) for all mod-
els, sample type (SuperActivators vs CLS), and concept extracton method (mean prototype, linear
separator, K-Means, linear separator on K-Means clusters) across datasets. In each table, the top-
performing concept detection method for each dataset is in bold and the second best-performing is
underlined.

On the image datasets (i.e., CLEVR, MS-Coco, OpenSurfaces, and Pascal), our SuperActivator
method consistently outperforms all other concept detection methods, except for a couple instances
in the very simple CLEVR dataset, where prompting achieves the highest performance by a small
margin. Though sometimes the CLS-based achieves near-equivalent performance, zero-shot prompt-
ing is most consistently the next best detection method. For the text datasets, (i.e., Sarcasm, Aug-
mented iSarcasm, and Augmented GoEmotions), our SuperActivator also achieves consistently high
detection performance across configurations. However, particularly for the Augmented iSarcasm
dataset, CLS-based methods are able to outperform our SuperActivator, though usually by a very
small amount that falls within the margin of error.

Overall, these results confirm that across image and text modalities, model families, and concept
types, SuperActivator tokens provide a highly reliable signal of concept presence.
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Concept detection Iy for the CLEVR dataset.

Model Concept Concept Detection Methods
Type RandTok LastTok MeanTok CLS Prompt  SuperAct (Ours)
AVg 0.526 £0.028 0.542 +0.027 0.684 +£0.020 0.957 £0.017 0.987 + 0.009 0.986 + 0.009
CLIP Linsep 0.745 £ 0.009 0.706 £ 0.008 0.840 £0.009 0.963 £0.015 0.987 + 0.009 0.991 + 0.007
K-Means 0.727 +0.013 0.878 £0.016 0.976 +0.013 0.959 +0.016 0.987 + 0.009 0.991 = 0.007
K—Linsep 0.737£0.017 0.848£0.017 0.907 £0.019 0.965 +0.015 0.987 + 0.009 0.950 £ 0.015
AVg 0.645+0.018 0.591 £0.019 0.660+0.018 0.955+0.017 0.987 + 0.009 0.998 + 0.003
Llama Linsep 0.967 £0.090 0.879 £0.004 0.920 £0.004 0.961 £0.015 0.987 + 0.009 0.997 + 0.004
K-Means 0.775+0.089 0.946 +£0.090 0.955+0.013 0.928 +0.021 0.987 + 0.009 0.959 £ 0.013
K-Linsep 0.717£0.024 0.910+£0.016 0.910+0.015 0.962 +0.015 0.987 +0.009 0.989 + 0.008
Concept detection Iy for the COCO dataset.
Model Concept Concept Detection Methods
Type RandTok LastTok MeanTok CLS Prompt ~ SuperAct (Ours)
Avg 0.575+0.012 0.503£0.012 0.494+£0.013 0.685+0.012 0.686 + 0.050 0.721 £ 0.012
CLIP Linsep 0.606 £0.011 0.687 £0.011 0.592+0.011 0.702+0.011 0.686 + 0.050 0.787 = 0.011
K-Means 0.525+0.013 0.517+0.013 0.337+0.012 0.583+0.012 0.686 + 0.050 0.694 + 0.012
K—Linsep 0.486 £0.012 0.523+0.012 0.333+£0.011 0.571£0.013 0.686 + 0.050 0.696 = 0.012
AVg 0.485+0.011 0.457+£0.012 0.378 £0.012 0.534 £0.013 0.686 + 0.050 0.746 = 0.012
Llama Linsep 0.606 £0.011 0.680+0.011 0.551+£0.011 0.566+0.013 0.686 + 0.050 0.829 + 0.010
K-Means 0.510+0.012 0.491£0.012 0.373+0.011 0.447 +0.013 0.686 + 0.050 0.747 = 0.011
K—Linsep 0.493+£0.011 0477+0.012 0.363+0.011 0.430+0.013 0.686 +0.050 0.716 = 0.011
Concept detection Iy for the OpenSurfaces dataset.
Model Concept Concept Detection Methods
Type RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)
Avg 0.438+0.014 0.419+£0.013 0.403+£0.014 0.484 +£0.014 0.491 +0.063 0.538 + 0.014
CLIP Linsep 0.470 £0.014 0.470+£0.014 0.427+£0.014 0.492+£0.014 0.491 +£0.063 0.551 £ 0.014
K-Means 0.443+0.015 0.441£0.015 0.373+£0.013 0.444 +0.010 0.491 + 0.063 0.544 + 0.014
K-Linsep 0.432+0.013 0.454+£0.012 0.365+0.011 0.443+0.009 0.491 +0.063 0.543 = 0.012
AVg 0.404 £0.012 0.375+£0.012 0.361 £0.012 0.446 +£0.014 0.491 +0.063 0.534 +0.014
Llama Linsep 0.438 £0.014 0.410£0.014 0.390+0.014 0.456+0.013 0.491 +0.063 0.558 = 0.015
K-Means 0443 +0.010 0.431+0.011 0.360 £0.010 0.423 +£0.005 0.491 + 0.063 0.545 + 0.009
K-Linsep 0.439£0.010 0.416+£0.011 0.360+0.010 0.409 £0.011 0.491 +0.063 0.545 = 0.008
Concept detection F1 for the Pascal dataset.
Model Concept Concept Detection Methods
Type RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)
AVg 0.612+£0.006 0.546 +0.006 0.594 +£0.006 0.721 +0.006 0.680 +0.048 0.788 = 0.006
CLIP Linsep 0.723 £0.005 0.674 £0.005 0.678 £0.005 0.740 + 0.006 0.680 + 0.048 0.826 = 0.005
K-Means 0.533+0.005 0.623 £0.002 0.490 +0.005 0.652 +0.003 0.680 + 0.048 0.770 = 0.001
K-Linsep 0.574 £0.005 0.577 £0.004 0.466 +0.005 0.633 +0.004 0.680 + 0.048 0.756 = 0.002
Avg 0.536 £0.006 0.510+0.006 0.502+0.006 0.619+0.007 0.680 +0.048 0.786 = 0.006
Llama Linsep 0.659 £0.006 0.602 £0.006 0.590+0.006 0.645+0.006 0.680 +0.048 0.822 + 0.005
K-Means 0.507 £0.006 0.601 £0.006 0.481 +0.006 0.568 +0.007 0.680 + 0.048 0.792 + 0.005
K-Linsep 0.499 +0.006 0.550 £0.006 0.443 £0.006 0.558 +0.007 0.680 + 0.048 0.784 + 0.006
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Concept detection F for the Sarcasm dataset.

Model  Concept Concept Detection Methods
Type RandTok LastTok MeanTok CLS Prompt  SuperAct (Ours)
Avg 0.659 +0.052 0.706 +0.051 0.659 +0.052 0.694 +0.060 0.679 +0.074 0.818 + 0.051
Llama Linsep 0.659 +0.060 0.683 £0.048 0.659 £0.060 0.737 +0.055 0.679 +0.074 0.870 + 0.039
K-Means 0.659 +0.061 0.659 +0.061 0.659 +0.061 0.665+0.053 0.679 +0.074 0.818 + 0.049
K-Linsep 0.659 £0.054 0.670 £0.050 0.659 +0.052 0.658 +0.053 0.679 + 0.074 0.826 + 0.048
Avg 0.662 +0.055 0.659 +0.066 0.659 +0.066 0.687 +0.055 0.679 +0.074 0.679 + 0.060
Qwen Linsep 0.659 £0.055 0.662+0.051 0.659+0.055 0.750+0.054 0.679 +0.074 0.857 + 0.046
K-Means 0.659 £0.054 0.659 £0.054 0.659 +0.054 0.640 £0.059 0.679 +0.074 0.717 + 0.062
K-Linsep 0.659 £0.054 0.716 £0.057 0.659 £0.054 0.675+0.053 0.679 +0.074 0.769 + 0.057
Avg 0.659 +0.058 0.659 +0.058 0.659 +0.058 0.665+0.059 0.679 +0.074 0.727 £ 0.056
Gemma Linsep 0.659 +£0.059 0.668 +0.051 0.670+0.051 0.686+0.057 0.679 +0.074 0.810 + 0.051
K-Means 0.659 £0.053 0.659 +£0.053 0.659 +0.053 0.658 £0.053 0.679 = 0.074 0.659 + 0.052
K-Linsep 0.659 £0.054 0.682 +0.054 0.659 £0.054 0.670+0.053 0.679£0.074  0.659 +0.052
Concept detection F for the Augmented iSarcasm dataset.
Model  Concept Concept Detection Methods
Type RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)
Avg 0.677£0.043 0.676 +0.043 0.676 +£0.043 0.867 +0.038 0.789 + 0.047 0.818 +0.043
Llama Linsep 0.885+0.035 0.717+0.029 0.791 £0.029 0.912+0.031 0.789 £ 0.047 0.924 + 0.029
K-Means 0.737 +£0.048 0.677 £0.055 0.677 £0.055 0.809 +0.041 0.789 + 0.047 0.787 + 0.044
K-Linsep 0.811+0.038 0.828+0.040 0.708 £0.045 0.802+0.041 0.789 +0.047 0.866 + 0.038
Avg 0.676 £0.041 0.679+0.041 0.678 £0.041 0.890 + 0.034 0.789 + 0.047 0.757 + 0.041
Qwen Linsep 0.814 £0.041 0.711 £0.038 0.739 £0.041 0.917 £ 0.030 0.789 + 0.047 0.895 +0.034
K-Means 0.676 £0.076 0.676 £0.076 0.676 +0.076  0.856 + 0.038 0.789 + 0.047 0.788 + 0.046
K-Linsep 0.749 £0.044 0.676+0.043 0.676+0.043 0.878 £ 0.036 0.789 +0.047 0.832 + 0.042
Avg 0.735+0.045 0.686+0.039 0.702+0.045 0.899 +£0.032 0.789 + 0.047 0.839 +0.038
Gemma Linsep 0.853 £0.031 0.789+0.035 0.789 +0.035 0.904 +0.033 0.789 + 0.047 0.892 + 0.034
K-Means 0.676 £0.073 0.676 £0.073 0.676 +0.044 0.827 £ 0.040 0.789 + 0.047 0.810 + 0.045
K-Linsep 0.676 £0.043 0.679 £0.046 0.754 £0.043 0.864 + 0.038 0.789 +0.047 0.825 +0.044
Concept detection F for the Augmented GoEmotions dataset.
Model  Concept Concept Detection Methods
Type RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)
Avg 0.293 £0.027 0.216+0.027 0.216 +£0.026 0.277 +0.028 0.252 + 0.100 0.383 £ 0.028
Llama Linsep 0.372 +0.028 0.307 £0.027 0.193£0.029 0.320+0.029 0.252 +0.100 0.459 + 0.029
K-Means 0.305+0.028 0.281+0.029 0.117 £0.028 0.192+0.022 0.252 +0.100 0.417 £ 0.028
K-Linsep 0.426+£0.027 0.365+0.027 0.327 £0.028 0.213£0.022 0.252 +0.100 0.448 + 0.028
Avg 0277 £0.026  0.214+0.026 0.151 +£0.026 0.347 +0.028 0.252 + 0.100 0.431 £ 0.027
Qwen Linsep 0.305 +0.028 0.248 £0.025 0.199 £0.026 0.357 £ 0.028 0.252 + 0.100 0.458 + 0.027
K-Means 0.341+0.028 0.284+0.027 0.111£0.026 0.192+0.021 0.252 +0.100 0.451 £ 0.027
K-Linsep 0.390+0.026 0.373£0.027 0.365+0.026 0.191£0.022 0.252 +0.100 0.453 + 0.028
Avg 0.336+0.024 0.313+0.023 0.151 £0.022 0.366 +0.029 0.252 +0.100 0.394 £ 0.026
Gemma Linsep 0.352+£0.026 0.301 £0.026 0.190 +£0.027 0.361 +0.029 0.252 +0.100 0.420 + 0.028
K-Means 0.294+0.028 0.213+0.025 0.132+0.025 0.218+0.020 0.252 £0.100 0.422 + 0.026
K-Linsep 0.339+0.028 0.315+0.024 0.360+0.025 0.205+0.019 0.252 +0.100 0.414 + 0.028
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E ABLATION: EFFECT OF SPARSITY ON SUPERACTIVATOR DETECTION
PERFORMANCE

In this section, we compare average detection SuperActivator-based detection performance across
various sparsity levels. We find that across all model/dataset combinations, the concepts on average
are the best concept detectors at low sparsity levels. This reinforces our finding that concept signals
are concentrated in an extremely sparse number of tokens.

Concept Detection Schemes
@4 Unsupervised [l Supervised [ Random [l Prompt [l CLS [ SD Tokens (Ours)
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Figure 11: Detection over F} on CLIP Model
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Figure 12: Detection over F} on Llama-Vision Model
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F ABLATION: SUPERACTIVATOR DETECTION PERFORMANCE ACROSS
MODEL LAYERS

In this section, we investigate how concept detection performance (averaged across concepts) varies
throughout the models. For vision models (CLIP and the vision-encoder in Llama-Vision-Instruct),
the detection performance generally increases throughout the model, becoming pretty separable
from about half-way through, and then dipping at the final layer. This aligns with previous studies
that found this same general behavior (Saglam et al., 2025; Yu et al., 2024; Dalvi et al., [2022)).

31



Under review as a conference paper at ICLR 2026

CLIP

SuperTok Linsep

MaxTok Linsep

CLS Linsep
MeanTok Linsep
LastTok Linsep

E RandTok Linsep
= SuperTok Avg
d MaxTok Avg
CLS Avg

MeanTok Avg
LastTok Avg
RandTok Avg
Prompt

»

o o g oo do o
PR RS

SuperTok Linsep
MaxTok Linsep

CLS Linsep
MeanTok Linsep
LastTok Linsep

© RandTok Linsep
8 SuperTok Avg
Q MaxTok Avg
CLS Avg

MeanTok Avg
LastTok Avg
RandTok Avg
Prompt

o

»

%

oo \e o o e\o
W ‘b ,\

SuperTok Linsep
MaxTok Linsep
CLS Linsep
MeanTok Linsep
LastTok Linsep
RandTok Linsep
SuperTok Avg
MaxTok Avg
CLS Avg
MeanTok Avg
LastTok Avg
RandTok Avg
Prompt

OpenSurfaces

SuperTok Linsep
MaxTok Linsep
CLS Linsep
MeanTok Linsep
LastTok Linsep
RandTok Linsep
SuperTok Avg
MaxTok Avg
CLS Avg
MeanTok Avg
LastTok Avg
RandTok Avg
Prompt

Pascal

g g e ol gbo o\e
» WS ®

1

% Through Model

Llama-Vision

SuperTok Linsep
MaxTok Linsep
CLS Linsep
MeanTok Linsep
LastTok Linsep
RandTok Linsep
SuperTok Avg
MaxTok Avg
CLS Avg
MeanTok Avg
LastTok Avg
RandTok Avg
Prompt -

|
]
i
i

el\e S° e\e e\ﬂ 0\0 e\ g\e 0\0 e\e

RN
SuperTok Linsep
MaxTok Linsep
CLS Linsep
MeanTok Linsep
LastTok Linsep
RandTok Linsep
SuperTok Avg
MaxTok Avg
CLS Avg
MeanTok Avg
LastTok Avg
RandTok Avg
Prompt

(\?\e\, o 5\0 e\B 0\0 5\0 e\B 0\0 S*

SuperTok Linsep
MaxTok Linsep
CLS Linsep
MeanTok Linsep
LastTok Linsep
RandTok Linsep
SuperTok Avg
MaxTok Avg
CLS Avg
MeanTok Avg
LastTok Avg
RandTok Avg
Prompt

5° 0\0 e\e e\o 0\0 o\e e\s o\o S*

SuperTok Linsep
MaxTok Linsep
CLS Linsep
MeanTok Linsep
LastTok Linsep
RandTok Linsep
SuperTok Avg
MaxTok Avg
CLS Avg
MeanTok Avg
LastTok Avg
RandTok Avg
Prompt

do e o\ﬁ 0\0 g\a 0\0 0\0 g\e <°
VPR

% Through Model

Figure 16: SuperActivator detection across image datasets.
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Figure 17: SuperActivator detection across text datasets.
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G ABLATION: SUPERACTIVATOR OPTIMAL SPARSITY LEVELS ACROSS
MODEL LAYERS

Next, we analyze the sparsity of SuperActivators throughout layers in the model. Early in the model,
the best concept detection via SuperActivators occurs at extremely high sparsity levels (2%-10%)
for most concepts. We figure that this represents the model identifying key words/patches that are
most related to the concept, but as well know from Appendix [F} this does not provide the most
reliable detection for most concepts. As you progress through the transformer models, the best
SuperActivators tend to occur at higher sparsity levels, but still only include less than half of the
true-concept tokens. This trend is less consistent for the Sarcasm and iSarcasm datasets, where after
the first layer, the best detectionfor sarcasm tends to pretty consistent at around N = 25% — 50%

% Through CLIP Model
4% 25% 67% 88% 100%

5° Q\o e\o a\e ﬂ\n Qe\o 5° e\e e\e .,\o n\n u\n e a\e u\n B\e n\e B\n

SuperTok Percentile (N) SuperTok Percentlle (N) SuperTok Percentlle (N) SuperTok Percentlle (N) SuperTok Percentile (N)

# Concepts w/

Peak Detection

o % 8 3 8
O,
O,
‘SO
2
2,
0.
0,
%,
2
2

B R S Y
5

v

B O
NS

P

% Through Llama- Vision Model
2% 15% 78% 100%

40 e\ a\ e\ n\e e\v u\u o\ e\ n\e n\e 5° n\e n\ 0\0 n\e

SuperTok Percentile (N) SuperTok Percentlle (N) SuperTok Percentlle (N) SuperTok Percentlle N) SuperTok Percentile (N)

150
100

# Concepts w/
Peak Detection
o
s 8
2
O,
£2
2
2,
2.
0
£2
%
2
2

B S B R S
~ N

Il Pascal [ COCO MW OpenSurfaces [l CLEVR

Figure 18: Throughout the image transformer models, the best detection always happens at sparse
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H ABLATION: IN WHAT LAYERS OF THE MODEL ARE MOST CONCEPTS MOST
SEPARABLE?

As the plots in Appendix [F] show, concept vectors might be better detectors at varying layers. For
each dataset, we plot the frequency of concept vectors that perform the best detections at each layer
of the various models. We show these trends for SuperActivator detection schemes, as well as CLS,
mean, and last token-based detection methods.

For the image datasets that contain high-level objects, Coco and Pascal, the concepts tend to become
better detectors further throughout the model. This trend is roughly true, but less pronounced in
OpenSurfaces which contains higher-level objects as well as more low-level concepts like texture.
CLEVR, which contains lower level concepts like color, as well as slightly higher level-concepts like
shape, contain best-detecting concept vectors extracted from both early and late in the model. For
Sarcasm, iSarcasm, GoEmotions, a similar pattern arises, where the best detecting concept vectors
most frequently come from later in the model, but also arise earlier.
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Figure 20: What Layers in Model Concepts are Best Detected in CLEVR via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models using
average and linear separator concepts.
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Figure 21: What Layers in Model Concepts are Best Detected in Coco via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models using
average and linear separator concepts.
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Figure 22: What Layers in Model Concepts are Best Detected in OpenSurfaces via SuperActivator,
CLS, Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models

using average and linear separator concepts.
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Figure 23: What Layers in Model Concepts are Best Detected in Pascal via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from CLIP and Llama-Vision-Instruct models using
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Figure 24: What Layers in Model Concepts are Best Detected in Sarcasm via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from Llama-Vision-Instruct, Qwen, and Gemma models

using average and linear separator concepts.
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Figure 25: What Layers in Model Concepts are Best Detected in iSarcasm via SuperActivator, CLS,
Mean, and Last tokens. Concepts extracted from Llama-Vision-Instruct, Qwen, and Gemma models
using average and linear separator concepts.
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Figure 26: What Layers in Model Concepts are Best Detected in GoEmotions via SuperActivator,
CLS, Mean, and Last tokens. Concepts extracted from Llama-Vision-Instruct, Qwen, and Gemma
models using average and linear separator concepts.
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I CONCEPT ATTRIBUTION

1.1 ATTRIBUTION METHODS

This section provides a brief overview of several attribution methods in which the objective is defined
either by a global concept vector v, or by the average embedding of local SuperActivators.

LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016) ex-
plains an individual prediction by approximating the complex model with a simpler, in-
terpretable model (e.g., a linear model) in the local vicinity of the prediction. It achieves
this by generating a new dataset of perturbed samples around the instance being explained
and learning the simpler model on this new dataset, weighted by proximity to the original
instance.

SHAP (SHapley Additive exPlanations) (Lundberg & Lee} [2017) assigns an importance
value to each feature for a particular prediction. Based on cooperative game theory, this
value represents the feature’s marginal contribution to the model’s output, ensuring the
sum of all values explains the difference between the model’s prediction and a baseline.

RISE (Randomized Input Sampling for Explanation) (Petsiuk et al., [2018) generates
a visual explanation by probing the model with numerous randomly masked versions of
an input image. The final importance map is a weighted average of these random masks,
where weights are determined by the model’s output confidence for each corresponding
masked image.

SHAP IQ (SHAP Interaction-aware exPlanations for Quantifying feature impor-
tance) (Fel et al. 2023) extends the SHAP framework to quantify the effects of feature
interactions. Beyond calculating the main effect of each feature, it also computes interac-
tion indices to provide a more complete picture of how combinations of features jointly
influence a prediction.

IntGrad (Integrated Gradients) (Sundararajan et al., |2017) calculates the importance of
each input feature by integrating the gradients of the model’s output with respect to the
feature’s inputs. This integration is performed along a straight-line path from a baseline
input (e.g., a black image) to the actual input, satisfying key axioms like sensitivity.
Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju et al.,[2017) pro-
duces a coarse localization map for CNNs by using the gradients of the target class score
with respect to the feature maps of the final convolutional layer. These gradients are used
to compute a weighted combination of the activation maps, highlighting important image
regions.

FullGrad (Srinivas & Fleuret, [2019) enhances gradient-based explanations by aggregating
gradient information from all layers of a neural network. It combines the input gradients
with bias gradients from all intermediate feature maps to capture more comprehensive fea-
ture representations, resulting in more detailed saliency maps.

CALM (Class Activation Latent Mapping) (Mahajan et al., 2021) improves on Class
Activation Mapping (CAM) by introducing a probabilistic latent variable that directly rep-
resents the location of the most important visual cue for a model’s prediction. Trained
with the Expectation-Maximization (EM) algorithm, the method outputs a probability map
showing the likelihood that each pixel is the critical cue for the decision.

MFABA (More Faithful and Accelerated Boundary-based Attribution) (Zhu et al.,
2024) is a boundary-based attribution method that constructs a path from an input toward
the decision boundary. Along this path, it uses a second-order Taylor expansion of the loss
function to better approximate how the model’s output or loss changes. The resulting at-
tribution scores reflect how much each feature contributes to pushing the input toward or
away from the boundary.

1.2 ADDITIONAL RESULTS FOR CONCEPT ATTRIBUTION

This section presents the full results for concept attribution across all experimental configurations,
which were summarized in Table [2]in the main text. These detailed tables are provided to demon-
strate that our main findings are consistent across all individual concepts and experimental settings.
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As these results confirm, using the average embedding of SuperActivators as the explanation objec-
tive consistently leads to better performance than using the concept vector directly. Moreover, linear
separators generally outperform simple clustering for concept representation.

We present our results across fourteen tables, evaluating two concept representations (clustering-
based vs. linear separators) and two attribution objectives (global concept vector vs. average local
SuperActivatorspatch embedding). Each table reports the average F) score across all concepts,
weighted by concept frequency in the test set (Appendix [B.3)). The tables are organized as follows:

* Supervised Setting: We provide results across seven tables. Four tables correspond to
image tasks (Tables[3] 4] [5] and[6)), and three correspond to text tasks (Tables [7] [} and [9).
The concept types for this setting are detailed in Appendix

* Unsupervised Setting: We provide results across seven tables. Four tables correspond
to image tasks (Tables [I0} [T1] [T2} and[T3), and three correspond to text tasks (Tables [T4]
@ and @) Here, concepts are derived from k-means clusters, and for each concept, we
evaluate the best-performing cluster out of 1000 candidates. The concept types are detailed

in Appendix

Table 3: Average F1 for the CLEVR Dataset (Supervised).

Attribution Method ~ Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.60 £ 0.02 0.60 £ 0.01 0.78 £ 0.01 0.55£0.03
LinSep 0.65 £ 0.01 0.61 £0.03 0.85 £ 0.02 0.54 £ 0.01
LIME Clustering 0.49 £ 0.02 0.55 £ 0.04 0.76 £ 0.03 0.81 £ 0.02
LinSep 0.49 + 0.00 0.68 £+ 0.01 0.70 £ 0.01 0.85 £ 0.01
SHAP Clustering 0.51 £0.01 0.53 £ 0.02 0.75 £0.02 0.80 + 0.03
LinSep 0.52 £0.03 0.58 £+ 0.01 0.75 £ 0.01 0.80 £ 0.01
RISE Clustering 0.53 £ 0.02 0.53 £ 0.03 0.55 £0.03 0.56 £ 0.02
LinSep 0.58 £ 0.01 0.59 + 0.02 0.60 £ 0.02 0.63 £ 0.01
SHAP IQ Clustering 0.52 £0.04 0.53 £0.01 0.55 £ 0.01 0.58 £ 0.02
LinSep 0.58 £ 0.02 0.58 £+ 0.03 0.60 £ 0.03 0.61 £ 0.01
IntGrad Clustering 0.46 +0.01 0.53 + 0.03 0.77 £ 0.02 0.80 £ 0.02
LinSep 0.49 £0.03 0.55 £ 0.01 0.72 £ 0.01 0.78 £ 0.03
GradCAM Clustering 0.45 £ 0.02 0.48 + 0.01 0.50 £ 0.03 0.52 £+ 0.01
LinSep 0.48 £ 0.01 0.48 £ 0.02 0.50 £ 0.02 0.52 £ 0.02
FullGrad Clustering 0.46 + 0.02 0.46 + 0.03 0.47 £ 0.01 0.49 £ 0.02
LinSep 0.50 £ 0.01 0.52 £ 0.02 0.51 £0.02 0.55 £ 0.01
CALM Clustering 0.48 £0.03 0.52 £ 0.01 0.49 £0.03 0.53 £ 0.02
LinSep 0.55 +0.02 0.56 £ 0.02 0.57 £ 0.01 0.57 £ 0.03
MFABA Clustering 0.50 £ 0.01 0.51 £ 0.01 0.51 £0.02 0.53 £ 0.01
LinSep 0.55 £+ 0.03 0.55 £ 0.02 0.56 £ 0.01 0.58 + 0.03

1.3 QUALITATIVE EXAMPLE SHOWING SUPERACTIVATORS FOR IMPROVED CONCEPT
ATTRIBUTION

Figure [6] further illustrates the advantage: attribution using SuperActivators for the concept person

provides better coverage for the full target object while avoiding irrelevant regions such as tables,
which the global vector incorrectly highlights.
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Table 4: Average F1 for the COCO Dataset (Supervised).

Attribution Method ~ Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.43 £+ 0.03 0.40 £ 0.02 0.36 £ 0.02 0.37 = 0.01
LinSep 0.52 £ 0.02 0.45 £ 0.00 0.46 £ 0.03 0.44 £+ 0.02
LIME Clustering 0.32 +£0.01 0.38 £ 0.02 0.47 £ 0.01 0.51 £ 0.02
LinSep 0.29 £0.02 0.40 £ 0.03 0.49 £ 0.02 0.50 & 0.03
SHAP Clustering 0.34 £0.03 0.38 £ 0.01 0.48 +0.03 0.51 + 0.01
LinSep 0.35 £ 0.01 0.37 £ 0.02 0.49 £ 0.02 0.55 £ 0.04
RISE Clustering 0.34 £ 0.01 0.34 £ 0.02 0.36 & 0.01 0.38 = 0.01
LinSep 0.35 +£0.02 0.38 + 0.03 0.35 £ 0.03 0.40 £ 0.02
SHAP IQ Clustering 0.33 £0.03 0.35 £ 0.02 0.35 £0.02 0.36 £ 0.01
LinSep 0.34 £ 0.01 0.37 £+ 0.01 0.36 + 0.01 0.38 + 0.03
IntGrad Clustering 0.30 + 0.02 0.33 + 0.02 0.42 £0.03 0.45 £ 0.01
LinSep 0.28 +0.00 0.35 + 0.04 0.43 £ 0.02 0.48 + 0.01
GradCAM Clustering 0.31 £+ 0.03 0.31 £+ 0.01 0.32 £ 0.02 0.35 + 0.03
LinSep 0.37 £ 0.01 0.38 £ 0.02 0.37 £+ 0.01 0.37 £+ 0.02
FullGrad Clustering 0.33 + 0.02 0.32 +£0.01 0.35 £ 0.03 0.38 = 0.01
LinSep 0.43 £ 0.01 0.43 £ 0.00 0.39 £+ 0.01 0.39 £ 0.03
CALM Clustering 0.32 £ 0.02 0.32 £+ 0.03 0.30 £ 0.01 0.29 £ 0.02
LinSep 0.42 £ 0.01 0.42 £ 0.01 0.38 £0.02 0.41 £ 0.01
MFABA Clustering 0.31 +£0.04 0.37 £ 0.02 0.33 £ 0.03 0.34 £ 0.02
LinSep 0.33 £0.01 0.39 £ 0.03 0.35 £0.02 0.39 £ 0.01

Table 5: Average F1 for the OpenSurfaces Dataset (Supervised).

Attribution Method  Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.22 + 0.01 0.18 £ 0.04 0.19 + 0.03 0.15 £ 0.02
LinSep 0.28 + 0.03 0.22 +£0.02 0.23 + 0.01 0.17 £0.01
LIME Clustering 0.42 £0.03 0.50 £ 0.01 0.55+£0.03 0.62 £ 0.01
LinSep 0.46 +0.01 0.50 + 0.03 0.60 £ 0.01 0.68 + 0.02
SHAP Clustering 0.40 + 0.02 0.42 + 0.04 0.53 +0.02 0.57 + 0.03
LinSep 0.42 +£0.02 0.44 + 0.01 0.55 +£0.03 0.56 = 0.01
RISE Clustering 0.40 + 0.04 0.42 +0.01 0.51 +£0.02 0.52 + 0.03
LinSep 0.43 £ 0.01 0.45 + 0.02 0.53 £ 0.01 0.55 £+ 0.02
SHAP IQ Clustering 0.40 £ 0.02 0.43 + 0.01 0.51 £0.03 0.53 + 0.02
LinSep 0.42 £0.03 0.45 + 0.02 0.52 + 0.01 0.52 £+ 0.02
IntGrad Clustering 0.43 +£0.01 0.51 £+ 0.02 0.46 +0.02 0.47 + 0.03
LinSep 0.44 £0.02 0.49 + 0.02 0.56 £ 0.01 0.62 £ 0.02
GradCAM Clustering 0.41 +£0.02 0.43 + 0.03 0.45 £0.01 0.46 £ 0.02
LinSep 0.44 £ 0.01 0.46 = 0.01 0.45 £0.03 0.51 + 0.01
FullGrad Clustering 0.38 £0.03 0.41 £ 0.02 0.40 £ 0.02 0.41 = 0.01
LinSep 0.42 +0.04 0.45 + 0.01 0.43 +£0.01 0.47 £+ 0.02
CALM Clustering 0.33 £ 0.01 0.35 £ 0.01 0.35 £ 0.02 0.37 £ 0.01
LinSep 0.35 +£0.02 0.38 + 0.03 0.36 +£0.01 0.41 + 0.03
MFABA Clustering 0.42 £0.02 0.44 + 0.03 0.44 + 0.01 0.44 £ 0.02
LinSep 0.45 +£0.01 0.48 + 0.01 0.44 +£0.02 0.47 + 0.03
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Table 6: Average F1 for the Pascal Dataset (Supervised).

Attribution Method  Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.42 + 0.02 0.35 + 0.01 0.40 + 0.01 0.29 + 0.04
LinSep 0.54 + 0.01 0.42 +0.03 0.46 + 0.02 0.33 +0.03
LIME Clustering 0.50 + 0.02 0.52 + 0.02 0.69 4+ 0.02 0.71 + 0.03
LinSep 0.51 +0.03 0.55 + 0.01 0.71 +0.03 0.72 + 0.01
SHAP Clustering 0.48 +0.01 0.52 + 0.03 0.65 £ 0.01 0.70 & 0.02
LinSep 0.50 4+ 0.00 0.52 + 0.02 0.69 4+ 0.02 0.72 + 0.01
RISE Clustering 0.50 +0.03 0.51 &+ 0.01 0.52 +0.01 0.55 4+ 0.03
LinSep 0.54 + 0.03 0.54 + 0.02 0.55 +0.02 0.58 + 0.01
SHAP IQ Clustering 0.50 4+ 0.01 0.51 + 0.03 0.52 +0.01 0.55 + 0.04
LinSep 0.52 +0.02 0.53 + 0.04 0.53 +0.03 0.54 + 0.01
IntGrad Clustering 0.48 +0.03 0.51 + 0.01 0.69 4+ 0.01 0.71 £+ 0.02
LinSep 0.49 4+ 0.01 0.52 + 0.03 0.67 +0.03 0.71 £+ 0.01
GradCAM Clustering 0.43 +0.04 0.45 + 0.02 0.45 + 0.02 0.45 + 0.03
LinSep 0.44 +0.03 0.47 £+ 0.01 0.47 4+ 0.02 0.50 + 0.01
FullGrad Clustering 0.41 +0.01 0.44 + 0.03 0.40 4+ 0.01 0.42 + 0.03
LinSep 0.44 +0.02 0.45 + 0.01 0.44 £+ 0.02 0.44 £+ 0.02
CALM Clustering 0.42 + 0.03 0.42 + 0.02 0.44 +0.03 0.45 + 0.01
LinSep 0.46 4+ 0.01 0.48 + 0.01 0.48 +0.02 0.52 + 0.01
MFABA Clustering 0.50 + 0.02 0.52 + 0.02 0.50 + 0.03 0.51 + 0.01
LinSep 0.53 +0.02 0.55 + 0.03 0.51 +£0.01 0.52 4+ 0.02

Table 7: Average F1 for the Sarcasm Dataset (Supervised).

Attribution ~ Concept Llama Qwen Gemma
Method Type
Super Super Super
Concept Activators Concept Activators Concept Activators

CosSim Cluster  0.39£0.01 025£0.03 038=£0.02 026=£0.03 0.42+0.03 0.25+0.02
LinSep  0.63 £0.02 037£0.01 058+£0.01 037+£0.02 0.57+0.01 0.40+0.03
LIME Cluster 034 £0.01 0.46=+0.03 033£0.03 045+£0.01 0.36=+0.02 0.50+0.01
LinSep  0.52+0.02 0.70£0.02 0.51£0.02 0.65£0.03 0.54+0.01 0.63+£0.03
SHAP Cluster  0.354+0.03 047 £0.01 0.344+0.01 046+0.02 0.37+0.03 0.51+0.02
LinSep 053 +£0.01 0.71£0.03 0.52+£0.03 0.66=+0.01 0.55+0.02 0.64+0.01
RISE Cluster  039+£0.02 052£0.01 038£0.02 0.50=£0.03 042+0.01 0.55=+£0.03
LinSep  0.57£0.01 0.76 £0.02 056=£0.01 0.71£0.02 0.59+0.03 0.69 -+ 0.02
SHAP IQ Cluster 0.36+0.03 049+0.01 036+0.03 048=£0.01 0.39+0.02 0.53=+0.01
LinSep 0.55£0.01 0.73£0.03 054=£0.02 0.68£0.03 0.57+0.01 0.66+0.03
IntGrad Cluster 0.27+0.02 040=£0.01 027£0.01 039£0.02 0.29+0.02 0.43+0.01
o LinSep  039£0.01 0.64£0.02 038£0.03 0.59+£0.01 041=£0.01 0.58+0.02
GradCAM Cluster 031+0.01 044£0.03 030£0.02 043+£0.03 0.33+£0.03 0.47+£0.01
LinSep 043+0.02 0.68+0.01 0424+0.01 0.63+£0.02 045+0.02 0.62+0.03
FullGrad Cluster 028 £0.03 0.41£0.02 028=£0.03 0.40=+0.01 0.30=£0.01 0.44+0.02
4 LinSep  040+0.01 0.65£0.03 0.39+0.02 0.60£0.03 042+0.02 0.59£0.01
CALM Cluster  034+£0.02 047=£0.01 033£0.01 0.46=£0.02 036=+0.02 0.50+0.03
LinSep  052+0.01 0.71£0.02 0.51£0.03 0.66+0.01 0.54+0.01 0.65=+0.02
MFABA Cluster 033 +0.03 046=£0.01 032=£0.02 045+0.03 0.35+0.03 0.49+0.01
LinSep 0.51+0.01 0.70£0.03 050£0.01 0.65£0.02 0.53+£0.02 0.64+0.03
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Table 8: Average F1 for the iSarcasm Dataset (Supervised).

Attribution  Concept Llama Qwen Gemma
Method Type
Super Super Super
Concept Activators Concept Activators Concept Activators
CosSim Cluster  0.70 £0.02 0.65+£0.01 0.57+0.01 055£0.02 0.65+0.01 0.60=+0.03
LinSep 081 +0.03 0.74£0.02 0.74£0.03 0.65+0.01 0.83+£0.02 0.71+0.01
LIME Cluster 0.714+£0.02 0.78£0.01 0.63+0.02 0.67£0.03 0.67+0.03 0.73 £ 0.02
LinSep 0.79+0.01 0.87+£0.02 0.71+0.01 0.80£0.02 0.76+0.02 0.89 £ 0.01
SHAP Cluster 0.72+0.03 0.79£0.01 0.64+£0.03 0.68£0.01 0.68+0.01 0.74+0.03
LinSep 0.80+0.02 0.88+0.01 0.724+0.02 0.81+0.03 0.77+0.03 0.90+ 0.02
RISE Cluster 0.76 £0.01 083£0.03 0.67£0.01 0.73£0.02 0.72+£0.02 0.79 £ 0.01
LinSep 0.84+0.02 092+0.01 0.764+0.03 085+0.01 0.81+0.01 0.94+0.03
SHAP IQ Cluster 0.744+0.02 0.81£0.02 0.65+0.02 0.70+0.03 0.70+0.03 0.76 £ 0.02
LinSep 0.82+0.01 090£0.02 0.74+£0.01 0.83+£0.03 0.79+0.02 0.92+0.01
IniGrad Cluster  0.66 +£0.03 0.71£0.01 0.56+0.03 0.58+0.01 0.61+0.01 0.66+0.03
LinSep 0.75+£0.02 0.82+£0.03 0.66+£0.02 0.75+£0.03 0.72+0.02 0.84 £ 0.01
GradCAM Cluster  0.69+0.01 0.75£0.02 0.59+0.01 0.62£0.02 0.64+0.03 0.70 £ 0.01
LinSep 0.78 £0.03 0.86+0.01 0.69+£0.03 0.78+0.01 0.74+0.02 0.87+£0.03
FullGrad Cluster  0.67+0.02 0.72+£0.01 0.57+0.02 0.60£0.01 0.62+0.01 0.67+0.02
LinSep 076 £0.01 0.83£0.02 0.67£0.01 0.76£0.03 0.73+£0.03 0.85+0.01
CALM Cluster 0.71+0.03 0.78£0.01 0.61+0.03 0.66=+0.01 0.66+0.02 0.73 £0.01
LinSep  0.81+0.01 0.89+0.03 0.734+0.02 0.81+0.03 0.78+0.01 0.91+0.02
MFABA Cluster 0.70£0.02 0.77£0.01 0.60£0.02 0.65+0.01 0.65+0.03 0.72+0.01
LinSep 0.80+0.01 0.88+0.02 0.724+0.01 0.80+0.02 0.77+0.02 0.90+0.03
Table 9: Average F1 for the GoEmotions Dataset (Supervised).
Attribution ~ Concept Llama Qwen Gemma
Method Type
Super Super Super
Concept Activators Concept Activators Concept Activators

CosSim Cluster  0.18 £0.03 0.16£0.02 0.25+£0.03 0.23+£0.01 019+0.02 0.16+0.01
LinSep  0.29 £0.01 025+0.03 0.31+0.02 028+0.03 0.25+0.03 0.23+0.02
LIME Cluster 0.20+0.03 0.25+0.01 0.274+0.01 031+0.02 0.21+0.01 0.24+0.03
LinSep  0.294+0.02 0.34+£0.03 0334+0.03 037+0.01 0.28+0.03 0.30 £ 0.02
SHAP Cluster  0.21+0.02 0.26 £0.02 0.28+0.02 0.32+0.03 0.22+0.02 0.25=+0.01
LinSep 030+£0.01 035+£0.04 034+£0.01 038£0.02 0.29+0.01 0.31+£0.03
RISE Cluster 0.244+0.03 0.30£0.01 0.304+0.03 035+0.01 0.254+0.03 0.28+0.02
LinSep 033 +£0.01 039£0.02 037£0.02 042+0.03 0.32+£0.02 0.35+£0.01
SHAP IQ Cluster 0.224+0.02 028 £0.03 0.294+0.01 033+£0.02 0.23+0.01 0.26 £ 0.03
LinSep 031+£0.03 037£0.01 035£0.03 0.40=£0.01 0.30=£0.03 0.33+£0.02
IntGrad Cluster  0.17£0.01 0.19£0.02 024+£0.02 0.26£0.03 0.17+0.01 0.20+£0.01
& LinSep 026 +0.02 0.30+0.01 0.294+0.01 032+0.02 0.24+0.02 0.26 £ 0.03
GradCAM Cluster 0.19+0.03 023+£0.01 026£0.03 029+0.01 0.19+0.03 0.22+0.02
LinSep 028 +0.02 0.34£0.02 0.31+0.02 0.36=£0.03 0.27+0.02 0.29 £ 0.01
FullGrad Cluster 0.18 £0.01 021£0.03 025£0.01 0.27+£0.02 0.18+£0.01 0.21+£0.02
LinSep  0.27+0.03 0.31+£0.02 0.304+0.03 033+£0.01 0.25+0.03 0.27 £ 0.02
CALM Cluster 021 £0.02 026 £0.01 027£0.02 032+£0.03 0.22+0.02 0.25+0.01
LinSep  030+0.02 0.36£0.03 0.344+0.01 039+0.02 0.29+0.01 0.32+0.03
MFABA Cluster 0.20+0.01 0.25+0.03 0.26+0.03 031+£0.01 0.21+0.03 0.24£0.01

LinSep  029£0.02 035£0.01 033£0.02 038=£0.03 0.28+0.02 0.31+£0.03
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Table 10: Average F1 for the CLEVR Dataset (Unsupervised).

Attribution Method ~ Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.63 £ 0.02 0.64 + 0.01 0.46 + 0.01 0.43 £ 0.03
LinSep 0.60 & 0.01 0.59 £+ 0.03 0.38 £ 0.02 0.33 £ 0.01
LIME Clustering 0.52 +£0.03 0.61 £ 0.01 0.76 £ 0.01 0.81 £ 0.02
LinSep 0.52 £0.02 0.77 £ 0.03 0.68 & 0.03 0.83 + 0.01
SHAP Clustering 0.51 +0.01 0.53 £ 0.02 0.75 £ 0.02 0.80 = 0.01
LinSep 0.52 £0.03 0.58 £ 0.01 0.75 £ 0.01 0.80 + 0.03
RISE Clustering 0.53 £ 0.02 0.53 + 0.01 0.55 +£0.03 0.56 £ 0.02
LinSep 0.58 + 0.01 0.59 £+ 0.03 0.60 £ 0.01 0.63 £ 0.02
SHAP IQ Clustering 0.52 +0.03 0.53 £ 0.02 0.55 £ 0.02 0.58 & 0.01
LinSep 0.58 + 0.01 0.58 £ 0.02 0.60 £ 0.01 0.61 + 0.03
IntGrad Clustering 0.47 £ 0.02 0.47 £ 0.01 0.56 £0.03 0.58 £ 0.02
LinSep 0.58 +0.01 0.59 £+ 0.03 0.62 £+ 0.01 0.64 £ 0.02
GradCAM Clustering 0.41 +£0.03 0.45 £ 0.02 0.50 £ 0.02 0.47 £ 0.01
LinSep 0.48 £ 0.01 0.46 £+ 0.02 0.48 £+ 0.01 0.49 £+ 0.03
FullGrad Clustering 0.45 £ 0.02 0.42 +0.01 0.42 £+ 0.03 0.45 +£0.02
LinSep 0.49 £ 0.01 0.49 £ 0.03 0.50 £ 0.01 0.53 £+ 0.02
CALM Clustering 0.44 £ 0.03 0.50 £ 0.02 0.46 £ 0.02 0.48 + 0.01
LinSep 0.50 £ 0.01 0.54 £ 0.02 0.53 £0.01 0.54 £ 0.03
MFABA Clustering 0.45 £ 0.02 0.48 £ 0.01 0.47 £ 0.03 0.52 £ 0.02
LinSep 0.51 £ 0.01 0.50 £ 0.03 0.54 £0.01 0.55 £ 0.02

Table 11: Average F1 for the COCO Dataset (Unsupervised).

Attribution Method  Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.34 +£0.03 0.37 + 0.02 0.22 +£0.02 0.28 + 0.01
LinSep 0.33 +£0.02 0.36 + 0.01 0.23 +£0.03 0.26 £ 0.02
LIME Clustering 0.36 + 0.02 0.38 £ 0.03 0.45+0.03 0.52 £ 0.01
LinSep 0.38 +£0.01 0.41 + 0.02 0.49 +£0.02 0.55 + 0.03
SHAP Clustering 0.34 +0.03 0.38 + 0.01 0.48 +0.03 0.51 + 0.01
LinSep 0.35 +£0.02 0.37 + 0.03 0.49 +£0.02 0.53 +0.01
RISE Clustering 0.34 + 0.03 0.34 + 0.02 0.36 £ 0.01 0.38 + 0.03
LinSep 0.35 £ 0.02 0.38 + 0.01 0.35+£0.03 0.40 £ 0.02
SHAP IQ Clustering 0.33 +£0.01 0.35 + 0.03 0.35 +£0.02 0.36 + 0.01
LinSep 0.34 +£0.03 0.37 + 0.01 0.36 = 0.02 0.38 + 0.01
IntGrad Clustering 0.28 +£0.03 0.31 + 0.02 0.48 + 0.01 047 £0.03
LinSep 0.31 £0.02 0.35 + 0.01 0.38 £0.03 0.39 £ 0.01
GradCAM Clustering 0.28 £ 0.01 0.31 + 0.03 0.31 £0.03 0.33 + 0.02
LinSep 0.35 £0.03 0.36 + 0.01 0.36 + 0.02 0.34 + 0.01
FullGrad Clustering 0.29 +£0.03 0.31 + 0.02 0.30 £ 0.01 0.33 + 0.03
LinSep 0.35 +£0.02 0.39 + 0.01 0.37 £0.03 0.34 + 0.01
CALM Clustering 0.29 £ 0.01 0.29 £ 0.03 0.26 = 0.02 0.25 £ 0.02
LinSep 0.35 +£0.02 0.39 + 0.01 0.35 +£0.02 0.36 + 0.01
MFABA Clustering 0.29 £0.03 0.33 + 0.02 0.28 +0.01 0.32 £ 0.03
LinSep 0.30 £ 0.02 0.35 + 0.01 0.33 £0.03 0.36 + 0.01
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Table 12: Average F1 for the OpenSurfaces Dataset (Unsupervised).

Attribution Method ~ Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.19 £+ 0.01 0.19 £+ 0.03 0.14 £ 0.03 0.15 £ 0.02
LinSep 0.19 £ 0.03 0.18 £0.02 0.15 £ 0.01 0.14 £ 0.03
LIME Clustering 0.37 £ 0.01 0.41 £ 0.02 0.37 £ 0.02 0.37 £+ 0.03
LinSep 0.39 £0.03 0.41 £ 0.01 0.38 £0.01 0.39 £ 0.02
SHAP Clustering 0.40 £ 0.02 0.42 £ 0.03 0.53 +£0.02 0.57 £+ 0.03
LinSep 0.42 £ 0.01 0.44 + 0.02 0.55£0.03 0.56 £+ 0.01
RISE Clustering 0.40 £ 0.01 0.42 £ 0.03 0.51 £0.02 0.52 + 0.01
LinSep 0.43 £ 0.03 0.45 £ 0.02 0.53 £ 0.01 0.55 £ 0.02
SHAP IQ Clustering 0.40 £ 0.02 0.43 £ 0.01 0.51 £0.03 0.53 £ 0.02
LinSep 0.42 £ 0.02 0.45 £+ 0.03 0.52 £+ 0.01 0.52 £ 0.02
IntGrad Clustering 0.33 £ 0.01 0.34 + 0.03 0.32 £0.02 0.35 £ 0.01
LinSep 0.35 £+ 0.03 0.35 £+ 0.02 0.34 £ 0.02 0.35 £+ 0.03
GradCAM Clustering 0.36 £ 0.02 0.40 £ 0.01 0.43 + 0.01 0.42 +£0.03
LinSep 0.42 £0.02 0.43 £+ 0.03 0.44 £ 0.01 0.46 £ 0.02
FullGrad Clustering 0.36 + 0.01 0.37 £+ 0.03 0.36 £ 0.02 0.38 = 0.01
LinSep 0.38 £0.03 0.40 £ 0.02 0.41 £0.01 0.44 + 0.02
CALM Clustering 0.29 +£0.02 0.32 £+ 0.01 0.33 £ 0.01 0.36 + 0.03
LinSep 0.32 £0.02 0.34 £ 0.03 0.34 £0.02 0.39 £ 0.01
MFABA Clustering 0.40 £ 0.01 0.40 £ 0.03 0.42 +0.01 0.41 £ 0.02
LinSep 0.43 £0.03 0.45 £ 0.02 0.42 £0.03 0.44 £ 0.01

Table 13: Average F1 for the Pascal Dataset (Unsupervised).

Attribution Method  Concept Type CLIP Llama
Concept SuperActivators Concept SuperActivators
CosSim Clustering 0.27 £ 0.02 0.33 + 0.01 0.22 £ 0.01 0.24 £+ 0.03
LinSep 0.24 +£0.01 0.30 + 0.03 0.22 +£0.02 0.24 + 0.01
LIME Clustering 0.33 +£0.03 0.34 £ 0.01 0.33 £ 0.01 0.32 £ 0.02
LinSep 0.36 + 0.02 0.35 + 0.03 0.33 + 0.03 0.33 +0.01
SHAP Clustering 0.48 +0.01 0.52 £ 0.02 0.65 +0.02 0.70 + 0.01
LinSep 0.50 +£0.03 0.52 +0.01 0.69 £ 0.01 0.72 + 0.03
RISE Clustering 0.50 +0.02 0.51 + 0.01 0.52 +£0.01 0.55 + 0.03
LinSep 0.54 + 0.01 0.54 + 0.03 0.55 +£0.02 0.58 + 0.01
SHAP IQ Clustering 0.50 +£0.03 0.51 £+ 0.02 0.52 £0.01 0.55 £+ 0.02
LinSep 0.52 £ 0.01 0.53 + 0.02 0.53 +£0.03 0.54 = 0.01
IntGrad Clustering 0.33 + 0.02 0.33 +0.01 0.34 +£0.02 0.35 + 0.01
LinSep 0.34 + 0.01 0.34 + 0.03 0.34 + 0.01 0.34 £ 0.02
GradCAM Clustering 0.42 + 0.03 0.40 £ 0.02 0.43 + 0.02 0.40 £ 0.01
LinSep 0.43 £0.01 0.45 £ 0.02 0.44 £0.01 0.47 + 0.03
FullGrad Clustering 0.37 £ 0.02 0.42 + 0.01 0.38 + 0.03 0.38 & 0.02
LinSep 0.43 +0.01 0.42 +0.03 0.42 +0.02 0.43 +0.01
CALM Clustering 0.37 £ 0.03 0.37 £ 0.02 0.41 +£0.01 0.43 £ 0.02
LinSep 0.43 +£0.01 0.46 + 0.02 0.45 +£0.02 0.49 + 0.01
MFABA Clustering 0.46 £0.02 0.50 + 0.01 0.48 + 0.03 0.47 +0.02
LinSep 0.51 + 0.01 0.49 +£0.03 0.49 + 0.01 0.47 £0.02
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Table 14: Average F1 for the Sarcasm Dataset (Unsupervised).

Attribution  Concept Llama Qwen Gemma
Method Type
Super Super Super
Concept Activators Concept Activators Concept Activators
CosSim Cluster  0.28 £0.01 0.28 £0.03 0.26 £0.02 0.25+0.01 0.24+0.03 0.23+0.02
LinSep  0.28 £0.02 0.28 £0.01 0.24 +£0.01 0.24 +£0.03 0.24 + 0.02 0.23 + 0.01
LIME Cluster 0.29+0.01 0.50£0.02 031£0.02 045+£0.01 0.33+£0.01 0.51+£0.02
LinSep 0.50+0.03 0.74+£0.01 0.53+£0.01 0.60+0.03 0.55+0.03 0.66+ 0.01
SHAP Cluster 030+£0.02 046 £0.01 030£0.03 045£0.02 0.35+£0.02 0.46+0.01
LinSep 0.54+0.01 0.74+0.03 0.54+£0.01 0.68+0.02 0.51+0.01 0.67+0.03
RISE Cluster 0.40+0.03 049£0.02 039£0.02 0.52+£0.01 046+0.03 0.55=+£0.02
LinSep 0.59+0.01 0.72£0.02 0.53+£0.01 0.74£0.03 0.60+0.01 0.70+ 0.02
SHAP IQ Cluster 038 +0.02 0.46 £0.01 0.37+0.03 045+0.02 040+0.02 0.51+0.01
LinSep 0.52+0.01 0.74+£0.03 052+£0.01 0.70£0.02 0.59+0.01 0.66+0.03
IniGrad Cluster 039 +0.03 027+£0.02 038+£0.02 029+0.01 0.41+0.03 0.27+0.02
LinSep 038 £0.01 0.67£0.02 0.41+£0.01 0.58+0.03 0.39+0.01 0.58+0.02
GradCAM Cluster 0.31+£0.02 045+£0.01 033£0.03 0.44+0.02 0.34+0.02 0.48+0.01
LinSep 044 +0.01 0.70£0.03 042+£0.01 0.65£0.02 0.46+0.01 0.62+0.03
FullGrad Cluster 028 £0.03 039+£0.02 026£0.02 043+£0.01 0.29+0.03 0.41+0.02
LinSep 038 £0.01 0.65+£0.02 041+£0.01 0.58+0.03 042+0.01 0.60+0.02
CALM Cluster 034 £0.02 049+£0.01 034+£0.03 046+£0.02 0.36+0.02 0.49+0.01
LinSep  0.51+0.01 0.72+0.03 0.50+0.01 0.67+£0.02 0.56+0.01 0.66+ 0.03
MFABA Cluster 034+0.03 048 £0.02 035+£0.02 043+£0.01 0.32+£0.03 0.50+0.02
LinSep 0.54+0.01 0.71£0.02 0.52+£0.01 0.66+0.03 0.51+0.01 0.65+0.02
Table 15: Average F1 for the iSarcasm Dataset (Unsupervised).
Attribution ~ Concept Llama Qwen Gemma
Method Type
Super Super Super
Concept Activators Concept Activators Concept Activators

CosSim Cluster 056 £0.02 0.57£0.01 0.59£0.03 0.59+0.02 0.60+0.01 0.60+0.03
LinSep  0.60 =0.03 0.60 £0.02 0.57+£0.02 0.58+0.01 0.60+0.03 0.60 -+ 0.02
LIME Cluster 0.68 £0.03 0.75+0.01 0.61£0.02 0.62+0.03 0.72+0.01 0.69+ 0.02
LinSep 0.76 £0.02 0.80£0.03 0.76£0.01 0.83+£0.02 0.76+0.02 0.94+0.01
SHAP Cluster  0.69+0.03 0.83+£0.02 0.65+£0.01 0.71+£0.03 0.65+0.03 0.78 £ 0.02
LinSep 0.81+0.02 088+0.01 0.69+£0.02 0.79+£0.01 0.74+0.01 0.92+0.03
RISE Cluster  0.80 £0.01 0.80+£0.03 0.64+£0.01 0.75+£0.02 0.74+0.02 0.81+0.01
LinSep 0.84+0.03 084+0.01 0.75+£0.03 0.89+0.01 0.84+0.01 0.85+£0.02
SHAP IQ Cluster 0.74+0.02 085+£0.01 0.61£0.02 0.71£0.03 0.67+0.02 0.80+0.01
LinSep 0.85+0.01 083+£0.02 0.74£0.01 0.82+£0.02 0.80+0.01 0.82+0.03
IntGrad Cluster  0.74 £0.01 0.68£0.03 056£0.03 0.53+£0.02 0.65+0.01 0.63+0.02
& LinSep 0.75+0.02 0.74+£0.01 0.66+0.02 0.77+0.01 0.74+0.02 0.88+ 0.01
GradCAM Cluster  0.67£0.03 0.72£0.02 0.56=£0.01 0.61£0.03 0.63+0.01 0.68+0.02
LinSep 0.70+£0.02 0.74+0.01 0.70£0.01 0.71+£0.02 0.76+0.02 0.78 £ 0.01
FullGrad Cluster  0.66 £0.01 0.73£0.02 056£0.02 0.63£0.01 0.61+0.03 0.65=+0.02
LinSep 0.73+£0.02 0.82+0.01 0.64+£0.01 0.75+£0.03 0.70+£0.02 0.87+0.01
CALM Cluster 074 £0.03 0.72£0.02 0.61£0.01 0.64=£0.03 0.66+0.02 0.65=+0.01
LinSep 0.80+0.02 082+£0.01 0.72+£0.02 0.73+£0.01 0.75+0.01 0.79+0.03
MFABA Cluster 0.73+£0.01 0.75+£0.02 0.62+0.01 0.66+0.03 0.66+0.03 0.71+ 0.02

LinSep 081 £0.02 085£0.01 0.74£0.02 0.79+£0.01 0.80+0.01 0.88+0.03
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Table 16: Average F1 for the GoEmotions Dataset (Unsupervised).

Attribution ~ Concept Llama Qwen Gemma
Method Type
Super Super Super
Concept Activators Concept Activators Concept Activators

CosSim Cluster  0.18 £0.03 0.18 £0.02 0.23£0.01 0.26£0.03 0.15+0.02 0.15+0.01
LinSep  0.18 £0.01 0.19+£0.03 0.234+0.03 025+0.02 0.14+0.01 0.16 £ 0.03
LIME Cluster  0.18 £0.02 026 £0.01 028 £0.02 0.26£0.03 0.23+£0.02 0.25+0.01
LinSep  025+0.01 035+£0.02 0.344+0.01 038+0.02 0.24+0.01 0.31+0.03
SHAP Cluster  0.22£0.01 027=£0.03 032£0.02 037£0.01 0.19+£0.03 0.27 £ 0.02
LinSep 027 +0.02 031+£0.01 033+0.01 040+£0.02 0.29+0.01 0.28+0.03
RISE Cluster 021 +0.03 0.27 £0.02 0324+0.02 0.38£0.01 0.24+0.02 0.27 £0.01
LinSep 036 =0.01 0.36+0.02 037+£0.01 042=£0.03 032+£0.01 0.34+£0.02
SHAP IQ Cluster 0.20+0.02 0.27£0.01 028+0.01 031£0.02 0.24+0.03 0.22=£0.01
LinSep 034+£0.01 035£0.03 035£0.02 038=£0.01 0.29+0.02 0.35=+0.03
IntGrad Cluster 0.234+0.01 0.19+0.02 0.27+0.03 025+0.01 0.18+0.01 0.19+£0.02
o LinSep 028 £0.02 029£0.01 027=£0.02 032+£0.03 0.24+0.02 0.23+£0.01
GradCAM Cluster 020£0.01 021£0.03 025£0.02 031+£0.01 0.20+£0.03 0.21+£0.02
LinSep 027 £0.02 034£0.01 033£0.01 035£0.02 0.25+0.01 0.26+0.03
FullGrad Cluster  0.18 £0.03 0.19£0.02 023+£0.01 0.26=+0.03 0.16£0.02 0.22+0.01
4 LinSep  026+0.02 0.30£0.01 0.294+0.02 032+0.01 0.27+0.01 0.25+0.03
CALM Cluster 023 £0.01 024=£0.02 028=£0.01 030=£0.02 0.22+0.02 0.25+£0.01
LinSep  029+0.02 035+£0.01 0334+0.02 037+0.01 0.27+0.01 0.30-+£0.03
MFABA Cluster  0.19£0.01 026 £0.03 027=£0.02 034=+£0.01 023+£0.02 0.26+0.01
LinSep 028 +0.02 0.36+0.01 0.324+0.01 036=+0.03 0.29+0.03 0.34+0.02
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Table 17: Detection F1 (avg. across concepts) from SAE concepts: 92% through CLIP for image
datasets and 81% through Gemma for text datasets.

Concept Detection Methods

CLS RandTok LastTok MeanTok SuperTok (Ours)
CLEVR 0.898 £0.135 0.504 +0.077 0.504 +£0.077 0.609 £0.083  0.992 + 0.090
COCoO 0.462 £0.064 0.335+0.049 0.339+0.049 0.591 £0.069 0.582 + 0.000
Surfaces 0.419£0.062 0.345+0.042 0.344+0.042 0.479+0.074 0.501 + 0.085
Pascal 0.570 £0.063 0.398 +£0.049 0.404 +0.053 0.601 +0.060 0.662 + 0.000
Sarcasm 0.662 £ 0.075 0.659 +0.052 0.659 +0.052 0.659 £0.052 0.659 + 0.052
iSarcasm 0.706 £ 0.069 0.676 +£0.044 0.676 +0.044 0.703 £0.051  0.777 + 0.054
GoEmotions 0.159 £0.067 0.124 £0.062 0.124 +0.062 0.350+0.106  0.395 £ 0.093

J SPARSE AUTOENCODERS

J.1 SAES FOR CONCEPT DETECTION

Sparse autoencoders (Goh et al.,[2021) (SAEs) have recently been proposed as a mechanism for un-
covering latent concepts in large models. By training an encoder—decoder architecture with sparsity
constraints, SAEs aim to discover a set of basis features that are both interpretable and disentan-
gled. This approach is attractive for concept analysis because sparsity encourages individual hidden
units to capture relatively specific and semantically meaningful directions in representation space.
In principle, such units could act as natural “concept detectors” without additional supervision.

Despite these benefits, SAEs come with notable limitations. Training them at scale is extremely
resource-intensive, and thus only a small number of pretrained SAEs have been made publicly avail-
able. These models are typically trained on very specific layers of particular architectures and cannot
be easily transferred to other checkpoints or layers. For this reason, we restrict our comparisons to
what is currently feasible: an SAE trained on the penultimate residual stream of CLIP (Radford
et al.| [2021;|Schuhmann et al.| [2022; Tlharco et al.,|2021) (covering 92% of the model depth for im-
ages) and SAEs trained on intermediate layers of Gemma (Team et al., 2024} Lieberum et al., 2024)
(covering 81% of the depth for text). A second practical issue is that SAEs output thousands of
candidate units, which makes automatic labeling more difficult. To address this, we filtered out units
that activated on nearly all samples or no samples (Cywinski & Deja, [2025), or with insufficient
activation strength (Gao et al., [2024b)).

After filtering, we evaluated the retained SAE units as potential unsupervised concept detectors. We
apply the same SuperActivator paradigm for detection, treating CLS and token-alignment with the
retined SAE units as concept activation scores.

Table [I'7] shows the F concept detection performance for the best-perfoming SAE units for each
ground truth concept. Our SuperActivators method performs quite well across all datasets. How-
ever, we note in Figure [27|that our method achieved peak performance by just using a much larger
subset of the most activated tokens (larger N%). We suspect this is due to the sparsity constraint in
SAE training objectives. By penalizing high activations, SAEs eliminate weak and noisy responses
and shrink the scale of the surviving ones. With less contrast between the strongest and moderate
responses, concept evidence becomes spread across more activated tokens and less concentrated in
the tail.

J.2  SAES FOR CONCEPT ATTRIBUTION

Having established that SAEs can act as competitive unsupervised detectors, we next evaluate
whether they can also support concept attribution. Tables |18| and |19 report average attribution F}
across both image (using CLIP model) and text (using Gemma model) datasets.

Across all methods, we observe a consistent pattern: SuperActivators pooling yields stronger attribu-
tion performance than CLS pooling. On image datasets, SuperActivators improves scores in nearly
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Figure 27: For SAEs The strongest globally applicable concept signals are not concentrated in a
very sparse set of signals.

every setting, often by non-trivial margins. Similar trends appear in text, where SuperActivators
again provides the strongest performance in most cases.

While the average F across all concepts remains modest relative to supervised baselines, the results
highlight a consistent trend: even for SAEs, SuperActivators consistently provides a more accurate
signal for both concept detection and attribution than global CLS-based pooling. This suggests that
fine-grained, token-level alignment is crucial for extracting interpretable signals from unsupervised
representations.

Table 18: Average Attribution F1 for SAEs on Image Datasets with CLIP model.

(a) CLEVR and COCO Dataset

Attribution Method CLEVR COCO
CLS SuperActivators CLS SuperActivators

LIME 0.45 £+ 0.04 0.49 + 0.01 0.32 £+ 0.03 0.33 + 0.04
SHAP 0.47 £ 0.05 0.51 + 0.03 0.31 £ 0.03 0.34 + 0.02
RISE 0.44 £+ 0.03 0.48 + 0.03 0.30 +0.02 0.33 + 0.01
SHAP IQ 0.46 + 0.04 0.46 + 0.02 0.28 £ 0.05 0.33 + 0.04
IntGrad 0.40 £+ 0.05 0.44 + 0.04 0.27 £+ 0.04 0.31 + 0.03
GradCAM 0.36 £ 0.05 0.40 + 0.05 0.26 £ 0.05 0.30 + 0.04
FullGrad 0.37 £ 0.04 0.41 + 0.02 0.32 + 0.03 0.31 +0.04
CALM 0.44 £ 0.02 0.49 + 0.04 0.27 £ 0.05 0.32 + 0.03
MFABA 0.44 £+ 0.03 0.49 + 0.02 0.28 + 0.04 0.30 + 0.03

(b) OpenSurfaces and Pascal Dataset

Attribution Method OpenSurfaces Pascal
CLS SuperActivators CLS SuperActivators

LIME 0.41 +0.04 0.43 + 0.04 0.40 + 0.05 0.44 + 0.04
SHAP 0.31 +£0.03 0.35 + 0.02 0.41 £ 0.04 0.45 + 0.03
RISE 0.36 + 0.05 0.40 + 0.02 0.40 + 0.05 0.44 + 0.05
SHAP 1Q 0.37 £+ 0.04 0.41 £+ 0.05 0.41 +£0.05 0.45 +0.01
IntGrad 0.39 + 0.02 0.43 + 0.02 0.46 £ 0.05 0.50 + 0.02
GradCAM 0.32 £ 0.05 0.36 + 0.02 0.34 +£0.03 0.38 + 0.04
FullGrad 0.34 £ 0.03 0.38 + 0.03 0.36 £ 0.05 0.40 + 0.02
CALM 0.26 + 0.05 0.30 + 0.02 0.35 £ 0.04 0.39 + 0.03
MFABA 0.39 + 0.04 0.39 + 0.02 0.41 £0.03 0.46 + 0.02
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Table 19: Average Attribution F1 for SAEs on Text Datasets with Gemma Model.

Alt\t/}‘;tt)}l]l(t)l(;)n Sarcasm iSarcasm GoEmotions
Super Super Super
CLS Activators CLS Activators CLS Activators

LIME 0.37 £0.05 036002 062+003 0.65+0.04 0.16=£0.04 0.20=+0.04
SHAP 0.33+£0.04 037004 059+005 0.64+001 0.18+£0.03 0.23+0.02
RISE 0.37 £0.05 0.42+0.03 068004 0.72+£0.04 020=£0.05 0.22+0.02
SHAP IQ 0.40 £ 0.05 0.40 £0.02 0.68+0.05 0.69+0.02 0.18£0.04 0.23+0.02
IntGrad 0.31 £0.05 035+0.04 052+005 0.57+0.04 0.10£0.04 0.15=+0.05
GradCAM 034 +0.04 039+0.03 053+003 0.58+0.01 0.16+0.05 0.20+0.02
FullGrad 028 £0.05 0.33+0.03 0.59+0.04 0.59+0.03 0.14+£0.03 0.18+0.04
CALM 0.37£0.04 039+0.04 056005 0.60+0.04 0.16=+0.03 0.21+0.02
MFABA 0.33+£003 0.38+0.03 055+004 0.60£0.02 0.18=+£0.03 0.23+0.02
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