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Abstract
The best performing, connectome-based predic-
tive models of behavior use multiple sources of
data (e.g., predicting latent variables generated
from a battery of behavioral measures). However,
as the number of sources increases, the chances
of missing a portion of the behavioral measures
also increases, hindering downstream analyses.
The most common strategy for handling missing
data is to remove participants with missing val-
ues and run the analysis only using the complete
cases. This approach hinders downstream predic-
tive modeling algorithms that rely on large data
sets for training. To allow participants with miss-
ing data to be retained for training, we included a
data imputation step in connectome-based predic-
tive modeling (CPM) to estimate missing values
in the behavioral measures. Performance is eval-
uated by the improvement of predicting power
compared with complete case study. Experimen-
tal results show that imputation of missing behav-
ioral measures improves CPM performance when
the predictability of that behavioral measure is
relatively high. Overall, our results suggest that
increasing the size of training data via data im-
putation may be a valuable step for datasets with
missing behavioral data.

1. Introduction
Advanced functional magnetic resonance imaging (fMRI)
techniques—especially, functional connectivity matrices, or
connectomes—are revealing robust individual differences
in behavior (Dubois & Adolphs, 2016). Further, emerging
works are beginning to highlight the benefits using multiple

1Department of Biomedical Engineering, Yale University, New
Haven, CT, USA 2Department of Radiology and Biomedical Imag-
ing, Yale School of Medicine, New Haven, CT, USA. Correspon-
dence to: Dustin Scheinost <dustin.scheinost@yale.edu>.

Presented at the first Workshop on the Art of Learning with Missing
Values (Artemiss) hosted by the 37 th International Conference on
Machine Learning (ICML). Copyright 2020 by the author(s).

sources of information per participant in detecting these in-
dividual differences (Gao et al., 2019a; Dadashkarimi et al.,
2019; Elliott et al., 2019; Dubois et al., 2018). For exam-
ple, models combining multiple connectomes outperform
models built from a single connectome (Gao et al., 2019a)
and latent variables derived from a battery of behavioral
measures are more predictable than a single behavioral mea-
sure (Dubois et al., 2018; Gao et al., 2019b). Together, these
results suggest that using connectomes and behavioral data
from multiple sources is a powerful approach to modeling
individual differences. Nevertheless, using multiple sources
of data increases the likelihood of missing data. Currently,
most fMRI studies only consider complete cases. In other
words, participants with missing behavioral or imaging data
are simply removed from analysis, introducing potential
selection biases, reducing statistical power, and hurting gen-
eralization.

In this work, we introduce a data imputation step to
connectome-based predictive modeling (CPM) to improve
brain-based models of behavior by including participants
with missing data in model training. While previous works
have explored data imputation for missing imaging data
(Vaden et al., 2012; Thung et al., 2018; Yuan et al., 2012), us-
ing imputation for missing behavioral data is less explored.
Specifically, we evaluate three data imputation methods
(mean imputation, regularised iterative principal component
analysis (Josse & Husson, 2016), and missForest (Stekhoven
& Bühlmann, 2011) to impute either a single behavioral
measure or a latent behavioral factor from a battery of be-
havioral measures. Participants with imputed behaviors are
then retained to train brain-based models of behavior using
10-fold cross-validation and ridge regression CPM (Gao
et al., 2019a). As the goal of the imputation is to retain more
participants for building downstream CPM models, we as-
sess the utility of each imputation method as the change
in CPM performance compared to a case where all partici-
pants with missing data are removed (i.e., the complete case
study). To do so, we simulate missing data (completely at
random) in two large open-source datasets: the Human Con-
nectome Project (HCP) dataset (Essen et al., 2013) and the
UCLA Consortium for Neuropsychiatric Phenomics (CNP)
dataset (Poldrack et al., 2016)
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2. Method
2.1. Ridge regression Connectome-based Predictive

Modeling (rCPM)

CPM is a validated method for extracting and pooling the
most relevant features from connectivity data in order to con-
struct linear models to predict phenotype measures (Shen
et al., 2017). Each connectome is vectorized and the edges
are taken as features. Then edges of connectivity matrices
that are significantly correlated with the phenotypic measure
of interest are selected. In ridge regression CPM, a ridge
regression model is directly fitted with training individuals
using the selected edges from multiple task connectomes
per individual and the model is applied to testing individu-
als in the cross-validation framework. Due to the positive
semi-definite nature of a functional connectivity matrix, the
edges are not independent. Ridge regression is more robust
than ordinary least-squares regression when dealing with
dependent features (Gao et al., 2019a).

2.2. Data imputation methods

To address the missing data problem in behavioral measures
and incorporate more subjects into training, we tested three
different data imputation methods in the setting of predicting
one single behavioral measure and predicting the latent
phenotype of multiple behavioral measures using rCPM.
In most functional connectivity studies, there are multiple
behavioral measures Y = {y1, y2, ..., yn}, where each yi is
a column vector. Thus, it is possible to impute the missing
values using some developed imputation method simply on
the behavioral data.

2.2.1. MEAN IMPUTATION

In mean imputation, missing values were replaced with the
mean of the non-missing entries of that variable.

2.2.2. MISSFOREST

MissForest is a non-parametric missing value imputation
method for mixed-type data. For each variable in the dataset,
missForest fitted a random forest on the observed part and
then predicted the missing part (the predicted values were
later used in training models of other variables). The algo-
rithm continued to repeat these two steps until a stopping
criterion was met. The algorithm was implemented in R
package missForest (Stekhoven & Bühlmann, 2011).

2.2.3. REGULARIZED ITERATIVE PRINCIPAL
COMPONENT ANALYSIS

Iterative Principal Component Analysis (PCA) algorithm,
also known as the Expectation-maximization PCA (EM-
PCA) algorithm, is an expectation-maximization algorithm

for a PCA fixed-effects model, where data are generated as
a fixed structure having a low rank representation corrupted
by noise. Regularized iterative Principal Component Analy-
sis used regularized methods to tackle the overfitting prob-
lems when data is noisy and/or there are many missing val-
ues (Verbanck et al., 2015). The algorithm was implemented
in the function imputePCA in R package missMDA (Josse
& Husson, 2016).

2.3. Simulation

To test if the imputation methods improved rCPM perfor-
mance, we simulated the missing data completely at random
behavioral measures. The missing percentage was varied
from 2.5% to 40% in increments of 2.5%. At each missing
percentage, we performed 100 trials using different seeds
to generate synthetic missing data. In all cases, rCPM with
10-fold cross validation and 10 repeated random splits was
used to generate predicted values. Additionally, the three
imputation methods described above were used to impute
missing data using only the training data for each fold of
cross validation.

2.3.1. SINGLE BEHAVIORAL MEASURE

Here, we aimed to predict yk, which has some missing
elements. The missing percentage of the target variable
yk and the rest of data were controlled separately with the
same value. Next, we separated the dataset into two splits
{X,Y }miss and {X,Y }obs. {X,Y }miss contains the data
of participants whose kth behavioral measure is missing.
In contrast, {X,Y }obs contained the data of participants
whose kth behavioral measure was complete. In the 10-
fold cross-validation of rCPM, {X,Y }obs was divided into
10 groups. On each fold, 9 of these folds were combined
with {X,Y }miss as training set {X,Y }train. The missing
values of yk were then imputed in {Y }train. Then the model
is trained on now completed {X, yk}train and validated on
{X, yk}test.

2.3.2. LATENT PHENOTYPE

For predicting the latent phenotype (the 1st principal compo-
nent), the average missing percentage of all behavioral mea-
sures was controlled. The whole dataset was directly divided
into {X,Y }train and {X,Y }test in each fold. {Y }train
and {Y }test are imputed separately. After filling in the miss-
ing data, we applied principal component analysis (PCA)
on {Y }train to get the first principal component ypctrain

.
The PCA coefficients were subsequently applied to {Y }test
to get ypctest .
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Figure 1. Performance of rCPM with embedded data impuation in predicting A) PMAT (HCP dataset) B) Verbal Recall II (CNP dataset).
Prediction performance (

√
R2

CV ) and imputation accuracy (nrmse) over a range of missing data rates from 2.5% to 40% missing data
are shown. The shadow areas represent the 95% confidence interval calculated from multiple repeats of missing data.

2.4. Comparison methods

Prediction performance was evaluated by the cross-validated
R2, R2

CV = 1 −
∑n

i=1(yi−ŷ)2∑n
i=1(yi−ȳ)2 (Alexander et al., 2015).√

R2
CV was reported for comparability to the normally-used

Pearson correlation coefficient. Normalized mean squared
error was used to compare the imputed values to the ground

truth, nrmse =

√
mean((ytrue

k −yimp
k )2)

var(ytrue
k )

, where yimp
k is the

imputed value for missing entries and ytruek is the true value.
95% confidence intervals were calculated as: x̄ ± t∗ s√

n
,

where t∗ is the upper 0.025 critical value for the t distribu-
tion with n − 1 degrees of freedom, n is the sample size,
and s is the estimated standard deviation. All results using
data imputation were compared to the complete case results,
where any individual with missing data is simply dropped
from analysis.

3. Result
3.1. Dataset

3.1.1. HCP DATASET

In this dataset, each individual performed seven tasks in
the scanner. The seven task scans (gambling, language,
motor, relational, social, working memory, and emotion)

were processed with standard methods and parcellated into
268 nodes using a whole-brain, functional atlas, as previ-
ously described (Glasser et al., 2013; Gao et al., 2019a).
Functional connectivity was calculated based on the “raw”
task timecourses, with no regression of task-evoked activity.
Next, the mean timecourses of each node pair were corre-
lated and correlation coefficients were Fisher transformed,
generating seven 268× 268 connectivity matrices per sub-
ject. Cognitive ability was assessed by tasks from the NIH
tool-box and Penn computerized neurocognitive battery. Af-
ter excluding participants for high motion or incomplete
data, 500 subjects were retained for simulations.

For the single behavioral variable experiments, we chose
variables, which could be predicted with a high prediction
accuracy (Penn Matrix Reasoning Test (PMAT), ReadEng
and PicVocab). For the latent factor experiments, we used
the unajusted score of ten behavioral measures from Dubois
et al. (Dubois et al., 2018) (PicVocab, PMAT, ReadEng,
VSPLOT, IWRD, PicSeq, ListSort, Flanker, CardSort and
ProcSpeed). All behavioral measures selected are correlated
with intelligence.

3.1.2. CNP DATASET

In this dataset, each individual performed six tasks in the
scanner. The six task scans (balloon analog risk task, paired
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associative memory encoding, paired associative memory
retrieval, spatial working memory capacity, stop signal, and
task switching) were processed in the same way as above.
After excluding participants for high motion or incomplete
data, 172 subjects were retained for simulations.

Similar to the HCP dataset, for the single behavioral variable
experiments, we chose variables that could be predicted with
a high prediction accuracy (Verbal Recall II, CVLT Short
Delay Free Recall, WMS Digit Span). For the latent factor
experiments, we used seven behavioral measures (Verbal
Recall II, CVLT Long Delay Free Recall, Verbal Recall I,
CVLT Short Delay Free Recall, WMS Symbol Span, WMS
Digit Span, WAIS Letter-Number Sequencing), which are
all correlated with memory.

Figure 2. Performance rCPM when using data imputation in pre-
dicting a latent factor (i.e., the 1st principal component) of all
behavioral measures in A) HCP dataset and B) CNP dataset over a
range of missing data rates from 2.5% to 40% missing data. The
shadow areas represent the 95% confidence interval calculated
from multiple repeats of missing data.

3.2. Predicting single behavioral measure

As a baseline for further comparisons, model performance
for predicting single behavioral measure decreased as the
percentage of missing data increases. As shown in Fig. 1,
rCPM using imputePCA or missForest for data imputation
improved model performance compared to the complete
case study. Notably, training model using mean imputation
harmed rCPM performance. These two data imputation

HCP Behavior full comp mean imputePCA missForest

PMAT 0.408 0.379 0.361 0.394 0.384
ReadEng 0.394 0.378 0.364 0.394 0.389
PicVocab 0.457 0.432 0.413 0.433 0.430
1stpc 0.565 NA 0.512 0.519 0.519

CNP Behavior full comp mean imputePCA missForest

Verbal Recall II 0.416 0.392 0.378 0.405 0.403
CVLT Short 0.377 0.356 0.351 0.371 0.368
WMS Digit Span 0.308 0.293 0.284 0.297 0.298
1stpc 0.520 NA 0.456 0.478 0.484

Table 1. rCPM data performance with different data imputation
methods for each tested behavioral variable averaged over all miss-
ing data percentage. Bolded values indicate the best performing
data imputation method for each tested behavioral variable.

methods also had a lower nrmse. Results of other behav-
ioral measures were similar to PMAT and Verbal Recall II
(see Table 1).

3.3. Predicting latent variable

rCPM using imputePCA or missForest for data imputation
significantly improved prediction performance compared
to the one using mean imputation as shown in Fig. 2. In
HCP dataset, imputePCA and missForest performed simi-
larly (Fig. 2A); while, missForest performed better in CNP
dataset (Fig. 2B) at high missing data rates.

4. Discussion and Conclusion
We used data imputation to improve prediction performance
when behavioral data are missing. Imputation embedded
rCPM using either imputePCA or missForest significantly
outperforms simpler methods for handling missing data,
such as only using complete cases or mean imputation. In
general, ImputePCA for data imputation performed the best.

To the best of our knowledge, this is the first neuroimaging-
based predictive modeling study to focus on data imputation
for the variable to be predicted (i.e., the behavioral vari-
able). Previous works have only explored data imputation
for missing imaging data (Vaden et al., 2012; Thung et al.,
2018; Yuan et al., 2012). This framework may have util-
ity for longitudinal studies, where imaging is performed at
baseline and behavioral data is collected at multiple future
time points. Participant attrition over time is often a major
source of missing data in this type of study.

Future work will include using both the imaging and behav-
ioral data to impute missing behavioral data and testing for
cases where the data is not missing completely at random.
Overall, our results suggest that data imputation may be
valuable for CPM studies with missing behavioral data.
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