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Abstract

Recent large language models (LLMs) have enabled tremen-
dous progress in natural language understanding. However,
they are prone to generate confident but nonsensical reason-
ing chains, a significant obstacle to establishing trust with
users. In this work, we aim to incorporate rich human feed-
back on such incorrect model generated reasoning chains for
multi-hop reasoning to improve performance on these tasks.
To do so, we collect two such datasets of human feedback
in the form of (correction, explanation, error type) for Strate-
gyQA and Sports Understanding datasets1, and evaluate sev-
eral algorithms to learn from such feedback. We show that
fine-tuning on such small datasets of rich human feedback
can improve model’s performance of generating the correct
final answers, and also improves the model’s ability of judg-
ing the correctness of it’s own answer.

Introduction
With the onset of large language models (LLMs) (Devlin
et al. 2019; Brown et al. 2020), the field has seen tremen-
dous progress on various NLP benchmarks. Among them,
the progress has been striking on relatively simpler tasks
such as short context or factual question answering (Ra-
jpurkar et al. 2016), compared to harder tasks which require
reasoning such as multi-hop question answering (Yang et al.
2018). Even though LLMs may not be best at generating
correct reasoning chains or explanations for such hard tasks
(Saparov and He 2022), the prompting abilities of LLMs
have the potential to provide partially correct (and relevant)
facts required to answer the question. Relatedly, recent work
has found that without any finetuning LLMs cannot self-
correct their reasoning yet (Huang et al. 2023), suggesting
the need for human intervention.

Motivated by this, we try to address the following re-
search question — can we improve reasoning of LLMs by
learning from human feedback on model-generated reason-
ing chains? Figure 1 provides an overview of our approach
— we first prompt the model to generate reasoning chains
for multi-hop questions, then collect diverse human feed-
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1The data and code is available at - https://github.com/joshinh/
rich-feedback-reasoning
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Figure 1: Overview of the process, where we first prompt
LLMs to generate reasoning chains for multi-hop questions,
collect diverse feedback on the generations including cat-
egorical feedback and natural language feedback, and use
multiple training algorithms to learn from them.

back on these chains for diagnosis and propose training al-
gorithms to learn from the collected data.

We collected diverse feedback including correction to
model’s generation, explanation of why the generation was
wrong and error type for a total of 2.2k examples from two
datasets which we will publicly release. We propose multi-
ple training algorithms to learn from the collected feedback
including a multitask algorithm, a variant of self-consistency
in chain-of-thought prompting (Wang et al. 2022), and a
refinement algorithm where we refine the model generated
reasoning chain. We use the proposed algorithms on Llama2
(Touvron et al. 2023) and find that they either improve
model’s reasoning ability (sports understanding dataset)
or perform comparable to in-context learning (strategyQA
dataset). More importantly, we find that the fine-tuned model
is sometimes better at judging if it’s own answer is correct
compared to the base (not finetuned) Llama2 model, an im-
portant practical ability in order to use LLMs more widely.

Our main contributions can be summarized as: (1) a
dataset of rich human feedback including natural language
feedback for 2.2k examples for multi-hop reasoning ; (2)



Figure 2: The interface used to collect feedback from annotators, displaying all the diverse feedback we collect for an examples
from StrategyQA.

novel algorithms to learn from diverse feedback to both im-
prove reasoning performance and which can make LLMs
better at judging their own correctness.2

Related Work
Learning from Feedback. Learning from human feedback
in the form of rewards (Christiano et al. 2017; Ziegler
et al. 2019) has become an effective paradigm for improv-
ing LLMs (Ouyang et al. 2022; Glaese et al. 2022; Chung
et al. 2022b). Most feedback datasets either provide sparse
feedback such as binary feedback (Bai et al. 2022a; Etha-
yarajh, Choi, and Swayamdipta 2022) or provide natural lan-
guage feedback but for narrow space of tasks such as sum-
marization (Scheurer et al. 2022). In comparison, we create
a dataset of rich human feedback including natural language
feedback for much harder reasoning tasks.

LLM self-correction. In contrast to learning from hu-
man feedback, recent works have explored if LLMs can self-
correct their answers. Specifically, Madaan et al. (2023) use
an iterative feedback and refinement procedure to improve
performance; Welleck et al. (2022) introduce self-correctors
by separating the generator and the corrector; Bai et al.
(2022b) use LLMs to generate feedback based on a ‘con-
stitution’. Nevertheless in the context of reasoning, Huang
et al. (2023) show that LLMs struggle at self-correction and

2We believe that the dataset could also be potentially very use-
ful for evaluation in verification (Li et al. 2023) where the task is
to identify and describe the error in models’ generation.

Question: Is the voice of the Genie from Disney’s Al-
addin still alive?
Answer: The answer is no because the Genie was voiced
by comedian Robin Williams. Robin Williams died in
2014.

Question: Johnny Gaudreau nutmegged the defender. Is
this sentence plausible?
Answer: The answer is no because Johnny Gaudreau
is an American professional ice hockey player. Nutmeg
which means passing ball through the opponenet’s leg is
a term from football.

Table 1: Examples from StrategyQA (top) and Sports Un-
derstanding (bottom) used to prompt the language model.

performance might even deteriorate. Given this shortcoming
of LLMs’ self-correction ability, we collect a rich human
feedback dataset for reasoning and demonstrate its utility.

Data Collection
Here, we describe the details of the feedback we collected
and the annotation protocol followed during data collec-
tion. We collected feedback for model generations based
on two reasoning based datasets: StrategyQA (Geva et al.
2021) and Sports Understanding, part of BigBench (Sri-
vastava et al. 2022). We used GPT-J (Wang and Komat-



Error Type StrategyQA Sports Und.
None 17.6% 31.28%

Factual Error 27.6% 38.1%
Missing Facts 50.4% 46.1%

Irrelevant Facts 14.6% 3.9%
Logical Inc. 11.2% 5.2%

Table 2: Percentage of examples in each dataset where the
model generation had the particular error type. Note that a
example might contain more than one error type.

suzaki 2021) to generate answers for StrategyQA and Flan-
T5 (Chung et al. 2022a) to generate answers for sports un-
derstanding dataset.3 In each case, the model was prompted
with k in-context examples containing question, answer and
explanation such as the ones showed in Table 1, followed by
the test question.

Figure 2 shows the interface we used — annotators are
given the question, model generated answer and the expla-
nation split into steps. For each question, we collected the
following feedback:
Subquestions: Decompose the original question into sim-
pler subquestions required to answer the original question.
This task was added after a pilot where we found that adding
this task helps to ‘prime’ the annotators and improve quality
of the rest of the tasks.
Correction: Annotators are provided with a free-form text
box pre-filled with the model generated answer and expla-
nation, and asked to edit it to obtain the correct answer and
explanation.
Error Type: Among the most common types of error we
found in the model generations (Factual Error, Missing
Facts, Irrelevant Facts and Logical Inconsistency), annota-
tors were asked to pick one or more of the error types which
apply to given answer and explanation.
Error Description: The annotators were instructed to not
only classify the errors but also to give a comprehensive jus-
tification for their categorization, including pinpointing the
exact step where the mistake occurred and how it applies to
the answer and explanation provided.

We used private internal vendors as the annotators. The
data collection took place over multiple rounds. We first con-
ducted two small pilots of 30 examples and 200 examples
respectively, after which the annotator team were given de-
tailed feedback on the annotation over a video call. We then
conducted the data collection over two batches for Strate-
gyQA, and over one batch for Sports Understanding giv-
ing periodic feedback throughout — a total of 10 annotators
worked on the task over a period of close to one month.

Dataset Statistics
We gathered feedback on a total of 1565 examples for Strat-
egyQA and 796 examples for Sports Understanding. Table
2 illustrates the percentage of examples that were error-free

3These models were chosen based on the best state-of-the-art
open models at the time of data collection.

Question (q): Is the voice of the Genie from Disney’s
Aladdin still alive?
Model Generation (m): The answer is yes because Ge-
nie is voiced by Robin Williams. He is still alive.
Correction (c): The answer is no because the Genie was
voiced by Robin Williams. Robin Williams died in 2014.
Error Type (t): Factual Error
Error Description (d): In step 2, the explanation incor-
rectly mentions that he is still alive when instead he died
in 2014.

Table 3: Example of a question, model generation and the
feedback we collect for StrategyQA.

in the model generation and the proportion of examples that
contained a specific error type. It’s worth noting that some
examples may have more than one error type.

Learning Algorithms
For each question q, and model generated answer (with ex-
planation) m, we have the following feedback collected: cor-
rect answer and explanation c, type of error present in m (de-
noted by t) and error description d, as described in section .
Table 3 provides an example with all the feedback.

Multitask Learning. A simple baseline to learn from the
diverse feedback available, is to treat each of them as a sep-
arate task. More concretely, we fine-tune Llama2 with the
following objective:

maximize p(c|q) + p(t|q,m) + p(d|q,m) (1)

For each term in Eq 1, we use a separate instruction appro-
priate for the task (e.g. ‘Predict error in the given answer’).
We also convert the categorical variable t into a natural lan-
guage sentence. During inference, we use the instruction for
the term p(c|q) (‘Predict the correct answer for the given
question’) to generate the answer for the test question.

Weighted Self Consistency. Motivated by the success of
self-consistency (Wang et al. 2022) in chain-of-thought
prompting, we propose a weighted variant of it. Instead of
treating each sampled explanation as correct and consider-
ing the aggregate vote, we instead first consider whether the
explanation is correct and then aggregate accordingly.

We first fine-tune Llama2 with the same objective as
in equation 1. During inference, given a test question q,
we sample multiple possible answers (with the instruction
for p(c|q)): a1, a2, .., am. For each sampled answer ai, we
use the instruction for the term p(t|q,m) i.e. ‘Predict er-
ror in the given answer’ to identify if it contains error:
ti = argmax p(t|q, ai). Each answer ai is assigned a weight
of 1 if it is correct, otherwise it is assigned a weight of α < 1
(tunable hyperparameter). The final answer is obtained by
considering a weighted vote over all the answers a1 to an.

Refinement. In the previous proposed methods, the model
directly generates the correct answer c conditioned on the
question q. Instead, here we propose to refine the model gen-
erated answer m to obtain the correct answer for a given



question. More specifically, we first fine-tune Llama2 with
the following objective:

maximize p(t; c|q,m) (2)

where ; denotes the concatenation, i.e. error type t fol-
lowed by the correct answer c. One way to view this objec-
tive is that the model is first trained to identify the error in
given generation m, and then remove that error to obtain the
correct answer c i.e. first identfy error t in generation m and
then refine it to obtain the correct answer c.4

Method StrategyQA Sports Und.
In-context learning 60.401.2% 59.664.4%

Multitask Learning 60.841.0% 74.661.2%
Weighted Self Consistency 57.921.6% 68.160.6%

Iterative refinement 55.451.8% 75.830.5%

Table 4: Performance of learning algorithms on the collected
feedback. ‘In-context learning’ is the baseline using CoT
prompting (4-shot) with Llama2.

Results
For both datasets, we compare all the proposed learning al-
gorithms with the in-context learning baseline using a frozen
model (Llama2). All models are evaluated on heldout exam-
ples from StrategyQA and Sports Understanding (≈200 ex.
from each), where we compute the accuracy of correctly pre-
dicting the final answer. For all our experiments, we finetune
Llama2 using LoRA(Hu et al. 2021).5 Note that the model
we finetuned (Llama2) is different from the ones which were
used for data collection (GPT-J / Flan-T5).

The results are shown in Table 4. As observed, for Strate-
gyQA, the best performing method (multitask learning) per-
forms comparable to in-context learning , but for sports un-
derstanding dataset, all proposed methods perform signifi-
cantly better than the in-context learning baseline. Some ex-
amples of generated reasoning chain before and after fine-
tuning can be found in Appendix . We also performed abla-
tions in Table 5 where we removed parts of the feedback dur-
ing finetuning — we find that removing either error type or
error description does not hurt performance significantly (in
fact it helps for one dataset) indicating that the collected cor-
rections to reasoning chains were probably more valuable as
far as reasoning performance is concerned (compared to er-
ror type or error description). Nevertheless, we find that the
collected error types provide other benefits such as model
being better at judging correctness of its own answer which
we demonstrate next.

We investigate how models adapted with human feedback
on reasoning mistakes can make them better at identifying
errors (Table 6) — this is evaluated by prompting the model

4A potential extension of this is to use it iteratively till the model
predicts there is no error in the generation i.e. use c as m for the
next iteration, and the (i-1)th answer ci−1 is correct if ti = no error.

5More experimental details can be found in the Appendix.

Method StrategyQA Sports Und.
Multitask 61.57% 75.5%

Multitask (- error type) 61.57% 76.5%
Multitask (- error desc.) 61.13% 79.5%

Table 5: Ablation studies — in all cases, the model is still
fine-tuned on the corrections.

Method StrategyQA
Error No-Error Total

Majority Label - - 85.7%
Base Model 9.7% 92.0% 21.83%

Finetuned (ours) 100% 29.3% 89.5%

Table 6: Accuracy of the model in predicting whether the an-
swer and reasoning are correct. The second row corresponds
to Llama2 4-shot CoT prompting, whereas the third row is
our multitask finetuned model (avg over 3 seeds).

to predict if its generation contains any error. We prompt the
LLM with its own generated answer and reasoning chain
(for which we collected feedback) to predict if there is any
error. We use the appropriate instruction for the task (‘Iden-
tify error in the answer’)—the same instruction we use when
finetuning the models. The model is scored correctly if it
predicts ‘no error’ in the generation if the annotators la-
beled the example as having no error, or if it predicts any
of the error types in the generation (along with ‘incorrect’
or ‘wrong’) when the annotators labeled it as having error.6
Note that we do not evaluate the LLM’s ability to correctly
identify the error type, but rather if an error is present.

The evaluation is done on a set of 173 additional examples
from StrategyQA for which we collected feedback, which
are not seen during finetuning. 4 examples out of these are
reserved for prompting the language model (second row in
Table 6).7 We compute accuracy separately for examples
with and without an error in the generation (denoted by ‘Er-
ror’ and ‘No-Error’ respectively). We observe that our fine-
tuned models are better at judging the correctness of gen-
erating reasoning chains both compared to the base model
(in-context learning) and a majority label baseline. 8

Conclusion
We curate human feedback datasets with fine-grained er-
ror corrections—both categorical (error types) and free form
(error description)—an alternative way to improve the rea-
soning abilities of LLMs. Experimental results corroborate
that human feedback on reasoning errors can improve per-
formance and calibration on challenging multi-hop ques-
tions even with a small amount of feedback.

6In most cases, we find that LLMs do not deviate from these
options since they were finetuned to produce one of these outputs.

7Exact prompts can be found in the Appendix.
8Note that the ‘total’ accuracy is better for the finetuned model

since a lot more generated outputs have an error in them.
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Experimental Details
For all the experiments, we use a batch size of 16, learning
rate 1e− 4 with Adam Optimizer and a total of 5 epochs of
training. To finetune large models, we use a parameter effi-
cient finetuning method — LoRA (Hu et al. 2021). We apply
LoRA to the projection matrices for the queries and values.
We set the rank r = 16, α = 16 and the dropout to 0.05
as the LoRA hyperparameters. For the main experiments in
Table 4, we report mean and standard deviation over 3 runs.
All models were trained on a A100 GPU.

Prompts
For the experiment to judge the correctness of the gener-
ated reasoning chain, we use a 4-shot prompt for the baseline
which is shown in Table 7.

Q: Can preventive healthcare reduce STI transmission?
The answer is yes because STIs are caused by bacteria
and viruses. Preventive healthcare can reduce the risk of
contracting STIs.
E: The output is correct.
Q: Is cow methane safer for environment than cars? The
answer is no because Cars produce carbon dioxide and
methane. Methane is a greenhouse gas.
E: The output is wrong.
Q: Does the central processing unit usually have a ded-
icated fan? The answer is yes because The central pro-
cessing unit (CPU) is the main component of a computer.
The CPU is the part of the computer that processes infor-
mation. The CPU is usually cooled by a fan.
E: The output is correct.
Q: Did Al Unser Jr. win the Space Race? The answer is
no because Al Unser Jr. was the first American to win
the Indianapolis 500. The Space Race was a competition
between the United States and the Soviet Union to be the
first to put a man on the moon.
E: The output is wrong.
Q: Is the United States Capitol located near the White
House?

Table 7: The 4-shot prompt used for the baseline (first row)
in Table 6.

Example Generations
In this section, we illustrate some examples of the generated
reasoning chains before and after finetuning.

Before finetuning:
Q: Jacob Markstrom backhanded a shot. Is this sentence
plausible?
A: The answer is no because Jacob Markstrom is a Swedish
professional ice hockey player. In ice hockey, a backhanded
shot is a shot that is struck with the back of the stick.
After finetuning:
Q: Jacob Markstrom backhanded a shot. Is this sentence
plausible?



A: The answer is yes because Jacob Markstrom is a pro-
fessional ice hockey goaltender. Backhanding a shot is a
common technique in ice hockey.

In the above example, the base model generated a correct
reasoning chain but had a logical inconsistency and still
predicted ‘no’. After finetuning, the model predicts ‘yes’
which is the correct answer.

Before finetuning:
Q: Brandon Lowe took a left footed shot. Is this sentence
plausible?
A: The answer is yes because Brandon Lowe is an American
professional baseball player. In baseball, a left footed shot
refers to a batted ball that is hit with the left foot.
After finetuning:
Q: Brandon Lowe took a left footed shot. Is this sentence
plausible?
A: The answer is no because Brandon Lowe is a baseball
player. Baseball players do not take left-footed shots.

In the above example, the base model has a factual error
where it hallucinates a left footed shot in baseball. After
finetuning, the model predicts the correct reasoning chain
and the correct answer ‘no’.

Before finetuning:
Q: Evgeni Malkin passed the puck. Is this sentence plausi-
ble?
A: The answer is no because Evgeni Malkin is a Russian ice
hockey player. In ice hockey, a puck is a small, hard rubber
disc that is used to play the game.
After finetuning:
Q: Evgeni Malkin passed the puck. Is this sentence plau-
sible? A: The answer is yes because Evgeni Malkin is
a professional ice hockey player. Passing the puck is a
common action in ice hockey.

In this example, similar to the first one, there is a logical
inconsistency in the base model — the model predicts ‘no’
even though the (correct) predicted reasoning chain would
suggest ‘yes’. After finetuning, this error is fixed.

Limitations
In this work, we only consider four types of error types (Fac-
tual Error, Missing Facts, Logical Inconsistency, Irrelevant
Fact) and leave a more flexible feedback categorization for
future work. Additionally, we also collect feedback for only
a small amount of examples (≈1.5k for StrategyQA and <
1k for Sports Understanding).


