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Abstract

Adversarial training is a powerful type of defense against adversarial examples.
Previous empirical results suggest that adversarial training requires wider networks
for better performances. However, it remains elusive how does neural network
width affect model robustness. In this paper, we carefully examine the relationship
between network width and model robustness. Specifically, we show that the
model robustness is closely related to the tradeoff between natural accuracy and
perturbation stability, which is controlled by the robust regularization parameter
A. With the same A, wider networks can achieve better natural accuracy but worse
perturbation stability, leading to a potentially worse overall model robustness.
To understand the origin of this phenomenon, we further relate the perturbation
stability with the network’s local Lipschitzness. By leveraging recent results on
neural tangent kernels, we theoretically show that wider networks tend to have
worse perturbation stability. Our analyses suggest that: 1) the common strategy of
first fine-tuning A on small networks and then directly use it for wide model training
could lead to deteriorated model robustness; 2) one needs to properly enlarge A to
unleash the robustness potential of wider models fully. Finally, we propose a new
Width Adjusted Regularization (WAR) method that adaptively enlarges A on wide
models and significantly saves the tuning time.

1 Introduction

Researchers have found that Deep Neural Networks (DNNs) suffer badly from adversarial examples
[59]. By perturbing the original inputs with an intentionally computed, undetectable noise, one can
deceive DNNSs and even arbitrarily modify their predictions on purpose. To defend against adversarial
examples and further improve model robustness, various defense approaches have been proposed
[48, 42, 18, 40, 67, 26, 58, 55]. Among them, adversarial training [23, 41] has been shown to be the
most effective type of defenses [5]. Adversarial training can be seen as a form of data augmentation by
first finding the adversarial examples and then training DNN models on those examples. Specifically,
given a DNN classifier f parameterized by 6, a general form of adversarial training with loss function
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where {(x;,y;)l_; } are training data, B(x,¢) = {X | ||X — x|, < €} denotes the ¢, norm ball
with radius e centered at x, and p > 1, and A > 0 is the regularization parameter. Compared with
standard empirical risk minimization, the extra robust regularization term encourages the data points
within B(x, €) to be classified as the same class, i.e., encourages the predictions to be stable. The
regularization parameter A adjusts the strength of robust regularization. When A = 1, it recovers the
formulation in [41], and when A = 0.5, it recovers the formulation in [23]. Furthermore, replacing
the loss difference in robust regularization term with the KL-divergence based regularization recovers
the formulation in [70].

One common belief in the practice of adversar-

ial training is that, compared with the standard ... e I
empirical risk minimization, adversarial training
requires much wider neural networks to achieve
better robustness. [41] provided an intuitive ex-  3**
planation: robust classification requires a much ’
more complicated decision boundary, as it needs
to handle the presence of possible adversarial
examples. However, it remains elusive how the
network width affects model robustness. To an- (a) Natural Risk (b) Robust Regularization
swer this question, we first examine whether the

larger network width contributes to both the nat- Figure 1: Plots of both natural risk and robust
ural risk term and the robust regularization term  regularization in (1.1). Two 34-layer WideResNet
in (1.1). Interestingly, when tracing the value [69] are trained by TRADES [70] on CIFAR10
changes in (1.1) during adversarial training, we [37] with widen factor being 1 and 10.

observe that the value of the robust regulariza-

tion part actually gets worse on wider models, suggesting that larger network width does not lead to
better stability in predictions. In Figure 1, we show the loss value comparison of two different wide
models trained by TRADES [70] with A = 6 as suggested in the original paper. We can see that the
wider model (i.e., WideResNet-34-10) achieves better natural risk but incurs a larger value on robust
regularization. This motivates us to find out the cause of this phenomenon.
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In this paper, we study the relationship between neural network width and model robustness for
adversarially trained neural networks. Our contributions can be summarized as follows:

1. We show that the model robustness is closely related to both natural accuracy and perturbation
stability, a new metric we proposed to characterize the strength of robust regularization. The
balance between the two is controlled by the robust regularization parameter \. With the same
value of ), the natural accuracy is improved on wider models while the perturbation stability often
worsens, leading to a possible decrease in the overall model robustness. This suggests that proper
tuning of \ on wide models is necessary despite being extremely time-consuming, while directly
using the fine-tuned A on small networks to train wider ones, as many people did in practice
[41, 70], may lead to deteriorated model robustness.

2. Unlike previous understandings that there exists a trade-off between natural accuracy and robust
accuracy, we show that the real trade-off should between natural accuracy and perturbation stability.
And the robust accuracy is actually the consequence of this trade-off.

3. To understand the origin of the lower perturbation stability of wider networks, we further relate
perturbation stability with the network’s local Lipschitznesss. By leveraging recent results on
neural tangent kernels [36, 3, 73, 8, 21], we show that with the same value of \, larger network
width naturally leads to worse perturbation stability, which explains our empirical findings.

4. Our analyses suggest that to unleash the potential of wider model architectures fully, one should
mitigate the perturbation stability deterioration and enlarge robust regularization parameter A for
training wider models. Empirical results verified the effectiveness of this strategy on benchmark
datasets. In order to alleviate the heavy burden for tuning A on wide models, we develop the



Width Adjusted Regularization (WAR) method to transfer the knowledge we gain from fine-tuning
smaller networks into the training of wider networks and significantly save the tuning time.

Notation. For a d-dimensional vector x = [z1, ..., 74] |, we use || x|, = (Z?:l |z5|P)1/P withp > 1
to denote its £, norm. 1(-) represents the indicator function and V represents the universal quantifier.

2 Related Work

Adversarial attacks: Adversarial examples were first found in [59]. Since then, tremendous work
have been done exploring the origins of this intriguing property of deep learning [25, 38, 20, 60, 22,
72] as well as designing more powerful attacks [23, 47, 43, 41, 9, 11] under various attack settings.
[5] identified the gradient masking problem and showed that many defense methods could be broken
with a few changes on the attacker. [13] proposed gradient-free black-box attacks and [32, 33, 12]
further improved its efficiency. Recently, [34, 35] pointed out that adversarial examples are generated
from the non-robust or invariant features hidden in the training data.

Defensive adversarial learning: Many defense approaches have been proposed to directly learn a
robust model that can defend against adversarial attacks. [41] proposed a general framework of robust
training by solving a min-max optimization problem. [62] proposed a new criterion to evaluate the
convergence quality quantitatively. [70] theoretically studied the trade-off between natural accuracy
and robust accuracy for adversarially trained models. [63] followed this framework and further
improved its robustness by differentiating correctly classified and misclassified examples. [14] solve
the problem by restricting the variation of outputs with respect to the inputs. [15, 54, 39] developed
provably robust adversarial learning methods that have the theoretical guarantees on robustness.
Recent works in [65, 50] focus on creating adversarial robust networks with faster training protocol.
Another line of works focuses on increasing the effective size of the training data, either by pre-trained
models [30] or by semi-supervised learning [10, 1, 44]. Very recently, [66] proposed to conduct
adversarial weight perturbation aside from input perturbation to obtain more robust models. [24]
achieves further robust models by practical techniques like weight averaging.

Robustness and generalization: Earlier works like [23] found that adversarial learning can reduce
overfitting and help generalization. However, as the arms race between attackers and defenses keeps
going, it is observed that strong adversarial attacks can cause severe damage to the model’s natural
accuracy [41, 70]. Many works [70, 61, 52, 19] attempt to explain this trade-off between robustness
and natural generalization, while some other works proposed different perspectives. [56] confirmed
that more training data has the potential to close this gap. [6] suggested that a robust model is
computationally difficult to learn and optimize. [72] showed that there is still a large gap between
the currently achieved model robustness and the theoretically achievable robustness limit on natural
image distributions. [2] showed that the adversarial examples stem from the accumulation of small
dense mixtures in the hidden weights during training and adversarial training works by removing
such mixtures. Very recently, [51] showed that this trade-off stems from overparameterization and
insufficient data in the linear regression setting. [68] proved that both accuracy and robustness are
achievable through locally Lipschitz functions with separated data, and the gap between theory
and practice is due to either failure to impose local Lipschitzness or insufficient generalization.
[7] also studied the relationship between robustness and network size. In particular, [7] shows
that overparametrization is necessary for robustness on two-layer neural networks, while we show
that when networks get wider, they will have worse perturbation stability, and therefore larger
regularization is needed to achieve better robustness.

3 Empirical Study on Network Width and Adversarial Robustness

In this section, we empirically study the relation between network width and robustness by first taking
a closer look at the robust accuracy and the associated robust examples.

3.1 Characterization of Robust Examples

Robust accuracy is the standard evaluation metric of robustness, which measures the ratio of robust
examples, i.e., examples that can still be correctly classified after adversarial attacks.



Previous empirical results suggest that wide models enjoy both better generalization ability and model
robustness. Specifically, [41] proposed to extend ResNet [28] architecture to WideResNet [69] with a
widen factor 10 for adversarial training on the CIFAR10 dataset and found that the increased model
capacity significantly improves both robust accuracy and natural accuracy. Later works [70, 63]
follow this finding and report their best result using the wide networks.

However, as shown by our findings in Figure 1, wider models actually lead to worse robust regular-
ization effects, suggesting that wider models are not better in all aspects, and the relation between
model robustness and network width may be more intricate than what people understood previ-
ously. To understand the intrinsic relationship between model robustness and network width, let us
first take a closer look at the robust examples. Mathematically, robust examples can be defined as
Siob 1= {x (VX € B(x,¢€), f(6;X) = y} Note that by definition of robust examples, we have the
following equation holds:

{x: VX eB(x,6), f(0;%X) =y} = {x:f(0;x) =y} A{x:VxeB(x,¢), f(0;x) = f(0;X)},

robust examples: Sy, correctly classified examples: Scorrect stable examples: Sgaple

(3.1)

where A is the logical conjunction operator.
(3.1) suggests that the robust examples are the
intersection of two other sets: the correctly clas-
sified examples (examples whose predictions are
the correct labels) and the stable examples (ex-
amples whose predictions are the same within
the £, norm ball). A more direct illustration of
this relationship can be found in Figure 2. While
the natural accuracy measures the ratio of cor-
rectly classified examples |Scorrect| against the

Samples

whole sample set, to our knowledge, there does S " .
not exist a metric measuring the ratio of stable X - if£0,%) == Y
examples |Syable| against whole the sample set. A

Here we formally define this ratio as the pertur-

bation stability, which measures the fraction of e e '

examples whose predictions cannot be perturbed Adversarial Training

as reflected in the robust regularization term in  Figure 2: An illustration of robust, correctly classi-
(L.1). fied, and stable examples in (3.1).

3.2 Evaluation of Perturbation Stability

We apply the TRADES [70] method, which is one of the strongest baselines in robust training, on
CIFAR10 dataset and plot the robust accuracy, natural accuracy, and perturbation stability against
the training epochs in Figure 3. Experiments are conducted on WideResNet-34 [69] with various
widen factors. For each network, when robust accuracy reaches the highest point, we record all three
metrics and show their changing trend against network width in Figure 3(d). From Figure 3(d), we
can observe that the perturbation stability decreases monotonically as the network width increases.
This suggests that wider models are actually more vulnerable to adversarial perturbation. In this
sense, the increased network width could hurt the overall model robustness to a certain extent. This
can be seen from Figure 3(d), where the robust accuracy of widen-factor 5 is actually slightly better
than that of widen-factor 10.

Aside from the relation with model width, we can also gain other insights from perturbation stability:

1. Unlike robust accuracy and natural accuracy, perturbation stability gradually gets worse during
the training process. This makes sense since an untrained model that always outputs the same
label will have perfect stability, and the training process tends to break this perfect stability. From
another perspective, the role of robust regularization in (1.1) is to encourage perturbation stability,
such that the model predictions remain the same under small perturbations, which in turn improves
model robustness.

2. Previous works [70, 61, 52] have argued that there exists a trade-off between natural accuracy
and robust accuracy. However, from (3.1), we can see that robust accuracy and natural accuracy
are coupled with each other, as a robust example must first be correctly classified. When the



natural accuracy goes to zero, the robust accuracy will become zero. On the other hand, higher
natural accuracy also implies that more examples will likely become robust examples. Works
including [51] and [45] also challenged this robust-natural trade-off [61] does not hold for some
cases. Therefore, we argue that the real trade-off here should be between natural accuracy and
perturbation stability and the robust accuracy is actually the consequence of this trade-off.

3. [53] has recently shown that adversarial training suffers from over-fitting as the robust accuracy
might get worse as training proceeds, which can be seen in Figure 3(a). We found that the origin
of this over-fitting is mainly attributed to the degenerate perturbation stability (Figure 3(c)) rather
than the natural risk (Figure 3(b)). Future works of adversarial training may consider evaluating
our perturbation stability to understand how their method takes effects. Do they only help natural
risk, or robust regularization, or maybe both of them.
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Figure 3: Plots of (a) robust accuracy, (b) natural accuracy, and (c) perturbation stability against
training epochs for networks of different width. Results are acquired on CIFAR10 with the adversarial
training method TRADES and architectures of WideResNet-34. Training schedule is the same as the
original work [70]. We record all three metrics when robust accuracy reaches the highest point and
plot them against network width in (d).

4 Why Larger Network Width Leads to Worse Perturbation Stability?

Our empirical findings in Section 3 explains why the larger network width may not help model
robustness as it leads to worse perturbation stability. However, it still remains unclear what is the
underlying reasons for the negative correlation between the perturbation stability and the model width.
In this section, we show that larger network width naturally leads to worse perturbation stability from
a theoretical perspective. Specifically, we first relate perturbation stability with the network’s local
Lipschitzness and then study the relationship between local Lipschitzness and the model width by
leveraging recent studies on neural tangent kernels [36, 3, 8, 73, 21].

4.1 Perturbation Stability and Local Lipschitzness

Previous works [29, 64] usually relate local Lipschitzness with network robustness, suggesting that
smaller local Lipschitzness leads to robust models. Here we show that local Lipshctzness is more
directly linked to perturbation stability, through which it further influences model robustness.

As a start, let us first recall the definition of Lipschitz continuity and its relation with gradient norms.

Lemma 4.1 (Lipschitz continuity and gradient norm [49]). Let D € R? denotes a convex compact
set, f is a Lipschitz function if for all x,x” € D, it satisfies

If(x) = F)] < Llx" =],
where L = sup,cp{[|Vf(x)|q} and 1/p+1/q = 1.

Intuitively speaking, Lipschitz continuity guarantees that small perturbation in the input will not lead
to large changes in the function output. In the adversarial training setting where the perturbation x’
can only be chosen within the neighborhood of x, we focus on the local Lipschitz constant where we
restrict X’ € B(x, €) and L = supyepx,) {1V (X)l4 }-



Now suppose our neural network loss function is local Lipschitz, let x” be our computed adversarial
example X and x be the original example, the robust regularization term satisfies
max [L£(0;X,y) — L(0;x, <L max |[[|x—x],| <e€L, 4.1
REB(x,¢) [ v) =~ £(0:xy)] REB(x,¢) [ ] “.1)
where the first inequality is due to local Lipschitz continuity and L = sup,epx,o) {[|VL(0; X', y) |4 }-

(4.1) shows that the local Lipschitz constant is directly related to the robust regularization term, which
can be used as a surrogate loss for the perturbation stability.

4.2 Local Lipschitzness and Network Width

Now we study how the network width affects the perturbation stability via studying the local Lipschitz
constant.

Recently, a line of research emerges, which tries to theoretically understand the optimization and
generalization behaviors of over-parameterized deep neural networks through the lens of the neural
tangent kernel (NTK) [36, 3, 8, 73]. By showing the equivalence between over-parameterized neural
networks and NTK in the finite width setting, this type of analysis characterizes the optimization and
generalization performance of deep learning by the network architecture (e.g., network width, which
we are particularly interested in). Recently, [21] also analyzed the convergence of adversarial training
for over-parameterized neural networks using NTK. Here, we will show that the local Lipschitz
constant increases with the model width.

In specific, let m be the network width and H be the network depth. Define an H-layer fully
connected neural network as follows

f(x) = aTU(W(H)U(W(H—l) e U(W(l)x) ),
where W) ¢ R™xd W) ¢ Rm*m p = 2 .. H are the weight matrices, a € R™ is the
output layer weight vector, and o(+) is the entry-wise ReLU activation function. For notational
simplicity, we denote by W = {W ) WD} the collection of weight matrices and by W =

{W(()H), . ,W(()l)} the collection of initial weight matrices. Following [21], we assume the first
layer and the last layer’s weights are fixed, and W is updated via projected gradient descent with

projection set B(R) = {W : [W{") — Wéh)||p < R/\/m,h = 1,2,...,H}. We have the
following lemma upper bounding the input gradient norm.

Lemma 4.2. For any given input x € R? and ¢, norm perturbation limit e, if m >

max(d, Q(H log(H))), R//m + ¢ < ¢/(HS(log m)3) for some sufficient small ¢ > 0, then with
(d, g g

probability at least 1 — O(H )e~(m(B/Vm+9**H) e have for any x' € B(x, €) and Lipschitz loss

L, the input gradient norm satisfies

IVL(F(x),9)ll2 = O(VmH).

The proof of Lemma 4.2 can be found in the sup- =
plemental materials. Note that Lemma 4.2 holds
for any x’ € B(x, €), therefore, the maximum
input gradient norm in the e-ball is also in the
order of O(vVmH). Lemma 4.2 suggests that
the local Lipschitz constant is closely related
to the neural network width m. In particular,

Local Lipschitz Constant

the local Lipschitz constant scales as the square 100 s
root of the network width. This in theory ex- / Widen-factor(S

A . 50 —— widen-factor-10
plains why wider networks are more vulnerable 5 % m % W oo

to adversarial perturbation. Figure 4: Plot of approximated local Lipschitz

In order to further verify the above theoreti- constant along the adversarial training trajectory.
cal result, we empirically calculate the local Models are trained by TRADES [70] on CIFAR10
Lipschitz constant. In detail, for commonly dataset using WideResNet model. Wider networks
used /., norm threat model, we evaluate the in general have larger local Lipschitz constants.
quantity Supx’e]B(x,e) { ||v£(07 le y) H 1} along

the adversarial training trajectory for networks with different widths. Note that solving this maxi-
mization problem along the entire training trajectory is computationally expensive or even intractable.



Table 1: The three metrics under PGD attack with different A on CIFAR10 dataset using WideResNet-
34 model. We test TRADES as well as our (generalized) adversarial training. Each experiment is
repeated three times. The highest robustness value for each column is annotated with bold number.
From the table, we can tell that: 1) The best choice of ) increases as the network width increases; 2)
For models with the same width, the larger A always leads to higher perturbation stability; 3) With the
same ), the larger width always hurts perturbation stability, which backs up our claim in Section 4.2.

Robust Accuracy (%) Natural Accuracy (%) Perturbation Stability (%)
A width-1 width-5 width-10 \ width-1 width-5 width-10 \ width-1 width-5 width-10
TRADES [70]

6  47.81+.09 54.45+.16 54.18+.39 | 76.26+.10 84.44+.06 84.90+.80 | 69.33+.05 68.27+.22 67.25+.39
9 48.01+.06 55.34+.17 55.294+.45 | 73.784+.30 82.77+.07 84.13+.28 | 71.92+.33 70.66+.26 69.08+.80
12 47.87+.06 55.61+.04 5598+.13 | 72.29+.25 81.59+.20 83.59+.62 | 73.33+£.16 72.004+.20 70.18+.67
15 47.15+£.13 5549+.15 55.96+.09 | 70.98+.24 80.69+.08 82.81+.19 | 73.79+£.27 72.87+£.03 70.87+.23
18 47.02+.13 5543+.12 56.43+.17 | 70.13+£.06 79.97+.12 82.21+.21 | 74.63£.11 73.77£.13  72.04£.30
21 46.26+.19 5531£20 56.07+£.21 | 68.95+.38 79.254+.23 81.74+.12 | 75.17+.28 74.15+.38 72.11+.12

Adversarial Training [41]
1.00 47.99+.16 50.87+.42 50.12+.13 | 77.30+.01 85.82+.01 85.62+.81 | 66.48+.24 62.23+.42 61.62+.46
1.25 49.24+.12 53.10+£.09 51.97+.46 | 74.04+.47 84.73+.22 86.25+.12 | 70.34+.54 65.24+.08 62.94+.35
1.50 49.114+.03 54.15+£.03 53.25+.52 | 72.16+£.25 84.354+.19 85.50+.57 | 72.10£.11 66.65+.06 64.51+.72

1.75 4832+.63 54.36+.14 53.65+.80 | 70.66+.46 83.95£.30 85.52+.24 | 72.43+.40 67.31+£.03 65.67+£.10
2.00 47.44+.06 54.10+.15 55.78+.22 | 69.67+£.09 83.49+.06 85.41+.13 | 72.73+.04 67.53+.01 65.71+.15

Therefore, we approximate this quantity by choosing the maximum input gradient /;-norm among
the 10 attack steps for each iteration. Figure 4 shows that larger network width indeed leads to larger
local Lipschitz constant values. This backup the theoretical results in Lemma 4.2.

5 Experiments

From Section 4, we know that wider networks have worse perturbation stability. This suggests that to
fully unleash the potential of wide model architectures, we need to carefully control the decreasing
of the perturbation stability on wide models. One natural strategy to do this is by adopting a larger
robust regularization parameter A in (1.1). In this section, we conduct thorough experiments to verify
whether this strategy can mitigate the negative effects on perturbation stability and achieve better
performances for wider networks.

It is worth noting that due to the high computational overhead of adversarial training on wide
networks, previous works [70] tuned A on smaller networks (ResNet18 [27]) and directly apply it on
wider ones, neglecting the influence of model capacity. Our analysis suggests that using the same A
for models with different widths is suboptimal, and one should use a larger A for wider models in
order to get better model robustness.

5.1 Experimental Settings

We conduct our experiments on CIFAR10 [37] dataset, which is the most popular dataset in the
adversarial training literature. It contains images from 10 different categories, with 50k images for
training and 10k for testing. Here we first conduct our experiments using the TRADES [70] method.
Networks are chosen from WideResNet [69] with different widen factor from 1, 5, 10. The batch size
is set to 128, and we train each model for 100 epochs. The initial learning rate is set to be 0.1. We
adopt a slightly different learning rate decay schedule: instead of dividing the learning rate by 10
after 75-th epoch and 90-th epoch as in [41, 70, 63], we halve the learning rate for every epoch after
the 75-th epoch, for the purpose of preventing over-fitting. For evaluating the model robustness, we
perform the standard PGD attack [41] using 20 steps with step size 0.007, and ¢ = 8/255. Note that
previous works [70, 63] report their results using step size 0.003, which we found is actually less
effective than ours. All experiments are conducted on a single NVIDIA V100 GPU.

5.2 Model Robustness with Larger Robust Regularization Parameter

We first compare the robustness performance of models with different network width using robust
regularization parameters chosen from {6,9, 12,15, 18, 21} for TRADES [70]. Results of different
evaluation metrics are presented in Table 1.



Table 2: Robust accuracy (%) for different datasets, architectures and regularization parameters
under various attacks. The highest results are evaluated for three times of randomly started attack.
Our approach of boosting regularization for wider models apply to all cases. The value of w and k
represents the network width.

Dataset Architecture | “Viden-factor/ | regulari- | oy C&W FAB Square
growth-rate zation
A=6 | 47.92+.01 44.95+.03 44.31+.04 49.25+.02
w=1 A=12 | 4791404 4424402 4371405 47.75+.02
A=18 | 46.92+£.05 43.48+.03 43.00+£.01 46.014+.05
WideResNet.34 A=6 54.504.03 53.142.03 52.13£.05 56.79+.02
1deResNet- w=5 A=12 | 55.56+.04 53.28+.04 52.55+.02 56.88+.05
A=18 |5521+£.02 52.64+£.02 52.184.01 56.31%.01
CIFAR10 A=6 5423+.04 54.02+.03 52.68+£.07 57.64+.03
w=10 A=12 | 5580+.06 54.41+.01 53.57+.04 57.72+.10
A=18 | 56.29+.10 54.57+.02 54.06+.02 58.04-.05
A=6 | 44.79+£.02 40.83+.03 40.07+.03 45.66-.05
k=12 A=12 | 44.66£.03 40.91+£.03 39.88+.01 44.23+.04
T A=18 | 44.38+£.05 40.63+.03 39.424+.01 43.31+.04
A=6 5551£.01 52.76+£.04 51.74+£.02 57.24+.01
k=64 A=12 | 55.85+.03 52.98+.02 52.10+.03 57.34-.04
A=18 | 5571+£.03 52.83+.06 51.66+.04 55.214.03
A=6 | 2428+.02 20.24+.01 19.974+.02 22.91+.02
w=1 A=12 | 24.184£.04 20.15+.02 19.83+.01 22.78+.01
A=18 |23.99+.03 20.01+.02 19.01+.01 22.04+.01
) A=6 30.73£.03 27.25+.05 26.01+£.03 30.11+.03
CIFARIOO0 | WideResNet-34 w=5 A=12 | 31.57+.02 27.83+.02 27.08+.01 30.45+.01
A=18 | 31.38+£.01 27.66+.04 26.94+.03 30.024.01
A=6 30.484.02 27.984+.01 27.00+£.11 30.45+.06
w=10 A=12 | 31.75£.09 29.25+.04 28.14+.03 31.23+.04
A=18 | 32.98+.03 29.83+.01 28.78+.02 32.02+.01

From Table 1, we can observe that the best robust accuracy for width-1 network is achieved when
A =9, yet for width-5 network, the best robust accuracy is achieved when A = 12, and for width-10
network, the best A is 18. This suggests that wider networks indeed need a larger robust regularization
parameter to unleash the power of wide model architecture fully. Our exploration also suggests that
the optimal choice of A for width-10 network is 18 under the same setting as [70], which is three
times larger than the one used in the original paper, leading to an average improvement of 2.25%
on robust accuracy. It is also worth noting that enlarging A indeed leads to improved perturbation
stability. Under the same ), wider networks have worse perturbation stability. This observation
is rather consistent with our empirical and theoretical findings in Sections 3 and 4. As stated in
Section 3.2, the real trade-off is between natural accuracy and perturbation stability rather than robust
accuracy. Also, the stability provides a clear hint for finding the best choice of \.

We further show that our strategy also applies to the original adversarial training [41], as shown by
the bottom part of Table 1. Proper adaptations should be made to boost the robust regularization for
original (generalized) adversarial training. We show the detail of the adaptations in the Appendix.
As shown by the table, the large improvements on both TRADES and adversarial training using our
boosting strategy suggest that adopting larger A is crucial in unleashing the full potential of wide
models, which is usually neglected in practice.

5.3 Experiments on Different Datasets and Architectures

To show that our theory is universal and is applicable to various datasets and architectures, we conduct
extra experiments on the CIFAR100 dataset and DenseNet model [31]. For the DenseNet models, the
growth rate k denotes how fast the number of channels grows and thus becomes a suitable measure
of network width. Following the original paper [31], we choose DenseNet-BC-40 and use models
with different growth rates to verify our theory.

Experimental results are shown in Table 2. For completeness, we also report the results under four
different attack methods and settings, including PGD [41], C&W [9], FAB [16], and Square [4]. We



Table 3: Comparison of TRADES with different

Algorithm 1 Width Adjusted Regularization tuning strategies. N/A denotes no fine-tuning of
1: Input: initial weights 8y, WAR parameter ¢, learn- the current model (tuning on small networks only).
ing rate 7, adversarial attack .4 Manual represents exhaustive fine-tuning.
2: Ao =0,a=0.1 Model  Tuning A  PGD  GPU hours

3:fort=1,...,7Tdo

. vy N/A 600 47.81 12+18=30
‘5" S)‘;tlm_lml batCh;l(zrll’ y;rl’u' e])d(: m Ym)} WRN-34-T Manual — 9.00 4801 12x6=72
. e A p WAR  9.12  48.06 12+18=30
7. o — L£(62; %1, 1) N/A 600 5445 20+18=38
FORDEGE ey v ma B E0 e
9: At max(Ae—1 + a - (¢ — (lnat/lob), 0) : . ~
10: 0, < 01— (1/m) 7", Vollna+Ai-lob] N/A 600 5418 32+18=50

11 end for WRN-34-10 Manual  18.00 5643 32x6=192
12+ end for WAR 1643 56.46 32+18=50

adopt the best A from Table 1 and show the corresponding performance on models with different
widths. It can be seen that our strategy of using a larger robust regularization parameter works very
well across different datasets and networks. On the WideResNet model, we observe clear patterns as
in Section 5.2. On the DenseNet model, although the best regularization A is different from that of
WideResNet, wider models, in general, still require larger A for better robustness. On CIFAR100, our
strategy raises the standard PGD score of the widest model from 30.48% to 32.98%.

5.4 Width Adjusted Regularization

Our previous analysis has shown that larger model width may hurt adversarial robustness without
properly choosing the regularization parameter A. However, exhaustively cross-validating A on
wider networks can be extremely time-consuming in practice. To address this issue, we investigate
the possibility of automatically adjusting A according to the model width, based on our existing
knowledge obtained in fine-tuning smaller networks, which is much cheaper. Note that the key
to achieving the best robustness is to well balance between the natural risk term and the robust
regularization term in (1.1). Although the regularization parameter A cannot be directly applied
from thinner networks to wider networks (as suggested by our analyses), the best ratio between
the natural risk and the robust regularization across different width models can be kept roughly the
same. Following this idea, we design the Width Adjusted Regularization (WAR) method, which is
summarized in Algorithm 1. Specifically, we first manually tune the best A for a thin network and
record the ratio ¢ between the natural risk and the robust regularization when the training converges.
Then, on training wider networks, we adaptively” adjust A to encourage the ratio between the natural
risk and the robust regularization to stay close to (. Let’s take an example here. We first cross-validate
A on a thin network with widen factor 0.5 and identify the best A = 6 and ( = 30 with 18 GPU hours
in total. Now we compare three different strategies for training wider models and summarize the
results in Table 3: 1) directly apply A = 6 with no fine-tuning on the current model; 2) exhaustive
manual fine-tuning from A = 6.0 to A = 21.0 (6 trials) as in Table 1; 3) our WAR strategy. Table
3 shows that the final A generated by WAR on wider models are consistent with the exhaustively
tuned best A\. Compared to the exhaustive manual tuning strategy, WAR achieves even slightly better
model robustness with much less overall training time (~4 times speedup for WRN-34-10 model).
On the other hand, directly using A = 6 with no tuning on the wide models leads to much worse
model robustness while having the same overall training time. This verifies the effectiveness of our
proposed WAR method.

5.5 Comparison of Robustness on Wide Models

Previous experiments in Section 5.2 and Section 5.3 have shown the effectiveness of our proposed
strategy on using larger robust regularization parameter for wider models. In order to ensure that this
strategy does not lead to any obfuscated gradient problem [5] and gives a false sense of robustness,
we further conduct experiments using stronger attacks. In particular, we choose to evaluate our best
models on the AutoAttack algorithm [17], which is an ensemble attack method that contains four
different white-box and black-box attacks for the best attack performances.

’the learning rate o for \; in Algorithm 1 is not sensitive and needs no extra tuning.



We evaluate models trained with WAR, with or without extra unlabeled data [10], and report the
robust accuracy in Table 4. Note that the results of other baselines are directly obtained from the
AutoAttack leaderboard®. From Table 4, we can see that our WAR significantly improves the baseline
TRADES models on WideResNet. This experiment further verifies the effectiveness of our proposed
strategy.

6 Conclusions

In this paper, we studied the relation between net- Table 4: Robust accuracy (%) comparison
work width and adversarial robustness in adversarial on CIFAR10 under AutoAttack. { indicates
training, a principled approach to train robust neural ~training with extra unlabeled data.

networks. We showed that the model robustness is
closely related to both natural accuracy and pertur- ~ Methods Model  AutoAttack
bation stability, while the balance between the two TRADES [70]  WRN-34-10 53.08

is controlled by the robust regularization parameter  Early-Stop [53] WRN-34-20 53.42

A. With the same value of A, the natural accuracy =~ FAT [71] WRN-34-10 53.51

is better on wider models while the perturbation sta- ~ HE [46] WRN-34-20 53.74
bility actually becomes worse, leading to a possible WAR WRN-34-10 54.73
decrease in the overall model robustness. We showed MART [63]t WRN-28-10 56.29
the origin of this problem by relating perturbation = HYDRA [57]f WRN-28-10 57.14

stability with local Lipschitzness and leveraging re-  RST [10]} WRN-28-10 59.53
cent studies on the neural tangent kernel to prove ~ WARF WRN-28-10 60.02
that larger network width leads to worse perturbation WAR{ WRN-28-20 61.84

stability. Our analyses suggest that: 1) proper tuning of A\ on wider models is necessary despite
being extremely time-consuming; 2) practitioners should adopt a larger X for training wider networks.
Finally, we propose the Width Adjusted Regularization, which significantly saves the tuning time for
robust training on wide models.
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