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Abstract

Recent advances in few-shot question answer-001
ing (QA) mostly rely on the power of pre-002
trained large language models (LLMs) and003
fine-tuning in specific settings. Although the004
pre-training stage has already equipped LLMs005
with powerful reasoning capabilities, LLMs006
still need to be fine-tuned to adapt to specific007
domains to achieve the best results. In this pa-008
per, we propose to select the most informative009
data for fine-tuning, thereby improving the effi-010
ciency of the fine-tuning process with compara-011
tive or even better accuracy on the open-domain012
QA task. We present MINPROMPT, a mini-013
mal data augmentation framework for open-014
domain QA based on an approximate graph015
algorithm and unsupervised question genera-016
tion. We transform the raw text into a graph017
structure to build connections between differ-018
ent factual sentences, then apply graph algo-019
rithms to identify the minimal set of sentences020
needed to cover the most information in the021
raw text. We then generate QA pairs based022
on the identified sentence subset and train the023
model on the selected sentences to obtain the024
final model. Empirical results on several bench-025
mark datasets and theoretical analysis show that026
MINPROMPT is able to achieve comparable or027
better results than baselines with a high degree028
of efficiency, bringing consistent improvements029
in F-1 scores.030

1 Introduction031

Question answering (QA) provides accurate re-032

sponses to a series of questions based on given nar-033

rative contexts. Its diverse applications extend to034

areas such as chatbots (Yang et al., 2019), dialogue035

systems (Burtsev et al., 2018), and instant informa-036

tion retrieval (Esteva et al., 2021), making it a key037

pursuit in the field of natural language processing038

(NLP). Supervised learning has traditionally been039

the approach for developing efficient QA systems040

that deliver commendable results. However, this041

method is intrinsically restricted by its reliance on a 042

large set of annotated QA training examples, which 043

becomes problematic due to the substantial cost 044

associated with acquiring expert-level annotations. 045

Our research focuses on the few-shot QA task, 046

an effort to address the QA challenge with the pres- 047

ence of only a limited number of training examples. 048

The prevalent approaches under the few-shot set- 049

ting either introduce a new task and pre-train an 050

extensive language model from scratch (Ram et al., 051

2021), or they fine-tune an already pre-trained 052

model on the given training examples (Chada and 053

Natarajan, 2021). The fine-tuning stage is crucial in 054

the sense that it stimulates the power of the LLMs 055

obtained during the pre-training stage and makes 056

the model align with the input/output distribution 057

of a certain domain or dataset. However, with an 058

increasing data size for fine-tuning, the training du- 059

ration increases accordingly, which is undesirable, 060

especially when the model size is also large (Ope- 061

nAI, 2023). As such, the importance of minimal 062

data augmentation cannot be understated. The fine- 063

tuning data, often a limited resource in our consid- 064

eration (up to 128 shots), is directly used to adjust 065

the parameters of a pre-trained model to enhance 066

performance on the downstream task. The data is 067

usually labeled by domain experts and thus could 068

be time-consuming to obtain in large quantities. 069

On the other hand, augmented data represents a 070

broader dataset, generated in an unsupervised man- 071

ner by converting statements into question-answer 072

pairs. In QA tasks, it is vital for a model to be 073

exposed to a diverse range of questions, answers, 074

and contexts to develop a robust understanding of 075

the language and the task at hand. However, not 076

all parts of the training data hold equal relevance 077

or significance for the model’s learning process. 078

Some parts may contain more valuable informa- 079

tion or more complex language structures that the 080

model needs to understand to improve its perfor- 081

mance. Consequently, identifying and augmenting 082
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these critical portions of the training data could sub-083

stantially enhance the model’s capacity to answer084

questions accurately and comprehensively.085

To address the above challenges, we present086

MINPROMPT, which consists of the following three087

modules: (1) A sentence graph construction mod-088

ule that leverages sentence graph representation to089

structurize the raw text. Each node in the graph090

symbolizes a sentence, while edges illustrate the091

shared entities between sentences. This sentence092

graph effectively encapsulates the complex inter-093

connections between various textual elements; (2)094

A data selection module that features an approx-095

imate minimal dominating set algorithm. The al-096

gorithm is applied to the sentence graph to identify097

the smallest set of sentences to cover all shared enti-098

ties. This module ensures efficient use of computa-099

tional resources, reduces the risk of overfitting, and100

enhances the model’s generalization ability, result-101

ing in an overall improvement in QA performance;102

and (3) A question generation module that trans-103

forms the selected plain factual sentences into QA104

pairs. The synthesized QA pairs are further turned105

into prompts, providing a condensed, yet compre-106

hensive representation of the text. The generated107

prompts serve as high-quality, information-rich108

training instances for the QA model. This model109

trained on the compact and meaningful prompts110

is then capable of generating accurate answers to111

the posed questions, all without requiring any addi-112

tional explicit supervision.113

In summary, our contributions are as follows:114

• We propose to study minimal data augmentation115

for effective and efficient few-shot QA116

• We introduce MINPROMPT, a minimal data aug-117

mentation framework that uses a graph-based118

algorithm and unsupervised question generation119

to synthesize the most informative QA training120

samples out of the raw text.121

• We conduct extensive experiments on publicly ac-122

cessible benchmarks to validate the effectiveness123

of MINPROMPT, and observe a solid improve-124

ment over competitive compared methods. Be-125

yond that, we also study the necessity of different126

parts of the model.127

2 Related Work128

Question generation. Chen et al. (2019) presented129

an answer-aware question generation (QG) model130

that employs reinforcement learning for improved131

question quality. The model incorporates a cover- 132

age mechanism to alleviate the common issue of 133

answer-related content being left out from the gen- 134

erated questions. Ma et al. (2020) developed a more 135

sophisticated approach to answer-aware question 136

generation. Their model uses sentence-level seman- 137

tic matching and answer position inferring within 138

a sequence-to-sequence framework, resulting in 139

higher-quality questions. Do et al. (2023) proposed 140

a two-stage framework for Conversational Ques- 141

tion Generation (CQG). It selects sentences from 142

a semantic graph to pick up coherent topics and 143

then uses a classifier to determine the answer type 144

of the question. Their approach produces more 145

natural dialogues, as real-life interlocutors often 146

discuss relevant content that is non-sequential. Mo- 147

hammadshahi et al. (2022) introduces RQUGE, a 148

novel metric for assessing the quality of automat- 149

ically generated questions. Traditional methods 150

may unfairly penalize valid questions that don’t 151

mirror reference questions closely. RQUGE over- 152

comes these issues by evaluating on the basis of 153

the answerability of a question given the context. 154

Utilizing pre-trained models for its QA scorer mod- 155

ules, RQUGE does not require additional training. 156

The paper presents evidence of RQUGE’s high 157

correlation with human judgment and robustness 158

against adversarial corruption. 159

Few-shot QA. Previous research in QA has mainly 160

focused on either reusing pre-trained language 161

models (PLMs) (Lan et al., 2020; Joshi et al., 2020) 162

or training a model from scratch using synthetic QA 163

data (Puri et al., 2020; Lewis et al., 2019a; Alberti 164

et al., 2019). However, both approaches require 165

a large amount of annotated data from the down- 166

stream QA task to fine-tune the models, which 167

can be impractical in real-world scenarios. To ad- 168

dress this problem, several recent approaches have 169

been developed that allow the model to adapt to the 170

downstream task with only a small amount of anno- 171

tated data (Ram et al., 2021; Chada and Natarajan, 172

2021). For example, Ram et al. (2021) proposed a 173

pretraining scheme tailored for QA tasks by design- 174

ing a recurring span selection objective that aligns 175

with the common objective in extractive QA tasks. 176

Chada and Natarajan (2021) proposed a framework 177

called FewshotQA, which leverages the capacity of 178

existing PLMs by constructing a QA-style prompt 179

that casts the QA problem as a text generation prob- 180

lem, specifically by concatenating the question and 181

a mask token representing the answer span. This 182

approach aims to save pretraining the model on a 183

2



QA data Acquisition Named Entity Recognition & Entity Typing Sentence Graph Construction & Dominating Set Derivation 

The Los Angeles 
Lakers are an American 
professional basketball team 
based in Los Angeles.

The Lakers play their 
home games at 
Crypto.com Arena, 
an arena shared with 
the NBA's Los 
Angeles Clippers

The Lakers compete in 
the National Basketball 
Association (NBA) as a 
member of the league's 
Western Conference 
Pacific Division.

The Clippers play their home 
games at Crypto.com Arena, 
which they share with NBA 
team Los Angeles Lakers.

Lakers

Crypto.com Arena

Lakers

Lakers

The Los Angeles 
Lakers are an American 
professional basketball team 
based in Los Angeles.

Question Generation Prompt-style Data Augmentation Generative Prompt-Tuning

Autoregressive 
Decoder

Bidirectional 
Encoder

Question: As of 2017, what was the estimated value of the basketball 
team that Luke Theodore Walton coaches?
Answer: $3.0 billion
Context: The Los Angeles Lakers are an American professional 
basketball team based in Los Angeles.  The Lakers compete in the 
National Basketball Association (NBA), as a member of the league's 
Western Conference Pacific Division.  The Lakers play their home games 
at Staples Center, an arena shared with the NBA's Los Angeles Clippers, 
the Los Angeles Sparks of the Women's National Basketball Association, 
and the Los Angeles Kings of the National Hockey League.  The Lakers 
are one of the most successful teams in the history of the NBA, and have 
won 16 NBA championships, their last being in 2010.  As of 2017, the 
Lakers are the second most valuable franchise in the NBA according to 
"Forbes", having an estimated value of $3.0 billion.

Question: What is the masked entity? 
Answer: <mask>. 
Context: The <mask> are an American professional basketball team 
based in Los Angeles.  The Lakers compete in…

Question: What is the masked entity? 
Answer: <mask>. 
Context: The Los Angeles Lakers are an American professional 
basketball team based in <mask>.  The Lakers compete in…

Original QA training example

Augmented Cloze training examples

Figure 1: Framework overview for MINPROMPT.

large-scale corpus. In contrast to these previous184

studies, this paper proposes to focus on identifying185

and leveraging more relevant information from the186

context data in addition to the annotated QA pairs187

to fine-tune the model in a few-shot setting.188

3 MINPROMPT: Graph-based Prompt189

Data Augmentation for Few-shot QA190

As shown in Figure 1, our overall framework, MIN-191

PROMPT, is designed to extract the most semanti-192

cally rich and factually dense sentences to serve as193

candidates for conversion into a prompt tuning QA194

dataset. This process is guided by the principal intu-195

ition that the most informative sentences are those196

that encompass facts or declarations concerning197

a greater number of entities. Hence, these high-198

impact sentences should ideally cite more entities199

within their purview. To implement this, we start200

by extracting the co-reference of entities across201

sentences. Essentially, it allows us to map the202

discourse in a way that allows us to understand203

which sentences are speaking about the same enti-204

ties. Next, we construct a graph to depict the higher-205

order coreference relationships. In this graph, the206

sentences serve as nodes, and sentences are con-207

nected if they mention the same entity. This rep-208

resentation allows us to establish and understand209

the intricate network of relationships between sen-210

tences and the entities they mention. Employing211

graph-based algorithms, we are then able to iden-212

tify and extract the most informative sentences.213

These are typically sentences that have a high de-214

gree of connectivity in the graph, indicating that215

they mention or discuss a larger number of enti-216

ties. We then transform these selected sentences 217

into a fine-tuning dataset. The transformation pro- 218

cess entails restructuring the sentences to meet the 219

format requirements of a QA dataset, which gen- 220

erally involves turning declarative sentences into 221

question-and-answer pairs. This method thus com- 222

bines insights from computational linguistics and 223

graph theory to achieve its goal of creating a high- 224

quality fine-tuning dataset for QA tasks. The ap- 225

proach ensures that the dataset is not only rich in 226

informative sentences, but also maps intricate en- 227

tity relationships, thus providing a comprehensive 228

context for each question and answer pair. This 229

context helps in the training of more robust and 230

nuanced QA systems. 231

3.1 Named Entity Recognition & Entity 232

Typing 233

We use the entities as the bridge to build connec- 234

tions between all the factual sentences. We first 235

conduct named entity recognition (NER) on the raw 236

text to extract all the entity mentions along with 237

their types. For the purpose of unsupervised QA 238

data generation in our setting, the key lies in gen- 239

erating the questions given the raw text and the ex- 240

tracted entities (as answers). The most straightfor- 241

ward way to generate questions is to convert factual 242

sentences into cloze questions (Chen et al., 2023). 243

Creating a conventional cloze question involves 244

extracting the original sentence containing the an- 245

swer from the context and replacing the answer 246

with a chosen token. However, training a model 247

on these data primarily imparts text-matching and 248

fill-in-the-blank skills, while offering minimal gen- 249
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Figure 2: Illustration of the Sentence graph. In
the sentence graph, nodes correspond to sentences and
edges represent the coreference of entities across sen-
tences. Sentences 1, 2 and 3 shares the entity Lakers
while sentence 4 shares the entity Crypto.com Arena
with sentence 3.

eralizability. As a result, we opt for a retrieval-250

based method to procure a sentence akin to the one251

containing the answer and subsequently use this252

to formulate a question. This has been evidenced253

in the work by (Lewis et al., 2019b) and further254

affirmed by our preliminary experiments. Our ini-255

tial step involves indexing all sentences from a256

Wikipedia dump using the ElasticSearch search257

engine. Named entities were extracted from each258

sentence within the Wikipedia corpus as well as259

from the sentences utilized as queries. We presup-260

posed access to a named-entity recognition system261

and leveraged the spaCy1 NER pipeline for this262

work, which is proven effective in NER and entity263

typing. Subsequently, for a given context-answer264

pair, we queried the index. This query involved265

using the original context sentence to return a sen-266

tence that either (1) includes the answer, or (2)267

does not originate from the context, thus discarding268

sentences with high similarity. Aside from guar-269

anteeing that the retrieved sentence and the query270

sentence share the answer entity, we require that271

at least one additional matching entity be present272

in both the query sentence and the entire context.273

Finally, these retrieved sentences were introduced274

into our sentence graph construction module.275

3.2 Sentence Graph Construction276

As aforementioned, we construct the sentence277

graph to capture the semantic overlap of the factual278

sentences in the raw text. A proportion of the sen-279

tence graph is visualized in Figure 2. Upon build-280

ing the sentence graph, we aim at extracting the281

minimal sentence set that covers the most seman-282

1https://spacy.io

tics in the whole graph. Now the question becomes 283

how we can leverage the high-order co-reference 284

relationship to reduce the size of the training data. 285

To dive deep into this question, we start by making 286

the following assumption: 287

Assumption 1. Suppose two sentences in a sen- 288

tence set S, {se, s′e} ⊂ S, mention the same entity 289

e. The quality of a QA model MS trained by a 290

sentence set S will be similar to the quality of the 291

other model MS′ trained by the set S′ = S − {se} 292

because s′e ∈ S′ still cover the similar topics and 293

knowledge in se. 294

Based on Assumption 1, an intuitive idea of 295

leveraging the sentence graph to effectively reduce 296

the size of the training data is to find a minimal set 297

of sentence nodes that can cover the whole sentence 298

graph without losing the quality of the model. In 299

other words, the challenge can be reduced to find- 300

ing the minimal dominating set (Allan and Laskar, 301

1978) of the sentence graph. 302

3.3 Minimal Dominating Set Approximation 303

Unfortunately, finding the minimal dominating 304

set is an NP-Complete problem (Hedetniemi and 305

Laskar, 1991), so it is extremely time-consuming 306

to obtain the optimal minimal dominating set as 307

training data. Hence, an efficient approximation ap- 308

proach to derive a decent dominating set with few 309

enough sentences is essential. To address this chal- 310

lenge, we leverage a greedy algorithm as shown in 311

Algorithm 1 by iteratively choosing the node that 312

can cover the most uncovered nodes. 313

Algorithm 1 ApproximateDominantingSet

S ← ∅
Let H be a priority queue
Add all nodes in H with their node degrees
while H is not empty do

v ← H.pop_max()
S ← S

⋃
{v}

Remove v and its neighbors in E from H
Update degrees of the remaining nodes in H

end while
return S

Complexity Analysis. Here we analyze the com- 314

plexity of Algorithm 1. Suppose V and E are the 315

numbers of nodes and edges. For time complexity, 316

the algorithm first spends O(V log V ) time to es- 317

tablish the max heap. For each iteration, taking the 318

node with the highest degree costs O(1) with the 319

priority queue. In total, we need to update the pri- 320

ority queue O(E) times, where each update costs 321
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O(log V ) time. Hence, the total time complexity is322

O(E log V ). For space complexity, the additional323

space complexity is only O(V ) to record the cur-324

rent set of uncovered nodes and the max heap.325

Theoretical Analysis. We also conduct some the-326

oretical analysis on Algorithm 1. According to327

Theorem 1, the quality of dominating set derived328

by Algorithm 1 is guaranteed. The proof is shown329

in Appendix A.330

Theorem 1. Algorithm 1 computes an (ln∆ + 2)-
approximation of the optimal dominanting set. In
other words, for the computed dominating set S
and an optimal dominating set S∗, we have

|S|
|S∗|

≤ ln∆ + 2,

where ∆ = maxv d(v) is the maximal degree of G.331

3.4 Question Generation332

Our approach considers two question styles, in-333

cluding (1) generic cloze-style questions, wherein334

the answer is substituted by the token “[MASK]",335

and (2) a templated question format termed336

"Wh+B+A+?" as well as its diverse ordering vari-337

ations, as depicted in Figure 3. Given a retrieved338

sentence structured as [Fragment A] [Answer]339

[Fragment B], the template "Wh + B + A +?"340

replaces the Answer with a component Wh (for in-341

stance, what, who or where). This component is342

determined by the entity type of the Answer and is343

placed at the beginning of the question. It is then344

followed by Fragment B and Fragment A. The345

selection of the wh-component involves sampling a346

bi-gram based on the likelihood of that particular bi-347

gram being connected with the named entity type of348

the answer. This likelihood is calculated from the349

named entity and questions bigram starters found350

in the SQuAD dataset. This information, while not351

leveraging the complete context-question-answer352

framework, can be considered as prior knowledge353

that does not disrupt the wholeness of our unsu-354

pervised methodology. It is also important to note355

that the choice of wh-component does not have356

a substantial impact on the results. Although we357

experimented with clause-based templates for this358

template-driven approach, we did not observe any359

significant differences in performance.360

3.5 Prompt-style Data Augmentation361

We extend the recent progress in prompt tuning to362

create augmented data for MINPROMPT. Specif-363

ically, we have formulated a template to enable364

Context: The Los Angeles Lakers are an American professional 
basketball team based in Los Angeles.  The Lakers compete in the 
National Basketball Association (NBA), as a member of the league's 
Western Conference Pacific Division.  The Lakers play their home games 
at Staples Center, an arena shared with the NBA's Los Angeles Clippers, 
the Los Angeles Sparks of the Women's National Basketball Association, 
and the Los Angeles Kings of the National Hockey League.  The Lakers 
are one of the most successful teams in the history of the NBA, and have 
won 16 NBA championships, their last being in 2010.  As of 2017, the 
Lakers are the second most valuable franchise in the NBA according to 
"Forbes", having an estimated value of $3.0 billion.

Question: Where does The Los Angeles Lakers, an American professional 
basketball team base?
Answer: Los Angeles. 

Raw text

Augmented Templated training examples

Question: Where does The Lakers play their home games?
Answer: Staples Center. 

Question: What organization does Lakers compete in?
Answer: National Basketball Association (or NBA).

Figure 3: Examples of generated questions. When
MINPROMPT runs into an entity in the raw text dur-
ing the question generation phase, it turns the factual
sentence into a QA pair of (question, entity), with the
question type depending on the entity type.

QA input, designated as xori. The template is con- 365

structed as follows: 366

xq = Question : q 367

xa = Answer : <mask> 368

xc = Context : c 369

xori = [xq ⊕ xa ⊕ xc] 370

Here, we formulate the labels y as: 371

ya = Answer : a, 372

y = [xq ⊕ ya ⊕ xc] , 373

where q, a, and c represent the query text, response 374

text, and background context respectively, and ⊕ 375

symbolizes string concatenation. 376

In the augmented QA data samples, we apply 377

the masking to the chosen entity in xc to construct 378

the context text for the augmented data xaug
c , along 379

with the mask token in xa. The specifics of an 380

augmented data sample (xaug, yaug) are depicted in 381

Figure 3. Let the set of all training samples from 382

original QA datasets and augmented QA pairs be 383

denoted by (Xori, Y ori) and (Xaug, Y aug) respec- 384

tively. Thus, our entire training set (X train, Y train) 385

comprises of both (Xori, Y ori) and (Xaug, Y aug). 386

3.6 Training 387

One of the key benefits of harmonizing the aug- 388

mented and original data lies in the ability of the 389

5



model to effectively process both data types with-390

out any significant loss. Concisely, MINPROMPT391

derives a prediction utilizing an encoder-decoder392

model as393

ypred = decoderθD(encoderθE(x)), (1)394

where θE and θD represent learnable parameters,395

and x ∈ Xtrain can be either an original or an396

augmented training sample.397

The training objective of our system aims to max-398

imize the log-likelihood of the text in the reference399

answer, denoted by y ∈ Y train. The loss functions400

concerning the original samples and the augmented401

samples are expressed in the following equations:402

Lori(θ)=
∑

(x,y)∈(Xori,Y ori)

log

(
n∏

i=1

P (yi | y<i, x; θ)

)
403

Laug(θ)=
∑

(x,y)∈(Xaug,Y aug)

log

(
n∏

i=1

P (yi | y<i, x; θ)

)
404

where θ = {θD, θE}. The overall loss function is405

the weighted average of two losses:406

L(θ) = Lori(θ) + λLaug(θ). (2)407

We consider λ > 0 to be a hyperparameter that408

establishes a balance between the few-shot QA409

training samples and the augmented QA samples.410

4 Experiments411

4.1 Experimental Setup412

Datasets. Following Splinter (Ram et al., 2021)413

and FewshotQA (Chada and Natarajan, 2021),414

we sample subsets from the MRQA 2019 shared415

task (Fisch et al., 2019) for our few-shot exper-416

iments. Taking a closer look, there are in to-417

tal eight widely used benchmark QA datasets418

in MRQA: SQuAD (Rajpurkar et al., 2016),419

NewsQA (Trischler et al., 2017), TriviaQA (Joshi420

et al., 2017), SearchQA (Dunn et al., 2017),421

HotpotQA (Yang et al., 2018), Natural Ques-422

tions (Kwiatkowski et al., 2019), BioASQ (Tsat-423

saronis et al., 2015), and TextbookQA (Kembhavi424

et al., 2017). Following Splinter (Ram et al., 2021),425

smaller training datasets are sampled in a logarith-426

mic manner from the original full datasets, result-427

ing in few-shot datasets with 16, 32, 64, and 128428

training examples.429

Comparative Baselines. We evaluate the perfor-430

mance of MINPROMPT against four competitive431

few-shot QA methods, including RoBERTa (Liu 432

et al., 2019), SpanBERT (Joshi et al., 2020), Splin- 433

ter (Ram et al., 2021), FewshotQA (Chada and 434

Natarajan, 2021), and PMR (Xu et al., 2023). De- 435

tails of these baselines, raw text data source, im- 436

plementation details, and evaluation metric are in 437

Appendix B, C, D, and E, correspondingly. 438

4.2 Performance Comparison 439

Table 2 presents the few-shot QA performance com- 440

parison of various models across all benchmarks 441

when provided with 16, 32, 64, and 128 training 442

examples. BART-large serves as the backbone pre- 443

trained language model (PLM) for FewshotQA. 444

The experiment was repeated five times, each 445

with a different random seed, and we report the av- 446

erage and standard deviation of the results for each 447

method. As a general observation, PMR, Splin- 448

ter and FewshotQA with MINPROMPT excel over 449

other compared methods by a respectable margin in 450

most cases. On average, models with MINPROMPT 451

yield better results with consistently lower vari- 452

ances (the rightmost column). The only excep- 453

tion is the 128 examples, where MINPROMPT and 454

PMR ended in a draw. Note that FewshotQA with 455

MINPROMPT performs better in fewer-shot cases 456

because BART is pretrained on general domain 457

plain texts, so MINPROMPT can apply its broad 458

knowledge and rapidly adapt to the specifics of the 459

QA task with just a few examples. PMR gradually 460

catches up with more few-shot examples because 461

its specialized training allows it to learn more ef- 462

ficiently from and utilize the additional examples, 463

scaling its performance in a way that is directly rel- 464

evant to the task. There are several cases in which 465

performance degrades when using MINPROMPT. 466

This is probably because the augmented data sam- 467

ples outweigh the original fine-tuning data samples 468

for these datasets, directing the pretrained model to- 469

wards the distribution of the augmented data which 470

is slightly shifted from the distributions of the fine- 471

tuning and test data after all. More notably, MIN- 472

PROMPT exhibits less variance in results compared 473

to FewshotQA in most cases, particularly when 474

there are fewer training examples available. 475

In digging deeper into specific models, both 476

Splinter and FewshotQA enhanced by MIN- 477

PROMPT consistently outperform their original 478

model in terms of higher F1 scores with generally 479

lower variances. On SQuAD, NQ, BioASQ, and 480

TextbookQA, the performance improvements over 481

the top baseline are relatively more substantial. Our 482
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# examples SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA

# nodes 104,160 123,183 418,049 356,408 25,413 417,895 60,080 30,723
# edges 20,310,486 36,716,957 408,935,741 339,619,544 13,425,062 766,206,565 6,821,645 3,150,557

# dominating set 8,260 11,099 30,452 24,015 1,518 34,830 4,480 1,116
# training samples 17,409 24,091 48,213 32,391 4,509 116,385 6,884 1,505

Table 1: Number of augmented training examples per dataset. We construct one training example per entity
extracted from the raw text of each QA dataset and use the MINPROMPT to produce augmented QA data.

Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA Average
16 Examples
RoBERTa 7.7±4.3 7.5±4.4 17.3±3.3 1.4±0.8 6.9±2.7 10.5±2.5 16.7±7.1 3.3±2.1 9.0±3.4
SpanBERT 18.2±6.7 11.6±2.1 19.6±3.0 7.6±4.1 13.3±6.0 12.5±5.5 15.9±4.4 7.5±2.9 13.3±4.3
PMR 60.3±4.0 56.2±3.1 43.6±1.7 30.1±3.7 58.2±5.0 46.1±4.7 54.2±3.4 31.0±1.8 47.5±3.4

Splinter 54.6±6.4 18.9±4.1 27.4±4.6 20.8±2.7 26.3±3.9 24.0±5.0 28.2±4.9 19.4±4.6 27.4±4.5
Splinter w/ MINPROMPT 58.9±3.6 35.7±1.9 37.6±2.8 31.9±1.8 35.2±1.6 34.0±6.3 38.7±3.6 37.0±5.1 36.1±3.3

FewshotQA 72.5±3.7 47.1±7.6 57.3±3.2 44.9±4.5 54.3±5.9 59.7±2.2 62.7±4.4 33.1±3.2 53.9±4.3
FewshotQA w/ MINPROMPT 73.6±3.3 50.9±4.6 58.5±1.9 46.5±1.8 55.4±2.7 57.1±2.9 57.2±2.3 42.2±4.1 55.2±2.9
32 Examples
RoBERTa 18.2±5.1 10.5±1.8 22.9±0.7 3.2±1.7 13.5±1.8 10.4±1.9 23.3±6.6 4.3±0.9 13.3±2.6
SpanBERT 25.8±7.7 15.1±6.4 25.1±1.6 7.2±4.6 14.6±8.5 13.2±3.5 25.1±3.3 7.6±2.3 16.7±4.7
PMR 70.0±3.2 66.3±2.5 48.5±3.5 36.6±2.1 64.8±2.2 52.9±2.5 62.9±2.4 36.4±3.2 54.8±2.7

Splinter 59.2±2.1 28.9±3.1 33.6±2.4 27.5±3.2 34.8±1.8 34.7±3.9 36.5±3.2 27.6±4.3 35.3±3.0
Splinter w/ MINPROMPT 64.6±1.5 35.6±2.1 42.8±1.3 33.0±1.2 39.2±3.4 41.4±3.1 49.2±3.2 38.2±2.5 43.0±2.3

FewshotQA 73.8±2.2 56.7±5.9 60.6±2.4 50.0±2.8 61.4±3.6 61.6±1.5 66.9±4.7 41.7±4.2 59.1±3.4
FewshotQA w/ MINPROMPT 78.0±1.1 53.5±4.0 59.3±1.0 51.8±1.8 60.3±2.6 61.6±3.1 63.6±2.9 46.5±2.0 59.3±2.3
64 Examples
RoBERTa 28.4±1.7 12.5±1.4 24.2±1.0 4.6±2.8 19.8±2.4 15.0±3.9 34.0±1.8 5.4±1.1 18.0±2.0
SpanBERT 45.8±3.3 15.9±6.4 29.7±1.5 12.5±4.3 18.0±4.6 23.3±1.1 35.3±3.1 13.0±6.9 24.2±3.9
PMR 71.2±2.8 67.1±1.8 51.2±3.1 43.2±1.8 66.2±1.8 56.3±2.0 68.2±1.6 41.8±2.3 58.1±2.2

Splinter 65.2±1.4 35.5±3.7 38.2±2.3 37.4±1.2 39.8±3.6 45.4±2.3 49.5±3.6 35.9±3.1 43.4±2.7
Splinter w/ MINPROMPT 68.6±1.8 35.4±2.9 45.9±1.3 36.1±1.7 44.3±3.1 48.6±2.3 59.4±2.4 42.6±1.6 47.6±2.1

FewshotQA 77.9±2.1 57.9±4.4 60.9±2.5 53.7±1.1 65.4±2.4 63.1±2.2 73.2±3.1 44.8±1.8 62.1±2.5
FewshotQA w/ MINPROMPT 79.2±1.0 55.3±3.2 59.7±1.3 54.2±1.0 67.1±1.0 61.1±3.0 72.4±2.5 48.7±2.4 62.5±1.9
128 Examples
RoBERTa 43.0±7.1 19.1±2.9 30.1±1.9 16.7±3.8 27.8±2.5 27.3±3.9 46.1±1.4 8.2±1.1 27.3±3.1
SpanBERT 55.8±3.7 26.3±2.1 36.0±1.9 29.5±7.3 26.3±4.3 36.6±3.4 52.2±3.2 20.9±5.1 35.4±3.9
PMR 79.8±1.8 68.6±1.4 57.4±2.6 52.3±1.4 68.5±1.8 65.9±1.0 76.8±2.1 45.1±1.2 64.3±1.7

Splinter 72.7±1.0 44.7±3.9 46.3±0.8 43.5±1.3 47.2±3.5 54.7±1.4 63.2±4.1 42.6±2.5 51.9±2.3
Splinter w/ MINPROMPT 70.2±2.8 45.4±1.3 51.2±1.3 40.2±1.6 48.5±2.1 54.5±2.2 67.8±1.6 44.2±2.1 52.8±1.9

FewshotQA 78.8±2.7 55.2±1.8 63.3±1.6 56.8±1.1 67.0±1.8 64.9±1.8 77.2±1.5 46.2±5.9 63.7±2.3
FewshotQA w/ MINPROMPT 80.5±1.4 52.9±3.9 64.2±1.4 56.9±1.0 68.1±1.9 61.7±1.4 77.8±1.2 52.5±3.7 64.3±2.0

Table 2: Overall performance in F1 scores across all datasets when the numbers of training examples are 16, 32,
64, and 128. NQ stands for Natural Questions. RoBERTa, SpanBERT, Splinter and Splinter w/ MINPROMPT have
110M parameters. PMR, FewshotQA and FewshotQA w/ MINPROMPT have parameters of size 406M. Comparisons
with more baselines are in Appendix F and G.

hypothesis is that the factual statements are more483

concentrated in a small number of sentences, thus484

MINPROMPT can more effectively extract the most485

informative data for fine-tuning. Consequently,486

the influence from the is adequate to impact the487

primary QA task. We also observe that with the488

decrease in the number of few-shot QA training ex-489

amples, MINPROMPT demonstrate more improve-490

ment. This is also expected since MINPROMPT es-491

sentially introduces external prior knowledge that492

is not present in the few-shot training examples.493

When the models see more actual training exam-494

ples that are with the same distribution as the test495

set, the external knowledge helps less and even be- 496

comes noise in the extreme case. Finally, we also 497

observe a greater improvement brought about by 498

MINPROMPT to Splinter than to FewshotQA. This 499

is because Splinter has a smaller model size; there- 500

fore, it naturally acquires less knowledge during 501

the pre-train stage. Adding external knowledge to 502

it in the form of QA benefits even more than bigger 503

models, such as FewshotQA. 504

4.3 Effect of Deriving the Dominating Set 505

To validate the necessity of deriving the dominating 506

set of the sentence graph to keep the most informa- 507

tive factual sentences in the raw text, we further 508
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Splinter: HIV
FewshotQA, PMR: cystic fibrosis
Splinter w/ MinPrompt:  ADA deficiency
FewshotQA w/ MinPrompt:  ADA deficiency
Ground truth: ada deficiency / adenosine 
deaminase deficiency

FewshotQA, Splinter: 23
PMR: haploid number
Splinter w/ MinPrompt:  haploid number
FewshotQA w/ MinPrompt:  haploid number
Ground truth: haploid number

Context: “…In species with sexual reproduction, each cell 
of the body has two copies of each chromosome. For 
example, human beings have 23 different chromosomes. 
Each body cell contains two of each chromosome, for a 
total of 46 chromosomes. The number of different types of 
chromosomes is called the haploid number. In humans, the 
haploid number is 23. The number of chromosomes in 
normal body cells is called the diploid number. The diploid 
number is twice the haploid number. The two members of 
a given pair of chromosomes are called homologous 
chromosomes …”
Question: What is the number of chromosomes in a 
gamete called?

Context: “…For example, cystic fibrosis gene therapy is 
targeted at the respiratory system, so a solution with the 
vector can be sprayed into the patients nose. Recently, in 
vivo gene therapy was also used to partially restore the 
vision of three young adults with a rare type of eye disease. 
In ex vivo gene therapy, done outside the body, cells are 
removed from the patient and the proper gene is inserted 
using a virus as a vector. The modified cells are placed 
back into the patient. One of the first uses of this type of 
gene therapy was in the treatment of a young girl with a 
rare genetic disease, adenosine deaminase deficiency, or 
ADA deficiency…”
Question: Which disorder has been treated by ex vivo 
gene therapy?

Answers Answers

Figure 4: Case study. In both cases, MINPROMPT successfully generates the correct answer, whereas baselines
without entity masking can not accurately recover the entity-level details.

Model SQuAD TextbookQA

16 Examples

FewshotQA w/ MINPROMPT-random 72.0±3.5 39.2±4.8
FewshotQA w/ MINPROMPT 73.6±3.3 42.2±4.1

32 Examples

FewshotQA w/ MINPROMPT-random 75.9±1.8 43.3±2.2
FewshotQA w/ MINPROMPT 78.0±1.1 46.5±2.0

64 Examples

FewshotQA w/ MINPROMPT-random 78.6±1.3 46.2±2.2
FewshotQA w/ MINPROMPT 79.2±1.0 48.7±2.4

128 Examples

FewshotQA w/ MINPROMPT-random 79.9±1.4 49.5±3.5
FewshotQA w/ MINPROMPT 80.5±1.4 52.5±3.7

Table 3: Ablation study. Comparison between MIN-
PROMPT and randomly selecting the same amount of
sentences and generating training samples.

conduct an ablation study. We construct a variant of509

MINPROMPT called MINPROMPT-random where510

we randomly sample the same number of sentences511

as shown in Table 1 for each dataset, and then gener-512

ate training samples out of these randomly sampled513

factual sentences. We run MINPROMPT-random514

and report the results on SQuAD and TextbookQA515

in Table 3. When comparing the two models, we516

can observe that MINPROMPT consistently perform517

better than MINPROMPT-random. We also observe518

this pattern on all the other datasets. This obser-519

vation empirically validates that the dominating520

set derivation process indeed provides factual sen-521

tences that preserve as much information as possi-522

ble about the crucial entities in the raw text.523

4.4 Case Study524

Further exploration of two specific test cases from525

the TextbookQA test set provides insightful results,526

as depicted in Figure 4. In the left case, both Few-527

shotQA and Splinter without MINPROMPT yield528

the incorrect response, 23. Despite its semantic529

relevance to the accurate answer, haploid number,530

the response goes overly detailed, since the value531

23 is specific only to human beings. This case 532

underlines the advantage of MINPROMPT’s full 533

model, equipped with a sentence construction mod- 534

ule anchored by entities, in deriving detailed an- 535

swer text at the entity level, over FewshotQA and 536

Splinter. In the right case, both FewshotQA and 537

Splinter with MINPROMPT successfully identify 538

the correct answer, whereas Splinter supplies an 539

incorrect answer, HIV, not even present in the con- 540

text. Meanwhile, FewshotQA and PMR produced 541

another treatment instead of what the question asks 542

(a disorder), indicating that the question genera- 543

tion module of MINPROMPT improved the models’ 544

ability to deal with various kinds of questions. This 545

comparison effectively highlights the utility of the 546

sentence graph in forging higher-order entity inter- 547

connections within the same context. Although the 548

baselines provide a contextually relevant response, 549

they do not adequately address the question. The 550

two cases substantiate the indispensable role of the 551

sentence graph construction module and the ques- 552

tion generation module in MINPROMPT, fortifying 553

its capacity to delve into complex question and 554

context semantics. 555

5 Conclusion 556

In this paper, we present MINPROMPT, a robust 557

data augmentation framework that leverages a 558

graph-based algorithm and unsupervised question 559

generation to extract minimally meaningful QA 560

training samples from raw text. Our contribu- 561

tions reside in the application of minimal data aug- 562

mentation, enhancing computational efficiency and 563

model performance while mitigating overfitting. 564

Through extensive experiments, our model consis- 565

tently outperformed competitive methods in public 566

benchmarks, demonstrating its effectiveness. 567
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6 Limitations568

While MINPROMPT is capable of achieving com-569

parative or better performance over existing stud-570

ies, it still has some limitations as follows: First,571

MINPROMPT integrates the trained NER model572

as part of the pipeline, so the performance of the573

SpaCy NER model greatly affects the overall per-574

formance of MINPROMPT. Second, MINPROMPT575

uses all shared entities to construct the sentence576

graph. However, some entities might be more cru-577

cial than others for the downstream QA task. As a578

result, treating the entities differently might lead to579

a different result. Lastly, the template utilized for580

prompt-tuning in this study still relies on manual581

design. Our approach is influenced by previous582

research that has been shown to be effective. Nev-583

ertheless, it would be intriguing to explore the de-584

velopment of automated methods for constructing585

superior prompt-tuning templates.586
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A Proof of Algorithm 1755

Proof. Here we prove the theorem in an amortized756

way. Suppose each iteration costs 1 (i.e., contribut-757

ing to the cardinality of the final dominating set).758

Instead of letting the selected node takes all the759

cost, we amortize and distribute the cost among all760

newly covered nodes.761

Assume S′ is an optimal dominating set. By the762

definition of dominating set, we can assign each763

node in V to exactly one neighboring node in S′764

so that the graph can be decomposed into several765

stars, where the center is a dominating node and766

non-dominating nodes are leaves.767

Consider a certain star with a center v′ ∈ S′768

while choosing a node u in Algorithm 1. By the769

greedy condition and the optimality of v′, after cost770

distribution, the charged cost of u would be at most771

d(v′). Also, after removing u, the degree of v′ will772

be reduced by 1. Following this process to itera-773

tively select dominating nodes, the total amortized774

cost would be at most:775

1

d(v′) + 1
+

1

d(v′)
+ · · ·+ 1

1
= H(d(v∗) + 1)776

≤ H(∆ + 1)777

< ln∆ + 2,778

where ∆ is the maximal degree of the graph;779

H(n) =
∑n

i−1 1/i.780

781

B Baseline Details782

• RoBERTa (Liu et al., 2019) is a robustly op-783

timized BERT-based PLM. It improves BERT784

by techniques such as training the model for a785

longer time, with larger batches and getting rid786

of the next sentence prediction task. It is known787

to demonstrate substantially better performance788

on a variety of natural language understanding789

tasks over BERT, including QA.790

• SpanBERT (Joshi et al., 2020) is another vari-791

ant of BERT that emphasizes the encoding of792

spans instead of tokens. It is pretrained on two793

tasks: (1) masked language modeling, which is794

the same as BERT, and (2) span boundary pre-795

diction, which pulls the representations of the796

span boundary into a direction where the entire797

content of the masked span can be predicted cor-798

rectly. SpanBERT achieves substantially better799

performance on span selection tasks in particular.800

• Splinter (Ram et al., 2021) is a pretraining 801

framework dedicated to the extractive QA task 802

based on SpanBERT. It is pretrained by the re- 803

curring span selection task, which masks all but 804

one instance of each recurring span and asks the 805

model to select the correct span for each masked 806

position. 807

• FewshotQA (Chada and Natarajan, 2021) is 808

the first QA-dedicated fine-tuning framework 809

that takes advantage of pre-trained encoder- 810

decoder models such as BART (Lewis et al., 811

2020) and T5 (Raffel et al., 2020). In Few- 812

shotQA, the input is constructed as a concate- 813

nation of the question, a mask token as the place- 814

holder for the answer span, and a context. Given 815

this input, the model is fine-tuned using the same 816

objective as its pretraining objective. 817

• PMR (Xu et al., 2023) constructs general- 818

purpose machine reading comprehension training 819

data by using Wikipedia hyperlinks and designed 820

a Wiki Anchor Extraction task to guide the MRC- 821

style pretraining. 822

C QA data acquisition 823

The first step in our framework is to retrieve the 824

raw text corpus as the super set from which all 825

our prompt dataset comes. For pretraining, text 826

corpus from general domains such as Wikipedia is 827

commonly used. On the contrary, since we focus 828

on the fine-tuning stage, we use domain-specific 829

text as a starting point. Following Splinter (Ram 830

et al., 2021) and FewshotQA (Chada and Natara- 831

jan, 2021), we take MRQA (Fisch et al., 2019) 832

as a benchmark to test the performance of all the 833

comparative methods. 834

D Implementation Details 835

For all the models, we use the same hyperparame- 836

ters during training for a fair comparison. Specifi- 837

cally, the models are optimized by Adam (Kingma 838

and Ba, 2014) with bias corrections. The learning 839

rate is 2× 10−5 without learning rate scheduling. 840

The training batch size is set to 2. The maximum 841

sequence length of sequence generation is 100 for 842

FewshotQA and MINPROMPT. We train all the 843

models compared for 25 epochs. The reported re- 844

sults are given by the best-performing checkpoint 845

in the development sets. For MINPROMPT, we 846

perform a grid search for the loss weight λ in the 847
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space {0.01, 0.05, 0.1, 0.5, 1.0, 10.0}. All experi-848

ments are run on NVIDIA Tesla A100-SXM4 Ten-849

sor Core GPUs with 40GB memory.850

E Evaluation Metrics851

Following previous studies (Ram et al., 2021;852

Chada and Natarajan, 2021), we use the F1 score as853

our evaluation metric. Specifically, for each sample854

in the test set, the predicted span and the ground855

truth answer are treated as bags of words, and F1856

scores are applied to compute the overlap between857

these two sets. If there are multiple ground-truth858

answers to a particular question, we take the maxi-859

mum of the corresponding F1 scores.860

F Comparisons against MQA-QG861

Here we compare with the other few-shot data aug-862

mentation approach, MQA-QG (Pan et al., 2021).863

For a fair comparison, we first run the released im-864

plementation of MQA-QG, apply their approach on865

Splinter, and then compare it with our method. The866

results of 16-shot experiments are as shown in Ta-867

ble 4. We see consistent improvements derived by868

MinPrompt over MQA-QG, and a similar pattern869

is also observed in 32, 64, and 128-shot scenarios.870

G Comparisons against Unsupervised871

Domain Adaption872

In addition to the few-shot approach, some studies873

apply unsupervised domain adpation to tackle the874

limitation of training data (Assem et al., 2021). As875

an additional study, we compare with Qasar (As-876

sem et al., 2021) Qasar, we focus on four overlap-877

ping datasets (i.e., NQ, NewsQA, BioASQ, and878

TextbookQA) between their paper and our studies879

as shown in Table 5. We can observe that Few-880

shotQA w/ MinPrompt outperforms Qasar across881

four datasets from 0.4% to 22.2%. We also would882

like to emphasize that Qasar uses fine-tuning train-883

ing samples ranging from 142 to 4,185 while Min-884

Prompt using only 16 to 128 fine-tuning examples885

surpasses Qasar with certain disadvantages in the886

limited amount of fine-tuning data.887

H Additional Discussions888

Here we list some additional discussions on our889

approach.890

H.1 Generalization Ability to Different 891

Answer Types 892

To different types of answers (e.g., why v.s. how 893

and longanswers), we would like to mention that 894

MinPrompt raises different types of questions 895

based on the results of the entity typing. During this 896

process, why / how questions would be raised once 897

a conjunction (e.g., because) or an adverb (e.g., by) 898

is recognized from the raw text. We agree that the 899

why / how questions with longer answers might be 900

less than some other types of questions like what 901

/ who / when ones in the augmented training sam- 902

ples, and it might cause generalization issues. An 903

intuitive fix is to assign larger sample weights to 904

the augmented samples with why / how questions 905

or to repeat these samples multiple times to make 906

different types of questions roughly be of the same 907

number. However, the main focus of this paper is 908

to demonstrate the idea that graph-based data selec- 909

tion can help the overall downstream performance, 910

so we leave the detailed analysis for certain types 911

of answers for future work. 912

H.2 Potential Solution to Overfitting with 913

Prompt-style Augmentation 914

It could introduce an ovefit with prompt-style agu- 915

mentation to the distribution of different quesetion 916

formats as we observed in the experiments, espe- 917

cially for the cases with only few shot training 918

samples. The distribution of different types of ques- 919

tions in the augmented data might be skewed, for 920

example, the what / who / when questions might 921

be more than the why / how questions. In this way, 922

the what / who / when questions in the test set 923

might get more precise answers than the why / how 924

questions. The intuitive fix is to put larger sample 925

weights to the augmented samples with why / how 926

questions or to repeat these samples multiple times 927

to make different types of questions roughly be of 928

the same number. 929
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA
MQA-QG 54.38 32.28 37.36 25.12 31.35 33.89 36.39 29.71

MinPrompt 58.91 35.67 37.64 31.88 35.17 34.03 38.68 36.98

Table 4: Performance comparisons against MQA-QG.

Model NQ NewsQA BioASQ TextbookQA
Qasar 59.76 56.63 63.70 47.02

Splinter w/ MinPrompt 51.17 40.22 67.80 44.24
FewshotQA w/ MinPrompt 64.17 56.84 77.84 52.53

Table 5: Performance of MinPrompt with 128 examples against the unsupervised domain adation method.
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