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Abstract

The reasoning capabilities of large language models (LLMs) have significantly
advanced their performance by enabling in-depth understanding of diverse tasks.
With growing interest in applying LLMs to the time series domain, this has proven
nontrivial, as evidenced by the limited efficacy of straightforwardly adapting text-
domain reasoning techniques. Although recent work has shown promise in several
time series tasks, further leveraging advancements in LLM reasoning remains under-
explored for time series classification (TSC) tasks, despite their prevalence and
significance in many real-world applications. In this paper, we propose ReasonTSC,
a novel framework designed to effectively leverage LLM reasoning for time series
classification through both a multi-turn reasoning and a fused decision-making strat-
egy tailored to TSC. Rather than straightforwardly applying existing reasoning tech-
niques or relying solely on LLMs’ built-in reasoning capabilities, ReasonTSC first
steers the model to think over the essential characteristics of time series data. Next,
it integrates predictions and confidence scores from plug-in classifiers, e.g., domain-
specific time series models, as in-context examples. Finally, ReasonTSC guides
the LLM through a structured reasoning process: it evaluates the initial assessment,
backtracks to consider alternative hypotheses, and compares their merits before
arriving at a final classification. Extensive experiments and systematic ablation
studies demonstrate that ReasonTSC consistently outperforms both existing time
series reasoning baselines and plug-in models, and is even capable of identifying
and correcting plug-in models’ false predictions. The code for ReasonTSC is
available at https://anonymous.4open.science/r/ReasonTSC-B737.

1 Introduction

Time series classification (TSC) is a fundamental task with wide applications across diverse areas,
including healthcare [1-3], finance [4, 5], speech recognition [6], and so on [7, 8]. The astounding
performance of large language models (LLMs), especially boosted by recent advancements in
their reasoning capabilities as epitomized by ChatGPT-o1 [9, 10], Deepseek-R1 [11], Gemini-2.5-
Pro [12, 13], has sparked surging demand for leveraging them in domains well beyond the pure
natural language processing (NLP) domain. The time series (TS) domain is no exception to such
fevered explorations, with existing research promisingly discovering that LLMs have the capability
to understand essential TS data characteristics, such as trend, cyclic behavior, stationarity, amplitude,
rate of change, and outlier [14, 15]. Consequently, a variety of methods have been proposed to exploit
LLMs for TS tasks [16—19], with a predominant focus on forecasting tasks that align more naturally
with the autoregressive generation behavior of LLMs [20-23]. There are also efforts exploring
LLMs for anomaly detection [24, 21, 25], imputation [26—28], and nascent but growing attempts at
classification [29-31].
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Propelled by the promise that advanced reasoning techniques can provide enhanced performance
through in-depth understanding of complex tasks [32, 33], it has become a new frontier to leverage
the reasoning capabilities of LLMs in the time series domain [34—36]. However, straightforwardly
applying existing reasoning techniques, despite their effectiveness in the NLP domain, to the time
series domain leads to minimal performance gains, suggesting it is a nontrivial task to leverage LLMs
for effective reasoning about TS. For example, REC4TS [37] reports that reasoning LLMs (i.e.,
having built-in reasoning enhancements acquired during post-training), Chain-of-Thought (CoT),
and self-correction all fail to consistently improve forecasting accuracy, with only self-consistency
yielding modest gains. Merrill et al. [35] assess three reasoning styles, i.e., etiological reasoning,
question answering, and context-aided forecasting, and find that the first two offer negligible benefit
while the third produces only modest improvements when given highly relevant context in the form of
descriptive text. Other authors conclude that introducing a visual module for understanding visualized
TS patterns is essential for effective reasoning [38, 39]. Chow et al. [34] and Xie et al. [40] harness
LLMs’ reasoning only after incorporating time series as an additional modality, whereby they train a
dedicated encoder to convert TS into embeddings that are then fed to the LLM alongside text token
embeddings. In particular, Liu et al. [41] show that vanilla CoT cannot even outperform random
guessing, and that in-context learning can absurdly underperform no-context baselines. They also end
up resorting to visualizing TS data to have effective reasoning and obtain performance improvement.

Research Gap. At first glance, these evaluations seem to conclude that neither LLMs with inference-
time reasoning techniques such as CoT and in-context illustration nor even reasoning LLMs with
built-in reasoning enhancements are capable of effective reasoning for time series tasks. This makes
the multimodal and specialized encoder training approaches appear indispensable to enable LLMs to
substantively understand and reason about TS tasks. However, this tentative conclusion somewhat
contradicts existing evidence proving that LLMs can comprehend fundamental TS patterns [42—44],
based on which they should be able to grasp essential TS task characteristics for sophisticated
reasoning without relying on auxiliary vision modules or specialized encoders. Even more perplexing
is the observation that providing LLMs with in-context examples [41], despite providing additional
task-relevant information, often degrades classification accuracy rather than improving it, implying
that current in-context strategies are ill-suited to TS reasoning. These contradictory phenomena raise
the following tempting research questions (RQ):

RQ1: Is it possible to steer the reasoning process of LLMs to elicit their built-in understanding of
time series patterns for effective reasoning?

RQ2: Is there a strategy suitable for fusing in-context knowledge into the LLMs’ reasoning process
to enhance prediction performance?

Our work. In this paper, we focus on the time series classification task and answer both research
questions in the affirmative by proposing ReasonTSC, which entails a thinking procedure tailored for
time series (RQ1) and a fused decision strategy effectively exploiting in-context examples (RQ2).
Tailored thinking: We posit that the ineffectiveness of existing LLMs’ reasoning may stem from the
fact that straightforwardly applying NLP-domain reasoning techniques or relying on the reasoning
LLMs’ built-in reasoning enhancements is insufficient to guide the model to spontaneously think over
TS data characteristics. LLMs acquire reasoning skills through training on mathematics and coding
tasks [45], but rarely on time series tasks, which causes them to lack the spontaneous tendency to
reason about TS patterns. Motivated by this, we propose a multi-turn thinking procedure tailored to
TSC, featuring a more tightly guided reasoning strategy. ReasonTSC explicitly asks LLM to identify
and think about key TS data patterns. Furthermore, after the LLM provides a preliminary prediction,
ReasonTSC explicitly prompts it to reconsider whether alternative answers might be more feasible,
drawing on a backtracking strategy shown to be useful in the NLP domain.

Fused decision: When few-shot examples are available for in-context knowledge, we devise a fused
decision strategy. First, rather than directly feeding LLMs with context information in the form of text
descriptions of the data characteristics, we find it is more effective to present few-shot examples from
different classes and prompt the model to autonomously compare their TS data patterns. Moreover,
instead of visualizing TS data for a vision module or training a specialized encoder for TS embeddings,
we propose to introduce off-the-shelf and amply available time series foundation models (TSFM) into
the reasoning process. This approach offers two key strengths: 1) TSFMs are pretrained on vast time
series datasets, enabling them to provide more relevant information than vision module (e.g., ViT)
trained on images or TS encoders trained on much smaller TS datasets; 2) TSFMs are generally more
lightweight than vision foundation models, e.g., fusing MOMENT (341M parameters) with Chronos
(710M parameters) substantially boosts the classification accuracy of LLMs. To integrate TSFM
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outputs into the LLM’s reasoning pipeline, ReasonTSC explicitly interprets TSFM’s prediction and
confidence score, then makes a fused decision by taking both the interpretation of TSFM’s outputs
and the LLM’s own analysis of TS patterns into the reasoning process.

We conduct extensive experiments and systematic ablation studies on 15 TS benchmark datasets,
using 2 TSFMs and 16 mainstream LLMs to validate the effectiveness of ReasonTSC. Our key
findings are: 1) ReasonTSC achieves averagely 90% performance improvement compared with
a vanilla CoT prompt adopted by existing work [24], demonstrating that its tailored reasoning
procedure comprehends TS characteristics more thoroughly, thereby solving the classification task
more effectively; 2) When applied across 16 mainstream LLMs, ReasonTSC consistently outperforms
plain CoT prompting, suggesting its broad compatibility; 3) Notably, ReasonTSC can sometimes
overturn TSFM'’s incorrect predictions, indicating that its elicited thinking from LLMs regarding
TS characteristics involves a nuanced and in-depth analysis essential for accurate predictions. In
summary, the main contributions of this paper are:

» We critically investigate the emerging paradigm of leveraging LLMs reasoning for the time series
domain and posit that LLMs are capable of effective reasoning, contrary to prior conclusions that
they cannot achieve performance gains through time series reasoning;

* Through the lens of time series classification, we prove it is indeed possible to leverage LLMs for
effective time series reasoning by proposing ReasonTSC, a novel framework featuring a tailored
multi-turn thinking procedure to explicitly steer models to analyze key TS patterns and alternative
predictions, alongside a fused decision strategy to enhance in-context example utility;

* We conduct extensive experiments and systematic ablation studies on 15 datasets, with 2 TSFM
from different categories, across 16 mainstream LLMs to verify the effectiveness of ReasonTSC.

The Supplementary Material provides source code and an Appendix with detailed related work,
experiment settings and additional results, and further details of the proposed method.

2 The Proposed ReasonTSC

2.1 Problem Formulation

Let D = {(zi,v:),4 = 0,1,..., N — 1} denotes a time series dataset with N samples, where x; €
R™*¥ is a sample with m variables measured for w steps, y; € {1, 2, ..., C} is the corresponding
label with C be the number of classes. The classical time series classification problem is to train a
classification model on the training dataset D*"*"_ which can predict the labels of samples in the
testing dataset D?¢s¢,

@t :f(ft),t:(),l,...,M—l, (1)
where M is the number of samples in the testing dataset. In this work, we propose to adopt a reasoning
LLM to enhance the time series classification task.

Let fjs be a reasoning language model that consists of a series of rationales obtained on condition of
the time series A; and tailored prompts ¢(X;) in a multi-turn manner, which is applied to enhance
various time series classification tasks.

Ty Zpg(rj|7"j_1,Xj7¢(Xj)),j =0, 17 ey J - 17 (2)
v = po(rosri, s ry—1, X, (X))); (3)
Qt :fM(xtaw(xt))ﬂt:0713"'3M7]-7 (4)

where J is the number of reasoning turns/steps, ¢(X;) is the tailored prompt based on the correspond-
ing input time series samples for the jth reasoning turn/step, py is a LLM, f); is the final reasoning
language model based on all the intermediate rationales and input samples, x; is the testing sample,
M is the number of testing samples, and ¢)(x;) is the tailored prompt designed for the testing time
series sample ;.

2.2 The ReasonTSC Framework

As illustrated in Figure 1, the proposed ReasonTSC framework comprises three reasoning turns:
(1) TS Pattern Reasoning, where the language model is asked to think about the general patterns
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Figure 1: Architecture of the proposed ReasonTSC framework.

of time series data; (2) Plug-in Model Fusion Reasoning, where the classification logits of a fine-
tuned/pretrained domain-specific time series model is plugged in the reasoning paradigm to enhance
LLM’s understanding of the TSC task; and (3) Integrative Step-by-step Reasoning, where the
reasoning paradigm is conducted step-by-step by evaluating the initial assessment, backtracking
alternative hypotheses, and comparing different answers before reaching a final decision.

TS Pattern Reasoning. As mentioned in Section 1, LLM can learn to generate realistic time series
by analyzing several fundamental time series characteristics such as trend, amplitude, stationarity,
and so on [46, 47], which indicates that LLM can better understand the intrinsic time series patterns
by thinking about these traits.

* Trend: A persistent, long-term directional movement (upward/downward) in the time series. It
reveals fundamental shifts in data behavior at the macro-level.

* Cyclic behavior: Repeating patterns or periodic fluctuations. It enables the detection of seasonal or
cyclical variations.

* Stationarity: The stability of time-invariant statistical properties (mean, variance) or their shifts. It
is essential for assessing the underlying structure of time series.

* Amplitude: The maximal deviation magnitude during fluctuations. It quantifies the intensity of
variations in the data.

» Rate of change: The speed at which the data changes (rapid/moderate/slow). It characterizes the
temporal dynamics of the time series.

* Outliers: Data points that deviate significantly from normal values. It may indicate anomalies and
data quality issues.

Thus, for the ReasonTSC framework, we first aim to obtain the LLM rationales by answering
questions in terms of time series fundamental traits. To be specific, 2-shot time series samples
are randomly selected per category from the training set. The LLM is prompted to compare the
differences among various categories in terms of the selected fundamental traits. We also include
domain-specific knowledge in the prompts and encourage the adopted LLM to decompose a series into
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Table 1: Classification accuracy (%). MOMENT is plugged in for ReasonTSC.

Dist. Mid. Mid. Med. Arr. Dod.
Model ™ ™ OA Elec. Img BME Hd LD
MOMENT (reference and fused TSFM) 62.59 51.30 60.39 57.89 76.97 74.00 65.71 31.17
Vanilla CoT (GPT-40-mini) 33.81 23.38 41.56 36.84 9.87 42.34 45.14 15.58
ReasonTSC (GPT-40-mini) 63.31 52.60 61.04 58.55 77.63 77.33 68.00 31.17
Improvement +87.25% +124.98%  +46.87%  +58.93% +686.52% +82.64%  +50.64%  +100.06%
Vanilla CoT (Llama-3.3-70B-instruct) 33.10 41.24 31.17 46.71 13.16 59.00 42.36 31.81
ReasonTSC (Llama-3.3-70B-instruct) 63.31 53.95 61.04 61.18 77.63 84.00 66.86 36.36
Improvement +91.27%  +30.82% +95.83%  +30.98% +489.89% +42.37%  +57.84% +14.30%
Vanilla CoT (DeepSeek-R1) 52,52 47.08 33.11 51.98 37.17 76.66 54.86 28.57
ReasonTSC (DeepSeek-R1) 65.71 57.42 63.64 67.11 80.26 82.67 69.14 38.96
Improvement +25.11%  +21.96% +92.21%  +29.11% +11593%  +7.84% +26.03% +36.37%

Rkt. .

Model CBF Spt ERing Nt.Ops Lbr. Eplp. Pen. Avg
MOMENT (reference and fused TSFM) 66.00 59.21 72.59 65.56 48.49 88.40 85.62 64.39
Vanilla CoT (GPT-40-mini) 45.67 34.26 36.67 38.61 22.78 51.45 21.92 3333
ReasonTSC (GPT-40-mini) 65.33 67.76 74.81 65.56 48.89 89.13 86.30 65.83
Improvement +43.05%  +97.78%  +104.01% +69.80% +114.62% +73.24%  +293.7%  +135.61%
Vanilla CoT (Llama-3.3-70B-instruct) 47.67 39.48 51.11 38.61 25.83 55.44 23.63 38.69
ReasonTSC (Llama-3.3-70B-instruct) 73.33 61.84 74.07 66.67 S1.11 89.86 86.99 67.21
Improvement +62.22%  +56.64% +44.92%  +72.68%  +97.87%  +62.09% +268.13% +101.19%
Vanilla CoT (DeepSeek-R1) 65.00 47.04 55.56 46.11 38.89 63.41 40.76 49.25
ReasonTSC (DeepSeek-R1) 74.00 63.16 74.07 67.78 55.00 91.30 86.30 69.10
Improvement +13.85%  +34.27% +33.32%  +47.00% +41.42% +43.98% +111.73%  +45.34%

semantically meaningful segments to enhance its understanding [15]. Please refer to the Appendix B
for complete prompts.

Plug-in Model Fusion Reasoning. According to [48], classification results by a small model could
enhance LLM’s ability on domain-specific tasks. Here, we propose to plug in a task-specific classifier
to obtain further rationales about the TSC tasks by integrating the classification logits. Specifically,
a task-specific time series classifier is first trained on the training dataset. Then, 3-shot time series
samples are randomly selected from the testing set and fed to the trained classifier to obtain its
classification logits and decision confidence. The logits, confidence, the ground truth labels, and the
basic information (e.g., its training accuracy) of the trained task-specific plug-in model are fused as
auxiliary references for the LLM to understand the TSC task. The LLM is asked to analyze cases
where the plug-in model correctly or incorrectly identifies different classes to refine its understanding
of how to conduct the TSC task. Please refer to the Appendix B for complete prompts.

Integrative Step-by-step Reasoning. For the third reasoning turn, we concatenate each testing
time series sample with its corresponding predicted label and confidence scores from the plug-in
model as input to the reasoning LLM. Rather than simply adopting the generic "think step by step”
prompt prefix, we design a tailored CoT approach for the TSC task. The reasoning LLM, with its
ability gained in the first two turns, is asked to analyze the patterns of the testing sample and the
classification results provided by the plug-in model. Based on this analysis, the reasoning LLM
generates a preliminary prediction with supporting rationale. Then, the LLM is asked to backtrack and
explore alternative predictions and systematically compare their merits against the initial assessment.
Finally, the reasoning LLM synthesizes all evidence to generate a refined final classification decision.
Please refer to the Appendix B for complete prompts.

3 Experiments

3.1 Experimental Settings

Plug-in domain-specific time series models We select two prominent time series foundation models
as the plug-in classifiers: (1) MOMENT [28], a T5-based encoder-only model, which is fully fine-
tuned with our training data. (2) Chronos [49] is an encoder-decoder model primarily designed for
TS forecasting, whose pretrained encoder is adopted to extract time series embeddings for training an
SVM-based classifier with the training data.



194
195
196
197
198
199

200
201
202
203
204

206
207

208

209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224

Table 2: Classification accuracy (%). Chronos is plugged in for ReasonTSC.

Dist. Mid. Mid. Med. Arr. Dod.
Model ™ ™ OA Elec. Img BME Hd LD
Chronos (reference and fused TSFM) 60.43 57.79 52.60 46.71 65.39 76.00 48.57 55.84
Vanilla CoT (GPT-40-mini) 33.81 23.38 41.56 36.84 9.87 42.34 45.14 15.58
ReasonTSC (GPT-40-mini) 61.15 57.79 57.14 45.39 69.74 78.00 54.29 58.44
Improvement +80.86% +147.18% +37.49% +23.21% +606.59% +84.22%  +20.27%  +275.10%
Vanilla CoT (Llama-3.3-70B-instruct) 33.10 41.24 31.17 46.71 13.16 59.00 42.36 31.81
ReasonTSC (Llama-3.3-70B-instruct) 64.03 59.09 53.90 48.03 71.05 86.00 50.29 57.14
Improvement +93.44%  +43.28%  +72.92%  +2.83%  +439.89% +45.76%  +18.72%  +79.63%
Vanilla CoT (DeepSeek-R1) 52.52 47.08 33.11 51.98 37.17 76.66 54.86 28.57
ReasonTSC (DeepSeek-R1) 64.75 61.69 54.55 53.95 73.03 8533 54.29 62.34
Improvement +23.29%  +31.03% +64.75% +3.79%  +96.48%  +11.31% -1.04% +118.20%

Rkt. .

Model CBF Spt ERing Nt.Ops Lbr. Eplp. Pen. Avg
Chronos (reference and fused TSFM) 90.89 54.61 5333 62.22 42.22 91.30 68.49 61.76
Vanilla CoT (GPT-40-mini) 45.67 34.26 36.67 38.61 22.78 51.45 21.92 3333
ReasonTSC (GPT-40-mini) 89.33 53.95 51.85 63.89 41.67 91.30 65.75 62.65
Improvement (%) +95.60%  +5747%  +41.40% +65.48%  +82.92%  +77.45% +199.95% +126.35%
Vanilla CoT (Llama-3.3-70B-instruct) 47.67 39.48 S1.11 38.61 25.83 55.44 23.63 38.69
ReasonTSC (Llama-3.3-70B-instruct) 95.33 55.26 57.04 66.67 45.00 92.03 69.18 64.67
Improvement +99.98%  +39.97%  +11.60% +72.68%  +74.22%  +66.00% +192.76%  +90.25%
Vanilla CoT (DeepSeek-R1) 65.00 47.04 55.56 46.11 38.89 63.41 40.76 49.25
ReasonTSC (DeepSeek-R1) 93.33 61.84 62.96 67.78 57.22 94.93 61.64 67.31
Improvement +43.58%  +31.46%  +13.32% +47.00% +47.13% +49.74%  +51.23%  +42.08%

Reasoning LLLMs The main body of experiments is conducted with three primary LLMs—GPT-4o-
mini, Llama-3-70B-Instruct, and DeepSeek-R1, covering different parameter scales and reasoning
training techniques. To further investigate how reasoning LLMs can enhance TSC tasks, we also
evaluate the performance of ReasonTSC with six other mainstream LLMs on three selected UCR/UEA
datasets, including ChatGPT, Claude, Gemini, Qwen [50, 51], Llama [52], and Grok, with a fixed
temperature parameter of 0.2.

Datasets We select 15 datasets from the UCR/UEA classification archive [53, 54] that are commonly
used for benchmarking classification algorithms, covering diverse scenarios and varying numbers of
classes. We only use the first dimension of the multivariate UEA datasets to address the token limit
restrictions imposed by LLM input queries. Given the typically long sequence lengths of time series
samples, we retain values to three decimal places to optimize context window usage. Please refer to
Appendix C for details about LLMs and datasets.

Implementation Details We maintain the original training-test splits from the UCR/UEA archive.
All fine-tuning and training experiments are performed on an NVIDIA RTX 4090 GPU.

3.2 Main Results

As shown in Tables 1 and 2, the vanilla CoT with different LLMs presents consistently low accuracy
values. This observation reveals that LLLMs cannot enhance TSC tasks by adopting their built-in
reasoning capabilities with CoT [24]. On the contrary, ReasonTSC achieves substantial performance
improvements (+20%~ +600%, average 90%) by incorporating a tailored thinking and fused decision
strategy. With more scrutiny to compare ReasonTSC and the plug-in models, ReasonTSC outperforms
the plug-in models across almost all the tested datasets. Specifically, ReasonTSC with DeepSeek
as the reasoning language model surpasses the plug-in model MOMENT by over 10% on six
datasets, including substantial performance improvement by 24.99% on DodgerLoopDay (Dod.LD)
and 15.93% on ElectricDevices (Elec.). It is worth mentioning that the plug-in models are fine-
tuned/trained on the whole training dataset, while the ReasonTSC is only shown with two samples
per category, which indicates the efficiency of the proposed reasoning strategy.

To further investigate the proposed ReasonTSC’s reasoning capabilities, we show the average override
rates of ReasonTSC compared with plug-in models as shown in Table 3. ReasonTSC with DeepSeek
exhibits an override rate of 11.89% on average, which is higher than that by ReasonTS (Llama)
(5.12%) and ReasonTSC (GPT) (4.23%). Regarding override accuracy, ReasonTSC (Llama) and
ReasonTSC (DeepSeek) achieve average override accuracy of 77.41% and 65.68%, respectively.
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Table 3: Results of ReasonTSC’s classification overrides against plug-in models. The Overriden (%)
shows the percentage of classification results that are different from those by plug-in models. The
Override Accuracy (%) shows the rate of correct classification results among these overrides.

Overriden (%) Override Accuracy (%)

MOMENT Chronos Average MOMENT Chronos Average

ReasonTSC (GPT-40-mini) 277 5.68 4.23 65.34 29.37 47.36
ReasonTSC (Llama-3.3-70b-instruct) 423 6.00 5.12 83.30 71.51 77.41
ReasonTSC (Deepseek-R1) 9.42 14.36 11.89 68.47 62.88 65.68

This suggests that ReasonTSC can effectively leverage LLMs’ understanding of time series patterns
through multi-turn reasoning to correct incorrect predictions by plug-in models.

Besides, we also evaluate the pro- 10
posed ReasonTSC with other main- %
stream LLMs as its reasoning lan-
guage models on three datasets. As
illustrated in Figure 2, the horizon-
tal black dashed line marks the per- 0
formance of the plug-in model MO- 30

— gemini-2.5-pro with vanilla CoT — deepseek-v3 with vanilla CoT --- MOMENT(341M)

74.0 73.8074.8¢ 73.6! 74.8473 4674.1
%7055 T 60.85 2 [ ] 7031 P 6085 [ | By [ ]

Accuracy (%)

1 v AP
MENT. In lflgure 2 (a), we compare r o é&@o L *"’@«‘”@ \0&@0
ReasonTSC’s performance in terms R A P A TN
. . & & PO RS & zzh ZQ,Q(’ §°
of the model sizes of different lan- § S & S &
guage models. Here, ReasonTSC’s §

performance does not show an obvi- Figure 2: Average performance of ReasonTSC with main-
ous correlation with the sizes and ar- stream LLMs as reasoning language models on three se-
chitectures of language models. On lected UCR/UEA datasets (MiddlePhalanxOutline AgeGroup,
the other hand, Gemini-2.5-pro (175B  BME, and ERing).

parameters) and Deepseek-v3 (671B

parameters) achieve the best and second-best performance. The red and blue solid lines represent
the performance of Vanilla CoT reasoning with Gemini-2.5-pro and Deepseek-v3, respectively. It is
shown that even for the recently newly released LLMs with strong reported built-in reasoning ability,
the proposed ReasonTSC shows much performance improvement over the Vanilla CoT reasoning
strategy. Please refer to Appendix D for complete experimental results.

3.3 Analysis of Key Thinking Steps

Thinking TS patterns In the first round of reasoning, ReasonTSC thinks about the fundamental TS
patterns by showing few-shot training samples of each category. We examine how the number of
few-shot examples affects reasoning performance. As shown in Figure 3, with one or two examples,
ReasonTSC achieves average classification performance of 61.39% and 62.92%, respectively, surpass-
ing the performance of the plug-in model (MOMENT). ReasonTSC ’s performance slightly declines
when shown three examples, which is potentially caused by information overload in prompt-based
inputs that hinders the language model’s ability to process excessive information (the full multi-round
prompt combined with three samples exceeds the 10K context length in most subsets).

Backtracking During the integrative step-by-step reasoning process (third reasoning turn), the
alternative answer generation step guides ReasonTSC to backtrack to consider alternative hypotheses
and compares their merits before arriving at a final classification decision. Figure 4 illustrates the
counts of cases where ReasonTSC ultimately adopts alternative candidates in their final predictions.
ReasonTSC with Llama shows higher sensitivity than ReasonTSC s with GPT and DeepSeek, where
58 successful corrections out of 109 alternative adoptions are presented. ReasonTSC s with DeepSeek
and GPT present successful correction rates of 75% and 42.31%, respectively. This reveals that with a
step-by-step integrative reasoning strategy, the proposed ReasonTSC could comprehensively consider
the TS patterns and plug-in model’s auxiliary information, and correct its primary decision.

3.4 Research Questions

3.4.1 TS Pattern Interpretation (RQ1)
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Figure 3: ReasonTSC’s performance based on the Figure 4: Effectiveness of the alternative answer
number of few-shot examples provided in the 1st generation step in the 3rd turn of reasoning.
turn of reasoning.
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a multiple-choice format, question- Figure 5: Evaluation of ReasonTSC’s ability to reason about
ing the ReasonTSC to identify the se- time series patterns using real-world datasets. We select 11
quence with the most discernible pat- datasets from UCR and UEA archives, and ask the model to
terns. Choice positions are random- identify the 10 typical time series patterns across different
ized to eliminate positional bias. No- datasets. For each dataset, the predominant patterns identi-
tably, ReasonTSC s with GPT, Llama, fied by GPT-40-mini, Llama3.3-70b-instruct, and DeepSeek-

and Deepseek achieve satisfactory ac- R1 are shown in the bars in a left-to-right order.

curacy across all the tested datasets,

demonstrating ReasonTSC’s ability to generate rationales about fundamental time series pat-
terns. Details of dataset construction, question design, and related prompts are provided in Appendix
E. We further evaluate ReasonTSC’s ability to reason about time-series patterns using the realistic
UCR/UEA archives. Here we evaluate ten fundamental patterns as mentioned in Section 2: trend,
cyclic, stationarity, amplitude, rate of change, outliers, noise, volatility, structural break, and mean
shift [46]. For each sample, we randomly select one unique instance per category and ask the
ReasonTSC to identify significant pattern differences across categories. We quantitatively summarize
the responses by counting the top three most frequently identified patterns (including ties) and
calculating their relative weights. As shown in Figure 5, ReasonTSC with GPT-40-mini consistently
identifies similar TS patterns (e.g., trend, amplitude, rate of change, volatility, and mean shift) across
all datasets, suggesting it tends to present more generalized interpretations (cannot discern different
datasets), which aligns with the final classification performance where it shows relatively lower
classification accuracy. On the contrary, ReasonTSC with DeepSeek-R1 (which also shows the best
overall classification performance) shows superior performance in identifying category-discriminative
patterns: it recognizes trend, structural break, and mean shift as distinctive features in the BME
dataset, while recognizing amplitude, rate of change, and volatility as predominant in the ArrowHead
dataset. These observations indicate that a better understanding of the time series patterns
could enhance the reasoning process of LLMs and the TSC accordingly. Details of prompts and
corresponding answers are provided in Appendix E.

3.4.2 Ablation of Fusion Strategy (RQ2)

To answer RQ2, we conduct ablation studies to evaluate the impact of fused decision strategy:
(1) reasoning about the category-wise confidence scores (logits) of the plug-in model (w/o logits),
and (2) the complete outputs (logits & final predictions) of the plug-in model (w/o plug-in model).
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plug-in model. Three merits are compared under these conditions: classification performance (a),

overridden rate (b), and override accuracy (c).

As illustrated in Figure 6 (a), removing the plug-in model’s logits leads to an 8.31% performance
decline in ReasonTSC with DeepSeek; Completely removing outputs of the plug-in model leads to a
significant performance decrease. This indicates the importance of the fused decision strategy.

As shown in Figure 6 (b) and (c), the override rates of ReasonTSC s increase while their overall
override accuracy decreases with reduced reasoning supports. When the plug-in model’s logits are
removed, we observe higher override rates and bigger accuracy degradation, which also shows that
the fused decision strategy with the plug-in model enhances ReasonTSC ’s performance in TSC.
Please refer to Appendix D for more ablation studies.

3.4.3 Decision Interpretation (RQ1&2)

mmm TS Pattern
Logits & Pattern
mmm Acc. & pattern

gpt-do-mini 63.49%§

Since the ReasonTSC is asked to ex-
plain its final decision, we can count
for each override case which informa-  lama-3.3-70b
tion drives the model to make differ-

ent classification results. As shown deepseek-rl |
in Figure 7, ReasonTSC with GPT 5 % - o w0 100
relies on the plug-in model’s logits Percentage (%)

and time series patterns in all the
override cases. ReasonTSC s with
Llama and DeepSeek partially rely
on the plug-in model’s accuracy for
their override decisions. Specifically,
ReasonTSC with GPT relies on the
TS patterns only for the majority of override cases(63.49%). As discussed in Section 3.4.1,
ReasonTSC with GPT cannot discern the TS patterns among different categories. Its heavy reliance
on the TS patterns for final decision can also explain its relatively low classification performance
compared to the other two scenarios (ReasonTSC s with Llama and DeepSeek). This interpretation
analysis shows that both the TS patterns and the fused plug-in model influence the final performance
of the proposed ReasonTSC .

Figure 7: Reasons for ReasonTSC override: (i) primary re-
liance on typical time series patterns, (ii) consideration of
both the plug-in model’s logits and time series patterns, (iii)
combined assessment of the plug-in model’s accuracy and
time series patterns.

4 Conclusion

The paper presents ReasonTSC, a novel framework that effectively leverages reasoning LLMs for
time series classification through a multi-turn reasoning and fused decision-making strategy. It first
guides the LLM to analyze the intrinsic patterns of time series data. It then incorporates predictions
and category-wise confidence scores from the plug-in model as in-context examples to enhance its
understanding of the TSC task. Finally, ReasonTSC orchestrates a structured reasoning pipeline: the
LLM evaluates its initial assessment, backtracks to consider alternative hypotheses, and compares
their merits before determining the final classification. Extensive experiments and ablation studies
demonstrate that ReasonTSC consistently outperforms both LLMs with Vanilla CoT reasoning and
plug-in models, and is even capable of identifying plug-in models’ false predictions and correcting
them accordingly. This reveals significant potential for leveraging reasoning LLMs to enhance time
series classification tasks in various domains. However, the proposed ReasonTSC remains constrained
by the inherent context length limitations of LLMs when processing long time series sequences.
Future work could explore alternative tokenization methods to improve time series representation for
LLMs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contribution: the
ReasonTSC framework, which uses multi-turn reasoning and fused decision-making to
adapt LLMs for time series classification. The claims are validated by experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations in the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer:

Justification: The paper focuses on applying LLMs to time series reasoning and does not
present theoretical results. Therefore, it includes no theoretical assumptions or proofs. The
work is empirically validated, with experimental results supporting the proposed framework.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly documents the experimental settings, including data sources,
evaluation metrics, and pre-training details for the ReasonTSC framework. We also list our
full prompt and details in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the code and data via an anonymous GitHub
repository, as stated in the abstract. Detailed instructions for reproduction are included in
the supplemental material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly specifies the experimental setup, including data splits,
hyperparameters, model configurations, and evaluation protocols.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports detailed experimental conditions (including datasets and
model configurations), with complete results provided in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes. The paper specifies the GPU training environment and details for fine-
tuning time-series foundation models.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research strictly follows the NeurIPS Code of Ethics. All experiments
comply with ethical standards regarding data usage, privacy, and fairness.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper focuses on the reasoning framework design and novel applications.
As such, the paper does not directly address societal implications.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: This work does not release new models, but utilizes existing open-source
pretrained language models within our reasoning framework.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets (datasets, code, models) are properly cited, and their licenses/terms
of use are respected, as documented in the paper.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new codebase implementing the ReasonTSC framework,
which is fully documented with instructions for reproduction, training, and evaluation. The
documentation is provided alongside the released code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: This work does not involve any human subject experiments or crowdsourcing
studies.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: This study does not involve human participants, so no risk assessment or IRB
approval was required.

Guidelines:
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820 * The answer NA means that the paper does not involve crowdsourcing nor research with
821 human subjects.

822 * Depending on the country in which research is conducted, IRB approval (or equivalent)
823 may be required for any human subjects research. If you obtained IRB approval, you
824 should clearly state this in the paper.

825 * We recognize that the procedures for this may vary significantly between institutions
826 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
827 guidelines for their institution.

828 * For initial submissions, do not include any information that would break anonymity (if
829 applicable), such as the institution conducting the review.

830 16. Declaration of LLM usage

831 Question: Does the paper describe the usage of LLMs if it is an important, original, or
832 non-standard component of the core methods in this research? Note that if the LLM is used
833 only for writing, editing, or formatting purposes and does not impact the core methodology,
834 scientific rigorousness, or originality of the research, declaration is not required.

835 Answer: [Yes]

836 Justification: The paper provides detailed descriptions of LLM usage as it constitutes a core
837 methodological component of this research.

838 Guidelines:

839 * The answer NA means that the core method development in this research does not
840 involve LLMs as any important, original, or non-standard components.

841 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
842 for what should or should not be described.
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