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Abstract

Domain adaptive active learning is leading the charge in label-efficient training of neural
networks. For semantic segmentation, state-of-the-art models jointly use two criteria of
uncertainty and diversity to select training labels, combined with a pixel-wise acquisition
strategy. However, we show that such methods currently suffer from a class imbalance
issue which degrades their performance for larger active learning budgets. We then in-
troduce Class Balanced Dynamic Acquisition (CBDA), a novel active learning method
that mitigates this issue, especially in high-budget regimes. The more balanced labels
increase minority class performance, which in turn allows the model to outperform the
previous baseline by 0.6, 1.7, and 2.4 mIoU for budgets of 5%, 10%, and 20%, respectively.
Additionally, the focus on minority classes leads to improvements of the minimum class
performance of 0.5, 2.9, and 4.6 IoU respectively. The top-performing model even exceeds
the fully supervised baseline, showing that a more balanced label than the entire ground
truth can be beneficial.

Keywords: Active Learning, Class Balancing, Semantic Segmentation, Domain Adapta-
tion

1. Introduction

Semantic segmentation is a key computer vision task with a wide variety of applications in
autonomous driving (Yang et al., 2018; Teichmann et al., 2016), medical analysis (Taghanaki
et al., 2019; Ronneberger et al., 2015), and other domains (Sheikh et al., 2020). Training
semantic segmentation models typically relies on a large amount of labeled data. Since
a lot of this data, i.e. real-life autonomous driving data, needs to be labeled by human
annotators, it is expensive. Maximizing model performance with as few human labels as
possible is a key research area, both to improve semantic segmentation models and training
in general and to move closer to production feasibility.

Domain Adaptation and Active Learning (AL) are two techniques that are used to
reduce the number of labels required. Domain Adaptation uses an out-of-domain source
and in-domain target dataset. The source data typically consists of samples that can easily
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Figure 1: Overview of Class Balanced Dynamic Acquisition (CBDA). Left: the generic setup of
active learning for domain adaptation relies crucially on an acquisition function whereby pixels receive scores
that determine whether a label will be queried. Right: We introduce CBDA as an acquisition function that
weighs scores according to observed class statistics and shares the labeling budget flexibly across samples.

be acquired and automatically labeled - for example, from a simulation. The target data
are labeled samples from the target domain. Active Learning seeks to determine the most
beneficial samples to be labeled instead of labeling all of them. Generally, heuristics based
on the model predictions are used for that determination. These two methods can be
combined for even more label efficient training.

Another aspect of deep neural networks for autonomous driving more broadly is safety
and reliability. The most critical aspect to evaluate a model for such environments is the
lowest performance of any of its parts. Even if meeting the requirements in a majority of
cases, incorrect predictions in an untypical driving scenario can have unpredictable effects.
Protecting vulnerable members of traffic is critical to meeting safety requirements. Given
that less than 1% of the labels for Cityscapes for example cover bike, motorcycle and rider,
there is a data imbalance problem. This problem is shared across any setup, but active
learning provides a means to address it.

Contributions. In the context of domain adaptation with active learning, we analyze the
effect of imbalanced data for semantic segmentation in an autonomous driving scenario and
we introduce a novel method, CBDA—Class Balanced Dynamic Acquisition—to obtain
more balanced active labels for training (see Fig. 1 for an overview). Notably, this new
approach does not increase the computational complexity and can be used as a drop-in
replacement in the standard training pipeline. We analyze the benefits of this approach
to improve sample efficiency on GTAV → Cityscapes, showing improvements in overall
performance by increasing minority class scores, without being detrimental for other classes.

1.1 Setup

The setup of domain adaptive semantic segmentation with active learning consists of two
datasets, the labeled source dataset S = {(Xs, Ys)} and the unlabeled target dataset T =
{(Xt)}, and the model and training objectives. The final model is evaluated on a target
test set. The training setup follows the iterative active learning strategy from (Xie et al.,
2021) where active learning is performed at specific training iterations.

First, the model M is trained using Xs, Ys, and Xt with a supervised cross-entropy
loss for the source data and some unsupervised objectives for the target samples. Once
an active learning iteration is reached each image I’s predicted class probabilities P =
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softmax(M(I)) and pseudo label Ŷ = argmaxc∈{1,...,C} Pc are calculated. Both are pixel-

wise outputs and pixel at position i,j can be accessed via either P (i,j) or Ŷ (i,j).

The acquisition function determines which sample pixels are selected for labeling and
make up the target active label Ỹt. This typically takes the form of a pixel-wise acquisition
score matrix A that is calculated for each image using the class probabilities and pseudo
label and the indices with the highest scores are selected according to an active learning
budget. These indices correspond to the coordinates of the pixel in the respective image.
During a real-world application, these samples would be given to human annotators for
annotation, but for this experimental setup, the already existing ground truth target labels
Yt are used. For each selected pixel, the corresponding ground truth class is selectively
provided to the model for training.

In the training iterations following the active learning iteration, the target active labels
are incorporated in the standard training setup and serve as labels for the target samples
Xt. They are trained with the same supervised cross-entropy loss as the source sample-label
pairs, ignoring the loss of each pixel that is not part of the active label. Pixels that have
already been selected are ignored.

Acquisition functions. In the image-based AL scenario, the acquisition scores are av-
eraged across each image in the target set and the highest-scoring images are selected for
labeling. The averaging of the scores loses any pixel-wise information. Alg. 1 gives an
overview of image-wise active learning.

The pixel-based approaches keep the score for each pixel, so each image has a resulting
acquisition score matrix A(i,j) ∈ RH×W . However, picking the highest scoring pixels for
labeling is then done iteratively for each image once its acquisition score matrix has been
calculated as shown in Alg. 2. It is split equally across all the images to stick to the
AL budget. The specific pixel-wise acquisition function that serves as the baseline for the
experiments is ”Region Acquisition” or RA (Xie et al., 2021).

Alg. 1: Image-Wise Acquisition

1 scores = list()
2 foreach I in {Xt} do
3 A = calculate scores(I)
4 scores.append(A.mean())

5 selection =
select images(scores, iter budget)

6 foreach I in selection do

7 ỸI = YI

Alg. 2: Pixel-Wise Acquisition

1 foreach I in {Xt} do
2 A = calculate scores(I)
3 selection =

select pixels(A, iter budget
|{Xt}| )

4 foreach (i, j) in selection do

5 Ỹ
(i,j)
I = Y

(i,j)
I

Related work. Xie et al. (2021) claimed the class balancing effect of their method as a
beneficial factor. However, when examining higher budget regimes exceeding 5% the active
label becomes progressively more imbalanced, at over 10% even more imbalanced than
the entire ground truth data. This coincides with progressively worse model performance
for these high budgets. Given the progressively worsening imbalance and the relatively
lower scores of the minority classes, actively balancing the target labels that were selected
was an obvious next step. There are previous methods in the space of class balanced active
learning (Aggarwal et al., 2021; Bengar et al., 2021), yet none have been applied to semantic
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segmentation specifically. Aggarwal et al. (2021) propose a method that selects the highest
scoring samples within some budget per class. This budget is inflexible and even if samples
from another class have significantly lower acquisition scores the budget can not be used
for or at least partially reallocated to a class with higher acquisition scores. The method
by Bengar et al. (2021) uses an additional optimization problem to balance the selection;
however, considering each pixel a sample for semantic segmentation makes their method
prohibitively expensive - either in memory for the required matrices, or in computational
complexity if they are processed in a streaming fashion.

2. Method

The proposed method introduces a novel mechanism to select a more balanced active label
during training that can be applied to pixel-based semantic segmentation with active learn-
ing. This takes the form of class weights applied to the acquisition score matrices based on
statistics of previously gathered active labels. Fig. 1 shows a method overview.

Dynamic Acquisition (DA). The two previously presented approaches of image- and
pixel-based acquisition can be combined to keep the advantages of both; this new acquisition
function is called Dynamic Acquisition (DA). Instead of calculating the score and picking
the pixels immediately after for each image, the entire set of acquisition score matrices is
calculated, then stacked together and the pixels with the highest scores are selected from
that tensor AS ∈ R|{Xt}|×H×W .

Appendix A shows the distribution of the percentage of selected pixels of DA vs RA,
showing that the model utilizes the budget more dynamically and selects a wider variety.

Class Balancing (CB). Our novel class balancing method calculates a class budget
similarly to Aggarwal et al. (2021) but instead of applying the remaining class budget
statically, it is used to calculate a class weight that downweighs the acquisition scores of
classes in proportion to how many samples of that class have been selected in previous AL
iterations compared to a goal distribution. In a realistic setting no prior information about
the ground truth class distribution would be available, therefore a uniform distribution is the
most sensible target. If under specific circumstances extra information would be available,
the goal distribution could be chosen differently. Notably, this goal is not applied strictly,
but is effectively used as a loose target.

Like other methods, ours relies on computing statistics of the classes of the set of active

labels {Ỹ (i,j)
t }. For each class c ∈ {1, . . . , C} the cumulative number of labels of that class

Lc,i are being counted for the current iteration. To determine the class weight, the first
step is to calculate the ideal iteration class budget Bc,i for each class for the current AL
iteration as shown in Eq. (1). This part relates to the goal distribution and can be modified
to calculate a budget matching any goal. The equation uses the total number of pixels of the
target samples, the percentage active learning budget BAL, the number of active learning
iterations Ni, the current iteration index i ∈ {1, . . . , Ni} and the number of classes C.

Bc,i = (|T | ×W ×H)× BAL

C
× i

Ni
(1)

The class weight for the given iteration Wc,i is then calculated as shown in Eq. (2). The
maximum function is being used to prevent the weight from reaching exactly 0, with ϵ
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being set to a small value strictly larger than 0 - for example, ϵ = 1 × 10−6. This serves
the purpose of keeping the relative differences between the acquisition scores for labels of
classes that have filled or exceeded the budget.

Wc,i = max

(
1− Lc,i

Bc,i
, ϵ

)
(2)

Finally, in every AL iteration the weighted acquisition scores Â are calculated by multiplying
the acquisition scores with the weight for the class as predicted by the pseudo label as shown
in Eq. (3). Since the weight is in the range [ϵ, 1], it downweighs the classes that have filled
or exceeded their budget. This will reduce the chance of them getting selected by the
acquisition function but will not remove the possibility entirely contrary to the method by
Aggarwal et al. (2021).

Â(i,j) = A(i,j) ×Wc where Ŷ
(i,j)
t = c (3)

Combining the previous equations and method results in the algorithm presented in Ap-
pendix B. In this case, it is combined with the dynamic acquisition strategy presented in
the previous section for best results, but the same method can be combined with any active
learning strategy and is heuristics agnostic.

3. Results

Table 1 shows the results for the GTAV → Cityscapes tasks. The results using SYNTHIA
as the source dataset are shown in Appendix C. These specific dataset combinations were
selected for best comparability with previous approaches. The experiments between the
double lines are re-runs of the baseline method and of the proposed method, all others were
taken from the respective papers (Xie et al., 2021; Su et al., 2019; Ning et al., 2021; Guan
and Yuan, 2023). They are all based on the DeepLabv-3+ architecture (Chen et al., 2018)
with a ResNet-101 backbone (He et al., 2015). Contrary to previous papers, the classes
listed here are not in order of the internal train id but are sorted in descending order of the
class frequency according to the ground truth label distribution.

Table 1: Results of the GTAV → Cityscapes task
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mIoU

Source only 75.8 77.2 81.3 49.9 16.8 70.3 53.8 25.5 24.6 21.0 12.5 20.1 36.0 6.5 17.2 25.9 30.1 26.4 25.3 36.6

AADA 92.2 87.3 88.3 90.0 59.9 90.2 69.7 46.1 44.0 45.7 36.4 59.5 62.9 32.0 55.3 45.1 50.6 38.2 32.6 59.3
MADA 95.1 88.5 89.1 91.2 69.8 91.5 73.9 45.7 46.7 48.7 43.3 59.2 68.7 48.4 60.6 56.9 53.3 50.1 51.6 64.9
RA (5%) 97.0 90.4 90.2 92.7 77.3 93.2 75.0 47.7 59.2 53.2 54.6 64.1 70.3 68.9 73.0 79.7 55.9 54.8 55.5 71.2
ILM-ASSL 96.9 91.6 91.9 94.9 77.8 94.5 82.3 63.2 54.9 56.0 46.7 77.4 77.6 75.3 79.3 88.1 70.8 61.2 65.8 76.1

RA (5%) 97.5 90.9 91.0 93.3 79.9 94.0 74.5 52.5 59.7 53.0 54.7 66.2 71.1 61.6 79.1 78.7 57.4 53.5 52.8 71.7
CBDA (5%) 97.3 90.7 90.7 93.4 79.4 93.7 74.8 53.3 60.4 53.2 56.6 66.5 71.3 69.8 77.8 80.1 55.6 53.0 55.9 72.3

RA (10%) 97.2 90.2 90.6 92.8 78.2 93.8 72.6 49.2 60.0 50.3 49.6 64.5 69.8 62.9 76.9 78.6 55.8 52.0 54.3 70.5
CBDA (10%) 97.2 90.7 90.8 93.3 78.6 93.7 75.1 52.1 60.7 54.0 54.4 65.8 71.0 64.7 79.5 79.8 56.3 56.2 58.8 72.2

RA (20%) 97.0 89.7 90.0 92.0 76.7 92.8 71.6 45.9 57.5 49.4 53.3 60.1 67.0 64.2 73.3 75.0 51.0 50.0 50.3 68.8
CBDA (20%) 97.4 90.6 90.6 93.0 79.6 93.9 74.2 50.5 60.0 52.2 53.5 65.2 70.3 62.1 77.2 79.3 54.9 54.5 53.8 71.2

Fully Superv 97.4 91.1 91.1 93.6 77.9 93.2 74.7 51.9 57.8 53.7 54.9 64.7 71.3 67.8 76.4 79.3 57.9 54.8 55.6 71.8
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The results show that our novel Class Balanced Dynamic Acquisition method improves
over the RA baseline for pixel-wise active domain adaptation. The re-run of the 5% budget
RA experiment already showed an improved score of 71.7 over the official one of 71.2, this
new method increased that to 72.3 and so not only improved over the original performance
by 0.6 mIoU, but also exceeds the performance of the fully supervised approach given the
same training setup. This improved performance is more significant for the 10% budget
regime and even more for 20%, with improvements of 1.7 mIoU and 2.4 mIoU, respectively.

Looking at the first few columns, the majority class performance remains stable for
all CBDA methods and is even increased slightly for the class car for example. For the
minority classes, there is consistent improvement for each of the CBDA methods over the
RA experiments of the same budget. This improvement is particularly high for the classes
fence, truck, light and rider. While for the majority class road, the performance of RA
with increasing budget drops from 97.5 to 97.0, some minority classes experience more
significant drops and are therefore the primary causes for reduced overall performance. The
class IoU drops 6.6 (pole), 6.1 (sign) and 4.1 (bike) when using RA. CBDA on the other
hand manages to reduce the performance loss of those classes significantly, to only 2.8, 1.3,
and 1.0 respectively. Appendix D shows some examples of samples, their ground truth
labels and predictions using RA and CBDA for comparison.

4. Concluding Remarks

Using CBDA, the model is able to utilize the budget more effectively and showed minority
class performance improvements while keeping stable performance for the majority classes.
It was applied to domain adaptive active learning here, but the method can be used without
domain adaptation without change. Furthermore, it is essentially heuristic agnostic, as long
as matrices of pixel-wise scores are calculated.

While the performance loss for larger AL budgets has not been eliminated, using more
balanced active labels both increased the base performance and slowed the degradation for
larger budgets. In addition, the performance exceeded the fully supervised scheme. Previous
works have stated that domain adaptive active learning approaches can likely beat a fully
supervised model eventually (Shin et al., 2021). However, the fully supervised variant is
still sometimes seen as the upper bound on performance Xie et al. (2021). The experimental
results here show domain-adaptive active learning outperforming a fully supervised domain-
adaptive approach - at least with imbalanced ground truth data.

Currently, human annotating for semantic segmentation is not typically performed pixel
wise and in a production setting the pixel-based approach would be more challenging than
an image-based one. However, this proposed method relies on the flexibility of selecting
only specific pixels from an image. Further development for real-world annotation tools
would aide the adoption of active learning in a production setting while allowing pixel-
based methods to be applied.
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Appendix A.

Figure 2: Histogram of selected pixel percentages showing broader spread of DA compared to RA

9



Schachtsiek, Rossi and Hannagan

Appendix B.

Alg. 3: Class Balanced Dynamic Acquisition (CB-DA)

Data: AL Budget BAL, # of AL Iterations Ni, # of Classes C, Epsilon ϵ,

Target Images {Xt}, AL Iteration i, Active Labels {ỸI}

1 matrices = list()

2

# Statistics Gathering

3 foreach (i, j) in {ỸI} do

4 Lc,i += 1, where Ỹ
(i,j)
I == c

5

# Weight Calculation

6 Bc,i = (|T | ×W ×H)× BAL
C × i

Ni

7 foreach c in {1, . . . , C} do

8 Wc,i = max
(
1− Lc,i

Bc,i
, ϵ
)

9

# Weighted Scoring

10 foreach I in {Xt} do

11 A = calculate scores(I)

12 foreach (i, j) in A do

13 Â(i,j)
c = A(i,j)

c ×Wc,i, where Ŷ
(i,j)
I == c

14 matrices.append(Â)

15

16 AS = matrices.stack()

17 selection = select pixels(AS , iteration budget)

18

19 foreach (I, i, j) in selection do

20 Ỹ
(i,j)
I = Y

(i,j)
I
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Appendix C.

Table 2: Results of the SYNTHIA → Cityscapes task

Method ro
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mIoU

Source only 64.3 73.1 63.1 73.1 21.3 67.6 42.2 31.4 1.1 2.4 27.7 38.9 15.3 7.0 19.9 10.5 34.9

AADA (5%) 91.3 86.9 88.2 89.9 57.6 90.3 69.4 45.0 48.3 37.6 58.5 62.5 44.5 50.4 37.9 32.8 61.9
MADA (5%) 96.5 88.8 89.7 90.9 74.6 92.2 74.1 46.7 43.8 45.9 60.5 69.4 60.3 52.4 51.2 52.4 68.1
RA (5%) 97.0 89.9 91.1 92.9 78.9 93.0 74.4 48.5 50.7 47.2 63.9 71.0 79.9 55.2 54.1 55.3 71.4
ILM-ASSL (5%) 97.4 91.8 91.6 94.4 80.1 94.5 82.7 64.1 55.2 38.6 78.7 77.2 81.7 70.9 60.1 66.8 76.6

RA (5%) 97.3 89.9 91.3 92.9 80.2 93.5 73.2 46.7 50.1 45.6 63.2 69.8 78.2 51.4 49.6 52.5 70.3
CBDA (5%) 97.1 89.9 90.9 92.9 79.1 93.7 73.7 46.1 50.7 46.0 63.4 70.3 78.8 51.2 51.4 47.5 70.2

RA (10%) 97.3 90.2 91.5 93.0 80.0 93.8 73.7 49.4 50.1 48.2 64.8 70.7 78.0 52.9 51.5 55.6 71.3
CBDA (10%) 97.2 90.4 91.2 93.3 79.7 93.7 74.1 48.6 51.1 52.7 65.3 71.2 82.0 53.4 53.7 56.1 72.1

RA (20%) 97.3 90.2 91.5 93.2 80.2 93.9 74.3 48.0 46.6 47.2 64.5 70.7 73.8 52.8 52.4 55.0 70.7
CBDA (20%) 97.1 89.6 90.8 93.0 79.5 93.6 74.0 45.2 50.4 50.3 66.1 71.3 77.4 49.8 53.2 57.8 71.2

Fully Superv. 97.5 90.9 91.7 93.2 81.4 93.4 75.6 53.6 51.3 48.5 68.1 71.2 75.6 59.4 51.9 52.0 72.2
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Appendix D.

Table 3: Example results for RA and CBDA for 5% and 10%

Sample RA (5%) RA (10%)

Label CBDA (5%) CBDA (5%)
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Appendix E.

Minority Class Improvements

To further show the performance differences of the minority classes, the graph in Fig. 3
shows the relative improvements of each class compared to the RA baseline with the same
budget. As in the results tables, the classes are in descending order by frequency. The
graph clearly shows the overall stable behavior for the top 4 classes, making up 77.7%
of the total pixels and the general increases for the minority classes. There are a few
outliers, such as train and light, with specific drops for one of the budgets. The broad
trends are represented by the linear trendlines for each of the budgets and they show a
progressively increasing relative performance with decreasing class frequency. These trends
should be seen as qualitative and may not exactly follow a linear function, especially since
the horizontal axis is categorical. However, to verify that the trends are actually there,
an average trendline for ten different random orders of the classes was calculated. These
trendlines had negligible slopes, indicating that the trendlines shown here are relative to
a steady baseline. The increasing performance of each budget for CBDA is still regarding
the same budget for RA, so the large increase for CBDA at 20% is with reference to the
rather poorly performing baseline of RA at 20%. While 5% has a smaller improvement, it
is nonetheless performing better in absolute terms.

Figure 3: Relative improvements on each class (CBDA over RA for GTAV → Cityscapes) showing increased
improvement for minority classes
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Appendix F.

Dynamic Acquisition & Class Balancing

This ablation study studies the performance and application of Dynamic Acquisition and
Class Balancing compared to the original RA baseline method. The objective is to examine
the differences between RA and DA, particularly when combined with class balancing. As
previously shown in Fig. 2, the extra flexibility of DA is being used; however, it is not clear
if that provides a performance boost.

Fig. 4 shows the results of the ablation study. While the results are generally reasonably
consistent, runs using just DA tend to vary more than any other combinations, and the
values shown here are of a typical run.

Figure 4: Ablation study comparing RA, DA, CBRA and CBDA

In absolute terms, CBDA is the best-performing method compared to all others and
for both budgets. In the baseline paper active learning was performed at training iter-
ations [10000, 12000, 14000, 16000, 18000] - marked as Original. However, using iterations
[10000, 18000, 24000, 28000, 30000] were found to lead to better results and are marked here
as Spread. Important to note here is that spread generally outperforms the original setup
and provides a reasonable boost in performance all by itself.

The most significant difference between the 5% and 10% AL budgets in terms of the
relative performance of each method to the others is the improvement of class balancing vs
the unweighted equivalent. Except for CBRA performing slightly lower than RA with spread
AL iterations, class balancing is an improvement. An explanation for the slightly reduced
score in the spread setup can be that the class balancing setup can discourage certain
high-scoring indices from being selected. Using the original iterations for active learning
limited the amount of convergence between each AL iteration. This, in turn, caused fewer
representative pixels to be selected and led to a lower score; class balancing improved that
score by reducing the imbalance, increasing the minority class IoU scores more than it cost
in selecting indices with lower acquisition scores. Perhaps with the spread AL iteration
setup, this trade-off is not worth it anymore, at least with the already limiting equal budget
per image setup of RA. The model has more iterations to converge more, meaning it can
better select the pixels that should get an active label. Limiting those pixels now may lead
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to a lower overall score, albeit likely still improving in some minority classes because of the
more balanced selection method.

The equal budget per image is the most significant issue when pairing class balancing
with the RA setup. As previously outlined, an equal budget per image means that each
class should have an equal number of pixels for each image. Suppose a minority class is not
represented in a large amount of those images. In that case, this method has challenges
making it up from another image since the budget is also limited for that image. The
domain acquisition (DA) method was designed to eliminate that limitation and allow the
model more flexibility in selecting which pixels to get labeled. By itself, DA may be more
flexible but does not guarantee a score improvement - on the contrary, for the 5% budget,
it significantly underperforms RA. However, using the flexibility of DA by limiting some
of its index selection with the class balancing weights uses the respective advantages to
combat the respective disadvantages. The flexibility of DA alone may be challenging for a
not adequately converged model; class balancing limits the selection. On the other hand,
class balancing artificially reduces the acquisition scores and may cause some high-scoring
indices not to be selected. The extra flexibility of DA may ensure that enough high-scoring
indices with appropriate classes are available for selection since it selects on the dataset
scale and not the image scale.

Quantifying Imbalance

Comparing the active label imbalance for the baseline showed a progressively increasing
imbalance for larger budgets. To quantify the imbalance of the active label, the KL diver-
gence between the class distribution Qclass and the uniform distribution Qunif , scaled to
between 0 and 1 using the maximal possible divergence, was calculated. The formula for
this imbalance score is shown in Eq. (4). The maximum possible divergence is between a
one-hot distribution QOH (all labels for a single class) and the uniform distribution.

imbalance score =
kl(Qclass ∥ Qunif )

kl(QOH ∥ Qunif )
(4)

Fig. 5 shows the imbalance scores for the previous experiments. The values should be
taken in the context of the original RA runs. In addition, the original imbalance score of
an active label with a 20% budget was 0.56, but no ablations for 20% were performed.

First of all, this graph clearly shows the balancing effect of the class balancing method-
ology. The selection imbalance is reduced from around 0.16 and 0.33 to less than 0.06 and
0.08 for 5% and 10%, respectively. While class imbalance is undoubtedly not the only factor
that affects the final score, this shows that the reduction in the class imbalance is correlated
with a score improvement. Even the score reduction from RA to DA for the 5% budget
matches the slight increase in imbalance caused by the switch. The slight score decrease
between RA and CBRA for the spread AL iteration setup, however, is not. As previously
explained, the current assumption is that the class balancing causes less important pixels
to be selected in the RA regime with a model that is better converged than the original.
This issue seems to be resolved when pairing class balancing with DA.
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Figure 5: Imbalance scores for different setups showing lowest imbalance for methods incorporating CB
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