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ABSTRACT

Backdoor attacks train models on a mixture of poisoned data and clean data to
implant backdoor triggers into the model. An interesting phenomenon has been
observed in the training process: the loss of poisoned samples tends to drop sig-
nificantly faster than that of clean samples, which we call the early-fitting phe-
nomenon. Early-fitting provides a simple but effective method to defend against
backdoor attacks, as the poisoned samples can be identified by picking the sam-
ples with the lowest loss values in the early training epochs. Therefore, two natural
questions arise: (1) What characteristics of poisoned samples cause early-fitting?
(2) Is it possible to design stronger attacks to circumvent existing defense meth-
ods? To answer the first question, we find that early-fitting could be attributed
to a unique property of poisoned samples called synchronization, which depicts
the latent similarity between two samples. Meanwhile, the degree of synchro-
nization could be explicitly controlled based on whether it is captured by shal-
low or deep layers of the model. Then, we give an affirmative answer to the
second question by proposing a new backdoor attack method, Deep Backdoor
Attack (DBA), which utilizes deep synchronization to reversely generate trig-
ger patterns by activating neurons in the deep layer. Experimental results val-
idate our propositions and the effectiveness of DBA. Our code is available at
https://anonymous.4open.science/r/Deep-Backdoor-Attack-8875.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved tremendous success in many fields (Krizhevsky, 2009;
Szegedy et al., 2015; Sutskever et al., 2014). Training a DNN requires a large amount of data and
computational resources, so it is a common practice to train DNNs on third-party providers. In this
scenario, backdoor attacks (Gu et al., 2017; Chen et al., 2017; Nguyen & Tran, 2020; Liu et al.,
2020; Nguyen & Tran, 2021) pose a serious security threat by intervening in the training process.
Attackers could poison the training data by injecting trigger patterns into a few training samples and
changing their labels to the target label, so DNNs will learn the mappings from the trigger pattern to
the target label. Then, in the inference stage, the model will predict input into the target label class
if trigger patterns are present, but behave normally on clean samples.

Recently, it has been observed that the training loss of poisoned samples drops significantly faster
than that of clean samples in the first few epochs (Li et al., 2021a). We call this the early-fitting
phenomenon. As a result, poisoned samples can be accurately isolated from clean samples during
training by selecting the samples with top-k lowest loss value. Then, fine-tuning the model with
the remaining data will lessen the threat from backdoors. This defense strategy leverages the early-
fitting phenomenon and works effectively against a wide range of attack methods.

Despite the observation and preliminary application of early-fitting, several key questions have not
been answered. First, what is the reason behind early-fitting of poisoned samples? Backdoor
patterns are usually simpler compared to natural signals, so they are easier to learn for neural net-
works. However, how to quantify such “simplicity” of backdoor patterns? Are there any other
reasons for the rapid decrease of poisoned samples loss? We believe that answering these questions
would provide a better understanding of backdoor attacks and defenses. Second, is it possible for
backdoor attacks to bypass the early-fitting phenomenon? The answer to this question would
help us identify potential threats to deep models.
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To answer the first question, we propose a quantification method for estimating the loss reduction of
training samples. We find that: 1) the loss reduction of each sample could be decomposed as the ag-
gregated influence of other training samples; 2) the mutual influence of two samples is closely related
to their similarities at different layers of a model. Thus, we define a novel concept called synchro-
nization to measure such similarity. Poisoned samples tend to be more “synchronized” compared
to clean samples, leading to the early-fitting phenomenon. Meanwhile, samples created by different
attack methods show synchronization at different layers. The synchronization among poisoned sam-
ples created by simple attack methods (e.g., BadNet (Gu et al., 2017)) is usually captured starting
from shallow layers, while synchronization of stealthy poisoned samples (e.g., WaNet (Nguyen &
Tran, 2021)) is captured only at deep layers. Based on the above analysis, we answer the second
question in the affirmative. Specifically, we propose a new backdoor attack method, called Deep
Backdoor Attack (DBA), which generates poisoned samples with deep-layer synchronization and
could avoid early-fitting. We leverage model explanation (Simonyan et al., 2013) to reversely gen-
erate trigger patterns by activating the deep neurons of a clean neural network. Then, the generated
trigger patterns contain intricate information learned by the neural network, so the poisoned samples
tend to synchronize in a more complex way. Experiments show that DBA can bypass the early-fitting
phenomenon while maintaining good performance on clean samples.

Our contributions are as follows: (1) we formalize the early-fitting phenomenon and quantitatively
measure the loss reduction of poisoned and clean samples; (2) we provide a better understanding of
early-fitting from a novel perspective of synchronization between training samples; (3) we propose
DBA, a new backdoor attack method that is resistant to both early-fitting and other recent defense
methods, demonstrating the potential threat posed by backdoor attacks.

2 UNDERSTANDING BACKDOOR ATTACKS

In this section, we first introduce the problem definition of backdoor attacks, and the phenomenon of
early-fitting in training poisoned samples. Then, we provide a theoretical understanding of backdoor
attacks from a new perspective called feature synchronization.

2.1 PROBLEM DEFINITION: BACKDOOR ATTACKS

We consider classification tasks in this paper. A neural network model fθ : X → Y is learned from
the training dataset D = {(x, y)}, where x ∈ Rn denotes a sample, y ∈ R denotes its ground-truth
label, X is the input space, Y is the label space, and θ denotes the collection of model parameters.

The goal of backdoor attacks is to train the model fθ on a mixture of clean and poisoned data
samples, so that the model is expected to perform normally on clean input but behave incorrectly if
special triggers are added to the input. We denote the set of clean and poisoned samples as Dclean

and Dpoi, respectively, so D = Dclean ∪ Dpoi. Typically, a poisoned sample (xb, yb) ∈ Dpoi could
be created from a clean sample (xc, yc) ∈ Dclean by adding trigger patterns δ to make xb = xc+ δ
and pairing it with a target label yb chosen by attackers. We call the proportion of poisoned samples
as injection ratio η = |Dpoi|/|D|. After training on D, the model is expected to assign yb to future
samples containing the trigger patterns but behaves normally in clean samples.

2.2 PRELIMINARIES: THE EARLY-FITTING PHENOMENON

It has been observed that, when training a neural network on both poisoned and clean samples, the
loss on the poisoned samples drops significantly faster than that of the clean ones in early epochs (Li
et al., 2021a). We call this phenomenon early-fitting. As a result, the poisoned samples can be
isolated from other samples by ranking the training loss of all samples from low to high, and picking
the ones with the smallest loss values. It thus provides a straightforward way for defenders to detect
and defend against backdoor attacks. An intuition behind the early-fitting phenomenon of poisoned
samples is that: training on samples with backdoor patterns is a simpler task compared to training
on clean samples, since the model only needs to learn a mapping from trigger δ to a fixed label yb,
where the trigger patterns are not as complex as natural patterns.

Despite the intuition and preliminary application of early-fitting, several key questions remain to be
answered towards further understanding the phenomenon and securing the models. ❶ What is the
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Figure 1: ηrbb, ηrbc, (1 − η)rcc, and (1 − η)rcb under different training epochs when learning on
Cifar10 under three backdoor attacks. η is set as 0.2.

reason that early-fitting happens on poisoned samples? One may conjecture that early-fitting occurs
because it is easy to fit poisoned samples, but how to quantify such “easiness”, and are there any
other reasons? We lack a quantitative tool to estimate loss reduction for poisoned samples and clean
samples. ❷ Is it possible to design stronger attacks to circumvent the existing defense methods? We
answer these questions in the rest of this paper.

2.3 LOSS REDUCTION ESTIMATION

In this part, we provide a better understanding of the reason behind early-fitting by quantifying the
loss reduction during training. Let R(D, (x, y)) denote the loss reduction on a test sample (x, y)
after training the model with D in the i-th iteration. Thus, the average loss reduction over a subset
D′ ⊂ D is defined as

R(D,D
′
) =

1

|D′|
1

|D|
∑

(x,y)∈D′
∑

(x′,y′)∈D r((x′, y′); (x, y)). (1)

where r((x′, y′); (x, y)) denotes the influence of a training sample (x′, y′) on reducing the loss of
(x, y). The early-fitting phenomenon implies that R(D,Dpoi) ≥ R(D,Dclean). To understand
why it happens, we propose to quantitatively estimate R(D,D′). According to (Pruthi et al., 2020).
r((x′, y′); (x, y)) is estimated as:

r((x′, y′); (x, y)) ≈ βi∇θiℓθi(x, y) · ∇θiℓθi(x
′, y′), (2)

where βi denotes the learning rate at iteration i, ℓθi(x, y) denotes the training loss of sample x after
the i-th iteration, and ∇θi denotes the partial derivative with respect to the weights θi.

We use a preliminary experiment to validate the estimation in Equation 2. Given the image clas-
sification task on Cifar10 (Krizhevsky, 2009), we randomly select 250 pairs of ((x′, y′), (x, y))
from the training dataset D and compare the estimated loss reduction with its actual loss reduction
(see Figure 5 in Appendix). We adopt three models to present the performance of the estimation:
ResNet-18 (He et al., 2015), CNN-18 (see A.2), and LeNet-5 (Lecun et al., 1998). Figure 5 shows
that the estimation points distribute along the line y = x, indicating a high estimation accuracy.

In iteration i, the parameters are θi and we train the neural network fθi on the poisoned dataset D.
As the training dataset D is composed of clean samples (xc, yc) and poisoned samples (xb, yb), we
can define loss reduction for the poisoned subset Dpoi and clean subset Dclean respectively. The
details are presented in Appendix B.

Theorem 1. Given D = Dpoi ∪ Dclean as training data, the difference of average loss reduction
between Dpoi and Dclean is:

R(D,Dpoi)−R(D,Dclean) = ηr̄bb − (1− η)r̄cc + (1− 2η)r̄bc, (3)

where r̄bb =

∑
(x′

b
,y′

b
),(xb,yb)∈Dpoi

r((x′
b,y

′
b);(xb,yb))

|Dpoi||Dpoi| , r̄cc =
∑

(x′
c,y

′
c),(xc,yc)∈Dclean

r((x′
c,y

′
c);(xc,yc))

|Dclean||Dclean| ,

r̄bc =

∑
(x′

b
,y′

b
)∈Dpoi(xc,yc)∈Dclean

r((x′
b,y

′
b);(xc,yc))

|Dpoi||Dclean| , and η =
|Dpoi|
|D| .

Theorem 1 shows that the difference of loss reduction between poisoned samples and clean samples
can be decomposed into three components. The first component ηr̄bb is the average loss reduction
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Figure 2: Synchronization value of poisoned and clean samples in different epochs (x-axis). We use
BadNet (Gu et al., 2017) (first row) and WaNet (Nguyen & Tran, 2021) (second row) as examples.

corresponding to the influences among poisoned samples; the second component (1 − η)r̄cc corre-
sponds to the influences among clean samples; the last component (1 − 2η)r̄bc corresponds to the
influences between poisoned samples and clean samples. Figure 1 plots the change of the three val-
ues on a Cifar10 classification task under different backdoor attacks. We could observe that, in the
early training epochs, ηr̄bb dominates the loss reduction while the other two values are significantly
lower. It indicates that strong interaction exists among the poisoned samples, where training on one
poisoned sample significantly contributes to the loss reduction of the other poisoned samples. Such
a strong interaction is a leading factor of the abrupt loss reduction of poisoned samples. Now the
question is, why does strong interaction exist among poisoned samples?

2.4 SYNCHRONIZATION BETWEEN SAMPLES

To facilitate illustration, we first define an important concept named synchronization which measures
the similarity between embeddings of two samples in the intermediate layers.
Definition 1. (Synchronization Score) The synchronization score between sample (x, y) and (x′, y′)
at layer l of neural network fθ is defined as Sl(x;x′) := ⟨f l

θ(x), f
l
θ(x

′)⟩.

Here f l
θ(x) is the output of model fθ at layer l ∈ [L], and f0

θ (x) = x. The synchronization score
measures the latent similarity between x and x′ at layer l. Although the above definition may seem
trivial, we will show later that it plays a key role in controlling loss reduction during training.
Definition 2. (Shallow/Deep-Synchronized Samples) Given a neural network fθ, sample (x, y) and
(x′, y′) are defined as a pair of shallow-synchronized samples if Sl(x;x′) ≥ ϵl at layer l, where
0 ≤ l ≤ λ. Similarly, (x, y) and (x′, y′) are defined as a pair of deep-synchronized samples if: 1)
Sl(x;x′) ≥ ϵl at layer l, where λ ≤ l ≤ L, and 2) Sh(x;x′) < ϵh,∀0 ≤ h < l. Here λ is the
borderline between shallow and deep layers; ϵl and ϵh are thresholds for layer l and h.

For shallow-synchronized samples (x, y) and (x′, y′), the neural networks can easily capture their
similarity in both shallow and deep layers. For deep-synchronized samples, due to the complexity of
backdoor patterns, their similarity could only be captured by deeper layers. For example, poisoned
samples created by BadNet (Gu et al., 2017) are shallow-synchronized samples since the trigger
patterns are fixed in terms of pixel values and locations (see Figure 6). However, poisoned samples
created by WaNet (Nguyen & Tran, 2021) tend to be deep-synchronized as their trigger patterns
are more stealthy and do not share much easily perceptible similarity. Such patterns could only
be captured in deeper layers. To better visualize shallow and deep synchronization, we plot the
synchronization scores in different layers and training epochs in Figure 2. For BadNet (first row), it is
obvious that the synchronization scores of poisoned samples are significantly higher than those of the
clean samples starting from the shallow layer and the difference is propagated throughout the whole
DNN. For WaNet (second row), the synchronization scores of poisoned samples are distinguishable
from clean samples only in the deep layers.
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Figure 3: The pipeline of Deep Backdoor Attacks (DBA).

2.5 RELATION BETWEEN SYNCHRONIZATION AND LOSS REDUCTION

In this part, through further analyzing Equation 2, we show that synchronization score Sl(xb,x
′
b) is

closely related to the loss reduction. To this end, we give the following hypothesis:
Hypothesis 1. In the early training epochs, given two poisoned samples (x, y) and (x′, y′), synchro-
nization score Sl(x,x′) is proportional to the single loss reduction value r((x′, y′); (x, y)).

The theoretical analysis and empirical experiment results are provided in Appendix H to verify this
hypothesis. It states that samples with a higher synchronization score have a stronger interaction
to contribute to loss reduction. It thus inspires us to understand loss reduction of poisoned samples
from a new perspective: feature synchronization. The similarity among poisoned samples, once cap-
tured by the neural network, could lead to a high synchronization score Sl(xb,x

′
b). It then produces

a large r((x′
b, y

′
b); (xb, yb)), leading to faster loss reduction.

Based on the above analysis, we could constrain the synchronization among poisoned samples, so
that their loss reduction will not be too distinctive from clean samples, thus alleviating early-fitting.
Specifically, we could encourage deep synchronization and suppress shallow synchronization among
poisoned samples. The reason is that shallow synchronization can propagate throughout the network
to deeper layers, whereas deep synchronization only appears in the last few layers (see Figure 2 and
analysis of Hypothesis 1). This makes the loss reduction smaller for deep-synchronized poisoned
samples. Based on this, we propose a new backdoor attack in the section below.

3 DEEP BACKDOOR ATTACKS

The early-fitting phenomenon provides opportunities for defenders to detect backdoor attacks. After
quantitatively analyzing the reason behind early-fitting, we find that deep-synchronized poisoned
samples are harder to be detected. Therefore, we propose a new attack method called Deep Backdoor
Attacks (DBA), which will reduce the loss reduction gap between poisoned and clean samples.

3.1 BACKDOOR PATTERN GENERATION BY ACTIVATING DEEP NEURONS

To generate deep-synchronized samples, we propose to adopt feature inversion (Simonyan et al.,
2013; Mahendran & Vedaldi, 2014), where we generate trigger patterns that maximize the activation
of deep neurons by solving an optimization problem. Given a neural network g trained on clean
data, a set of selected neurons S from deep layers, a trigger pattern δ is generated by solving the
optimization problem as follows:

δ = argmax
x′

∑
s∈S gl,s(x′), subject to x′ ∈ X , (4)

where gl,s(x′) is the activation of neuron s at layer l given input x′. The optimization is solved
by gradient descent on x′, where x′ can be randomly initialized. For a neural network g trained
on clean data, its deep layers already encode intricate patterns. Intuitively, activating these neurons
could generate trigger patterns that are harder to be captured than simple hand-crafted patterns, so
they could be used for more stealthy attacks. The overall process of DBA is illustrated in Figure 3.
Details for creating effective backdoor patterns are introduced in the following subsection.
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3.2 DETAILS OF DESIGNING EFFECTIVE DBA

Diverse but Semantically Unified Triggers. Instead of generating only one trigger pattern that is
applied to all input, the x′ in Equation 4 is assigned different random initialization when poisoning
different samples. The resultant pattern varies if initialized differently, but they all contain the same
semantic information. It thus guarantees we fully distill the information encoded in deep neurons.
The DBA attack with diverse trigger patterns is also more difficult to defend.

Neuron Selection. We introduce several neuron selection strategies. We use CNNs for illustration
as we focus on image classification in this work. We denote each neuron in a CNN layer l by a
triplet index (d,w, h), where d denotes the channel index of feature maps and w, h denotes the
neuron location in the feature map. We propose three neuron selection strategies: single-neuron,
multiple-neurons, and channel-neurons. Simply put, the single-neuron strategy activates a single
neuron in the CNN layer; the multiple-neurons strategy activates multiple neurons along the depth
dimension of feature maps; the channel-neurons strategy activates a channel of neurons. The neuron
selections are illustrated in Figure 3. The objective functions of different strategies are as below:

δ =


argmaxx′∈X gl,(d,w,h)(x′), single-neuron
argmaxx′∈X

∑
d g

l,(d,w,h)(x′), multiple-neurons
argmaxx′∈X

∑
w,h g

l,(d,w,h)(x′), channel-neurons
. (5)

The effectiveness of DBA varies under different strategies. We implement DBA with each of the
strategies through experiments and report results in Table 6, which shows that the multiple-neurons
strategy outperforms the other two strategies.

Blend Ratio. The trigger pattern δ is superimposed on a clean sample xc with a parameter α to
generate the poisoned sample xb = α ·δ+(1−α)xc. Appendix D shows the poisoned sample with
different blend ratio α. As observed, a lower blend ratio generates an image closer to the original
clean image, whereas a higher blend ratio generates an image closer to the trigger patterns.

3.3 ATTACKS WITH DBA

The above steps generate a set of poisoned samples {(xb, yb)}, which are injected into a clean
training dataset {(xc, yc)} to conduct backdoor attacks. Please note that the number of poisoned
samples is limited to a small portion of the whole dataset. After training on the clean and poisoned
samples, the model fθ learns both the original classification task and the backdoor injection task:

min
θ

∑
(xc,yc)∈Dclean

yc log(fθ(xc)) +
∑

(xb,yb)∈Dpoi
yb log(fθ(xb)). (6)

In the inference stage, fθ is expected to output yb when the trigger pattern is present in the input, but
behaves normally when the input is clean.

4 EXPERIMENTS

In this section, we investigate to what extent the proposed DBA method bypasses the early-fitting
phenomenon, and evaluate the robustness of DBA to other defense methods.

4.1 EXPERIMENTAL SETUPS

Dataset and Model Architecture. We evaluate the effectiveness of DBA on three benchmark
datasets: Cifar10, Cifar100 (Krizhevsky, 2009), and GTSRB (Stallkamp et al., 2012). We adopt
WideResNet-16 (Zagoruyko & Komodakis, 2016) for Cifar10 and GTSRB, and ResNet-18 (He
et al., 2015) for Cifar100. All experiments are run on a Tesla P100-PCIE-16GB GPU, with the
batch size of 64 and a learning rate starting from 0.1, decreasing by a factor of 0.6 every ten epochs.
The optimizer uses SGD with momentum of 0.9 and weight decay of 0.0005.

Baseline Methods. We compare DBA with seven representative backdoor attack methods, including
five dirty-label attacks: BadNets (Gu et al., 2017), Blend Attack (Chen et al., 2017), Dynamic
Attack (Nguyen & Tran, 2020), Refool Attack (Liu et al., 2020), and WaNet (Nguyen & Tran,
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Dataset Cifar10 GTSRB Cifar100
Attacks CA (%) ↑ BSR (%) ↑ CA (%) ↑ BSR (%) ↑ CA (%) ↑ BSR (%) ↑
BadNets 85.12±0.07 8.67±2.62 98.46±0.21 8.93±1.63 63.72±0.10 10.60±5.40

Blend 84.78±0.31 10.63±2.05 98.26±0.19 14.82±4.99 61.80±0.22 26.58±10.00

SIG 84.67±0.48 13.93±0.01 97.36±0.30 24.98±7.87 60.79±0.48 45.33±6.13

Dynamic 83.56±0.38 9.34±1.55 97.14±0.26 11.45±0.50 61.65±0.29 8.67±3.09

FC 82.14±0.54 36.01±10.34 95.15±0.36 32.30±5.55 58.84±0.37 70.28±6.97

Refool 82.06±0.17 8.50±3.47 93.51±0.08 19.92±3.46 59.57±0.32 28.23±3.68
WaNet 82.31±0.19 28.02±13.49 96.40±0.31 32.10±5.80 57.75±1.60 35.10±5.61

DBA (this work) 85.32±0.37 72.87±11.13 97.78±0.43 97.14±1.08 61.21±0.19 83.47±16.5

Table 1: Clean Accuracy (%) and Backdoor Success Rate (%) of different attacks methods.

Dataset Cifar10 GTSRB Cifar100
Attacks BA (%) ↑ IP (%) ↓ BA (%) ↑ IP (%) ↓ BA (%) ↑ IP (%) ↓
BadNets 99.93±0.01 91.33±2.62 99.99±0.01 91.07±0.02 100.00±0.00 89.40±5.40

Blend 99.97±0.02 89.33±2.05 99.98±0.01 85.18±0.05 99.94±0.01 73.40±10.00

SIG 99.91±0.01 86.75±0.05 100.00±0.00 74.69±7.56 99.99±0.01 54.67±6.13

Dynamic 99.86±0.02 90.26±1.33 99.41±0.30 86.20±0.05 99.99±0.01 91.33±3.10

FC 99.98±0.02 63.99±10.34 99.41±0.30 64.08±6.79 96.20±0.81 27.00±6.68

Refool 68.10±2.74 86.07±4.34 97.12±0.25 74.60±7.50 91.89±0.44 69.67±3.20
WaNet 99.74±0.01 71.91±0.13 100.00±0.00 67.90±5.80 99.99±0.02 67.30±3.45

DBA (this work) 98.65±0.17 25.37±11.69 98.03±1.07 1.26±0.06 99.98±0.01 11.00±15.55

Table 2: Backdoor Accuracy (%) and Isolation Precision (%) of different attack methods.

2021); one clean-label attack: Sinusoidal Signal Attack (SIG) (Barni et al., 2019); and one feature-
space attack: Feature collision (FC). The injection ratio for all the attacks is set as 0.1, i.e., 10% of
the dataset D are poisoned samples.

Evaluation Metrics. Two classical metrics (Li et al., 2020), Clean Accuracy (CA) and Backdoor
Accuracy (BA), are used for evaluating backdoor attack methods. CA measures the classification
accuracy of clean samples in the clean test set. BA is the percentage of poisoned samples classified
as the target label by the neural network in the poisoned test set. In addition, since the early-
fitting phenomenon provides a simple but effective way to defend against backdoor attacks, we
need auxiliary metrics to evaluate the effectiveness of backdoor attacks against the early-fitting-
based defense. Therefore, we introduce two more metrics, Isolation Precision (IP) and Backdoor
Success Rate (BSR). IP measures the portion of poisoned samples that can be detected by the early-
fitting-based defense (Li et al., 2021a). BSR evaluates the portion of the poisoned samples that
are successfully predicted to the target label and not detected by early-fitting. Specifically, BSR =
(1− IP)×BA. A lower IP value means that more poisoned samples will evade detection, leading to
a higher BSR value. Meanwhile, a higher BA value means that the neural network can successfully
classify the poisoned samples into the target label chosen by attackers with a higher probability.
Thus, a higher BSR score means stronger attacks.

4.2 ATTACK EFFECTIVENESS EVALUATION

Table 1 and 2 presents our main result, where our proposed DBA method is compared to other state-
of-the-art attack methods on different datasets. Here DBA is implemented with the multiple-neurons
strategy, and the poisoned samples are generated with a blend ratio α = 0.01 (implementation
details are given in Appendix E.1). Table 1 shows that DBA consistently achieves a high BSR score
compared with other attack methods and relatively good performance in CA. In the Cifar10 dataset,
DBA reports an average CA score of 85.32%, with a standard deviation of 0.37%, and an average
BSR score of 72.87%, with a standard deviation of 11.13%. In contrast, the BSR score is lower than
10% for most other attack methods on this dataset. Among other baseline methods, although the FC
attack method also achieves good performance in terms of BSR on some datasets, it significantly
sacrifices the CA performance. Also, although BadNets and Blend have high CA scores, their BSR
scores are low, meaning that they will be easily detected by the early-fitting phenomenon.
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Dataset Defense CA (No Defense) BA (No Defense) CA ↓ BA ↑

Cifar-10
FP 85.17±0.28 97.52±0.39 31.81±0.46 97.52±0.39
NAD 85.25±0.46 97.76±0.46 92.65±0.12 97.55±0.25
ABL 84.87±0.43 96.08±0.66 5.58±1.30 42.24±3.84

GTSRB
FP 97.42±0.24 99.90±0.04 57.23±3.67 100±0.00
NAD 97.32±0.13 99.78±0.03 94.19±0.52 99.88±0.05
ABL 93.21±0.54 97.21±0.39 70.61±8.49 15.84±6.21

Cifar100
FP 61.58±0.30 99.98±0.00 0.9±0.02 2.71±0.83
NAD 61.21±0.12 99.93±0.02 53.82±0.13 99.63±0.31
ABL 61.01±0.12 99.98±0.00 32.61±0.41 38.53±12.61

Table 3: CA and BA with/without applying the defense methods on models attacked by DBA.

Since BSR is related to both BA and IP, we further report the performance of different attack methods
under the two metrics in Table 2. For most attack methods, they could achieve almost 100% in BA,
so BSR is mainly determined by IP. For an effective attack method, having a high BA score means
it could successfully fool the model, and having a low IP score means it also avoids being detected
by early-fitting, thus posing greater threats to the model. The proposed DBA attack maintains a
significantly lower IP score compared with other methods across different datasets. The trigger
patterns generated by DBA are more difficult to be captured by early-fitting.

4.3 ABLATION STUDY

The hyperparameters for DBA include the neural selection strategies and blend ratio α. In this
section, we study the influence of the hyperparameters on the performance of DBA.

4.3.1 NEURON SELECTION

Block 1 Block 2 Block 3
40

50

60

70

80 Backdoor Success Rate

1% 20% 40% 60% 80% 100%
0

20

40

60

80

Figure 4: Isolation Precision of DBA with triggers
inverted from: a) neurons of different depths, and
b) different blend ratios α.

Neuron Selection Strategy. In Table 6, we
compare the performance of DBA under three
neuron selection strategies. The details are
given in Appendix F. The multiple-neurons
strategy is observed to achieve the best perfor-
mance in BSR (72.87 %) and a premium result
in CA (85.32 %).

Depth of the Inverted Neurons. We study
the performance of DBA with triggers in-
verted from neurons of different layer depths.
WideResNet-16 is adopted in the experiment.
We generate triggers from neurons in the last

CNN layer of Block 1 (shallow), Block 2, and Block 3 (deep), respectively. The results are shown in
Figure 4 (left). As we can see, triggers inverted from deeper layers yield a higher BSR, meaning that
the backdoor can be injected more successfully. Specifically, the DBA attacks achieve an average
BSR of 46.50%, 64.24% and 72.87% by using trigger patterns generated from neurons in Block 1,
Block 2 and Block 3, respectively. It demonstrates that triggers are embedded with more complex
patterns if they are inverted from a deeper DNN layer.

4.3.2 BLEND RATIO

The original images and triggers are blended with different blend ratios α. For example, if α = 0,
then the original image remains intact; if α = 1, then the original image is completely replaced by
the trigger. Therefore, we test the effect of varying the blend ratio on the DBA. The results are given
in Figure 4 (right). As Figure 4 (right) shows, the BSR is heterogeneous when clean images are
blended with different blend ratio. Specifically, when DBA is under a very low blend ratio (1%),
the BSR is relatively higher (72.87% on average). This implies that attacks from DBA can be more
effective when the trigger patterns are more stealthy.
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4.4 EVALUATION WITH DIFFERENT DEFENSE METHODS

To test the general effectiveness of DBA, we use popular defense methods to defend against DBA,
including Fine Pruning (FP) (Liu et al., 2018), NAD (Li et al., 2021b) and ABL (Li et al., 2021a).
The details of these methods are given in Appendix E.5. As shown in Table 3, CA(No Defense)
and BA(No Defense) present the clean accuracy and backdoor accuracy of a model backdoored
by DBA, while CA(defense) and BA(defense) are the clean accuracy and backdoor accuracy after
the corresponding defense. From the perspective of attackers, CA(defense) is expected to be low
and BA(defense) is expected to be high, as it indicates that the defense method is in vain or even
worsens the situation. As shown in Table 3, either the CA after defense is low, or the BA after
defense remains high. For example, on the Cifar10 dataset, after Fine-pruning (FP), the CA turns
out to be an average of 31.81%, and BA is still high (97.52% on average). The results demonstrate
that our DBA is generally resilient to these state-of-the-art defense methods. To defend against
DBA, we propose a preliminary isolation-based method. The details are given in Appendix G.

5 RELATED WORK

Backdoor Attacks. Backdoor attacks (Gu et al., 2017) aim to poison the dataset with trigger
patterns. Recent research can be divided into two categories on making the trigger more stealthy
to enhance the practicality of backdoor attacks. The first one aims to make the trigger pattern less
visible to human eyes. For example, Chen et al. (2017) blends the clean images with random pixels.
Liu et al. (2020) uses the natural reflection to construct the backdoor trigger. Nguyen & Tran (2021)
applies the warping transformation to the backdoor trigger. Doan et al. (2021) constructs trigger
patterns by solving an optimization problem. The other direction aims to make the training process
less noticeable. For example, Shafahi et al. (2018) proposes clean-label attack, which perturbs the
clean images without changing their labels. Moreover, some backdoor attacks can also be applied
to a reverse-engineered dataset without accessing the original dataset (Liu et al., 2017). However,
all these backdoor attacks are easy to be detected by a so-called early-fitting phenomenon (Li et al.,
2021a), therefore the threats from these backdoor attacks are weakened. In this paper, we proposed
Deep Backdoor Attack (DBA), which can effectively circumvent the phenomenon.

Backdoor Defense. Various defense methods have been proposed to mitigate the threat from
the backdoor. As in (Li et al., 2020), we categorize the existing defense methods into five cate-
gories. First, detection-based defenses (Gao et al., 2019; Huang et al., 2019; Dong et al., 2021;
Guo et al., 2021; Xiang et al., 2022) aim to detect whether the backdoor exists in the model. Sec-
ond, preprocessing-based defenses (Doan et al., 2020) introduce a preprocessing module before the
training procedure so that triggers can be inactivated. Third, defenses based on model reconstruc-
tion (Liu et al., 2018; Zhao et al., 2020; Zeng et al., 2021; Wu & Wang, 2021) directly eliminate the
effect of backdoors by adjusting the model weights or network structures. Fourth, defenses based on
trigger synthesis (Wang et al., 2019; Qiao et al., 2019; Shen et al., 2021) first reverse engineer the
trigger patterns and then remove the hidden backdoor in the model. Lastly, training sample filtering-
based defenses (Li et al., 2021a; Huang et al., 2022) work by first filtering poisoned samples from
the poisoned dataset, then training the network exclusively in the rest of the dataset.

6 CONCLUSION

In this work, we identify the early-fitting phenomenon in the training process of backdoor attacks:
the loss on poisoned samples drops significantly faster than on clean samples. To understand what
causes the early-fitting, we interpret the phenomenon from the perspective of feature synchroniza-
tion, where we define as the representation similarity of two samples (x, y) and (x′, y′). Further-
more, the synchronization can be categorized as shallow or deep based on whether it is captured by
shallow or deep layers of the model. By quantifying and decomposing the loss reduction, we find that
synchronization among poisoned samples is the leading factor for the abrupt loss reduction. There-
fore, we conjecture that constraining the synchronization value may alleviate early-fitting, making
the poisoned samples more difficult to detect. To this end, we propose a new backdoor attack
method, Deep Backdoor Attack (DBA), which inhibits synchronization among poisoned samples
by activating deep-layer neurons to generate trigger patterns reversely. Comprehensive experiments
show the effectiveness of DBA. We also propose a preliminary defense strategy against DBA.
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A ESTIMATION OF SINGLE LOSS REDUCTION

A.1 EXPERIMENT RESULTS

The Figure 5 presents the estimation accuracy. Given 250 samples from the dataset and a randomly
initialized model, we compute their actual loss reduction (x-axis) and estimated loss reduction (y-
axis). It is easy to observe that nearly all the dots fall on the line y = x, indicating a high accuracy
of estimation.
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Figure 5: Estimated loss reduction versus true loss reduction on a (a) ResNet-18 neural network, (b)
18-layer CNN network and (c) LeNet-5. The training dataset is Cifar10. The learning rate is 0.1.

A.2 ARCHITECTURES

Network #Classes Input Size Parameters Size # of Layers

CNN-18 10 32× 32× 3 ∼ 500K 18

Table 4: Network models used in single loss reduction estimation experiment

Table 4 presents the architectures of the self-implemented CNN-18 network models in the estimation
experiment in Figure 5. It is noted that CNN-18 is very similar to ResNet-18 (He et al., 2015) but
just drops all the shortcut connections.

B DECOMPOSING R(D,Dpoi) AND R(D,Dclean)

As defined in 1, R(D,Dpoi) and R(D,Dclean) can be decomposed as follows,

R(D,Dpoi) =
1

|Dpoi|
∑

(xb,yb)∈Dpoi

R(D, (xb, yb))

=
1
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∑
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c,y

′
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1
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r((x′
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(7)

R(D,Dclean) =
1
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(8)
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Moreover, we know that η|D| = |Dpoi|, and (1− η)|D| = |Dclean|. Then,

R(D,Dpoi)−R(D,Dclean)
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 ∑
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C POISONED IMAGES BY BADNET

Figure 6 presents some examples of BadNet.

CIFAR10

GTSRB

CIFAR100
BadNet

Figure 6: Poisoned samples by BadNet in different dataset

D BLEND RATIO FOR DBA

Figure 7 presents the poisoned images of DBA under blend ratio.
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Original Trigger α = 0.8 α = 0.7 α = 0.6 α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

Figure 7: From left to right, the trigger pattern δ is blended with the original image under different
blend ratios.

E DETAILED SETTING FOR MAIN RESULTS

E.1 MORE DETAILS ABOUT DEEP BACKDOOR ATTACK

For all the experiments in Table 1, Table 2 and Figure 4 (right), the DBA adopts multiple-neurons
strategy by activating the neurons with index ([4],4,4) in the last CNN layer of each network model.

For all the ablation experiments in Figure 4 (left), we adopt the multiple-neurons strategy. Block
1/2/3 refers to activating neurons with index ([4],4,4) in the last CNN layer of Block 1/2/3 of the
WideResNet-16 network, respectively.

E.2 MORE DETAILS ABOUT METRICS

Clean Accuracy The portion of correctly classified clean samples in the test set.

#Correctly Classified Clean Samples
#Total Samples

(10)

Backdoor Accuracy The portion of correctly classified poisoned samples in the test set.

#Correctly Classified Poisoned Samples
#Total Samples

(11)

Isolation Precision The portion of poisoned samples that can be isolated from the dataset

#Isolated Poisoned Samples
#Total Poisoned Samples

(12)

Note that in the experiment, we calculate isolation precision with the following procedure: suppose
the injection ratio is η, then we isolate η samples from the whole dataset with the lowest loss value.
The isolation process is done at the end of the first five training epochs. We report the maximal
isolation precision among the five values.

Backdoor Success Accuracy The portion of the poisoned samples that are successfully predicted
to the target label and not detected by early-fitting.

E.3 MORE DETAILS ABOUT DATASETS AND DNNS

We focus solely on the image classification task in the experimental part. Therefore, we adopt three
classical datasets, Cifar10, Cifar100 (Krizhevsky, 2009), and GTSRB (Stallkamp et al., 2012), for
all attack methods.

Cifar10 Cifar10 is collected by (Krizhevsky, 2009), as a labeled subset of the 80 million tiny
images dataset (Deng et al., 2009). It contains 60,000 images, with 6000 images per class. It is split
into two sets. The training set contains 50,000 samples, and the test set contains 10,000 samples.
The input size for all the examples are 32× 32× 3.

Cifar100 Cifar100 is also collected by (Krizhevsky, 2009). It is like Cifar10 but it has 100 classes,
with 600 images per class. For Cifar100, the training set contains 50,000 samples and the test set
contains 10,000 samples. The input sizes for all samples are 32× 32× 3.
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GTSRB GTSRB collects more than 50,000 images of German traffic signs. There are 43 classes
in the dataset. The training set contains 39,209 samples and 12,630 test samples. The input sizes for
all samples are 32× 32× 3.

We adopt WideResNet-16 (Zagoruyko & Komodakis, 2016) for Cifar10 and GTSRB, and ResNet-
18* (He et al., 2015). The architectural details of these models are presented in Table 5.

Dataset Subjects #Classes Input Size #Train Images Classifier

Cifar10 General Objects 10 32× 32× 3 50,000 WideResNet-16

Cifar100 General Objects 100 32× 32× 3 50,000 ResNet-18

GTSRB Traffic Signs 43 32× 32× 3 39,209 WideResNet-16

Table 5: DNNs and Datasets used in the experiment

E.4 MORE DETAILS ABOUT ATTACK SETUPS

For the experiment with each attack method, we poison 10% of the samples and the target label is
set as label 3.

Settings for BadNet In all our experiments, the Badnet trigger is a 3× 3 grid square. The bottom
right of the images are replaced with the grid square.

Settings for Blend In all our experiments, the trigger for Blend is a Kitty image. The kitty image
is superimposed on the original image with a blend ratio of 0.2.

Settings for SIG In all our experiments, the signal trigger is generated with a delta of 20, an f of
6, and is superimposed on the original image with a blend ratio of 0.2.

Settings for Dynamic The Dynamic Trigger is generated by a generator g trained for 40 epochs.
The rest of the parameters align with the original paper.

Settings for FC The target image of the FC attack is a randomly selected image from the training
datasets which has a different label as the target label. The rest of the parameters are the default
values reported in their Github.

Settings for Refool Except for the target label, and the poisoning rate, we use the default parame-
ters reported in their Github.

Settings for WaNet Except for the target label, and the poisoning rate, we use the default param-
eters that are reported in their Github.

E.5 MORE DETAILS ABOUT DEFENSE SETTINGS

Fine Pruning is a defense based on model reconstruction. Given clean samples as input, it checks
the activation value of each neuron and filters out a set of dormant neurons which are less activated by
the neural network, assuming that these neurons are more likely to contribute to the backdoor attacks.
Then, Fine Pruning will prune these neurons until the accuracy on the test set reaches a threshold.
NAD utilizes a clean teacher network to guide the finetuning of the backdoored student model so
that the intermediate layer of the backdoored model aligns with hat of the teacher model. ABL
is a defense method based on the early-fitting phenomenon. First, it filters out poisoned samples
from the poisoned dataset in the training process by selecting samples with top-k lowest loss value.
Then, it finetunes the model on the remaining dataset and guides the neural network to unlearn the
backdoor by maximizing a loss value with isolated poisoned samples as input.

*Implemented by https://github.com/weiaicunzai/pytorch-cifar100
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Neuron Selection CA (%) ↑ BSR (%) ↑
Single-neuron (Block3 Conv2 (63, 4, 4)) 85.75(±0.35) 54.06(±3.46)

Multiple-neurons (Block3 Conv2 ([:], 4, 4)) 85.32(±0.37) 72.87(±11.13 )

Channel-neurons (Block3 Conv2 (63, [:], [:])) 84.77(±0.65 ) 50.96(±15.19 )

Table 6: DBA performance with different neuron selection strategies.

Settings for FP For the defense experiment on Cifar10, Cifar100, and GTSRB, we prune the
neurons in the last CNN layer of the well-trained neural network. The pruning process is repeated
until the accuracy reduction is greater than 5% or to the end.

Settings for NAD We conduct NAD based on its open-sourced code on Github†. Except for
adjusting the NAD loss to adapt to the ResNet-18 architecture, the other parameters align with the
default settings.

Settings for ABL We conduct ABL based on its open-sourced code on Github‡. The isolation
epoch is set as 20. The other parameters align with the default settings.

F ABLATION STUDY: NEURON SELECTION STRATEGY

We select neurons from the last CNN layer of a well-trained WideResNet-16 neural network on the
Cifar10 dataset. The single-neuron strategy selects the neuron with index (63, 4, 4), the multiple-
neurons strategy selects the neurons with indices ([4], 4, 4), and the channel-neurons strategy selects
the neurons with indices (63, [:], [:]).

G ISOLATION-BASED DEFENSE METHOD

To defend against our proposed DBA, we propose an influence-based isolation method, which can
isolate poisoned samples with higher accuracy. Motivated by (Pruthi et al., 2020), if we set (x, y) =

Figure 8: Histogram of the self-influence score for poisoned samples and clean samples respectively.
The isolation precision for the deep backdoor attack is 90.36%

(x′, y′) in the single loss reduction value r((x, y); (x′, y′)), we call the value as self-influence. Self-
influence evaluates the loss reduction on one sample (x, y) after training the network on itself. For
a network fθc well-trained on the clean dataset, clean samples are expected to have a lower self-
influence score since they are fitted to the network fθc . Poisoned samples are expected to have a

†https://github.com/bboylyg/NAD
‡https://github.com/bboylyg/ABL

17



Under review as a conference paper at ICLR 2023

higher self-influence score because most of the poisoned samples with incorrect labels can be seen
as outliers, where they would tend to reduce loss with respect to the incorrect label. Based on this,
the poisoned samples can be isolated from the whole dataset by computing the self-influence score
on the whole dataset D with fθc , and picking the top-k samples with a high self-influence score.

Figure 8 presents the effectivenss of the defense method against the proposed Deep Backdoor Attack.
As we can see, the majority of the self-influence score on the poisoned samples (red) is much higher
than that on the clean samples (blue). In the empirical experiment, we set the injection ratio η = 0.1
and isolate 10% of the samples from the dataset D. We run the experiment three times with different
fθc . The average isolation precision (IP) is 90.36%.

H ANALYSIS OF HYPOTHESIS 1

Intuition for Hypothesis 1. To find what makes the value of r(x′, y′;x, y) for poisoned sample
pairs significantly high, we intend to decompose the r(x′, y′;x, y) and analyze each part empirically.

Analysis Firstly, we consider a simple case that the neural network fθ is a fully-connected neu-
ral network and the output dimension is one, i.e., fθ(x) ∈ R. Then, the neural network can be
represented as follows:

f (l)(x) = θ(l)g(l−1)(x)

g(l)(x) = σl(f (l)(x))

l = 1, ..., L

, (13)

where σl(·) is the activation function in layer l. We further denote x = g0(x) for notational conve-
nience and the output of the last layer of the neural network is

fθ(x) = g(L)(x) (14)

Therefore, We can decompose r((x′, y′); (x, y)) as follows:

r((x′, y′); (x, y)) ≈ β⟨∂ℓθ(x
′, y′)

∂θ
,
∂ℓθ(x, y)

∂θ
⟩

= β⟨∂ℓθ(x
′, y′)

∂fθ(x′)
· ∂fθ(x

′)

∂θ
,
∂ℓθ(x, y)

∂fθ(x)
· ∂fθ(x)

∂θ
⟩.

(15)

where β is a constant value denoting the learning rate at the current iteration. Therefore, we can
only consider the inner product part. Moreover, since ∂ℓθ(x

′,y′)
∂fθ(x′) ∈ R and ∂ℓθ(x,y)

∂fθ(x)
∈ R, Equation 15

can be further decomposed into the following form,

⟨∂ℓθ(x, y)
∂fθ(x)

· ∂fθ(x)
∂θ

,
∂ℓθ(x

′, y′)

∂fθ(x′)
· ∂fθ(x

′)

∂θ
⟩

=
∂ℓθ(x, y)

∂fθ(x)
· ∂ℓθ(x

′, y′)

∂fθ(x′)
⟨∂fθ(x)

∂θ
,
∂fθ(x

′)

∂θ
⟩

=
∂ℓθ(x, y)

∂fθ(x)
· ∂ℓθ(x

′, y′)

∂fθ(x′)

L∑
l=1

⟨∂fθ(x)
∂f l

θ(x)
· (gl−1

θ (x))T ,
∂fθ(x

′)

∂f l
θ(x

′)
· (gl−1

θ (x′))T ⟩

=
∂ℓθ(x, y)

∂fθ(x)
· ∂ℓθ(x

′, y′)

∂fθ(x′)︸ ︷︷ ︸
Part 1

·
L∑

l=1

⟨gl−1
θ (x), gl−1

θ (x′)⟩︸ ︷︷ ︸
Part 2

· ⟨∂fθ(x)
∂f l

θ(x)
,
∂fθ(x

′)

∂f l
θ(x

′)
⟩︸ ︷︷ ︸

Part 3

.

(16)

Intuitively, Part 1 corresponds to the distance between the output to the ground-truth labels; Part
2 corresponds to the synchronization score in layer l − 1; Part 3 corresponds to the gradient with
respect to pre-activation layer l. Now our target is to analyze which part contributes the most to
r((x′, y′); (x, y)).

We use the following binary classification task on the Breast Cancer dataset (Dua & Graff, 2017)
to compare the three parts. In particular, we randomly choose 10% of the data as the poisoned
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samples, where we change the last feature to a constant value of 5, and set the target label yb as 1.
It is noted that we only choose clean samples with label 0. In this way, the neural network fθ is
expected to predict class 1 when the last feature is 5, and predict class 0 when the sample is normal.
We train the neural network for 9 iterations. The following Figure 9 shows the change of Part 1,
Part 2, and Part 3 under the 9 iterations. As shown, clean samples and poisoned samples do not
exhibit much difference in Part 3 and Part 1 but show a large gap in Part 2. This implies that the
reason why r(x′

b,xb) is larger and r(x′
c,xc) is lower in the early epochs lies in their difference

of synchronization score. Therefore, we conjecture that the synchronization score between two
samples (x, y) and (x′, y′) may be proportional to the interaction between these two samples in the
early epochs. To verify the conjecture, we consider conducting experiments on a general case with
a more complex network structure and multi-dimensional output.
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Figure 9: Compare the three parts in Equation 16 between poisoned samples and clean samples.

As in Figure 10, we sample 100 pairs from the Cifar10 dataset poisoned by BadNet (first row), Blend
(second row), and WaNet (third row), and compute their estimated loss reduction r((x′, y′); (x, y)
(y-axis), and synchronization scores (x-axis) under three layers (Conv1-1-1, Conv2-1-1, and Conv3-
1-1) of WideResNet-16. Note that we use an unconverged model in the experiments, i.e., CA ≪
1 and BA ≪ 1. The Pearson correlations for r((x′, y′); (x, y)) and the synchronization score
Sl(x,x′) show a moderately proportional relationship, which is consistent with our conjecture.
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Figure 10: We sample 100 sample pairs from the Cifar10 dataset poisoned by BadNet/Blend/WaNet
and compute their estimated loss reduction (y-axis), and synchronization scores (x-axis) under three
layers (Conv1-1-1, Conv2-1-1, and Conv3-1-1). The correlation ratios show a moderately propor-
tional relationship.
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