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Abstract

We introduce a new interpretation of the attention matrix as a discrete-time Markov
chain. Our interpretation sheds light on common operations involving attention
scores such as selection, summation, and averaging in a unified framework. It
further extends them by considering indirect attention, propagated through the
Markov chain, as opposed to previous studies that only model immediate effects.
Our key observation is that tokens linked to semantically similar regions form
metastable states, i.e., regions where attention tends to concentrate, while noisy
attention scores dissipate. Metastable states and their prevalence can be easily
computed through simple matrix multiplication and eigenanalysis, respectively.
Using these lightweight tools, we demonstrate state-of-the-art zero-shot segmenta-
tion. Lastly, we define TokenRank—the steady state vector of the Markov chain,
which measures global token importance. We show that TokenRank enhances
unconditional image generation, improving both quality (IS) and diversity (FID),
and can also be incorporated into existing segmentation techniques to improve their
performance over existing benchmarks. We believe our framework offers a fresh
view of how tokens are being attended in modern visual transformers.

Figure 1: Artention Chains interprets attention matrices as Markov chains. The 1% order bounce
(n = 1) corresponds to a common row-select operation from an attention matrix (top: the token “cat”,
bottom: “tie”). Iteratively computing the n'" order attention bounce models higher-order attention
effects, eventually yielding a stationary vector (n — oo) that globally captures the flow of attention
into each token (TokenRank). Intermediate iterations result in sharper segmentation maps.

1 Introduction

The attention mechanism (Vaswani et al, 2017) is arguably the most dominant computational
primitive in modern deep learning, particularly in the image domain. It has sparked widespread
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research interests and industry adoption, and is extensively leveraged in the literature for anything
from segmentation (Khan et al., 2022), through interpretability (Chefer et al.,[2021b)), to controllable
generation (Hertz et al.||2023)), in various domains including images (Rombach et al.| 2022; Labs|
2024), 3D (Siddiqui et al.| 2024} /Wu et al., [2024), motion (Dabral et al.| 2023} |[Raab et al., [2024),
and more. In the image domain, attention scores play a crucial role: prior studies have leveraged
these scores for numerous downstream tasks such as identifying important features (Caron et al.|
2021), improved and controlled generation (Hong et al.||2023} |Alaluf et al., 2024; Hertz et al., 2023}
Tumanyan et al.| 2023)), visualization and segmentation (Helbling et al.l [2025} |Dosovitskiy et al.,
2021)) and analysis of image or video generation models (Hatamizadeh et al.| [2024; Wen et al., 2025)).

All these examples, however, only examine either partial slices of the attention matrices, or their
first few principled components: the most common operations are to select a specific row or column,
or to sum up one of the dimensions of the attention matrix that is of quadratic size in sequence
length. These operations yield an image-sized map that can be further utilized for the task at hand
(e.g., segmentation, generation). Some works integrate information across layers, through direct
multiplication (Abnar and Zuidema, [2020; (Chefer et al.l | 2021b), or gradient propagation (Selvaraju
et al., 2017; [Mehri et al.l 2024; Binder et al., 2016), but they still employ the attention operator
directly, restricted to capturing only its immediate effects. In contrast, we examine the role of a single
attention matrix more holistically, accounting for indirect attention paths via intermediate tokens.

We introduce the interpretation of individual attention matrices as discrete-time Markov chains
(DTMC) (Figure[T), where the non-negative attention weights indicate transition probabilities between
states that correspond to tokens. This framework, dubbed as Attention Chains, allows analyzing
token importance through multiple chain transitions, even though the attention operation models only
direct relationships. This is analogous to Google’s seminal paper on DTMC, PageRank (Page et al.,
1999), stating that simple counting of incoming hyperlinks does not generally correspond to page
importance. Similarly, simply using direct attention to measure global relevance of a token under
performs compared to propagating it through the chain, as we show in various experiments.

We begin by adopting tools from the DTMC literature to explain existing operations commonly
applied to attention matrices in a unified framework. These include averaging over heads, selection of
rows or columns, and the summation over columns for computing the overall incoming attention for a
specific token. Further building on the DTMC interpretation, we extend these operations to new ones.
In this regard, our main observation is that tokens in semantically similar regions attend each other,
forming a set of metastable states (Landim, 2019), where the chain tends to remain for a long time
before transitioning elsewhere. In contrast, noisy attention scores tend to disperse rather than cluster.

Based on this insight, we propose a simple yet powerful operation—considering several transitions,
or bounces, of the Markov Chain. This consolidates metastable states and helps filter out noise in
the attention signal. As we demonstrate, using multiple bounces yields state-of-the-art results for
zero-shot segmentation on a commonly used benchmark. Metastable states can also be identified via
eigenanalysis, and their presence relates to higher 2" largest eigenvalues. We use this characteristic
to weigh attention heads and improve image segmentation.

Lastly, we define TokenRank—a concise indicator of the global importance of each token via the
steady state vector of the attention Markov chain. TokenRank lends itself well to extracting knowledge
encoded in the transformer’s attention and improves unconditional image generation, resulting in
higher quality and diversity.

We believe that this interpretation is useful for reasoning about the inner workings of modern visual
transformers, and can potentially provide a strong foundation for novel applications employing the
powerful and widely used attention mechanism.

2 Related Work

Interpretations of Transformer Attention. Due the importance of the attention operation in
transformers, studies have proposed modeling them using various mathematical frameworks. For
example, Ramsauer et al.|(2020) relate attention to classic Hopfield networks, Tsai et al.|(2019) frame
attention as a kernel smoother, |Schlag et al.[(2021) find its relation to classic fast weight controllers, or
Raghu et al.|(2021)) compare vision transformers to CNNss. [El et al.|(2025) discuss the mathematical
equivalence between message passing in graph neural networks and the self-attention operation in



transformers. [[ldiz et al.| (2024) consider modeling a 1-layer transformer as a Markov chain. In
contrast, we focus on large pretrained transformers and model each individual self-attention matrix
as a Markov chain. While their approach allows explaining some typical behaviors of transformers,
we explicitly show how our framework allows for the interpretation of existing, pretrained large
transformers and for better performance in various downstream tasks. Secondly, we leverage more of
the machinery of the Markov chain theory, including multiple transitions and steady state analysis,
which was not considered previously.

Visualization of Attention Maps. Understanding the attention mechanism of transformers requires
probing attention maps across various heads, layers, or timesteps for diffusion models. However,
there is no de facto standard for visualizing attention maps. While visualizing cross-attention maps or
attention with respect to the class token is common practice (Hertz et al.,|2023; |Caron et al., [2021)),
there is no common approach for self-attention due to its many-to-many characteristic. Wen et al.
(2025)), for example, analyze raw attention maps whereas |Hatamizadeh et al.| (2024) visualize where
attention is flowing into with respect to an image token in the center. Alternatively, several studies
visualized the principle components using SVD decomposition (Liu et al.,|2024; |Tumanyan et al.,
2023)). On the other hand, we propose extracting a unique steady-state vector of the attention matrix
that allows to more holistically visualize where attention is flowing to, or where it is flowing from.

Explainability for Transformers. One important branch of explainability research for convolu-
tional and feed-forward networks are gradient-based methods that compute a model’s explanation
taking into account the gradient of a model prediction with respect to the input pixels (Erhan et al.|
2009; Selvaraju et al, |2017; [Simonyan et al., [2013)). Layer-wise Relevance Propagation (LRP)
(Binder et al.,|2016) propagates relevance scores backward through the neural network, which has
been extended to transformers (Chefer et al., 2021b.a; |Achtibat et al.| [2024)). A different line of work
makes use of the attention mechanism to propagate where attention is flowing through the network
(Abnar and Zuidemal, |2020) or combines it with a gradient-based strategy (Bousselham et al.| 2024).
Our framework focuses on individual attention matrices, and naturally allows to better explain each
attention matrix by considering indirect interaction effects. This is perpendicular to studies that
attempt to explain the input using the output in an end-to-end fashion.

Extracting Knowledge Encoded in Foundational Models. Recently, larger interest was raised in
how to extract knowledge encoded in foundational models (e.g. DINO (Caron et al., [2021} |Oquab
et al.,[2024), CLIP (Radford et al.,|2021), or generative models such as FLUX (Labs, [2024)) and to
better understand their inner workings. (Caron et al.| (2021)); |Chefer et al.|(2021b); Hao et al.| (2021);
Tang et al.| (2023) use raw attention maps for computing attribution scores, while Gandelsman et al.
(2024)) investigate the CLIP image encoder by decomposing the image representation and relating
it to CLIP’s text representation. |Helbling et al.[ (2025)) propose the usage of concept tokens that
allow higher quality extraction of text-token specific attention maps even if they do not appear in the
prompt. Other recent works focus on extracting noise-free diffusion features (Stracke et al., 2025)),
reducing massive attention activations (Gan et al.|, [2025)), or refining features with a light-weight
adapter (Diinkel et al., 2025)). Nguyen et al.|(2023)) perform self-attention exponentiation for refining
semantic segmentation maps. We explore how propagating indirect attention effects through a Markov
chain helps in extracting more informative signals for various downstream tasks.

3 Preliminaries

3.1 Discrete-Time Markov Chains (DTMC)

A right-stochastic square matrix A € R™*™ where all rows sum up to one » ;jAi; =1 Vi and
with non-negative entries A; ; > 0, Vi, j is a transition probability matrix of a time-homogeneous
DTMC with n states, where A; ; = P(j|i) is the probability of transitioning from state 7 to state
7. If the directed weighted graph represented by the transition matrix is irreducible and aperiodic,
then there exists a unique eigenvector v, corresponding to the eigenvalue 1: AT - v, = 1 - v,,.
This eigenvector is stationary and describes the steady state that any given initial state of the system
evolves into over time. Another useful property of the transition matrix A is that the size of its second
largest eigenvalue |z | indicates how slowly the chain converges into v, or alternatively, the number
of metastable states in the chain.
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Figure 2: Illustration of higher order effects. Left: Attention matrix A with sequence length 5.
Middle: A DTMC with transition probabilities defined by matrix A, where only strong connections
are shown. Right (One-Hot): To evaluate where state-4 attends to, we can iterate using the power
method once starting from a one-hot vector (n = 0), which results in the row-select operation (n = 1).
However, this first-order approximation is insufficient since state-0 mostly transitions to state-3 and,
therefore, state-4 indirectly attends state-3. This becomes evident as we iterate further (n = 2). Right
(Uniform): To compute a global token ranking, we can iterate starting from a uniform state (n = 0),
resulting in a per-column sum operation (n = 1). This indicates state-0 as most important because
many states have a high probability of transitioning into state-0. However, state-0 maps to state-3
with high probability, and stafe-3 maps to state-4 with high probability. Therefore, the importance of
state-4 should be elevated. When considering the second bounce (n = 2), more probability mass is
directed into state-3, and with a sufficient number of iterations the steady state (v.,) ranks state-4 as
the most important state globally, which aligns with the intuition above.

Power Method. The most straightforward way to obtain the steady-state vector v, is using the
power method that iteratively computes

vl =vIA, )

where vI_ is an initial state summing up to one. The computation is usually terminated once the
norm falls below a specific threshold ||v 11— vT||2 < 7 or after some fixed number of iterations.

3.2 PageRank Algorithm

As we rely on their formulation throughout this paper, we briefly discuss Google’s PageRank
algorithm. PageRank models the hyperlink structure of the web as a stochastic process
P where states are web pages, and outgoing links are used to define transition probabilities. Here, the
matrix P is row normalized and pages with no outgoing links are replaced with uniform vectors. To
ensure a unique steady state vector, the considered matrix needs to be irreducible and primitive. For
this purpose, a revised transition matrix P’ with only positive entries is computed from P:

1
P =aP+ (1 —a)—ee’, )
n
where 0 < o < 1 is a hyper parameter controlling the transitioning probability of “teleportation” into

a random state, and e is a column vector of all ones. Applying the power method on P’ results in a
unique vector 7, the global PageRank vector, inducing the order i <z j <= 7; < 7.

4 Attention as a Discrete-Time Markov Chain

After softmax, the attention matrix becomes a right-stochastic matrix with non-negative entries:

KT
A = softmax (Q
Vdp
where h is the number of heads, s; » are the token sequence lengths, and dj, is a sub-space of the
full embedding dimension d. Consequently, we interpret the attention matrix as a DTMC, going

) Ethslx‘Sg, (3)



beyond the conventional attention mechanism in transformers, which only models direct interaction
between queries and keys. Our discussion is limited to attention blocks of equal sequence size (e.g.
self-attention, or hybrid attention blocks), unless otherwise stated. We start by formalizing some
common operations performed on attention matrices using the DTMC formalism (Section[4.T). While
the previously proposed attention operations can be formulated with a single bounce of the Markov
chain, we go beyond this and iterate through the Markov chain. Specifically, we describe three new
operations enabled by this framework: multi-bounce attention (Section [.2); where higher-order
attention effects are taken into account, TokenRank (Section @; the token-space equivalent of
PageRank, and )\, weighting; an improved attention head weighting scheme that is based on the
second largest eigenvalue of the chain.

4.1 Interpretation of Existing Attention Operations

In this section, we show that common operations on attention matrices—for purposes of visualization,
explainability, and information extraction—can be interpreted within the DTMC framework. We use
A to denote an attention matrix after the softmax operation.

Multiplying attention matrices of subsequent blocks of a transformer is performed by previous
explainability studies (Dosovitskiy et al.,|2021; |/Abnar and Zuidema, 2020; Chefer et al.,2021b)) that
propagate information from the output to the input. This operation is is equivalent to chaining several
Markov chains in the DTMC framework. Another way to view this is a time-dependent Markov chain,
where in each time step ¢ the next matrix in the multiplication order represents transition probabilities.

Adding an identity matrix to an attention matrix and re-normalizing it was used in previous studies
to mitigate the effects of skip connections (Abnar and Zuidema) 2020; (Chefer et al., 2021b)). This is
equivalent to computing a new chain A’ = 0.5(I + A). Then, the following holds:

A'vyg =0.5(I+ A)vys = 0.5(ves + Avys) = 0.5(Vys + Avig) = 0.5(1 + N vy = v,

where v, is a the steady-state vector of A and the last transition is because the eigenvalue associated
with the steady state is A\ = 1. Evidently, this operation does not change the system’s steady state,
preserving its global nature. Instead, the chain converges more slowly since each state has a higher
transition probability to itself.

Selecting a specific row v} = (Am»);b:l, corresponding to a single token ¢ results in a row-vector
of attention given by token ¢ to all other tokens, in a one-to-many relationship. In our framework,
vT can be obtained by performing a single state transition v = ul A, where u? is a one-hot row
vector on index .

Selecting a specific column v; = (A, ;)7_,, corresponding to a single token j, encodes which other
tokens find j important. This operation is commonly used to visualize a many-to-one relationship,
such as image tokens attending specific text tokens in a cross-attention matrix (Dosovitskiy et al.,| 2021}
Hertz et al.,|2023)). Since column-select operates in column-space (as opposed to row-select), which is
not a valid probability distribution, we first normalize the columns to acquire a left-stochastic matrix
A,. This allows us to equate a column-select operation up to some constant scale as: v; o< Aju; ,
where u; is a one-hot column vector for index j.

Thus, our formulation allows us to reinterpret the selection operation as the first bounce transition
from a one-hot vector, a view that we will further motivate in Section 4.2}

Summing each column of A results in a row vector vs7 that aggregates attention given to each
token from all other tokens. In our formulation, vs” can be obtained by performing a single state
transition: VST = %eTA, where e is a row vector of ones. This operation can be a useful first-order
approximation in ranking tokens’ importance globally, as it equates to starting from an equilibrium
state and transitioning through the DTMC process once. However, we show this straight-forward
approach under-performs compared to the global TokenRank vector (Section [4.3)) that takes into

account indirect attention being given to all tokens. See Figure [2]for an illustrative example.

Averaging multiple attention matrices over different attention heads is a common approach to process
or visualize the information contained in attention layers of transformers. This is despite numerous
studies indicating that some heads are not informative for large transformers (Voita et al., 2019;
Chefer et al.l [2021b)), suggesting that simple averaging might dilute the signal under observation.
In the DTMC framework, averaging yields a new process where, at each step, the transitioning
probabilities are the mean of those from the original chains — a “mixture” of the chains with equal



weighting. This operation can be reasonable if the chains are not very different. As an alternative, we
propose a weighting scheme that considers the convergence rate of the chains in Section 4.4}

4.2 Multi-Bounce Attention

When the subject of interest is a specific token 7, the core shortcoming with row- and column-select
from a Markovian perspective is that they do not take into account higher order effects: As illustrated
in Figure [2| the tokens that token ¢ attends to are also attending other tokens, indirectly affecting
token ¢. While it is evident that the attention mechanism only implements direct influence between
tokens, we show that considering indirect paths allows for a deeper understanding of attention flow
within individual attention heads. For brevity, we will now extend the row-select operation using our
framework, which can be analogously applied to column-select after normalizing the columns of A
and transposing.

The crucial observation enabled by the DTMC interpretation is that iterating on the selection operation
n times for token ¢ yields

v{Tm g = v{Tiﬂn}A, 4)

with V{TZ. n=0} being a one hot row vector. Such an iterative process is mathematically equivalent

to the power method (Equation ). In other words, if we wish to take into account the n'" order
attention bounce, we can simply apply this formula n times. For a single bounce, V%;ynzl} captures
incoming attention for tokens that 7 attends to directly (row-select) or outgoing attention for tokens
that attend ¢ directly (column-select). For any vﬂ, n>1}> higher order bounces are considered. See
Figure|T|for an illustration.

4.3 TokenRank

In many cases, a more complete understanding of token importance is required. Observe that applying
multi-bounce attention (Section 4.2)) will converge into a stationary vector for any initial state if
specific conditions are met (Section [3.T). In the context of attention matrices, we name this vector
TokenRank, inspired by Google’s webpage stationary vector PageRank (Page et al.,|1999). We argue
that TokenRank is a better tool to measure the global importance of tokens in a single attention head,
compared to more localized and naive attempts to probe the attention matrix (e.g. by selecting a
specific column, or summing up each of the columns).

One caveat is that attention weight matrices might still be reducible, or have cycles of fixed length.
This means they do not necessarily hold the properties that guarantee the existence and uniqueness
of a steady-state vector. A sufficient way to guarantee this, is to adjust A using the PageRank
formulation (Equation (2))) prior to iterating.

While this formulation allows us to immediately acquire authoritative tokens (those for which attention
is flowing into), we can also normalize the columns followed by transposing of A. Then, iterating
obtains important hub tokens (those which attention is flowing out from), obtaining two TokenRanks:
one for incoming and one for outgoing attention.

We show that TokenRank extracts a cleaner signal of the attention (Section [5.2), can be used to
improve downstream tasks (Section[5.3)), and is better for determining the importance of tokens in the
sequence compared to other approaches (Section [5.3).

4.4 ), Weighting

The mixing time of a DTMC into its steady state is mathematically tied with its 2" largest eigenvalue
A2 (Langville and Meyer, 2004). Intuitively, larger A values correspond to more stable metastable
states, indicating that more important information is captured by the attention matrix. Indeed, DTMCs
with randomly sampled transition probabilities tend to have very small A, (see Appendix [F).

To this end, instead of simply averaging attention matrices over the head dimension (Section4.1), we
instead propose to perform weighted averaging over the heads using their Ao values. We show this
weighting scheme results in better downstream task performance (see Section [5.1|and Appendix [E.2)).
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Figure 3: ImageNet segmentation. Considering higher order attention effects improves results. We
visualize the raw attention output (colored) and the binary segmentation masks. We present more
qualitative comparisons in Appendix[C.2].

5 Experiments

This section provides extensive evidence that our framework and the extended operations over the
attention matrices are useful for a variety of downstream tasks. We start with improving zero-shot
segmentation over a standard benchmark using multi-bounce attention (Section [5.1)), followed by
showing that TokenRank extracts a more informative signal than existing baselines (Section [5.2)),
useful for visualization purposes. Then, we demonstrate that applying TokenRank to existing
techniques improves unconditional generation of images (Section and segmentation (Section[5.4).
This is supplemented with a token masking experiment (Sectior%, where we deliberately mask
tokens according to their TokenRank importance and measure downstream accuracy for image
classification.

5.1 ImageNet Zero-Shot Segmentation

A straightforward way to evaluate the usefulness of taking into account higher-order attention effects
is to measure the performance on a downstream task such as zero-shot segmentation. We evaluate on
the ImageNet Segmentation benchmark (Chefer et al.,[2021b) consisting of 4276 images with 445
categories and we employ FLUX-Schnell (Labs|2024), a pretrained transformer-based generative
model, to denoise the images and extract the attention maps. We then average the maps over the
heads using Ay weighting (Section 4.4)) and compute the multi-bounce attention when considering
outgoing links with n = 2 (Section[4.2). We refer to the Appendix [A] for further implementation
details and to Appendix [C|for further results.

We report the results for the current state-of-the-art method (Helbling et al.2025)) and additionally
provide the row- and column-select operations as baselines using their implementation. The results are
reported in Table[T]and example qualitative segmentation masks are presented in Figure 3] indicating
that our method is better than the previous state-of-the-art, as the threshold-agnostic metric mAP
shows a large gap in performance. We hypothesize that this is because semantically similar regions
form sets of metastable states, and iterating consolidates them, which results in cleaner segmentation
maps. Our proposed A, weighting further improves the segmentation performance, as we show in
statistical tests in Appendix [E.T}



Table 1: ImageNet segmentation. Our method yields state-of-the-art results. Error bars and further
results are reported in Appendix

Method Architecture  Acct mloUT mAP®
LRP (Binder et al., 2016 ViT-B/16 51.09  32.89 55.68
Pmtia&ﬁﬂmgml 2016) ViT-B/16 76.31  57.94 84.67
Rollout (Abnar and Zuidema, [2020) ViT-B/16 73.54 5542 84.76
ViT Attention (Dosovitskiy et al.,2021) ViT-B/16 67.84  46.37 80.24
GradCam (Selvaraju et al.,[2017) ViT-B/16 64.44  40.82 71.60
DiffSeg Tian et al.| (202 SD1.4 6541 5212 -
TextSpan (Gandelsman et al., 2024) ViT-H/14 7521 5450  81.61
TransInterp (Chefer et al.,2021b ViT-B/16 79.710  61.95 86.03

DINO Attention (Caron euil.l, 2021) VIT-S/8 81.97 69.44 86.12
DAAM l, 0 SDXL UNet 78.47 64.56 88.79

FLUX Cross Attention (Helbling et al., 2025) FLUX DiT 7492  59.90 87.23

FLUX row-select FLUX DiT 73.96  54.65 82.64
FLUX column-select FLUX DiT 80.55 64.02 87.20
Concept Attention (Helbling et al., 2025) FLUXDIiT  83.07 71.04  90.45
Ours w/o Ao FLUX DiT 84.00  70.02 94.28
Ours FLUX DiT 84.12  70.20 94.29
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Figure 4: Global incoming attention. Visualizations are computed after averaging over heads for
four different layers of DINOv1. While the center token only attends to the local neighborhood for
earlier layers, column sum results in noisy attention visualizations. In contrast, TokenRank captures
global incoming attention on par with the CLS token that was explicitly trained to capture global
attention for DINOv1. We show per-head visualizations in Appendix@

5.2 TokenRank for Visualizing Attention Maps

Previous typical approaches for visualizing global incoming attention consider the attention with
respect to a Center Token, that is, row-select for that token (Hatamizadeh et al},[2024), or compute a
per-Column Sum 2023). These methods share the common characteristic that they can
each be expressed as a single power-method iteration (Section 4.1)). In other words, they only take
into account direct attention effects. On the other hand, TokenRank considers indirect attention paths
to evaluate where attention is flowing into. This results in attention maps that are sharper and less
noisy than with column sum and more complete than using a single token (Figure d). We provide a
quantitative comparison through a linear probing experiment Appendix [B]




5.3 Improving Self-Attention Guidance (SAG)

To evaluate TokenRank on a downstream task, we integrate it in SAG 2023), an approach
that improves the fidelity and the quality of unconditional image generation with denoising diffusion
models. SAG uses the self-attention weight matrices to form a mask that indicates important spatial
tokens. It then adversarially blurs the masked regions and drives the denoising process away from
it, creating better images as a result. To find out where important features exist, Hong et al.| (2023)
average over the head dimension for a specific attention layer, followed by a summing each of the
columns (Section f.T). We compare the quality and diversity of generated images when using the
TokenRank instead of their proposed Column-sum strategy. We compute the IS (Salimans et al., 2016),
FID (Heusel et all,2017), and KID (Binkowski et al.,[2018)) metrics over 50K generated images. The
selected metrics offer complementary information in terms of quality, diversity, and resemblance to
ground-truth distribution. Results are reported in Table 2] and Figure 5] We refer to the supplementary
material for further details and results. Using TokenRank improves the generated images significantly
in both quality and diversity compared to the original SAG, showcasing TokenRank’s ability to rank
globally important tokens in the sequence, and improve a downstream generative task.

SAG+
SAG TokenRank

N

Table 2: Quantitative results for SAG.
Comparisons between SDI1.5 (Rombach
et al.l 2022), SAG (Hong et all, [2023) and
SAG+TokenRank. Metrics were computed
over 50K examples.

Method ISt FIDJ, KIDJ
SDI1.5 16.32 4577 0.018

SAG 17.69 52.48 0.023

SAG+TokenRank  18.37  50.14  0.021 Figure 5: Qualitative results for SAG. Im-

ages generated using TokenRank have less
artifacts and are more structured.

5.4 Improving DiffSeg with TokenRank

We incorporate TokenRank into DiffSeg Table 3: COCO-Stuff-27 benchmark. Using To-
2024), an existing segmentation approach  kenRank to sample anchors for initial proposals
that merges self-attention matrices using KL- in DiffSeg (Tian et al| 2024) results in significant

divergence to measure similarity between up- jmprovements over the benchmark.
sampled attention maps. Specifically, in the

original study the authors used a uniform grid Method mACC 1 mloU 1
to initialize the anchors used as seeds for their - -

proposal algorithm. Instead, we sample anchors Uniform Grid 72.50 43.60
according to their TokenRank importance, with TokenRank Grid ~ 84.97 44.87
suppression to avoid repeatedly selecting the
same location. This better grid strategy leads to substantial improvements over the original approach
using the COCO-Stuff-27 benchmark as can be seen in Table[3] This experiment further shows our
framework is orthogonal to other solutions leveraging self-attention for solving downstream tasks.

5.5 Masking Most Influential Tokens

Inspired by standard faithfulness experiments 2024), where changes in the performance
of a downstream classifier are observed through progressively occluding input features, we designed
a new experiment that targets evaluating strategies that measure the global importance of tokens
per individual attention head. Specifically, the most influential tokens in the sequence are masked
out progressively by zeroing the corresponding columns in the attention matrices and the resulting
classification accuracy drop is measured. We evaluate the accuracy degradation of several vision
transformer-based classifiers over 5000 randomly selected images from ImageNet with a fixed seed.
To determine the order of tokens to be masked, we use the TokenRank vector and compare it to the



following baselines: randomly selecting a token (“Rand. Token”), using the column of the token
corresponding to the center patch of the image (“Center Token”), the per column-sum (“Column
Sum”), and using the CLS Token. Note that we do not mask global tokens, i.e., the CLS token and
the registers for DINOv2, as this results in a massive drop in performance rendering the comparisons
less useful. We refer to Appendix [A] for further details.

RGSUItS are repo'rted 1n Table[d] illus-  Typle 4: Results for masking most influential tokens. We
trating that classification accuracy de- present the area under curve (AUC) metric for the accu-
grades faster using TokenRank than 1,y normalized by the original model accuracy and average
other baselines for several pre-trained  yer various models of a selected model family with model-
transformers. This validates the hy-  gnecific results presented in Appendix [D} Using TokenRank
pothesis that TokenRank captures im- magk out important tokens consistently results in larger

portant global information more faith-  ,ccyracy drops than other strategies.
fully since it also models higher-order

effects. Another interesting observa- AUC | | ViT CLIP DINOvl DINOv2
tion is that transformers with a more

structured features (e.g. DINOv2 with Rand. Token | 0.79  0.80 0.88 0.89
registers (Darcet et al,[2024)) tend to Center Token | 033 0.47 0.45 0.70
benefit more from TokenRank, which Column Sum | 0.27  0.49 0.47 0.71
suggests it can also be potentially used CLS Token | 0.33  0.53 0.56 0.70
for quantifying this aspect of a trained TokenRank 0.26  0.46 0.44 0.64

transformer. We hypothesize that this
is due to TokenRank’s tendency to sharpen the input signal (Figure ), potentially reinforcing the
effect of noise or artifacts for an unstructured feature space.

6 Conclusion

In this paper, we proposed a novel interpretation of the attention map as a DTMC. By treating such
maps as stochastic matrices, we showed that taking into account higher-order interactions between
tokens results in better performance on various downstream tasks. We further showed the stationary
vector TokenRank can help depict global incoming and outgoing attention within a single head.

Limitations and future work. Our approach is limited to square matrices (e.g. self-attention /
hybrid-attention blocks). Therefore, cross-attention blocks do not naturally fit into our Markov chain
formulation due to the existence of non-accessible states. There could potentially be a way to resolve
this by introducing dummy states with uniformly distributed transition probability. Additionally,
computing the second eigenvalues )5 is computationally heavy. Computing multiple bounces or the
TokenRank on the other hand is quite performant, and converges typically after 10 to 20 iterations.
Finally, we observe that the performance gains with TokenRank are larger for transformers where
the attention map is more structured. We envision that this framework opens up new possibilities for
analyzing, understanding, and modeling the attention operation, and may be used in conjunction with
other end-to-end explainability tools to enhance understanding of visual transformers. This can also
serve various other domains such as video, audio, motion, as well as natural language processing.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions are mentioned in the abstract and the introduction, formalized
in the method chapter and supported through extensive experiments in the main paper and
additional experiments in the supplementary.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We propose a new interpretation to the attention operation used in transformers.
We specifically point out the (constraining) assumptions we make for this interpretation
Sections[3.Jland ] and we list limitations in section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not propose new theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main paper includes the most relevant details to understand the performed
experiments, while the supplementary provides more implementation details that allow
reproducing the main experimental results of the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source the code at https://github.com/yoterel/attention_
chains_code to reproduce the results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main paper includes the most relevant training and test details necessary
to appreciate the results and make sense of them in the experiments section and it is
supplemented with further implementation details in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars and performed statistical tests in the supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The supplementary material includes details on the compute budget for the
experiments presented in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After a careful review of the ethics guidelines, we believe that our paper
confirms to them.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: In this work, we propose a new interpretation of the attention operation, which
improves downstream task performance. While, for example, better image segmentation
can have positive and negative societal impacts, we do not think it is necessary to explicitly
discuss our specific societal impact since the societal impact of transformers and computer
vision systems in general have already been discussed in previous papers.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: In this work, we propose a new interpretation of the attention operation. We
believe that our work does not have a high risk for misuse that is more specific than the mere
application of transformers.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets that have been used in this work were correctly cited following the
best practice.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release new assets together with our published code at https://github,
com/yoterel/attention_chains_codel

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Attention (as Discrete-Time Markov) Chains

Supplementary Material

A Implementation Details

A.1 ImageNet Zero-Shot Segmentation

To establish fair comparisons, we followed the exact procedure described by [Helbling et al.| (2025)
using the code from https://github.com/helblazer811/ConceptAttention. We simplify all
categories to a single word, allowing methods conditioned on text to select the corresponding token.
We use the timestep-distilled Flux-Schnell DiT (Labs| 2024) and add Gaussian noise to each of
the images to the normalized timestep ¢t = 0.5, resulting in two backward steps for denoising the
image. We use the last 10 layers of the multi-stream attention blocks. The attention matrices from
all aforementioned layers and timesteps are averaged. For the heads, we use the Ay weighting for
averaging. For multi-bounce attention, we use the column-select formulation, i.e. we normalize the
columns and transpose A as described in Section [4.2] of the paper.

A.2 Improving Self Attention Guidance (SAG)

For the SAG experiments, we build on top of the code of (Hong et al.,[2023) provided in https:
//github.com/SusungHong/Self-Attention-Guidance. We use SD1.5 (Rombach et al.,[2022)
as the foundational model and use the second last decoder block’s last self-attention layer for masking.
We empirically observed it consistently resulted in the best results for both SAG and SAG+TokenRank,
as opposed to the usage of the bottleneck layer in the comparison experiments in the original SAG,
which is in line with the observation by Hong et al.|(2023).

We compute the IS (Salimans et al.l 2016), FID (Heusel et al.,2017), and KID (Binkowski et al.,
2018) metrics over S0K generated images, where the ground truth dataset is the LAION-Aesthetics
V2 dataset (Schuhmann et al.}2022) - originally used to train SD1.5. We used the score > 6.5 subset
consisting of 625K images, and filtered it for score > 6.65 and images with width and height larger
than 512, resulting in 72495 raw links, out of which roughly 50K were valid. After truncating to
50K, these images were used for computing the metrics. The selected metrics offer complementary
information in terms of quality (IS) and diversity and resemblance to ground-truth distribution (FID /
KID).

We use the unconditional branch only, and allow up to 40% of the attention matrix to be masked,
following the original implementation.

A.3 Improving DiffSeg with TokenRank

We used the official code of Tian et al.|(2024) provided inhttps://github. com/google/diffseg|
DiffSeg aggregates attention weights from all layers, where deeper layers are up-sampled. The
aggregation is also a Markov Chain (see Section[4.I)) and, therefore, TokenRank can be computed
once per image. To create the TokenRank grid, we simply compute TokenRank and sort it by
descending order, and greedily select the highest ranked token that is at least 5 units away from all
currently selected tokens to act as suppression which avoid oversampling the same region. If not
enough anchors can be selected in this way, we remove the suppression and select the rest of the
tokens by only considering their TokenRank. We use the same total amount of anchors as the baseline
for fairness.

A.4 Masking Most Influential Tokens

For all transformers, we do not allow masking the CLS token in our evaluations, as it consistently
ranks as the top most important token for almost all heads and layers, and discarding it yields an
extreme drop in accuracy, which does not allow for comparisons of the alternative approaches. For
the same reason, we also only use the first half of the available attention layers for each model. This
allows for not disturbing the output space too much and as a result accuracy performance degrades
gracefully. Refer to Appendix for further justification of this choice. Moreover, we mask out
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Table 5: Linear probing. TokenRank extracts a more informative signal that captures global incoming
attention and results in a larger classification accuracy on the Imagenette dataset.

Accuracy |  DINOvl DINOv2 CLIP

Rand. Token | 67.33 £ 3.12 63.32£6.04  57.65 £ 2.66
Center Token | 66.32£3.08  75.34+£1.85  68.42+2.66
Column Sum | 75.64 £2.74  90.76 £ 2.21 73.73 £2.98
TokenRank 77.31+250 92.73+151 73.88+2.86

CLS Token | 81.53+2.44 94.07 £ 0.97 72.46 £+ 3.40

the same number of tokens for all heads simultaneously. For DINO family type, results in the
main paper are averaged over the ViT-B/16, ViT-B/32, ViT-S/16, and ViT-S/32 architectures. For
DINOV2 family type, we use the w/ registers variation, and average over the ViT-B/14, ViT-S/14 and
ViT-L/14 architectures. For both DINO and DINOv?2 family types, we use pretrained linear classifier
heads provided with the original publications. We average ViT/B and ViT/L for the transformer
models trained in a supervised way. For CLIP family type, we average over the ViT-B/32, ViT-L/14
and ViT-L/14/336 architectures. We use the template prompt “A photo of a <class>" to compute
per-class text features. Then, we compute a dot-product with the image features and these per-class
features to determine the classification result. Masking is performed by setting the entire column
corresponding to a token to —oo prior to softmax. For a more in-depth view of individual model
accuracy degradation, see Appendix [D]

B Linear Probing of TokenRank

To quantitatively evaluate that TokenRank produces sharper maps and captures the global information
contained in the attention matrices, we train a linear classifier on top of all proposed attention
visualizations, inspired by a previous similar analysis (Liu et al., [2024)). For this purpose, we extract
attention visualizations for all layers, heads, and images for the ImageNet (Deng et al., |2009)) subset
Imagenette (Howard, 2019) for three foundation models without considering the CLS token. The
results in Table[5|show that TokenRank visualizations result in a cleaner signal for image classification
than previous approaches that only consider one bounce of attention. It is on par with row-selecting
the CLS token, which is an upper bound because it was specifically trained to capture class concepts
for the DINO model family. Note error bars are reported over 5 different runs each with a different
seed. We performed a Wilcoxon test with the null hypothesis that the competing column sum
operation results in the same accuracy as TokenRank and the one-sided alternative hypothesis that
the accuracy is lower. We reject the null hypothesis for DINOv1 with p=0.03 and for DINOv2 with
p=0.03.

We generate attention maps for all layers, heads, and images for the ImageNet (Deng et al.,[2009)
subset Imagenette (Howard, 2019) for DINOv1, DINOv2, and CLIP with a VIT/B model. Then, we
compute attention visualizations with column sum, TokenRank, row-selecting the center token, and
row-selecting the CLS token. Finally, we train a linear classifier with the commonly used train and
test split and with the attention visualizations of all layers and heads as input, optimized with the
SGD optimizer with a set of learning rates ({1e — 5, 2e — 5, 5e — 5, le — 4, 2e — 4, be — 4, 1le — 3}))
for 20 epochs, and we choose the best performing model, similar to|Oquab et al.|(2024)). We resize
and center crop the images to get 905 x 905 (901 x 901) attention maps for DINOv2 with registers
(other models). We exclude the CLS token column for classification.

Linear Probing of )\»-Weighted Aggregated Heads Additionally, we also train linear classifiers
on top of the TokenRank vectors (incoming attention) per layer, where we use different weighting
schemes for the head dimension. For this, we first compute the weighting coefficients per head and
perform a weighted average of the heads. Then, we compute TokenRank for the aggregated results.
We compare uniform weighting (simple average), random weighting, and A, weighting. Results
are presented in Table [6f While random weighting is significantly worse, Ao weighting performs
better than simple averaging, particularly for transformers with a well-structured latent space, such as
DINOV2 with registers.



Table 6: Linear probing of steady state vectors after aggregating heads. )\, weighting is better
than uniform weighting.

Method | uniform  random Ag

CLIP 49.07 44.07  49.07
DINOv1 53.50 4721  53.55
DINOv2 | 71.62 50.29  72.36

Table 7: ImageNet segmentation. Ablation and hyper-parameter choice.

Method Acct mloUT mAP7T

row-select (n = 1) 73.96  54.65 82.64
column-select (n = 1) 80.55 64.02 87.20

single-channel 69.63  51.73 80.50
incoming (n = 2) 83.73 69.58 93.68
incoming (n = 3) 82.93  68.81 94.01
outgoing (n = 3) 79.25  63.32 89.80
outgoing (n = 2)* 84.12  70.20 94.29

C Additional Segmentation Results

C.1 Ablation and Hyperparameters

See Table 7| for zero-shot ImageNet segmentation results using the same experimental setup as in
the main paper, with different hyper parameter choices. The bottom of Table [/| shows “outgoing
(n = 2)*”, corresponding to the result shown in the main paper, leveraging the second bounce from a
one-hot column vector and utilizing Ao weighting. “row-select (n = 1)” and “column-select (n = 1)”
are the naive first bounce operation also shown in the main paper. “single-channel” uses the single
channel attention blocks in FLUX rather than the dual-channel blocks. “incoming (n = 2)” uses
the incoming attention formulation of multi-bounce-attention (i.e. second bounce from a one-hot
row vector). “incoming (n = 3)” is the same but with 3 bounces. “outgoing (n = 3)” uses a
one-hot column vector with 3 bounces. “w/o Ay” does not use the weighted Ao scheme. Notice
the performance for outgoing attention degrades rapidly with more bounces (“‘outgoing (n = 2)*”,
“outgoing (n = 3)”) compared to incoming attention (“incoming (n = 2)”, “incoming (n = 3)”). This
is because for outgoing attention, the steady-state eventually converges into emphasizing important
“hubs”, which usually tends to be background information. However, in early bounces (n = 1,2) it
out-performs the incoming attention, and we speculate this is because it captures better the target of
this task: we are interested in finding out which image tokens “attend-to” the text token of interest
(i.e. a many-to-one relationship).

We additionally report error bars in Table [§] that were computed as standard deviations over 5 runs
with different seeds.

C.2 Further Qualitative Results

See Figures [I3] and [T4] for more zero-shot segmentation results on ImageNet with comparisons to
row- and column select and state-of-the-art results using ConceptAttention (Helbling et al.| [2025)).
We argue that our raw segmentation masks are cleaner and more precise, which can be qualitatively
measured by the threshold-agnostic mAP metric presented in the main paper. Additionally, in Figure[6]
we show our multi-bounce attention can be used for segmenting different parts of an image by setting
the initial one-hot vector to the corresponding text token. The text prompt used to create the image
(FLUX-Schnell) was “cute black cat standing up wearing red boots and a bow tie, photorealistic,
masterpiece, macro wildlife photography, dewy grass, closeup low angle, wildflowers, sun, shadows,
depth of field, desaturated, film grain, low quality”.



Table 8: ImageNet segmentation. Error bars for selected runs.

Method Acc mloU mAP

Concept Attention 81.06 £0.01 66.02+0.01 88.43 +0.00
Ours no Ay 84.00 £0.02 69.99+0.05 94.26 +0.04
Ours 84.11£0.03 70.194+0.02 94.32£0.03

w

Figure 6: Part segmentation. We can segment different parts of the image by setting the initial
one-hot vector to the corresponding text token.

D Additional Results for Masking Most Influential Tokens

D.1 Per-Model Results

In Figure [7] we show the results of performing the most-influential token masking experiment
described in the main paper for individual models. The area-under-curve (AUC) metric in the main
paper is computed over the curves.

D.2 Per-Layer Results

In Figure 8] we show the result of choosing progressively more number of layers to mask for the
most-influential token masking experiment conducted in the main paper. “6 (Ours)” indicates what
we used in the paper. Layers are selected starting from the furthest from the output. The results are
shown for DINOv2 (ViT-S/14) w/ registers over the same dataset used in the main paper. However,
similar trends were observed for all architectures. We opted for masking tokens from only the first
50% of the layers to avoid distorting the output space and a too steep performance drop (which
happens for n > 6), while still having an effect on the classification results for higher token mask
percentage (which does not occur for n < 6).



ViT-B/16 ViT-L/16 CLIP (ViT-B/32) CLIP (ViT-L/14)

100 [ SR e Fomgy PR
p ™~ T T 2‘1\. ™
* RS SN B )
RN
>0 \ AN
. “:\A:l‘ \
SO gy
0 >, t‘h R}
> 0 50 100 0 50 100 0 50 100 0 50 100
% CLIP (ViT-L/14/336) DINO (ViT-5/8) DINO (ViT-5/16) DINO (ViT-B/8)
;5 100 ..;.-\;+f+u_,+‘\ &\;:u—wﬁﬁ_ﬂ_._**‘* ..§*++-—+$;‘$\‘\ ‘i‘{—;—v—*ﬂ—»*—**-ﬁ*ih*x
S k! N Ty Sl
<L() 4 X A \ Y LN
W ) Qe 4 BN k N i
X 50 e x\‘ . + A Ko X .“
0 N 4 AN ‘ N e
= e, 4 pN \‘ | LAY | W N |
L i B\ N N, e
e o teaal TR ieta) Srala)
"; 0 50 100 O 50 100 O 50 100 0 50 100
N DINO (ViT-B/16) DINOv2 (ViT-S/14) DINOv2 (ViT-B/14) DINOv2 (ViT-L/14)
100 g P || [RmE (] [TEL
e ) . . SRR T
SR § * WK % N
LA \ AN
AR 5 \:\:\N :\
>0 R Y
:‘\Q.\ R B
0 et :
0 50 100 0 50 100 0 50 100 0 50
% of Masked Tokens
=e=- TokenRank Column Sum —+=- Rand. Token -@®- CLS Token —A - Center Token

Figure 7: Token masking. Using TokenRank to mask out tokens better degrades performance on
average across multiple architectures and training types.

Table 9: Statistical test for \o weighting. The results of the Wilcoxon test show that Ao weighting is
significantly better than uniform weighting.

Semantic Segmentation Linear Probing

Metric ~ Statistic p-value | Model  Statistic —p-value

Acc 15.0 0.031 | DINOv1 45.0 0.002
mloU 15.0 0.031 | DINOv2 42.0 0.010
mAP 15.0 0.031 CLIP 45.0 0.002

E Additional Results for )\, Weighting

E.1 Statistical Tests for \o Weighting

In this section we provide more evidence that the magnitude of the second largest eigenvalue of the
attention matrix correlates with the performance in both zero-shot segmentation (Section[5.1]) and
linear probing (Appendix [B), as presented in the main paper. We illustrated this effect via weighted
averaging of heads. To test the significance of our observation, we perform a paired data statistical
test (Wilcoxon test) for both tasks. For this purpose, we define the null hypothesis: Uniform and A,
weighting have the same performance. And the one-sided alternative hypothesis: Weighting results in
a better performance. Results of can be seen in Table[J] Rejecting the null hypothesis with p < 0.05
supports our statements.
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Figure 8: Layer selection for DINOv2 (ViT-S/14). Numbers indicate the number of attention layers
being masked starting from the closest to the input. Masking fewer layers introduces noise into
measurements, while masking more of them results in a faster drop in accuracy allowing less room
for comparisons. We chose to mask 50% of the layers for all experiments; in this case “6 (Ours)”
variation was used.
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Figure 9: Aggregating heads. We used TokenRank to mask tokens while using different weighting
schemes for the head dimension. A, yields a larger drop in accuracy compared to uniform or random
weighting.

E.2 )\; Weighting for Masking Most Influential Tokens Experiment

We performed another token masking experiment similar to the one conducted in of the paper, only
using TokenRank for determining the masking order. In this experiment, we compare using uniform
weights per head (as in main paper), random head weights, and using A\, weighting. Results can
be seen in Figure[9] Perhaps unsurprisingly, randomly weighting the heads performs better than
uniform weights, as the transformer is more sensitive to individual heads being fully or almost fully
masked out, rather than gradually masking out all heads together. Importantly, results indicate that A,
weighting can be used for increasing the degradation in accuracy, suggesting it can serve as a useful
tool for determining importance of heads. This was also observed to improve zero-shot segmentation
results (see Appendix [C).



TokenRank
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Figure 10: Illustration of multi-bounce attention. We visualize the first bounces and the steady
state (TokenRank) when propagating through the Markov chain, defined by two attention matrices of
two exemplary layers and heads of DINOv2. The initial state (n = 0) is defined by a one-hot vector.

Figure 11: Illustration of bouncing for image and random input. Bouncing the attention signal
sharpens the DINOv1 attention map for a realistic input image, supporting the existence of meta-
stable states. On the contrary, a random input image results in a fast converging Markov chain, where
intermediate bounces to not differ clearly from the first bounce and disperse rather than cluster. This
observation is also reflected in the second eigenvalues: Ao = 0.44 for the real image and Ay = 0.16
for the random image, where a smaller second eigenvalue corresponds to a faster convergence.

F Illustration of Bouncing as Consolidation Mechanism

Figure[I0| visualizes the first bounces and the steady state of two example images, heads and layers.

Figure[TT]also illustrates that iterating over the Markov chain results in an iterative refinement of the
map, consolidating meta-stable states. The steady state eventually visualizes the global incoming
attention. This effect cannot be observed for an input image with random pixels (Figure [T} bottom).
Instead, the Markov chain converges very quickly to a dispersed visualization after one step for a
noisy input, as the attention matrix is not structured. We compute the visualizations by passing the
images through DINOv1 and extracting the attention map in the 9th layer and 3rd head. Then, we
compute the first bounce (n = 1) with a uniform initial vector, the 2nd bounce, and the steady state.
The same effect can be seen in Figure [[3] where the second bounce (Ours) is significantly cleaner
and better adheres to the object boundaries compared to the first bounce (Column Select).



G More SAG Results

In Figure@]we show more results comparing vanilla SD1.5 (Rombach et al., 2022), SAG (Hong
et al.l [2023)) and SAG+TokenRank.

H Per-Head TokenRank Visualizations

‘We show more visualizations for TokenRank, column sum, Center Patch, and CLS token for various
heads and layers in Figure [T5]and Figure [T6]

I Visualization Across Generation Timesteps

In Figure[1'/] we show generated image results of using FLUX-Dev with 50 timesteps. We computed
the TokenRank (incoming attention) and average over every 5 consecutive timesteps shown in every
column (first entries correspond to noisier timesteps, while last entries are more noise-free). The
TokenRank visualizations remain stable through the timestep dimension. It can be observed how
attention maps are getting sharper during the denoising process, illustrating that TokenRank can serve
to visualize and analyze generative models.

J Used Compute

The image segmentation experiments with FLUX required around 1500 GPU hours, where one
experiments takes around 50 GPU hours. Extracting all attention map visualizations for the linear
probing experiment and training the linear classifier took around 300 GPU hours. We performed
around 40 experiments for the masking experiment, where each experiment required around 30 GPU
hours, resulting in around 1200 GPU hours in total. Finally, the SAG experiment took around 1000
GPU hours. In total, we estimate the use of around 4000 GPU hours for the whole study. For all
computations, we used an internal GPU cluster consisting of NVIDIA A40, A100, H100, and RTX
8000 GPUs.
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Figure 12: Improvement of SAG. Using TokenRank produces less artifacts and more structured
images.



Orig. Img. Colum Select ConceptAttention Ours GT Mask

Figure 13: ImageNet segmentation. Our results are on par with state of the art ConceptAttention
(Helbling et al., 2025).

Orig. Image Row Select Column Select Ours GT

Figure 14: ImageNet segmentation. We visualize the raw attention output (colored) and the binary
segmentation masks for the row- and column- select operations compared to utilizing multi-bounce
attention.
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Figure 15: Per-head visualizations of global incoming attention. We plot with different visualiza-
tion strategies for various layers and the first four heads for DINOv1 (ViT-B/8). Images correspond
to the lower row of Figure 4 in the main paper.
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Figure 16: Per-head visualizations of global incoming attention. We plot with different visualiza-
tion strategies for various layers and the first four heads for DINOv1 (ViT-B/8). Images correspond
to the lower row of Figure 4 in the main paper.
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Figure 17: Timestep stability. Top: generated images using FLUX-Dev with 50 timesteps. Each
column depicts the TokenRank (incoming attention) for increasingly denoised images during the
diffusion process. Rows correspond to decreasing timesteps.
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