
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDERATED SKETCHING LORA: A FLEXIBLE FRAME-
WORK FOR HETEROGENEOUS COLLABORATIVE FINE-
TUNING OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) on resource-constrained clients remains
a challenging problem. Recent works have fused low-rank adaptation (LoRA) tech-
niques with federated fine-tuning to mitigate challenges associated with client
model sizes and data scarcity. Still, the heterogeneity of resources remains a critical
bottleneck: while higher-rank modules generally enhance performance, varying
client capabilities constrain LoRA’s feasible rank range. Existing approaches at-
tempting to resolve this issue either lack analytical justification or impose additional
computational overhead, leaving a wide gap for efficient and theoretically-grounded
solutions. To address these challenges, we propose federated sketching LoRA (FS-
LoRA), which leverages a sketching mechanism to enable clients to selectively
update submatrices of global LoRA modules maintained by the server. By adjusting
the sketching ratios, which determine the ranks of the submatrices on the clients,
FSLoRA flexibly adapts to client-specific communication and computational con-
straints. We provide a rigorous convergence analysis of FSLoRA that characterizes
how the sketching ratios affect the convergence rate. Through comprehensive
experiments on multiple datasets and LLM models, we demonstrate FSLoRA’s
performance improvements compared to various baselines.

1 INTRODUCTION

Lightweight client-side large language models (LLMs) have recently gained significant attention
as a promising complement to cloud-based LLMs (Fan et al., 2024). They align with the typical
paradigm of LLMs: starting from a base model pre-trained on large-scale datasets to learn general
linguistic patterns, semantics, and context, and then undergoing fine-tuning on task-specific data to
enhance performance on specialized or domain-specific applications. However, an LLM fine-tuned on
a single client often achieves unsatisfactory performance due to the limited data. Federated learning
(McMahan et al., 2017; Chen et al., 2023) has been investigated as a potential solution here, enabling
the model to be fine-tuned across a group of distributed clients within the same task domain, without
any raw data sharing.

However, federated LLM fine-tuning is costly in both computation and communication due to the
massive parameter volume. Importantly, many parameter-efficient fine-tuning methods have been
proposed (Lester et al., 2021; Li and Liang, 2021; Hu et al., 2021) to reduce the model adaptation
cost. Among them, low-rank adaptation (LoRA) (Hu et al., 2021) stands out as a particularly effective
approach due to its flexibility. In particular, LoRA enables efficient fine-tuning by approximating
weight updates ∆W through a low-rank decomposition ∆W = BA, where matrices B and A
contain significantly fewer trainable parameters than the original weight matrix. Building on this
foundation, recent works have combined LoRA with federated averaging (FedAvg) (Zhang et al.,
2024; Ye et al., 2024), showing that federated LoRA significantly reduce the training overhead.

Challenges. While incorporating LoRA into federated LLM fine-tuning reduces the number of
trainable parameters, computation and communication costs are still forced to increase with the LoRA
rank. This poses challenges when complex tasks demand higher-rank LoRA modules, particularly on
resource-constrained clients. Furthermore, the heterogeneity in resource availability across distributed
clients makes a uniform rank adopted in federated LoRA inefficient: a fixed rank r may be too large

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for some constrained clients, while being too small for more powerful ones, resulting in underutilized
resources. Consequently, an approach that further reduces computation and communication overhead
while adapting LoRA ranks to heterogeneous client capabilities is highly desirable. Although some
existing approaches have attempted to provide a solution (Cho et al., 2024; Bai et al., 2024; Wang
et al., 2024), they either lack theoretical justification or impose additional computational overhead,
leaving a gap for an efficient and theoretically-grounded solution. As we discuss in Section 2.2, a
comprehensive approach that preserves the analytical and practical benefits of LoRA while enabling
heterogeneous collaborative fine-tuning under tight resource constraints remains elusive.

1.1 CONTRIBUTIONS

Figure 1: An illustration of our proposed methodology where
the server maintains a pair of global LoRA modules while the
clients adaptively update submatrices of the global LoRA mod-
ules through sketching during each round.

Motivated by these limitations, this work
develops a methodology for efficient fed-
erated LLM fine-tuning that (i) retains
the flexibility of LoRA, (ii) provides the-
oretical convergence guarantees, and (iii)
addresses the challenges posed by het-
erogeneous and constrained resources
across distributed clients. As depicted
in Figure 1, our key idea is to introduce
a sketching-based LoRA update to the
local fine-tuning, which allows clients to
selectively update a subset of columns
and rows of the LoRA modules during
each round, reducing the computation
and communication consumption. Ad-
ditionally, our method customizes the
fine-tuning process by adjusting the spar-
sity level of the sketching matrix, i.e.,
the size of the updated submatrices for
each client in each iteration. As we will see, the impact of the introduced sketching mechanism on the
overall optimization landscape requires careful modeling consideration, posing additional challenges
for the theoretical analysis that we address in this work.

Overall, we make the following contributions:

• We propose federated sketching LoRA (FSLoRA), which leverages a sketching mechanism to
enable clients to selectively update submatrices of global LoRA modules maintained by the server.
By adjusting the sketching ratios, which determine the ranks of the submatrices on clients, FSLoRA
effectively adapts to client-specific communication and computational constraints.

• We present a rigorous convergence analysis of FSLoRA under non-uniform submatrix update sce-
narios (i.e., heterogeneous LoRA configurations) across clients, revealing how the sketching ratios
affect the convergence rate via scaled smoothness constants. Further, our results show that while
increasing the sketching ratios improves convergence theoretically, it also raises communication
and computation costs, suggesting a potential trade-off in selecting the sketching ratios.

• We conduct extensive experiments across multiple datasets and LLM models with diverse parameter
settings, demonstrating FSLoRA’s superior performance compared to various baselines in accuracy,
training time, and resource utilization. Our ablation studies further validate the effectiveness of the
sketching mechanism and the ability of clients to exploit larger global ranks under FSLoRA.

1.2 RELATED WORKS

Collaborative fine-tuning via federated LoRA: Federated LoRA is an efficient approach for
collaborative LLM fine-tuning among distributed clients (Chen et al., 2023; Sun et al., 2024; Guo
et al., 2025). Building on this foundation, Kuo et al. (2024) proposed integrating communication
compression with federated LoRA to further reduce communication overhead. Meanwhile, Bai et al.
(2024); Cho et al. (2024); Byun and Lee (2024); Wang et al. (2024); Koo et al. (2024) explored the
challenges of resource heterogeneity across distributed clients and introduced heterogeneous LoRA
as a solution. However, the approaches proposed in (Cho et al., 2024; Koo et al., 2024; Byun and Lee,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024; Bai et al., 2024) lack a theoretical foundation. Moreover, the FlexLoRA method introduced
in (Bai et al., 2024) incurs additional computational overhead due to its reliance on singular value
decomposition (SVD). Furthermore, the FLoRA algorithm proposed in (Wang et al., 2024) requires
the clients to merge the LoRA modules into the base model, thereby compromising the inherent
flexibility of LoRA. Overall, there is still a lack of a systematic and theoretically grounded solution
that can effectively tackle heterogeneous collaborative LLM fine-tuning.

Enhancing adaptability via higher-rank LoRA modules: The foundational study by Hu et al.
(2021) demonstrated that small ranks can be sufficient for certain tasks; however, they also acknowl-
edge that small rank LoRA modules may not work universally, especially when the downstream task
differs significantly from pretraining. Following this, several works explored the effect of increasing
the rank in LoRA modules. In a centralized setup, Kalajdzievski (2023) and Shuttleworth et al. (2024)
showed that higher-rank LoRA models can closely approximate full fine-tuning under rsLoRA. In
a federated LLM fine-tuning regime, Bai et al. (2024) demonstrated improved performance with
larger ranks under FlexLoRA. Similarly, Cho et al. (2024) reported that, with proper overfitting
control, HeteroLoRA can also benefit from larger ranks. Overall, while small ranks may suffice for
simpler tasks or strong base models, higher-rank modules are necessary to compensate for limited
backbone capability, such as in lightweight LLMs, and to enable effective adaptation to more complex
downstream tasks.

Sketching-based optimization: Sketching is an efficient technique for mitigating the complexity of
high-dimensional optimization, with its earliest applications in least-squares regression (Sarlos, 2006;
Wang et al., 2022). Beyond this, gradient sketching has been employed to construct preconditioners
for gradient descent methods (Gower and Richtárik, 2015). Building on these foundations, recent
work has applied sketching to distributed optimization. In particular, Charalambides and Mazumdar
(2024) proposed hybrid local-global sketching for distributed least-squares, while Demidovich et al.
(2023) developed a distributed sparsified training framework based on sketching. Shrivastava et al.
(2024) demonstrated that sketching substantially reduces communication in distributed training of
overparameterized deep models without sacrificing accuracy. More recently, Nicolas et al. (2025)
investigated sketching-based differential privacy and demonstrated its compatibility with secure
aggregation. Despite these advances, sketching strategies tailored to structured low-rank adaptation
modules such as LoRA remain largely unexplored.

2 PROBLEM BACKGROUND

2.1 LORA-BASED FEDERATED LLM FINE-TUNING

The federated LoRA fine-tuning problem can be formulated as

min
B,A

f(B,A) :=
1

N

N∑
i=1

fi(B,A), where fi(B,A) := Eξ∼Di [ℓ(W0 +BA, ξ)] , (1)

where W0 denotes the frozen base model, B ∈ Rm×r,A ∈ Rr×n are LoRA modules, N denotes
the number of clients, ξ denotes a data sample, and Di is the local dataset on client i. ℓ, fi, and f are
the sample loss function, the local loss for client i, and the global loss, respectively.

Problem (1) aligns with the conventional federated optimization formulation, which thus can be
solved using the FedAvg algorithm. Based on the FedAvg framework, Zhang et al. (2024) developed
federated LoRA, which applies a uniform rank r across all clients, overlooking resource heterogeneity.
This one-size-fits-all approach leads to resource mismatches, where computationally constrained
clients may struggle, while more powerful clients remain underutilized with a fixed rank.

2.2 AREN’T THE EXISTING SOLUTIONS GOOD ENOUGH?

To address this issue, researchers have proposed heterogeneous federated LoRA approaches, where
clients maintain non-uniform LoRA modules with varying ranks. They also introduce mechanisms to
overcome the challenges of directly aggregating matrices with different dimensions. However, these
methods often lack theoretical foundation or incur additional computational and memory overhead.

HeteroLoRA (Cho et al., 2024) lets the server pad the updates from the clients with smaller ranks to
match the size of the largest rank during aggregation. During model dissemination, clients receive
a truncated version of the global LoRA modules from the server. Although easy to implement,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

HeteroLoRA is primarily heuristic in nature and lacks a rigorous theoretical foundation, potentially
limiting its performance, as we will see in Section 5.

FlexLoRA (Bai et al., 2024) requires the server to collect the individual LoRA matrices Bi and Ai

from the clients and then computes their product BiAi. To support the initialization of non-uniform
LoRA modules, the server applies truncated SVD to the averaged product 1

N

∑N
i=1 BiAi. However,

this approach introduces extra computational and memory overhead on the server due to truncated
SVD, and the associated error can limit the performance as demonstrated in Section 5.

FLoRA (Wang et al., 2024) introduces a stacking mechanism where the server concatenates LoRA
modules from the clients. The concatenated matrices are then sent back to the clients, which compute
their product and merge it into the base model before initializing new LoRA modules for the next
fine-tuning round. However, this approach increases communication complexity linearly with the
number of clients, imposes higher computation and memory demands on the clients, and compromises
LoRA’s flexibility to support multiple adapters for different tasks.

More detailed comparisons on computation, memory, and communication are presented in Appendix
A. In summary, a theoretically-grounded solution that preserves LoRA’s benefits while effectively
addressing resource heterogeneity across distributed clients remains lacking.

3 FEDERATED SKETCHING LORA

Motivated by the limitations of existing methods, we propose a new federated LoRA reformulation.
Building on this foundation, we develop FSLoRA, a heterogeneous LoRA algorithm that preserves
LoRA’s flexibility while accommodating client resource heterogeneity.

3.1 OUR FORMULATION

We propose a sketching-based LoRA formulation for collaborative LLM fine-tuning as follows:

min
B,A

fS(B,A) :=
1

N

N∑
i=1

fS
i (B,A) where fS

i (B,A) := ES∼Si;ξ∼Di
[ℓ(W0 +BSA, ξ)] , (2)

where B ∈ Rm×r,A ∈ Rr×n are LoRA modules, fS
i is the local loss function at client i with

sketching, and S denotes a sketching matrix randomly sampled from the diagonal matrix set Si =
S(r, ki). The set S(r, ki) comprises diagonal matrices of size r × r with exactly ki non-zero entries.
The formal definition of S(r, k) is provided below:
Definition 3.1 (Random-k sketching). A random-k diagonal matrix set is defined as:

S(r, k)=

{
S |S= r

k

∑
j∈I

eje
⊤
j , I ⊆ {1, . . . , r}, |I|=k

}
,

where e1, . . . , er ∈ Rr are standard unit basis vectors and index set I is a random subset of
[r] := {1, 2, . . . , r} sampled uniformly from all subsets of [r] with cardinality k.

With S being a matrix sampled from Si, we have BSA = r
ki

∑
j∈Ii

Beje
⊤
j A, where Ii corresponds

to the index set of non-zero diagonal entries of S. Bej extracts the j-th column of B while e⊤j A
extracts the j-th row of A. In other words, only ki columns and rows in the LoRA modules B and A
are activated by the sketching matrix in the loss ℓ(W0 +BSA, ξ) at client i. On the other hand, the
sketching matrix S satisfies ES∼Si

[S] = Ir where Ir is a r-dimensional identity matrix. Based upon
this property, W0 +BSA can be treated as an unbiased estimate of W0 +BA.

Intuition: A larger rank allows LoRA modules to be more expressive, leading to better performance
(Bai et al., 2024; Kalajdzievski, 2023; Shuttleworth et al., 2024). However, resource-constrained
clients cannot afford the computational or communication demands of large-rank modules. Our
formulation (2) leverages the sketching matrix to balance the expressiveness of high-rank LoRA
modules with the resource constraints of different clients. With the sketching mechanism introduced,
the local gradients with respect to the LoRA modules on the clients will exhibit structured sparsity. By
adjusting the sketching ratio ki/r, we can tailor the sparsity of the gradient to match the capabilities
of each client, ensuring affordable training while maintaining performance across heterogeneous
systems, as elaborated in the following subsection. Overall, compared to (1), our formulation offers a
more flexible framework, tailored to address the diverse capabilities of heterogeneous clients.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 SPARSITY IN THE GRADIENTS

In this subsection, we analyze the gradient structure of LoRA modules and highlight the gradients’
sparsity properties under a given sketching matrix. To begin, we present the gradient expressions for
the LoRA modules B and A in the following lemma. The proof is provided in Appendix J.2.
Lemma 3.2 (Gradient Formulation). For a given sketching matrix S, the gradients of ℓ(W0 +
BSA, ξ) with respect to B and A take the following form

∇Bℓ(W0 +BSA, ξ) = ∇ℓ(W0 +BSA, ξ)A⊤S⊤

∇Aℓ(W0 +BSA, ξ) = S⊤B⊤∇ℓ(W0 +BSA, ξ),
(3)

where ∇Bℓ(W0+BSA, ξ), ∇Aℓ(W0+BSA, ξ), and ∇ℓ(W0+BSA, ξ) represent the gradients
of ℓ(W0 +BSA, ξ) with respect to B, A, and W0 +BSA, respectively.

In particular, a random-k diagonal sketching matrix selectively samples k rows or columns of a matrix
through left product or right product, respectively. With S being a random-k diagonal matrix, the
gradients of ℓ(W0 +BSA, ξ) with respect to LoRA modules B and A, as shown in (3), naturally
become structurally sparse matrices. This sparsity reduces computational and memory overhead
during training, enabling faster gradient computation and parameter updates, while alleviating
communication overhead across distributed clients by transmitting only non-zero elements.
Remark 3.3 (Sparsity Level Control). A key advantage of our formulation is its flexible control
over the sparsity level of local gradients, achieved by configuring the parameter ki of the sketching
matrix set Si = S(r, ki). This mechanism allows each client to tailor its local updates according to its
communication and computation resource constraints, ensuring efficient and scalable fine-tuning in
heterogeneous federated systems. Lowering ki helps resource-constrained clients reduce computation
and communication overhead, while more capable clients can increase ki to conduct more informative
local updates. Additionally, the distinction in sparsity level control between the proposed FSLoRA
and the FedBCGD algorithm (Liu et al., 2024) is elaborated in Appendix B.
Remark 3.4 (Justification for the Choice of Random-k Sketching). We adopt Random-k sketching
due to its unbiasedness and the structured sparsity it induces. A detailed discussion and empirical
comparison with alternative sketching strategies are provided in Appendix C.

3.3 FSLORA ALGORITHM

Based on the formulation in (2), we propose a resource-adaptive algorithm termed FSLoRA for
collaborative LLM fine-tuning. FSLoRA allows each client to update submatrices of the original
modules B and A in each round. The server maintains a pair of global LoRA modules B and A
and periodically updates them by aggregating sparse local updates received from distributed clients.
Specifically, the procedure of FSLoRA at each round is detailed below.

• The server begins by sampling sketching matrices {St
i ∼ Si}Ni=1 for all clients, where Si represents

the set of possible sketching matrices for client i. These sketches are then sent to the corresponding
clients. Additionally, the server broadcasts the current global LoRA modules [Bt;At] to all clients.
Note that the communication load introduced by transmitting the sketching matrix is negligible
compared to global LoRA modules, as it involves only binary sketching indices (i.e., the diagonal
elements of the sketching matrix); see Appendix A for details.

• Clients perform local fine-tuning using sketch St
i. Specifically, guided by sketching matrix St

i, the
update at client i during the h-th iteration of the t-th round is given by:[

Bt,h+1
i ;At,h+1

i

]
=
[
Bt,h

i ;At,h
i

]
− γ

[
∆Bt,h

i (St
i)

⊤; (St
i)

⊤∆At,h
i

]
, (4)

where γ denotes the learning rate and [∆Bt,h
i ; ∆At,h

i] is a shorthand representation for:[
∆Bt,h

i ; ∆At,h
i

]
=
[
∇ℓ(W0 +Bt,h

i St
iA

t,h
i , ξt,hi)(At,h

i)⊤; (Bt,h
i)⊤∇ℓ(W0 +Bt,h

i St
iA

t,h
i , ξt,hi)

]
.

The update direction in (4) corresponds to the negative stochastic gradient of ℓ(W0 +BSA, ξ)
with respect to [B;A] for a given sketch St

i, as established in Lemma 3.2. The total update for
client i during one round of training, consisting of H local steps, can be expressed as follows:[

Bt,H
i −Bt,0

i ;At,H
i −At,0

i

]
=
[
γ
(∑H−1

h=0 ∆Bt,h
i

)
(St

i)
⊤; γ(St

i)
⊤
(∑H−1

h=0 ∆At,h
i

)]
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Federated Sketching LoRA (FSLoRA)

Require: Base model W0, LoRA modules B0 and A0, learning rate γ, and sketching set {Si}Ni=1
1: for t = 0, 1, . . . , T − 1 do
2: Server samples sketching matrices {St

i ∼ Si}Ni=1 and sends them back to the clients
3: Server broadcasts the current global LoRA modules to the clients
4: for h = 0, 1, . . . ,H−1 do
5: Clients update the local LoRA modules via (4)
6: end for
7: Clients upload the non-zero columns of (Bt,H

i −Bt,0
i) and the non-zero rows (At,H

i −At,0
i)

8: Server updates the global LoRA modules via (5)
9: end for

From the above equation, we see that only the columns of B and the rows of A corresponding to
the nonzero entries of St

i are updated during the t-th round at client i. In essence, St
i selectively

activates specific columns of B and rows of A for each round. Afterward, clients transmit these
nonzero columns and rows of the sparse model updates to the server.

• Using the sketch information, the server reconstructs the corresponding sparse matrices from the
received updates and aggregates them to update the global model:[

Bt+1;At+1
]
=
[
Bt;At

]
+

1

N

N∑
i=1

[
Bt,H

i −Bt,0
i ;At,H

i −At,0
i

]
. (5)

The overall procedure of FSLoRA is summarized in Algorithm 1.
Remark 3.5 (Aggregation). Existing works on federated LoRA primarily adopt two aggregation
strategies: (1) aggregating the LoRA modules as [B;A] (e.g., vanilla Federated LoRA Zhang et al.
(2024)), and (2) aggregating the product BA (e.g., FlexLoRA Bai et al. (2024)). Both methods have
demonstrated effectiveness, as evidenced by their promising performance in prior studies. In this
work, we adopt the former, as it introduces minimal overhead and retains the simplicity of LoRA.
Additionally, we establish the convergence of FSLoRA under this aggregation choice in Section 4.
We also demonstrate that FSLoRA is compatible with secure aggregation in Appendix D.
Remark 3.6 (Computation, memory, and communication). The proposed FSLoRA introduces no
additional operations compared to the vanilla Federated LoRA (Zhang et al., 2024), resulting in
minimal overhead for both the server and the clients relative to other heterogeneous LoRA baselines
(Bai et al., 2024; Wang et al., 2024). A more detailed comparison of computation, memory, and
communication is provided in Appendix A.

3.4 COMPARISON WITH COMMUNICATION COMPRESSION

Although both the sketching approach in FSLoRA and communication compression (Kuo et al.,
2024) reduce communication overhead, the sketching approach fundamentally differs from traditional
compression techniques. Compression methods focus solely on reducing the transmission load,
leaving the gradient computation and model updates unchanged from the vanilla Federated LoRA.
FSLoRA goes beyond communication savings by also reducing gradient computation and model
update overhead through sparse training. Notably, these two methods are orthogonal and can
be combined to achieve greater efficiency. Specifically, the compression can be applied to the
transmission of non-zero columns of B and the non-zero rows of A in FSLoRA to further enhance
communication efficiency. We demonstrate the effectiveness of this combination in Appendix H.4.

4 ANALYSIS

In this section, we analyze the convergence of the proposed FSLoRA algorithm. We show that the
iterate sequence generated by the FSLoRA algorithm converges to a stationary point of the function
(2). Our analysis relies on the following notations.

Notations: We define ℓ̃(B,A, ξ;S) = ℓ(W0 + BSA, ξ) and f̃i(B,A;S) =

Eξ∼Di [ℓ(W0 +BSA, ξ)] for a given S and fS
i (B,A) = ES∼Si [f̃i(B,A;S)]. For simplic-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ity, we denote X = [B;A] and rewrite f(B,A), fi(B,A), fS(B,A), fS
i (B,A), f̃i(B,A;S), and

ℓ̃(B,A, ξ;S) as f(X), fi(X), fS(X), fS
i (X), f̃i(X;S), and ℓ̃(X, ξ;S) respectively. In addition,

we use ∥ · ∥ to denote the Frobenius norm.

We conduct analysis based on the following assumptions.
Assumption 4.1. fi(X) is differentiable and L-smooth, i.e., there exists a positive constant L such
that ∀X,Y,

∥∇fi(X)−∇fi(Y)∥ ≤ L∥X−Y∥,∀i.
Assumption 4.2. ∇Xℓ̃(X, ξ;S) is an unbiased estimate of ∇XfS

i (X) and its variance is bounded as

E∥∇Xℓ̃(X, ξ;S)−∇XfS
i (X)∥2 ≤ ρ∥∇XfS

i (X)∥2 + σ2, ∀i,

where the expectation is computed over ξ ∼ Di and S ∼ Si.
Assumption 4.3. The gradient dissimilarity between the global loss fS(X) and each local loss
fS
i (X) satisfies ∥∥∇XfS

i (X)−∇XfS(X)
∥∥2≤ch∥∇XfS(X)∥2+δ2h, ∀i,

where ch ≥ 0 and fS(X) = 1
N

∑N
i=1 f

S
i (X).

Assumption 4.1 is standard in optimization literature (Bottou et al., 2018; Fang et al., 2024; Bubeck
et al., 2015). Assumptions 4.2 and 4.3 are commonly adopted in federated learning to bound sampling
randomness and data heterogeneity (Fang et al., 2022; Yi et al., 2022). We further provide an
empirical validation in Appendix E, showing that Assumptions 4.2 and 4.3 are reasonable within the
LLM fine-tuning scenario. Building on these assumptions, we analyze the convergence behavior of
FSLoRA. Our main results are summarized in the following theorem.
Theorem 4.4. Suppose that Assumptions 4.1-4.3 hold, then there exists a learning rate γ ≤
min{ N

24ρ(ch+1)HL̄
, 1

8
√

L̃L(ρ+1)(ch+1)H
, 1
H } such that the iterates {Xt} generated by FSLoRA satisfy

1

T

T−1∑
t=0

E
∥∥∇XfS(Xt)

∥∥2≤8

√
L̄F0σ2

ρ
√
NTH

+ 10(L̃L)
1
3

(
F0σρ

T

) 2
3

+
4F0

T
, (6)

where σ2
ρ = σ2+3(ρ+1)σ2

h, L̄ =
(

1
N

∑N
i=1

r
ki

)
L, L̃ =

(
1
N

∑N
i=1

r2

k2
i

)
L and F0 = fS(X0)−f∗

with f∗ denoting the lower bound of fS(X).

Technical highlights of Theorem 4.4: A key step in the proof of Theorem 4.4 is characterizing
the impact of the sketching mechanism on the optimization landscape. Our analysis reveals how
the sketching operation modifies the smoothness properties of the objective, introducing scaled
smoothness constants, r

ki
L and r2

k2
i
L, which directly influence the convergence behavior. Further

details are presented in Appendix J.3.

Discussion: Theorem 4.4 establishes an upper bound on the convergence of the proposed FSLoRA
algorithm. The parameters L̄ and L̃ provide insight into how the sketching operation influences the
convergence rate. Increasing ki would lead to a faster convergence for FSLoRA. However, this comes
at the cost of increased communication and computational overhead for client i, indicating a trade-off
in the selection of the sketching ratios. Additionally, the upper bound vanishes as T → ∞. Moreover,
the rate at which the bound diminishes is dominated by the first term, which recovers the convergence
behavior of FedAvg (Yu et al., 2019; Khaled et al., 2020; Karimireddy et al., 2020) as the sketching
ratio ki/r → 1(i.e., L̄ = L). This highlights the tightness of our analysis and shows that FSLoRA
retains the convergence guarantees of vanilla Federated LoRA in the limit.

5 EXPERIMENTS

Our experiments focus on RoBERTa (125M) (Liu, 2019) and LLaMA-3.2-3B (Dubey et al., 2024),
which represent typical model sizes suitable for client-side deployment, as well as the LLaMA-7B
model to reflect large-scale scenarios. For RoBERTa and LLaMA-3.2-3B models, we fine-tune
and evaluate them on the GLUE (Wang, 2018) and commonsense reasoning benchmark (Hu et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5.1: Testing accuracy over 3 independent runs on GLUE and commonsense reasoning bench-
marks. FSLoRA achieves a notable improvement in average performance compared to the baselines.

GLUE benchmark (RoBERTa model)
Method GPU hours QNLI MRPC CoLA MNLI RTE SST-2 QQP Avg.

HeteroLoRA 10.7h 87.5 ±0.5 84.4 ±0.9 75.3 ±1.2 66.3 ±0.8 69.0 ±1.7 89.5 ±0.0 85.3 ±0.1 79.6
FlexLoRA 12.6h 88.5 ±0.2 81.2 ±0.4 77.5 ±1.2 63.0 ±0.5 62.2 ±1.9 92.8 ±0.4 87.4 ±0.1 78.9
FLoRA 12.3h 87.2 ±0.3 78.1 ±0.7 77.4 ±1.7 74.6 ±0.5 54.4 ±2.1 93.4 ±0.1 87.1 ±0.3 78.9
FSLoRA 10.9h 88.0 ±0.3 87.3 ±0.2 82.2 ±0.5 76.4 ±0.2 69.8 ±1.2 93.5 ±0.1 85.8 ±0.1 83.3

Commonsense reasoning benchmark (LLaMA-3.2-3B model)
Method GPU hours ARC-c ARC-e BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Avg.

HeteroLoRA 43.7h 73.4 ±0.3 86.6 ±0.2 65.8 ±0.5 73.0 ±0.5 71.4 ±0.3 80.9 ±0.7 73.8 ±0.3 72.0 ±0.3 74.6
FlexLoRA 68.3h 74.2 ±0.3 86.7 ±0.6 68.6 ±0.8 79.4 ±0.7 75.8 ±0.4 81.0 ±0.3 75.9 ±0.4 77.9 ±0.3 77.4
FLoRA 49.8h 68.3 ±0.6 83.1 ±0.5 65.8 ±0.9 77.2 ±0.5 74.2 ±0.3 80.5 ±0.6 76.1 ±0.5 71.5 ±0.5 74.6
FSLoRA 44.3h 76.1 ±0.4 87.2 ±0.5 69.3 ±0.7 82.2 ±1.1 80.7 ±0.6 84.0 ±0.2 76.8 ±0.0 79.1 ±0.2 79.4

2023), respectively. For the LLaMA-7B model, we utilize Wizard, Dolly-15k, and Alpaca datasets,
where the results are reported in Appendix G. Similar to (Zhang et al., 2024; Wang et al., 2024), we
adopt Dirichlet-based partitioning for dataset splits. All the experiments are conducted on a cluster
equipped with 4 NVIDIA A100 GPUs, each with 40 GB of memory. The number of clients is set
to 20 in the main manuscript, and to 50 and 100 in Appendix F. Further details are provided in the
Appendix I. The implementation code for this project is included in the supplementary material.

5.1 MAIN RESULTS UNDER HETEROGENEOUS LORA SETUP

Performance comparison with baselines: We consider three state-of-the-art baselines listed in
Section 2.2. For FSLoRA, the rank of the global LoRA modules is fixed as r = 64, while the sketching
ratio for client i is sampled from the set {0.125, 0.25, 0.5, 0.75}. For a fair comparison, we apply
the same rank configuration to all baseline methods. Table 5.1 presents the performance of FSLoRA
and baseline methods. Across both settings, FSLoRA consistently achieves superior accuracy while
maintaining low GPU hours. In the GLUE & RoBERTa task, FSLoRA outperforms all baselines
on average, with significant gains in MRPC, CoLA, and MNLI. In the commonsense reasoning &
LLaMA task, which introduces higher model complexity, FSLoRA also delivers the best overall
performance. Notably, FSLoRA achieves this while preserving computational efficiency comparable
to HeteroLoRA as reflected in GPU hours. These results highlight FSLoRA’s effectiveness and
scalability in heterogeneous LoRA fine-tuning scenarios.

Evaluation under broader heterogeneity, increased number of clients, and larger model: In
Appendix F, we extend our evaluation to 50 and 100 clients, incorporating greater diversity in clients’
communication and computation capabilities, as well as varying levels of data heterogeneity. In
Appendix G, we further assess the effectiveness of our method on the LLaMA-7B model.

5.2 ABLATION STUDY

Impact of sketching: In Figures 2 and 3(a), we compare the performance of FSLoRA with and
without sketching on fine-tuning the RoBERTa model and the LLaMA-3.2-3B model, respectively.
Notably, FSLoRA without sketching is equivalent to the vanilla Federated LoRA. For FSLoRA with
sketching, we apply a uniform sketching ratio of ki/r = 0.5 across all distributed clients. The upload
budget for each client is set to 100 and 80 times the size of the full global LoRA modules at the
corresponding rank for the RoBERTa and the LLaMA-3.2-3B models, respectively. As shown in
Figures 2 and 3(a), both FSLoRA with and without sketching achieve higher accuracy when the rank
r increases due to the availability of more tunable parameters. In addition, FSLoRA consistently
outperforms its non-sketched counterpart across all the ranks and datasets. The use of sketching
increases the communication frequency for clients under the same communication budget, thereby
facilitating the optimization process and enhancing fine-tuning efficiency.

Impact of the global rank: In Figure 3(b), we investigate the impact of the rank of the global LoRA
modules on FSLoRA’s performance. We vary the rank of the global LoRA modules while keeping
the rank of submatrices updated by the clients to be consistent (i.e., ki = 8). This ensures that the
communication and computational resources on the client side remain unchanged. As illustrated in
Figure 3(b), FSLoRA maintains stable convergence across all the configurations. Moreover, FSLoRA

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 4 8 16 64
Rank (r)

84

86

88
Te

st
in

g
A

cc
ur

ac
y

(%
)

(a) QNLI

2 4 8 16 64
Rank (r)

82

84

86

(b) MRPC

2 4 8 16 64
Rank (r)

78

80

82

(c) COLA

2 4 8 16 64
Rank (r)

70

72

74

76

(d) MNLI

2 4 8 16 64
Rank (r)

92.5

93.0

93.5

94.0

(e) SST2

w/o Sketching (Federated LoRA) Sketching (FSLoRA)

Figure 2: Comparison between FSLoRA with and without sketching (the latter equivalent to Federated
LoRA) where the upload budget for clients is set to 100× the size of the global LoRA modules at
each rank. FSLoRA obtains a better performance, validating its communication efficiency.

2 4 8 16 64
Rank (r)

70

72

74

76

78

80

Te
st

in
g

A
cc

ur
ac

y
(%

)

w/o Sketching (Federated LoRA)
Sketching (FSLoRA)

(a) Comparison of FSLoRA with
and without sketching, with an up-
load budget 80× the size of the
global LoRA modules at each rank.

0 50 100 150 200
Communication Round

62

64

66

68

70

72

74

76

78

80

Te
st

in
g

A
cc

ur
ac

y
(%

)

r= 8, ki/r= 1.000

r= 16, ki/r= 0.500

r= 32, ki/r= 0.250

r= 64, ki/r= 0.125

(b) Impact of the rank of global
LoRA modules on FSLoRA, given
a fixed rank ki for the updated sub-
matrices at the clients.

0 50 100 150 200
Communication Round

64

66

68

70

72

74

76

78

80

Te
st

in
g

A
cc

ur
ac

y
(%

)

r= 64, ki/r= 0.125

r= 64, ki/r= 0.500

r= 64, ki/r= 1.000

150 200
79.0

79.5

80.0

(c) Impact of the sketching ratio
on FSLoRA’s performance under a
fixed rank r = 64 for the global
LoRA modules.

Figure 3: Fine-tuning the LLaMA-3.2-3B model on the commonsense reasoning benchmark. The
results are averaged over eight tasks, illustrating FSLoRA’s ability to maintain strong performance
while adapting to different rank and sketching configurations.

demonstrates improved performance as the global rank increases. This observation confirms that the
proposed sketching mechanism enables resource-constrained systems to reap the benefits of a higher
global rank, striking an effective balance between efficiency and performance.

Impact of sketching ratio: Finally, we investigate the impact of the sketching ratio on FSLoRA’s
performance by maintaining a constant global LoRA rank r = 64 while varying the sketching
ratio ki/r in the range {0.125, 0.5, 1}. As shown in Figure 3(c), there is a slight performance
degradation as the sketching ratio decreases, which is consistent with our theoretical analysis. This
reflects an inherent tradeoff: while a larger sketching ratio improves convergence and accuracy,
a smaller ratio reduces both computational and communication overhead. Notably, the observed
degradation remains minor, highlighting FSLoRA’s ability to maintain strong performance even
under constrained resources. This demonstrates its effectiveness in balancing efficiency and accuracy,
making it well-suited for resource-limited scenarios.

Further experiments: Results with more clients under broader heterogeneity, as well as with a
larger model, are reported in Appendix F and Appendix G, respectively. Appendix H.1 provides
detailed per-task comparisons on the commonsense reasoning benchmark corresponding to Figures
3(a) and 3(b). The impact of varying the number of local updates H is studied in Appendix H.2,
while the extension to dynamic sketching ratios is presented in Appendix H.3. Finally, Appendix H.4
demonstrates the synergistic effect of integrating compression with sketching.

6 CONCLUSION

We have proposed FSLoRA, a novel collaborative LLM fine-tuning framework that introduces a
sketching mechanism to enhance both performance and efficiency in resource-constrained systems.
By maintaining large-rank LoRA modules on the server and allowing clients to selectively update
submatrices based on the sketching ratios, FSLoRA effectively adapts to heterogeneous commu-
nication and computational constraints. We provide a rigorous convergence analysis of FSLoRA
that characterizes how the sketching ratios affect the convergence rate. Finally, we confirmed the
effectiveness of FSLoRA through extensive experiments across multiple datasets and models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

This paper provides all the necessary information to reproduce the main experimental results. The
datasets used are publicly available, while the model architectures, hyperparameters, and training
details are documented in Section 5. The full implementation code is included in the supplementary
material of our submission.

LLM USAGE

We used ChatGPT (GPT-5), as an assistive tool only for improving the clarity and readability of the
manuscript. The LLM was employed to polish grammar and rephrase sentences for conciseness. It
was not used for research ideation, methodological design, and experimental implementation. All
scientific content, including problem formulation, algorithm development, analysis, and experiments,
was entirely conceived and executed by the authors.

REFERENCES

J. Bai, D. Chen, B. Qian, L. Yao, and Y. Li. Federated fine-tuning of large language models under
heterogeneous tasks and client resources. arXiv preprint arXiv:2402.11505, 2024.

Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about physical commonsense in natural
language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
7432–7439, 2020.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. SIAM
review, 60(2):223–311, 2018.

S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

Y. Byun and J. Lee. Towards federated low-rank adaptation of language models with rank hetero-
geneity. arXiv preprint arXiv:2406.17477, 2024.

N. Charalambides and A. Mazumdar. Distributed hybrid sketching for l2-embeddings. arXiv preprint
arXiv:2412.20301, 2024.

C. Chen, X. Feng, J. Zhou, J. Yin, and X. Zheng. Federated large language model: A position paper.
arXiv preprint arXiv:2307.08925, 2023.

Y. J. Cho, L. Liu, Z. Xu, A. Fahrezi, and G. Joshi. Heterogeneous LoRA for federated fine-tuning of
on-device foundation models. arXiv preprint arXiv:2401.06432, 2024.

C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq: Exploring
the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044, 2019.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you have
solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457,
2018.

Y. Demidovich, G. Malinovsky, E. Shulgin, and P. Richtárik. Mast: Model-agnostic sparsified
training. arXiv preprint arXiv:2311.16086, 2023.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,
A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

D. Fan, B. Messmer, and M. Jaggi. On-device collaborative language modeling via a mixture of
generalists and specialists. arXiv preprint arXiv:2409.13931, 2024.

W. Fang, Z. Yu, Y. Jiang, Y. Shi, C. N. Jones, and Y. Zhou. Communication-efficient stochastic
zeroth-order optimization for federated learning. IEEE Transactions on Signal Processing, 70:
5058–5073, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

W. Fang, D.-J. Han, E. Chen, S. Wang, and C. G. Brinton. Hierarchical federated learning with
multi-timescale gradient correction. arXiv preprint arXiv:2409.18448, 2024.

R. M. Gower and P. Richtárik. Randomized iterative methods for linear systems. SIAM Journal on
Matrix Analysis and Applications, 36(4):1660–1690, 2015.

P. Guo, S. Zeng, Y. Wang, H. Fan, F. Wang, and L. Qu. Selective aggregation for low-rank adaptation
in federated learning. arXiv preprint arXiv:2410.01463, 2025.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Z. Hu, L. Wang, Y. Lan, W. Xu, E.-P. Lim, L. Bing, X. Xu, S. Poria, and R. K.-W. Lee. LLM-adapters:
An adapter family for parameter-efficient fine-tuning of large language models. arXiv preprint
arXiv:2304.01933, 2023.

D. Kalajdzievski. A rank stabilization scaling factor for fine-tuning with LoRA. arXiv preprint
arXiv:2312.03732, 2023.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic
controlled averaging for federated learning. In International conference on machine learning,
pages 5132–5143. PMLR, 2020.

A. Khaled, K. Mishchenko, and P. Richtárik. Tighter theory for local sgd on identical and heteroge-
neous data. In International Conference on Artificial Intelligence and Statistics, pages 4519–4529.
PMLR, 2020.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified theory of decentralized sgd
with changing topology and local updates. In International conference on machine learning, pages
5381–5393. PMLR, 2020.

J. Koo, M. Jang, and J. Ok. Towards robust and efficient federated low-rank adaptation with
heterogeneous clients. arXiv preprint arXiv:2410.22815, 2024.

K. Kuo, A. Raje, K. Rajesh, and V. Smith. Federated LoRA with sparse communication. arXiv
preprint arXiv:2406.05233, 2024.

B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

J. Liu, F. Shang, Y. Liu, H. Liu, Y. Li, and Y. Gong. FedBCGD: Communication-efficient accelerated
block coordinate gradient descent for federated learning. In Proceedings of the 32nd ACM
International Conference on Multimedia, pages 2955–2963, 2024.

Y. Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
364, 2019.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct electricity? a new
dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

J. Nicolas, M. Maouche, S. B. Mokhtar, and M. Coates. Communication efficient, differentially private
distributed optimization using correlation-aware sketching. arXiv preprint arXiv:2507.03545, 2025.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

M. Sap, H. Rashkin, D. Chen, R. LeBras, and Y. Choi. Socialiqa: Commonsense reasoning about
social interactions. arXiv preprint arXiv:1904.09728, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

T. Sarlos. Improved approximation algorithms for large matrices via random projections. In 2006
47th annual IEEE symposium on foundations of computer science (FOCS’06), pages 143–152.
IEEE, 2006.

M. Shrivastava, B. Isik, Q. Li, S. Koyejo, and A. Banerjee. Sketching for distributed deep learning: A
sharper analysis. Advances in Neural Information Processing Systems, 37:6417–6447, 2024.

R. Shuttleworth, J. Andreas, A. Torralba, and P. Sharma. LoRA vs full fine-tuning: An illusion of
equivalence. arXiv preprint arXiv:2410.21228, 2024.

Y. Sun, Z. Li, Y. Li, and B. Ding. Improving LoRA in privacy-preserving federated learning. arXiv
preprint arXiv:2403.12313, 2024.

A. Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. A novel framework for the analysis and design of
heterogeneous federated learning. IEEE Transactions on Signal Processing, 69:5234–5249, 2021.

R. Wang, Y. Ouyang, and W. Xu. Iterative double sketching for faster least-squares optimization. In
International Conference on Machine Learning, pages 22935–22963. PMLR, 2022.

Z. Wang, Z. Shen, Y. He, G. Sun, H. Wang, L. Lyu, and A. Li. FLoRA: Federated fine-tuning large
language models with heterogeneous low-rank adaptations. arXiv preprint arXiv:2409.05976,
2024.

R. Ye, W. Wang, J. Chai, D. Li, Z. Li, Y. Xu, Y. Du, Y. Wang, and S. Chen. Openfedllm: Training
large language models on decentralized private data via federated learning. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6137–6147,
2024.

X. Yi, S. Zhang, T. Yang, and K. H. Johansson. Zeroth-order algorithms for stochastic distributed
nonconvex optimization. Automatica, 142:110353, 2022.

H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster convergence and less communication:
Demystifying why model averaging works for deep learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pages 5693–5700, 2019.

R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really finish
your sentence? arXiv preprint arXiv:1905.07830, 2019.

J. Zhang, S. Vahidian, M. Kuo, C. Li, R. Zhang, T. Yu, G. Wang, and Y. Chen. Towards building the
federatedgpt: Federated instruction tuning. In ICASSP 2024-2024 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 6915–6919. IEEE, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A Comparison of Computation, Memory, and Communication 14

B Difference between FSLoRA and FedBCGD 15

C Justification for Random-k Sketching 15

D Compatibility of FSLoRA with Secure Aggregation 16

E Empirical Validation of Assumptions 16

F Evaluation under Broader Heterogeneity and Increased Number of Clients 17

F.1 Increasing Resource Heterogeneity and the Number of Clients 17

F.2 Further Increasing the Number of Clients . 18

F.3 Varying the Level of Data Heterogeneity . 19

G Experiments on LLaMA-7B 19

H Further Experiments 20

H.1 Further Details on the Ablation Study . 20

H.2 Impact of Local Updates . 21

H.3 Dynamic Sketching Ratios . 22

H.4 Integration of Sketching and Top-k Compression 22

I Implementation Details 23

I.1 Details on Hyperparameters . 23

I.2 Details on Datasets . 23

I.2.1 GLUE Benchmark . 23

I.2.2 Commonsense Reasoning Benchmark . 24

J Proof of the Theoretical Results 26

J.1 Preliminaries . 26

J.2 Proof of Lemma 3.2 . 27

J.3 Proof of Theorem 4.4 . 27

J.4 Proof of Proposition J.5 . 30

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A COMPARISON OF COMPUTATION, MEMORY, AND COMMUNICATION

Computation and memory: Let P and q denote the memory cost of the full model and the global
LoRA module (rank r), respectively. The computational cost is expressed with the big O notation.
Forward and backward computations, as well as activation memory, are omitted as they are identical
across all the considered methods. The results are summarized in Tables A.1 and A.2, where m and n
denote the shape of the base model, ki denotes the LoRA rank for client i, H denotes the number of
iterations per round, and N is the number of clients. Additionally, the results for the vanilla Federated
LoRA, denoted as FedLoRA, are reported under the case of homogeneous LoRA ranks, i,e., ki = r.

Table A.1: Client-side computation load and memory usage comparison.

Method Memory Computation (per round)

FedLoRA P + q O(Hr(m+ n))
HeteroLoRA P + ki

r q O(Hki(m+ n))
FlexLoRA P + ki

r q O(Hki(m+ n))

FLoRA P +max
{∑N

i=1
ki

r q, P
}

O
(
Hki(m+ n)) + (

∑N
i=1 ki)mn+mn

)
FSLoRA P+ ki

r q O(Hki(m+ n))

Table A.2: Server-side computation load and memory usage comparison.

Method Memory Computation (per round)

FedLoRA Nq O(N(m+ n)r)

HeteroLoRA
∑N

i=1
ki

r q O(N(m+ n)r)

FlexLoRA max
{∑N

i=1
ki

r q, 2P
}

O
(
(
∑N

i=1 ki)mn+Nmn+min{m,n}mn
)

FLoRA
∑N

i=1
ki

r q O
(
(
∑N

i=1 ki)(m+ n)
)

FSLoRA
∑N

i=1
ki

r q O(N(m+ n)r)

As shown in Tables A.1 and A.2, FSLoRA matches HetLoRA in both computation and memory cost.
FLoRA introduces additional client-side overhead due to merging LoRA modules. FlexLoRA incurs
extra server-side costs from conducting SVD on the full model. In summary, FSLoRA guarantees
convergence with minimum overhead.

Communication: We detailed the communication load for baselines and our methods in Table A.3,
where q denotes the communication cost of a global LoRA module with rank r, ki denotes the local
LoRA rank for client i, m and n denote the shape of the base model, and N denotes the number of
clients.

Table A.3: Communication complexity, assuming float 32 parameters and binary sketching indices.

FedLoRA HeteroLoRA FlexLoRA FLoRA FSLoRA

Uplink q ki

r q
ki

r q
ki

r q
ki

r q

Downlink q q q
∑N

i=1
ki

r q q(1 + Nr
32mn)

For the uplink, all four heterogeneous LoRA algorithms incur the same communication overhead for
transmitting updated local LoRA modules, which is lower than that of FedLoRA. For the downlink,
FLoRA requires broadcasting the stacked LoRA modules, while HeteroLoRA and FlexLoRA broad-
cast the updated global LoRA modules. FSLoRA, on the other hand, broadcasts both the global LoRA
modules and additional sketching matrices. The extra communication introduced by the sketching
matrices is negligible compared to that of the global LoRA modules, as it consists only of binary
sketching indices (i.e., the diagonal elements of the sketching matrix). For instance, in the case of
the LLaMA-3.2-3B model under our experimental LoRA configuration, the global LoRA modules
contain 66,060,288 parameters, equivalent to approximately 252 MB when using float32. With a

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

global rank of r = 64, the sketching indices require only 64 bits per client, covering all LoRA layers.
Even with 100 clients, the total sketching overhead is merely 0.78 KB, which accounts for only
0.0003% of the global LoRA modules.

B DIFFERENCE BETWEEN FSLORA AND FEDBCGD

Both FSLoRA and federated block coordinate gradient descent (FedBCGD) (Liu et al., 2024) are
motivated by client heterogeneity but are designed for fundamentally different deployment contexts.
FedBCGD partitions the full model x = [x1, . . . ,xN ,xs], assigning each block xj to a subset of
clients with similar resource constraints, while the shared block xs is optimized across all clients.
While this block-partitioning strategy is effective for smaller models, it relies on explicit and static
allocation, which can limit scalability and flexibility. As such, FedBCGD and similar block coordinate
methods based on the full model are less suitable for federated LLM fine-tuning.

FSLoRA, in contrast, builds on LoRA and introduces sparse diagonal sketching. Given a sketch
matrix S, the gradients of the loss ℓ(W0 +BSA, ξ) with respect to the LoRA matrices B and A
are sparse: only selected columns of B and rows of A are updated in each round. By configuring
the rank and sparsity of the sketch matrix S, FSLoRA flexibly controls both the computational and
communication load per client, enabling adaptation to heterogeneous client capabilities.

The distinctions between FedBCGD and FSLoRA are summarized in Table B.1. To wrap up, these
two algorithms are tailored for distinct purposes and deployment contexts.

Table B.1: Conceptual distinctions between FSLoRA and FedBCGD.

Aspect FedBCGD FSLoRA

Partition Type Explicit & static Random & sketching-based
Model Scope Full model LoRA modules
Adaptation Strategy Assign different blocks Adjust sketch rank (sparsity)

C JUSTIFICATION FOR RANDOM-k SKETCHING

FSLoRA is built upon Random-k diagonal sketching due to two key properties:

• Submatrix selection. Given a sparse diagonal matrix Si, we have

BSiA =
∑
j∈Ii

sjbja
⊤
j = [bj]j∈Ii

diag{sj}j∈Ii
[a⊤j]j∈Ii

,

where Ii corresponds to the index set of non-zero diagonal entries of Si and bj and a⊤j denote
the j-th column of module B and the j-th row of module A, respectively. In other words, with
Random-k sketching, only a subset of B’s columns and A’s rows are activated for client i. The
sparse diagonal structure effectively reduces local training cost for each client.

• Unbiasedness for convergence. When Si is a Random-k diagonal matrix with ki nonzero diagonal
entries sj = r

ki
, we have

E[BSiA] = BA.

This unbiasedness is critical for our convergence analysis.

Table C.1: Accuracy comparison of Random-k sketching and importance-based sketching under the
commonsense reasoning benchmark with the LLaMA-3.2-3B model. Random-k sketching achieves
better performance.

Importance metric ARC-c ARC-e BoolQ HSwag OBQA PIQA SIQA Wino Avg.

∥a∥∥b∥ 71.9 86.5 55.2 75.4 73.4 81.1 72.5 69.7 73.2
∥a∥+ ∥b∥ 72.1 86.4 64.5 76.8 70.8 82.2 71.3 69.3 74.2
Random-k 75.8 86.7 69.7 81.4 80.4 83.9 76.2 78.8 79.1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In addition, we experimentally compare Random-k sketching with importance-based sketching. For
importance-based sketching, we sample (sketch) ki components from {bja

⊤
j }rj=1 with probability

set as the importance scores, e.g., ∥bj∥2 + ∥aj∥2 or spectral norm ∥bj∥2 · ∥aj∥2. The results are
shown in Table C.1. The results show that Random-k diagonal sketching outperforms these choices
for importance-based sketching. This may be because these importance measures are heuristic
and do not reliably reflect actual contribution. Moreover, such sketching violates the unbiasedness
property, complicating theoretical guarantees. While improved importance-based methods may
enhance performance and remain a promising direction for future investigation, our current empirical
and theoretical results favor random sketching.

D COMPATIBILITY OF FSLORA WITH SECURE AGGREGATION

The aggregation of FSLoRA is compatible with secure aggregation. Taking the aggregation of module
B as an example, we illustrate this below.

In FSLoRA, client updates are sparse matrices with non-zero values only in columns indexed by
Ii ⊂ [r], size |Ii| = ki. With secure aggregation, each client apply additive masking:

B̃i = ∆Bi +Ri,

where mask Ri satisfies supp(Ri) ⊆ (u, v) : u ∈ [m], v ∈ Ii and
∑N

i=1 Ri = 0. That is, the
mask has non-zero entries only in the client’s active columns, and all masks together sum to zero to
preserve correctness. Such masks can be constructed following the classical protocol: for each pair
of clients (i, j), define a random matrix

Mij = −Mji ∈ Rm×r, supp(Mij) ⊆ (u, v) | u ∈ [m], v ∈ Ii ∩ Ij ,

and then construct its total mask

Ri =
∑
j>i

Mij −
∑
j<i

Mji.

During uploading, client i sends the masked ki non-zero columns of B̃i, and then the server adds the
corresponding padding and averages them as:

N∑
i=1

B̃i =

N∑
i=1

(∆Bi +Ri) =

N∑
i=1

∆Bi,

which matches the aggregation of module B in (5). The aggregation of module B in FSLoRA is thus
compatible with secure aggregation.

We can draw the same conclusion for module A under the same derivation.

E EMPIRICAL VALIDATION OF ASSUMPTIONS

In the context of LLM fine-tuning, both the magnitude of stochastic gradients and gradients in LLM
fine-tuning are in a mild range since:

• Transformer-based LLMs use LayerNorm and scaled softmax attention, which stabilize activations
and suppress gradient spikes.

• Fine-tuning starts from a well-pretrained model already near a local minimum, leading to smaller
gradients.

• The fine-tuning dataset does not typically contain strong contradictory signals to what the model
already knows, resulting in a relatively flat loss surface.

To further support this empirically, we report the statistics of the expected norm of the stochastic
gradients E∥∇Xℓ̃(X, ξ;S)∥ over approximately 4500 samples for 4 representative clients with
different sketching ratios. The table below reports the minimum and maximum expected norm among
30 randomly sampled model states X = [B;A].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table E.1: Statistics of the expected norm of stochastic gradients across clients.

Client ID Number of samples Rank Min Max

1 4580 4 0.1286 0.9499
2 4216 19 0.1284 0.7069
3 4873 9 0.1237 0.5774
4 5124 32 0.1499 0.8066

As we can see from Table E.1, the expected norm, i.e., Eξ∼Di,S∼Si∥∇Xℓ̃(X, ξ;S)∥, is in a moderate
range. Notably, the variance is upper-bounded by the expected squared gradient norm:

Eξ∼Di,S∼Si
∥∇Xℓ̃(X, ξ;S)−∇XfS

i (X)∥2 ≤ Eξ∼Di,S∼Si
∥∇Xℓ̃(X, ξ;S)∥2.

Therefore, it is generally not hard to find a σ and ρ to make Assumption 4.2 hold.

On the other hand, we have∥∥∇XfS
i (X)−∇XfS(X)

∥∥2
≤2
∥∥∇XfS

i (X)
∥∥2 + 2

∥∥∇XfS(X)
∥∥2

≤2
∥∥∇XfS

i (X)
∥∥2 + 2

1

N

N∑
i=1

∥∥∇XfS
i (X)

∥∥2
≤2Eξ∼Di,S∼Si∥∇Xℓ̃(X, ξ;S)∥2 + 2

1

N

N∑
i=1

Eξ∼Di,S∼Si∥∇Xℓ̃(X, ξ;S)∥2,

(7)

where the first inequality follows Cauchy-Schwarz inequality, while the last inequality follows
Jensen’s inequality. Thus, the deviation can be controlled by the expected gradient norm, which we
empirically found to be moderate (see Table E.1). Hence, it is reasonable to impose an upper bound
on
∥∥∇XfS

i (X)−∇XfS(X)
∥∥2 as in Assumption 4.3.

F EVALUATION UNDER BROADER HETEROGENEITY AND INCREASED
NUMBER OF CLIENTS

To accommodate a larger number of clients, we extend FSLoRA (Algorithm 1) to support partial
client participation. Specifically, at each round, the server samples a subset of clients, distributes
the current global LoRA modules to them, and aggregates only the updates from these clients.
Throughout this section, we fix the partial participation size to 10, i.e., 10 clients are sampled in each
round.

F.1 INCREASING RESOURCE HETEROGENEITY AND THE NUMBER OF CLIENTS

We extend our experiments on LLaMA-3.2-3B with the commonsense reasoning benchmark to 50
clients. We adopt Dirichlet-based partitioning for dataset splits. Specifically, the commonsense
reasoning benchmark includes 8 tasks, and we partitioned them based on the Dirichlet distribution
to construct task heterogeneity among 50 clients. The Dirichlet concentration parameter is set to
α = 0.1. We simulate client resource heterogeneity via different LoRA rank distributions (beyond
the limited sketching ratio considered in Section 5). More capable clients are assigned higher ranks,
reflecting varying compute capacities. We consider two different rank distributions: normal and
heavy-tail distributions in the range [4, 64].

Normal distribution: Ranks are sampled from a normal distribution with mean µ = a+b
2 and

standard deviation σ = b−a
6 , where a = 4 and b = 64. This models a balanced distribution of client

capabilities centered around the middle of the range.

Heavy-tail distribution: We sample ranks using an inverse log-normal distribution. Specifically,
we draw xi ∼ LogNormal(µ, σ) with µ = log

(
a+b
4

)
and σ = 1.0, then set ki = 1/xi and apply

min-max normalization to scale values into the range [a, b]. This results in a heavy-tailed distribution

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where most clients receive low ranks, reflecting a scenario with many low-capability clients and a
few high-capability ones.

Table F.1: Accuracy comparison under different client heterogeneity settings. FSLoRA outperforms
baseline methods across both normal and heavy-tail LoRA rank distributions.

Rank setup Method ARC-c ARC-e BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Avg.

Normal

HeteroLoRA 73.38 85.82 62.17 71.23 77.40 80.14 74.72 72.53 74.67
FlexLoRA 74.23 87.84 68.37 79.77 76.00 82.97 75.90 78.13 77.90
FLoRA 68.17 83.75 64.93 75.67 71.40 77.20 71.24 70.09 72.81
FSLoRA 75.77 86.95 69.67 81.53 80.60 84.06 76.20 78.85 79.20

Heavy-tail

HeteroLoRA 72.44 86.78 63.60 73.10 72.00 81.34 71.65 68.75 73.71
FlexLoRA 73.04 86.70 62.23 75.57 78.00 81.12 74.77 73.32 75.59
FLoRA 67.92 81.90 64.90 72.77 74.00 80.41 75.28 70.24 73.43
FSLoRA 75.77 86.70 69.67 81.40 80.40 83.90 76.15 78.77 79.10

As shown in Table F.1, FSLoRA outperforms other methods under both heterogeneity settings. As we
move from normal to heavy-tail, where more clients are low-resource, overall performance decreases
for all methods. However, FSLoRA exhibits the smallest drop, demonstrating stronger robustness to
extreme client heterogeneity.

In Figure 4, we compare the convergence behavior of FSLoRA and three baseline methods under the
aforementioned two types of client heterogeneity. Under the normal distribution, FlexLoRA exhibits
fast initial progress but falls behind FSLoRA in final accuracy, likely due to approximation errors
introduced by truncated SVD. This issue is exacerbated in the heavy-tail distribution, where low-rank
clients dominate and SVD truncation causes greater distortion, further degrading FlexLoRA’s perfor-
mance. Similarly, HeteroLoRA’s reliance on zero-padding reduces optimization efficiency, preventing
it from achieving higher accuracy. FLoRA fails to show steady improvement as communication
progresses. One potential reason is that frequent model merging and random reinitialization of LoRA
modules in each round disrupt the convergence continuity. In contrast, FSLoRA demonstrates robust
and stable convergence across both scenarios, achieving the highest overall accuracy.

0 50 100 150 200
Communication Round

65

70

75

80

Te
st

in
g

A
cc

ur
ac

y
(%

)

(a) Normal Distribution

0 50 100 150 200
Communication Round

65

70

75

80

(b) Heavy-Tail Distribution

FSLoRA FlexLoRA FLoRA HeteroLoRA

Figure 4: Convergence behavior of FSLoRA and baselines on the commonsense reasoning benchmark
with the LLaMA-3.2-3B model. Notably, FSLoRA’s per-round communication cost is at most equal
to the baselines (as detailed in Appendix A). Testing accuracy is averaged over eight tasks.

F.2 FURTHER INCREASING THE NUMBER OF CLIENTS

We further evaluated the performance of FSLoRA by increasing the number of clients to 100. The
results are presented in Table F.2. In this setting, local ranks follow a heavy-tailed distribution as
described in the previous subsection, and all other experimental configurations remain unchanged.
As shown in the table, FSLoRA maintains its advantage in terms of the average performance when
scaling to more clients.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table F.2: Accuracy comparison when the number of clients is N = 100. FSLoRA maintains its
advantage in terms of the average accuracy.

Method ARC-c ARC-e BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Avg.

HeteroLoRA 71.76 86.24 62.57 68.07 76.60 79.38 74.10 69.69 73.55
FlexLoRA 73.38 87.54 69.03 75.27 78.60 80.47 74.16 73.80 76.53
FLoRA 69.97 83.25 67.10 71.67 73.60 78.94 72.21 70.80 73.44
FSLoRA 74.40 87.54 70.13 79.90 79.40 83.57 76.51 78.93 78.80

F.3 VARYING THE LEVEL OF DATA HETEROGENEITY

In Table F.3, we investigate the impact of the degree of data heterogeneity on performance. We
increase the heterogeneity by decreasing the Dirichlet concentration parameter from α = 1 to
α = 0.1. The local ranks follow the heavy-tail distribution described in the previous subsection,
and all other experimental configurations remain consistent with Appendix F.1. As observed from
Table F.3, the performance of all methods degrades as heterogeneity increases. FSLoRA consistently
achieves higher accuracy.

Table F.3: Accuracy comparison under different data heterogeneity settings. FSLoRA maintains its
advantage over the baselines as the data heterogeneity increases. The number of clients is set to 50.

Data setup Method ARC-c ARC-e BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Avg.

Dir(1)

HeteroLoRA 72.18 86.11 62.57 73.10 77.60 79.82 74.26 69.46 74.39
FlexLoRA 74.06 87.25 65.67 74.90 78.80 81.01 74.16 74.27 76.27
FLoRA 70.14 83.29 67.27 71.60 73.60 78.73 72.16 70.96 73.47
FSLoRA 75.85 87.50 70.93 81.47 81.00 82.86 76.66 78.53 79.35

Dir(0.1)

HeteroLoRA 72.44 86.78 63.60 73.10 72.00 81.34 71.65 68.75 73.71
FlexLoRA 73.04 86.70 62.23 75.57 78.00 81.12 74.77 73.32 75.59
FLoRA 67.92 81.90 64.90 72.77 74.00 80.41 75.28 70.24 73.43
FSLoRA 75.77 86.70 69.67 81.40 80.40 83.90 76.15 78.77 79.10

G EXPERIMENTS ON LLAMA-7B

Although our primary focus is on models suitable for client-side deployment, such as RoBERTa and
LLaMA-3.2-3B models, we also include experiments on the larger LLaMA-7B model to demonstrate
the scalability of FSLoRA in more complex models. Specifically, we fine-tune the LLaMA-7B
model on the Wizard, Dolly-15k, and Alpaca datasets and evaluate it on 1444 MMLU samples
(available at: https://github.com/ATP-1010/FederatedLLM). For Wizard and Dolly-15k, we adopt
the same heterogeneous data partitioning as (Wang et al., 2024). Since the Alpaca dataset lacks
a clear task or domain structure, we apply a uniform random partitioning strategy to distribute
the data across clients. We tune the q proj and v proj modules and set the local LoRA ranks
ki = [64, 32, 16, 16, 8, 8, 4, 4, 4, 4] for 10 clients. The parameter settings are aligned with those in
(Wang et al., 2024).

Table G.1: Performance comparison on LLaMA-7B model.

Method Wizard Dolly-15k Alpaca Avg

HeteroLoRA 27.15 26.70 28.74 27.53
FlexLoRA 28.25 35.60 30.40 31.42
FLoRA 27.91 28.50 29.54 28.65
FSLoRA 30.33 40.79 30.68 33.93

As shown in Table G.1, FSLoRA achieves the highest average performance across all three datasets
compared to baselines. These results demonstrate FSLoRA’s potential for effective fine-tuning with
the large-scale LLaMA-7B model under heterogeneous client settings.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H FURTHER EXPERIMENTS

In this section, we provide additional results, including detailed per-task comparisons from the
commonsense reasoning benchmark corresponding to Figures 3(a) and 3(b). In addition, we further
investigate the impact of the number of local updates H on the convergence, the robustness of
FSLoRA under dynamic sketching ratio, and the integration of communication compression and
sketching.

H.1 FURTHER DETAILS ON THE ABLATION STUDY

Impact of sketching: In Figure 5, we compare the performance of FSLoRA with and without
sketching on eight tasks from the commonsense reasoning benchmark using the LLaMA-3.2-3B
model. Notably, FSLoRA without sketching is equivalent to the vanilla Federated LoRA. For
FSLoRA with sketching, we apply a uniform sketching ratio of ki/r = 0.5 across all distributed
clients. The uploading budget for each client is set to 200 times the size of the full global LoRA
modules at the corresponding rank. It is clear that FSLoRA with sketching consistently outperforms
its non-sketched counterpart across these eight tasks, demonstrating the effectiveness of sketching in
improving performance.

2 4 8 16 64
Rank (r)

68

70

72

74

76

Te
st

in
g

A
cc

ur
ac

y
(%

)

(a) ARC-Challenge

2 4 8 16 64
Rank (r)

85

86

87

88

(b) ARC-Easy

2 4 8 16 64
Rank (r)

64

66

68

70

(c) BoolQ

2 4 8 16 64
Rank (r)

50

60

70

80

(d) HellaSwag

2 4 8 16 64
Rank (r)

74

76

78

80

Te
st

in
g

A
cc

ur
ac

y
(%

)

(e) OBQA

2 4 8 16 64
Rank (r)

80

82

84

(f) PIQA

2 4 8 16 64
Rank (r)

72

74

76

(g) SIQA

2 4 8 16 64
Rank (r)

67.5

70.0

72.5

75.0

77.5

(h) WinoGrande

w/o Sketching (Federated LoRA) Sketching (FSLoRA)

Figure 5: Comparison of FSLoRA with and without sketching, with an upload budget 200× the
global LoRA module size at each rank. This is based on the commonsense reasoning benchmark and
the LLaMA-3.2-3B model. We observe that the sketching mechanism improves performance across
all considered tasks. The average accuracy of the eight tasks is shown in Figure 3(a).

Impact of the global rank: In Figure 6, we present the impact of the rank of the global LoRA modules
on FSLoRA’s performance across eight tasks from the commonsense reasoning benchmark. We
consider four configurations: 1) r = 8, ki/r = 1, 2) r = 16, ki/r = 0.5, 3) r = 32, ki/r = 0.25,
and 4) r = 64, ki/r = 0.125. The rank of submatrices updated by the clients at each iteration remains
consistent across all configurations (i.e., ki = 8), ensuring that the communication and computational
resources on the client side are kept fixed for all cases. In the ARC-Easy task, performance decreases
as the rank increases to 64, potentially due to overfitting. In general, FSLoRA shows improved
performance as the rank increases.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Communication Round

65

70

75
Te

st
in

g
A

cc
ur

ac
y

(%
)

(a) ARC-Challenge

0 50 100 150 200
Communication Round

82

84

86

88

(b) ARC-Easy

0 50 100 150 200
Communication Round

62.5

65.0

67.5

70.0

(c) BoolQ

0 50 100 150 200
Communication Round

50

60

70

80

(d) HellaSwag

0 50 100 150 200
Communication Round

65

70

75

80

Te
st

in
g

A
cc

ur
ac

y
(%

)

(e) OBQA

0 50 100 150 200
Communication Round

75

80

(f) PIQA

0 50 100 150 200
Communication Round

60

65

70

75

(g) SIQA

0 50 100 150 200
Communication Round

50

60

70

80

(h) WinoGrande

r= 8, ki/r= 1.000 r= 16, ki/r= 0.500 r= 32, ki/r= 0.250 r= 64, ki/r= 0.125

Figure 6: Impact of the rank of global LoRA modules on FSLoRA, given a fixed rank for the
updated submatrices at the clients. This is based on the commonsense reasoning benchmark and the
LLaMA-3.2-3B model. Overall, FSLoRA demonstrates improved performance as the global rank
increases. The average accuracy of the eight tasks is shown in Figure 3(b).

H.2 IMPACT OF LOCAL UPDATES

Based on the commonsense reasoning benchmark and the LLaMA-3.2-3B model, we evaluated
the convergence behavior of FSLoRA under varying numbers of local updates (i.e., H). The
experimental results are presented in Figure 7. In the low-to-moderate regime of local updates (i.e.,
H ∈ 10, 20, 100), FSLoRA demonstrates a clear acceleration in convergence as H increases. For
example, moving from H = 10 to H = 20 substantially reduces the number of communication
rounds required to reach the same level of testing accuracy, while further increasing H to 100 yields
even faster progress toward convergence. This observation indicates that a moderate increase in local
updates allows clients to improve communication efficiency. However, when the number of local
updates is pushed beyond this range (e.g., H = 200), no additional convergence gain is observed.
These findings align well with our theoretical analysis in Section 4, which shows that FSLoRA can
achieve a convergence speedup under certain conditions on H .

50 100 150 200
Communication Round

62

64

66

68

70

72

74

76

78

80

Te
st

in
g

A
cc

ur
ac

y
(%

)

H= 10

H= 20

H= 100

H= 200

Figure 7: Impact of the number of local updates on FSLoRA’s convergence. This is based on the
commonsense reasoning benchmark and the LLaMA-3.2-3B model. In a certain range, i.e., from 10
to 100, FSLoRA achieves a fast convergence as H increases.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H.3 DYNAMIC SKETCHING RATIOS

While our primary focus is on developing a heterogeneous federated LoRA method under a standard
static setup, following prior works (Wang et al., 2024; Cho et al., 2024; Bai et al., 2024), the proposed
FSLoRA algorithm can be naturally extended to dynamic, time-varying resource environments. The
modification is straightforward: we allow the sparsity levels, corresponding to the sketching ratios
of FSLoRA, of the matrices in the sketching set Si in Algorithm 1 to become time-varying, while
keeping the remaining steps unchanged.

We empirically validate the effectiveness of FLoRA under this dynamic setting. In the simulation,
we group clients into three capability levels low, medium, and high, assigned sketching ratio ranges
[0.125, 0.25], [0.25, 0.5], and [0.5, 1.0], respectively, to balance local training latencies across groups.
Within each range, the sketching ratios are allowed to vary dynamically. The results, reported in
Table H.1, show that FSLoRA maintains comparable performance when moving from the static to
the dynamic case, demonstrating its robustness under time-varying sketching ratios.

Table H.1: The performance of FSLoRA under static and dynamic sketching ratios. This is based
on the commonsense reasoning benchmark and the LLaMA-3.2-3B model. FSLoRA maintains
comparable performance when moving from the static to the dynamic case.

Ratios ARC-c ARC-e BoolQ HSwag OBQA PIQA SIQA Wino Avg.

Static 76.1 87.1 70.0 81.7 81.4 82.6 76.4 78.9 79.3
Dynamic 75.5 87.7 69.2 81.3 81.2 82.2 76.0 78.8 79.0

H.4 INTEGRATION OF SKETCHING AND TOP-K COMPRESSION

100 200 300 400 500 600
Communication Overhead (MB)

60

63

66

69

72

75

78

Te
st

in
g

A
cc

ur
ac

y
(%

)

top-k & ki/r= 0.125

top-k & ki/r= 0.250

top-k & ki/r= 0.500

top-k & ki/r= 1.000

Figure 8: Testing accuracy versus communication overhead using float 32 precision. Lower sketching
ratios achieve higher accuracy at the same communication cost, demonstrating that combining
sketching with top-k compression leads to more communication-efficient training.

Building on the commonsense reasoning benchmark and the LLaMA-3.2-3B model, we further
explore the integration of two orthogonal techniques, sketching and top-k compression, to further
reduce the uplink communication overhead of clients in FSLoRA.

Specifically, with sketching, each client activates and updates submatrices of the global LoRA weights,
[bj]j∈Ii

, [a⊤j]j∈Ii
, which are selected at the beginning of each round:

BSiA =
∑
j∈Ii

r

ki
bja

⊤
j =

r

ki
[bj]j∈Ii [a

⊤
j]j∈Ii ,

where bj and a⊤j denote the j-th column of module B and the j-th row of module A, respectively.
By limiting updates to submatrices [bj]j∈Ii

and [a⊤j]j∈Ii
, FSLoRA reduces communication and

computation. To further reduce communication cost, we can apply Top-k compression to the
uploading stage. For instance, instead of sending the full ∆[bj]j∈Ii

, each client transmits the
compressed update Topk(∆[bj]j∈Ii). Sketching selects the update submatrix at the beginning of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

each round, while compression further reduces its transmission cost at the uploading stage. These
two techniques operate at different stages and can jointly improve communication efficiency.

In our setup, the compression ratio is fixed at 0.5 for all methods, while the sketching ratio ki/r varies
over {0.125, 0.25, 0.5, 1}. Notably, FSLoRA with sketching ratio ki/r = 1 corresponds to the vanilla
Federated LoRA (i.e., without sketching). Figure 8 plots testing accuracy versus communication
overhead, where the x-axis represents the amount of data uploaded per client (in MB), assuming
parameters are stored in float 32 precision. The results clearly show that integrating sketching with
top-k compression further improves communication efficiency: methods with lower sketching ratios
consistently achieve higher accuracy under the same communication budget, highlighting the potential
of FSLoRA for scalable and communication-efficient collaborative LLM fine-tuning.

I IMPLEMENTATION DETAILS

I.1 DETAILS ON HYPERPARAMETERS

Unless stated otherwise, the hyperparameters used in this work are as follows.

Table I.1: The hyperparameters for RoBERTa & GLUE and LLaMA-3.2-3B & commonsense
reasoning benchmarks.

Hyperparameter RoBERTa & GLUE LLaMA-3.2-3B & commonsense reasoning

Dirichlet parameter 0.1 0.1

Batch size 16 16

LoRA dropout rate 0.1 0.1

Learning rate, γ 5e-4 3e-4

Communication round, T 200 200

Local iteration number, H 50 20

Target module [“query”, “value”, “classification head”] [“q proj”, “k proj”, “v proj”, “up proj”, “down proj”]

I.2 DETAILS ON DATASETS

I.2.1 GLUE BENCHMARK

GLUE is a widely recognized benchmark designed to assess the natural language understanding
capabilities of language models (Wang, 2018).

• CoLA focuses on whether a given sentence is acceptable according to linguistic rules. It evaluates
a model’s ability to recognize well-formed sentences.
▷ Input: A single sentence.
✩ Output: A label indicating whether the sentence is acceptable or unacceptable.

• SST-2 is designed for sentiment classification on movie reviews or short texts. It tests whether a
model can correctly identify positive or negative sentiment in a given sentence.
▷ Input: A single sentence.
✩ Output: A label indicating positive or negative sentiment.

• MRPC checks if two sentences are paraphrases of each other, i.e., if they mean the same thing.
▷ Input: Two sentences (‘sentence1’ and ‘sentence2’).
✩ Output: A label indicating either equivalent or not equivalent.

• QQP tests a model’s ability to determine if two questions ask the same thing.
▷ Input: Two questions.
✩ Output: A label indicating duplicate or not duplicate.

• MNLI tests whether a given hypothesis is entailed, contradicted, or neutral with respect to a
premise.
▷ Input: A premise (first sentence) and a hypothesis (second sentence).
✩ Output: A label indicating entailment, contradiction, or neutral.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• QNLI aims to determine if a context sentence correctly answers a given question.

▷ Input: A question and a sentence.

✩ Output: A label indicating the sentence answers the question or it does not.
• RTE provides pairs of sentences to see if one implies the other.

▷ Input: Two sentences (‘sentence1’ and ‘sentence2’)

✩ Output: A label indicating whether the meaning of one sentence is entailed from the other one.

I.2.2 COMMONSENSE REASONING BENCHMARK

The training set of the commonsense reasoning benchmark is a mixture of multiple datasets including
about 170K training samples from ARC-c/e (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag
(Zellers et al., 2019), OBQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), and WinoGrande (Sakaguchi et al., 2021) datasets.

• ARC-c/e contains the challenge and easy question set from the ARC dataset of genuine grade-school
level, multiple-choice science questions.

• BoolQ is a question-answering dataset with yes/no questions derived from natural, real-world
scenarios.

• HellaSwag includes questions for commonsense natural language inference, where a context and
multiple endings are given, requiring the most coherent ending to be selected.

• OBQA involves multi-step problem-solving that combines commonsense knowledge, reasoning,
and comprehension of accompanying textual information.

• PIQA focuses on questions requiring physical commonsense to solve. Each question offers two
answer choices.

• SIQA targets reasoning about human actions and their social implication.

• WinoGrande is designed as a binary-choice fill-in-the-blank task, this dataset evaluates the ability
to resolve ambiguous sentences through commonsense reasoning.

The input template, i.e., prompt format for these datasets is detailed in Table I.2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table I.2: The prompt template of the commonsense reasoning datasets (Hu et al., 2023).

Dataset Input Template

ARC-c/e

Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER 1]
Answer2: [ANSWER 2]
Answer3: [ANSWER 3]
Answer4: [ANSWER 4]
Answer format: answer1/answer2/answer3/answer4
the correct answer is [ANSWER]

BoolQ

Please answer the following question with true or false, question: [QUES-
TION]
Answer format: true/false
the correct answer is [ANSWER]

HellaSwag

Please choose the correct ending to complete the given sentence: [ACTIV-
ITY LABEL]: [CONTEXT]
Ending1: [ENDING 1]
Ending2: [ENDING 2]
Ending3: [ENDING 3]
Ending4: [ENDING 4]
Answer format: ending1/ending2/ending3/ending4
the correct answer is [ANSWER]

OBQA

Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER 1]
Answer2: [ANSWER 2]
Answer3: [ANSWER 3]
Answer4: [ANSWER 4]
Answer format: answer1/answer2/answer3/answer4
the correct answer is [ANSWER]

PIQA

Please choose the correct solution to the question: [QUESTION]
Solution1: [SOLUTION 1]
Solution2: [SOLUTION 2]
Answer format: solution1/solution2
the correct answer is [ANSWER]

SIQA

Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER 1]
Answer2: [ANSWER 2]
Answer3: [ANSWER 3]
Answer format: answer1/answer2/answer3
the correct answer is [ANSWER]

WinoGrande

Please choose the correct answer to fill in the blank to complete the given
sentence: [SENTENCE]
Option1: [OPTION 1]
Option2: [OPTION 2]
the correct answer is [ANSWER]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

J PROOF OF THE THEORETICAL RESULTS

J.1 PRELIMINARIES

Before presenting the proof of the main results, we first introduce some preliminary facts that will be
used later. Throughout this work, ∥ · ∥ denotes the Frobenius norm when applied to a matrix and the
ℓ2 norm when applied to a vector.

Lemma J.1. Suppose a sequence of independent random matrices {Pi}Ni=1 satisfy E[Pi] = 0,∀i.
Then,

E

∥∥∥∥∥ 1

N

N∑
i=1

Pi

∥∥∥∥∥
2

=
1

N2

N∑
i=1

E ∥Pi∥2 .

Lemma J.2. (Wang et al., 2021, Lemma 2) Suppose a sequence of random matrices {Pi}Ni=1 satisfy
E [Pi | Pi−1,Pi−2, . . . ,P1] = 0, ∀i. Then,

E

∥∥∥∥∥
N∑
i=1

Pi

∥∥∥∥∥
2
 =

N∑
i=1

E
[
∥Pi∥2

]
.

Lemma J.3. (Koloskova et al., 2020, Lemma 17) For any a0 ≥ 0, b ≥ 0, c ≥ 0, d > 0, there exist a
constant η ≤ 1

d such that

a0
Tη

+ bη + cη2 ≤ 2

(
a0b

T

) 1
2

+ 2c
1
3

(a0
T

) 2
3

+
da0
T

. (8)

Lemma J.4 (Random sketching bounds). Let S be a random diagonal sketching matrix of the form

S =
r

k

∑
j∈I

ej e
⊤
j ,

where e1, . . . , er ∈ Rr are standard unit basis vectors and I ⊆ {1, . . . , r} is chosen uniformly at
random with |I| = k. Then any matrix X we have

∥XS∥2 ≤ r2

k2
∥X∥2, (9)

and in expectation we have
ES

[
∥XS∥2

]
≤ r

k
∥X∥2. (10)

Proof. Since S is diagonal with exactly k diagonal entries equal to r
k and the rest zero, its largest

eigenvalue is r
k . Squaring gives

SS⊤ = S2 ⪯ r2

k2
I,

Equivalently,

x⊤(SS⊤
)
x ≤ r2

k2
∥x∥2, ∀x.

Setting x = xj to be the j-th column of X and summing over j implies

∥XS∥2 =
∑
j

∥S⊤ xj∥2 =
∑
j

x⊤
j (SS⊤)xj ≤ r2

k2

∑
j

∥xj∥2 =
r2

k2
∥X∥2,

which proves (9).

For the expected bound (10), note that each diagonal index j ∈ {1, . . . , r} is included in I with
probability k

r . Hence the expectation of S2 satisfies

ES

[
S2
]
=

r2

k2
E
[∑
j∈I

ej e
⊤
j

]
=

r2

k2
k

r
I =

r

k
I.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Thus for any vector x,

ES

[
∥S⊤x∥2

]
= ES

[
x⊤ SS⊤ x

]
= x⊤

(
E[S2]

)
x =

r

k
∥x∥2.

Summing over columns of X again establishes

ES

[
∥XS∥2

]
=
∑
j

ES

[
∥S⊤xj∥2

]
=
∑
j

x⊤
j

(
E[S2]

)
xj =

r

k
∥X∥2.

This completes the proof of Lemma J.4.

J.2 PROOF OF LEMMA 3.2

From the chain rule for matrix calculus, we know that:

∇Yg(XY) = X⊤∇g(XY), ∇Xg(XY) = ∇g(XY)Y⊤,

where ∇g(XY) denotes the gradient of g to XY. Applying this to ℓ(W0 +BSA, ξ), we proceed
as follows:
To compute the gradient with respect to B, set X = B and Y = SA:

∇Bℓ(W0 +BSA, ξ) = ∇ℓ(W0 +BSA, ξ)(SA)⊤.

Similarly, to compute the gradient with respect to A, set X = BS and Y = A:

∇Aℓ(W0 +BSA, ξ) = S⊤B⊤∇ℓ(W0 +BSA, ξ).

J.3 PROOF OF THEOREM 4.4

The proof of Theorem 4.4 relies on the following proposition.

Proposition J.5. Under Assumption 4.1, f̃i(X;S) = fi(BS,A), S ∈ Si, fS
i (X) =

ES∼Si
[f̃i(X;S)], and fS(X) = 1

N

∑N
i=1 f

S
i (X) are smooth with parameters L r2

k2
i

, L r
ki

, and(
1
N

∑N
i=1

r
ki

)
L, respectively.

The proof of Proposition J.5 is deferred to Appendix J.4. With this proposition, we are ready to prove
Theorem 4.4.

In FSLoRA, the update direction in (4) corresponds to the negative stochastic gradient of ℓ(W0 +

BSA, ξ) with respect to [B;A] for a given sketch St
i. We have defined ℓ̃(X, ξ;S) = ℓ(W0 +

BSA, ξ). The iterative equation for the proposed FSLoRA algorithm thus can be written as

Xt+1 = Xt − γ
1

N

N∑
i=1

H−1∑
h=0

∇Xℓ̃(Xt,h
i , ξt,hi ;St

i), (11)

where gt,h
i denotes the stochastic gradient ∇Xℓ̃(Xt,h

i , ξt,hi ;St
i). Based on the smoothness of fS(X),

i.e., Proposition J.5, we have

E[fS(Xt+1)] ≤ E[fS(Xt)]−E

〈
∇XfS(Xt), γ

1

N

N∑
i=1

H−1∑
h=0

gt,h
i

〉
︸ ︷︷ ︸

T1

+
γ2L̄

2
E

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
h=0

gt,h
i

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

,

(12)

where L̄ =
(

1
N

∑N
i=1

r
ki

)
L.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For T1, we have

T1 =−HE

〈
∇XfS(Xt), γ

1

NH

N∑
i=1

H−1∑
h=0

gt,h
i

〉

=−HE

〈
∇XfS(Xt), γ

1

NH

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

〉

=− γH

2
E
∥∥∇XfS(Xt)

∥∥2 − γH

2
E

∥∥∥∥∥ 1

NH

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

+
γH

2
E

∥∥∥∥∥∇XfS(Xt)− 1

NH

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

≤− γH

2
E
∥∥∇XfS(Xt)

∥∥2 − γH

2
E

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

+
γ

2

H−1∑
h=0

E

∥∥∥∥∥ 1

N

N∑
i=1

∇XfS
i (X

t)− 1

N

N∑
i=1

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

≤− γH

2
E
∥∥∇XfS(Xt)

∥∥2 − γ

2H
E

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

+
γHL2

2

1

NH

N∑
i=1

r2

k2i

H−1∑
h=0

E
∥∥∥Xt,h

i −Xt
∥∥∥2 , (13)

where the last inequalities follow Jensen’s inequality and Proposition J.5.

For T2, we have

T2 =E

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
h=0

(gt,h
i ∓∇XfS

i (X
t,h
i))

∥∥∥∥∥
2

≤ 2

N2

N∑
i=1

E

∥∥∥∥∥
H−1∑
h=0

(gt,h
i −∇XfS

i (X
t,h
i))

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

,

where the inequality follows the fact that E[
∑H−1

h=0 (g
t,h
i −∇XfS

i (X
t,h
i))] = 0 and the independence

between clients.

Furthermore, we bound the first term on the right-hand side of the above inequality as

E

∥∥∥∥∥
H−1∑
h=0

(gt,h
i −∇XfS

i (X
t,h
i))

∥∥∥∥∥
2

=

H−1∑
h=0

E
∥∥∥gt,h

i −∇XfS
i (X

t,h
i)
∥∥∥2 ≤ Hσ2 + ρ

H−1∑
h=0

E
∥∥∥∇XfS

i (X
t,h
i)
∥∥∥2 ,

where the equality follows Lemma J.2 and the inequality follows Assumption 4.2. For∥∥∥∇XfS
i (X

t,h
i)
∥∥∥2, utilizing Assumption 4.3 and Proposition J.5, we have

∥∥∥∇XfS
i (X

t,h
i)
∥∥∥2 =

∥∥∥∇XfS
i (X

t,h
i)∓∇XfS

i (X
t)∓∇XfS(Xt)

∥∥∥2
≤3
∥∥∥∇XfS

i (X
t,h
i)−∇XfS

i (X
t)
∥∥∥2 + 3

∥∥∇XfS
i (X

t)−∇XfS(Xt)
∥∥2 + 3

∥∥∇XfS(Xt)
∥∥2

≤3
r2

k2i
L2
∥∥∥Xt,h

i −Xt
∥∥∥2 + 3(ch + 1)∥∇XfS(Xt)∥2+3ρδ2h. (14)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Combining the above three inequalities gives rise to

T2 ≤2H

N
(σ2 + 3ρδ2h) + 2E

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

+
6ρ(ch + 1)H

N
E∥∇XfS(Xt)∥2

+
6ρHL2

N
T3, (15)

where T3 = 1
NH

∑N
i=1

r2

k2
i

∑H−1
h=0 E

∥∥∥Xt,h
i −Xt

∥∥∥2. Combining (12), (13), and (15) yields

E[fS(Xt+1)] ≤E[fS(Xt)]− (
γH

2
− 3γ2ρ(ch + 1)

H

N
L̄)E

∥∥∇XfS(Xt)
∥∥2 + γ2L̄

H

N
(σ2 + 3ρσ2

h)

− (
γ

2H
− γ2L̄)E

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
h=0

∇XfS
i (X

t,h
i)

∥∥∥∥∥
2

+ (
γHL2

2
+ 3γ2ρL̄L2H

N
)T3,

where L̄ =
(

1
N

∑N
i=1

r
ki

)
L. Let γ ≤ min{ N

24ρ(ch+1)HL̄
, 1
2HL̄

, N
6ρL̄

}, we have

E[fS(Xt+1)] ≤E[fS(Xt)]− 3γH

8
E
∥∥∇XfS(Xt)

∥∥2 + γ2L̄
H

N
(σ2 + 3ρσ2

h) +
5γ

8
HL2T3. (16)

For T3, we have

T3 =
1

NH

N∑
i=1

r2

k2i

H−1∑
h=0

E

∥∥∥∥∥γ
h−1∑
τ=0

gt,τ
i

∥∥∥∥∥
2

=γ2 1

NH

N∑
i=1

r2

k2i

H−1∑
h=0

E

∥∥∥∥∥
h−1∑
τ=0

(gt,τ
i ∓∇XfS

i (X
t,τ
i))

∥∥∥∥∥
2

≤2γ2 1

NH

N∑
i=1

r2

k2i

H−1∑
h=0

h−1∑
τ=0

E
∥∥gt,τ

i −∇XfS
i (X

t,τ
i)
∥∥2 + 2γ2 1

NH

N∑
i=1

r2

k2i

H−1∑
h=0

h

h−1∑
τ=0

E
∥∥∇XfS

i (X
t,τ
i)
∥∥2

≤2γ2Hσ2

(
1

N

N∑
i=1

r2

k2i

)
+

2ργ2

NH

N∑
i=1

r2

k2i

H−1∑
h=0

h−1∑
τ=0

E
∥∥∇XfS

i (X
t,τ
i)
∥∥2

+
2γ2

NH

N∑
i=1

r2

k2i

H−1∑
h=0

h

h−1∑
τ=0

E
∥∥∇XfS

i (X
t,τ
i)
∥∥2

≤2γ2Hσ2

(
1

N

N∑
i=1

r2

k2i

)
+

2(ρ+ 1)γ2H

N

N∑
i=1

r2

k2i

H−1∑
h=0

E
∥∥∇XfS

i (X
t,τ
i)
∥∥2 . (17)

Plugging inequality (14) into inequality (17) yeilds

T3 ≤2γ2H

(
1

N

N∑
i=1

r2

k2i

)
σ2 + 6(ρ+ 1)γ2H2

(
1

N

N∑
i=1

r2

k2i

)
σ2
h

+ 6(ρ+ 1)γ2L2H2T3 + 6(ρ+ 1)

(
1

N

N∑
i=1

r2

k2i

)
(ch + 1)γ2H2E

∥∥∇XfS(Xt)
∥∥2 . (18)

Denote κ = 1
N

∑N
i=1

r2

k2
i

, we simplify the above inequality as

(1− 6(ρ+ 1)γ2L2H2)T3 ≤ 2κγ2H2(σ2
g + 3(ρ+ 1)σ2

h) + 6κ(ρ+ 1)(ch + 1)γ2H2E
∥∥∇XfS(Xt)

∥∥2 .
Let γ ≤ 1√

12(ρ+1)HL
, we get the bound for T3

T3 ≤ 4κγ2H2(σ2 + 3(ρ+ 1)σ2
h) + 12κ(ρ+ 1)(ch + 1)γ2H2E

∥∥∇XfS(Xt)
∥∥2 . (19)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Plugging the bound for T3 into inequality (16) gives rise to

E[fS(Xt+1)] ≤E[fS(Xt)]− (
3γH

8
− 5γH

8
L2
(
12κ(ρ+ 1)(ch + 1)γ2H2)

)
E
∥∥∇XfS(Xt)

∥∥2
+ γ2L̄

H

N
(σ2 + 3ρσ2

h) +
5γ

8
HL2 · 4κγ2H2(σ2 + 3(ρ+ 1)σ2

h). (20)

Let γ ≤ 1

8
√

κ(ρ+1)(ch+1)HL
, we obtain

E[fS(Xt+1)] ≤E[fS(Xt)]− γH

4
E
∥∥∇XfS(Xt)

∥∥2 + γ2L̄
H

N
σ2
ρ +

5

2
κγ3H3L2σ2

ρ, (21)

where σ2
ρ = σ2 + 3(ρ+ 1)σ2

h.

Telescoping the above inequality from t = 0 to T − 1, we have

1

T

T−1∑
t=0

E
∥∥∇XfS(Xt)

∥∥2 ≤ 4
fS(X0)− f∗

γTH
+ γ

4L̄

N
σ2
ρ + 10γ2H2L̃Lσ2

ρ, (22)

where f∗ denotes the lower bound of fS(X) and L̃ = κL.

Applying Lemma J.3 to the above inequality and letting d = H , it follows that there exists a learning
rate γ ≤ min{ N

24ρ(ch+1)HL̄
, 1

8
√

L̃L(ρ+1)(ch+1)H
, 1
H } such that

1

T

T−1∑
t=0

E
∥∥∇XfS(Xt)

∥∥2≤8

√
L̄F0σ2

ρ
√
NTH

+ 10(L̃L)
1
3

(
F0σρ

T

) 2
3

+
4F0

T
.

This completes the proof of Theorem 4.4.

J.4 PROOF OF PROPOSITION J.5

i) For illustration, we need to recover X to [B;A] in this proof. According to the definition of
f̃i(X;S) and fi(B,A), we have

f̃i(X;S) =f̃i(B,A;S) (23)
=Eξ∼Di

[ℓ(W0 +BSA, ξ)]

=fi(BS,A). (24)
As fi(B,A) is L-smooth, we have

fi(BS+∆BS,A+∆A) ≤ fi(BS,A) +

〈[
∇BSfi(BS,A)
∇Afi(BS,A)

]
,

[
∆BS
∆A

]〉
+

L

2

∥∥∥∥[∆BS
∆A

]∥∥∥∥2 .
(25)

According to (23) and (24), we have f̃i(B +∆B,A +∆A;S) = fi(BS +∆BS,A +∆A) and
f̃i(B,A;S) = fi(BS,A). Combining these with (25) gives rise to

f̃i(B+∆B,A+∆A;S) ≤ f̃i(B,A;S) +

〈[
∇BSfi(BS,A)
∇Afi(BS,A)

]
,

[
∆BS
∆A

]〉
+

L

2

∥∥∥∥[∆BS
∆A

]∥∥∥∥2 .
(26)

We denote
L(W0 +BSA) = f̃i(B,A;S) = Eξ∼Di

[ℓ(W0 +BSA, ξ)] . (27)

Note that ∇BSfi(BS,A) = ∇L(W0+BSA)A⊤ and ∇Afi(BS,A) = S⊤B⊤∇L(W0+BSA).
We thus have〈[

∇BSfi(BS;A)
∇Afi(BS;A)

]
,

[
∆BS
∆A

]〉
=

〈[
∇L(W0 +BSA)A⊤

S⊤B⊤∇L(W0 +BSA)

]
,

[
∆BS
∆A

]〉
=

〈[
∇L(W0 +BSA)A⊤S⊤

S⊤B⊤∇L(W0 +BSA)

]
,

[
∆B
∆A

]〉
=

〈[
∇Bf̃i(B,A;S)

∇Af̃i(B,A;S)

]
,

[
∆B
∆A

]〉
, (28)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

where the last equality follows the fact that f̃i(B,A;S) = L(W0 +BSA) defined in (27) and[
∇Bf̃i(B,A;S)

∇Af̃i(B,A;S)

]
=

[
∇L(W0 +BSA)A⊤S⊤

S⊤B⊤∇L(W0 +BSA)

]
.

Plugging (28) into (26) gives rise to

f̃i(B+∆B,A+∆A;S) ≤ f̃i(B,A;S) +

〈[
∇Bf̃i(B,A;S)

∇Af̃i(B,A;S)

]
,

[
∆B
∆A

]〉
+

L

2

∥∥∥∥[∆BS
∆A

]∥∥∥∥2 .
(29)

In particular,
∥∥∥∥[∆BS

∆A

]∥∥∥∥2 = ∥∆BS∥2 + ∥∆A∥2. From (9), we know ∥∆BS∥2 ≤ r2

k2
i
∥∆B∥2.

Therefore, we have
∥∥∥∥[∆BS

∆A

]∥∥∥∥2 = r2

k2
i

∥∥∥∥[∆B
∆A

]∥∥∥∥2 . As a result, f̃i(B,A;S) (i.e., f̃i(X,S)) is L r2

k2
i

-

smooth.

ii) Note that fS
i (X) = ES∼Si [f̃i(X,S)]. Therefore, we further take expectation for (29) over S ∼ Si,

leading to

fS
i (B+∆B,A+∆A) ≤ fS

i (B,A) +

〈[
∇Bf

S
i (B,A)

∇AfS
i (B,A)

]
,

[
∆B
∆A

]〉
+

L

2
ES∼Si

∥∥∥∥[∆BS
∆A

]∥∥∥∥2 .
In particular, ES∼Si

∥∥∥∥[∆BS
∆A

]∥∥∥∥2 = ES∼Si
∥∆BS∥2 + ∥∆A∥2. From (10), we know

ES∼Si
∥∆BS∥2 ≤ r

ki
∥∆B∥2. In other words, ES∼Si

∥∥∥∥[∆BS
∆A

]∥∥∥∥2 = r
ki

∥∥∥∥[∆B
∆A

]∥∥∥∥2 . We thus claim

that fS
i (B,A) (i.e., fS

i (X)) is L r
ki

-smooth.

iii) Finally, for fS(X) = 1
N

∑N
i=1 f

S
i (X), we have

∇fS(X) =
1

N

N∑
i=1

∇fS
i (X).

Since fS
i (X) is L r

ki
-smooth, we thus have

∥∇fS
i (X)−∇fS

i (Y)∥ ≤ L
r

ki
∥X−Y∥, ∀X,Y.

To find the Lipschitz constant of fS(X), we analyze the difference between the gradients at two
points X and Y:

∥∇fS(X)−∇fS(Y)∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(
∇fS

i (X)−∇fS
i (Y)

)∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∥∇fS
i (X)−∇fS

i (Y)
∥∥

≤

(
1

N

N∑
i=1

r

ki
L

)
∥X−Y∥ .

(30)

Therefore, fS(X) is
(

1
N

∑N
i=1

r
ki
L
)

-smooth.

31

	Introduction
	Contributions
	Related Works

	Problem Background
	LoRA-based Federated LLM Fine-tuning
	Aren't the Existing Solutions Good Enough?

	Federated Sketching LoRA
	Our Formulation
	Sparsity in the Gradients
	FSLoRA Algorithm
	Comparison with Communication Compression

	Analysis
	Experiments
	Main Results Under Heterogeneous LoRA Setup
	Ablation Study

	Conclusion
	Comparison of Computation, Memory, and Communication
	Difference between FSLoRA and FedBCGD
	Justification for Random-k Sketching
	Compatibility of FSLoRA with Secure Aggregation
	Empirical Validation of Assumptions
	Evaluation under Broader Heterogeneity and Increased Number of Clients
	Increasing Resource Heterogeneity and the Number of Clients
	Further Increasing the Number of Clients
	Varying the Level of Data Heterogeneity

	Experiments on LLaMA-7B
	Further Experiments
	Further Details on the Ablation Study
	Impact of Local Updates
	Dynamic Sketching Ratios
	Integration of Sketching and Top-k Compression

	Implementation Details
	Details on Hyperparameters
	Details on Datasets
	GLUE Benchmark
	Commonsense Reasoning Benchmark

	Proof of the Theoretical Results
	Preliminaries
	Proof of Lemma 3.2
	Proof of Theorem 4.4
	Proof of Proposition J.5

