
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIT-BY-BIT: PROGRESSIVE QAT WITH OUTLIER CHAN-
NEL SPLITTING FOR STABLE LOW-BIT LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models (LLMs) at ultra–low precision remains challeng-
ing: direct low-bit quantization-aware training (QAT) often suffers from slow
convergence that demands substantial training budgets, as well as quantization
errors arising from heavy-tailed outlier channels and the accumulation of errors
across layers. To address these issues, we present BIT-BY-BIT, a progressive QAT
framework with outlier channel splitting. Our approach integrates three key com-
ponents: (1) block-wise progressive training that reduces precision stage by stage,
ensuring stable initialization for low-bit optimization; (2) rounding-aware outlier
channel splitting, which mitigates quantization error while acting as an identity
transform that preserves the quantized outputs; and (3) microscaling groups with
E4M3 scales to capture dynamic activation ranges aligned with OCP/NVIDIA
practices. Furthermore, we exploit the nested structure of integer quantization grids
to enable a single-run, once-for-any-precision model that can be directly deployed
at multiple bit-widths without retraining. We conduct comprehensive evaluations
under both weight-only and weight–activation quantization settings. Under W2A2
quantization, Bit-by-Bit narrows the perplexity gap with full-precision models
on WikiText2 to just 2.25, consistently outperforming BitDistiller by 24.19 and
EfficientQAT by 20.59 on Llama2-7b. Moreover, on the Llama3 family—known
for its quantization difficulty, Bit-by-Bit surpasses other QAT baselines. Code is
available in the Appendix.

1 INTRODUCTION

𝒂 	𝒇𝒖𝒍𝒍	𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒃 	𝟖𝒃𝒊𝒕

𝒄 	𝟒𝒃𝒊𝒕 𝒅 	𝟐𝒃𝒊𝒕

Figure 1: Loss landscapes under different pre-
cisions. The vertical axis denotes the loss, the
horizontal axes (α, β) represent random directions
in parameter space.

Large language models (LLMs), such as GPT-
5 (OpenAI, 2025) and DeepSeek (Liu et al.,
2024a), have demonstrated exceptional perfor-
mance on a wide range of natural language pro-
cessing tasks (Yang et al., 2019; Liu et al., 2019;
Talmor et al., 2018; Chowdhery et al., 2023;
Zheng et al., 2020) and have significantly im-
proved agent capabilities in applications such
as coding assistance (xAI, 2025). A key factor
behind this success is the scaling law (Kaplan
et al., 2020), which indicates that increasing
model size consistently improves performance.
However, rapid growth in parameter counts and
computational requirements introduces consid-
erable challenges: inference latency increases
sharply, and high resource demands hinder effi-
cient deployment, both in large-scale data cen-
ters and on resource-constrained edge devices.
These challenges have motivated extensive re-
search into LLM compression techniques, in-
cluding pruning, low-rank decomposition, and
quantization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝒂 𝒑𝒆𝒓	𝒕𝒆𝒏𝒔𝒐𝒓 𝒃 𝒈𝒓𝒐𝒖𝒑 = 𝟏𝟐𝟖 𝒄 𝒈𝒓𝒐𝒖𝒑 = 𝟔𝟒 𝒅 𝒈𝒓𝒐𝒖𝒑 = 𝟑𝟐

Figure 2: Value distributions of various group granularities showing (a) Low-bit values are nested
in the high-bit grid, (b) lower bits collapse representations; larger groups improve dynamic-range.

Among various compression techniques, quantization has emerged as a particularly promising strategy.
It effectively reduces model size by encoding weights and activations with fewer bits, and lowers
computation by enabling low-precision arithmetic. Existing approaches fall into two families: post-
training quantization (PTQ) and quantization-aware training (QAT). PTQ quantizes a pretrained
model with little or no retraining and thus dominated early work; however, it often degrades sharply
at ultralow precisions (≤ 4-bit) (Lin et al., 2024). By contrast, quantization-aware training (QAT)
incorporates the quantization process directly into the training loop to mitigate the quant error caused
by low-precision representation.

To achieve low bit, existing QAT methods have explored primarily on several directions: (i) modifying
the optimization objective via variants of knowledge distillation (Du et al., 2024; Chen et al., 2024a)
to better align with full-precision output distributions; (ii) improving discrete gradient estimation
through enhanced Straight-Through Estimators (STE) (Panferov et al., 2025; Malinovskii et al.,
2024) to suppress large-error gradients; (iii) designing more robust quantizers such as clipping
strategies and quantization grid (Chen et al., 2024a; Liu et al., 2025b; Du et al., 2024) to mitigate the
influence of non-salient values; (iv) employing fine-grained, stage-wise schedules for learning rates
and weight decay (Ma et al., 2025; 2024; Team et al., 2025); and (v) inserting orthogonal or smooth
transformations (e.g., Hadamard) into training (Choi et al., 2025; Panferov et al., 2025; Tan et al.,
2025; Wang et al., 2025) to reduce quantization errors introduced by outliers. Despite these advances,
existing approaches still face critical stability challenges during training. They often rely on massive
token budgets to converge to usable low-bit representations; demand extensive hyperparameter “wind
tunnel” tuning, particularly of learning rates, since low-bit weights require larger yet inherently
unstable updates; and introduce significant computational overhead from complex distillation losses,
which slow training and inflate memory usage due to the need to retain both teacher and student
logits. These challenges naturally raise the question: How can we mitigate quantization error and
achieve stable ultra-low-bit QAT?

𝒆𝒓
𝒓𝒐
𝒓

𝒃𝒍𝒐𝒄𝒌	𝒊𝒏𝒅𝒆𝒙

Figure 3: Layer-wise reconstruction and
validation errors across Transformer blocks,
showing error accumulation in later layers.

To address this, we first examine the loss landscapes
under different precisions (Figure 1). We observe that
as precision decreases, the loss landscape becomes in-
creasingly uneven and discontinuous, which can trap
the model in poor local minima. Moreover, this in-
duced weight distributions are difficult to represent at
low bit widths (Figure 2), making QAT optimization
inherently unstable in the ultra-low-bit regime. And
by further examining the quantization error across
different blocks (Figure 3), we find that later layers
suffer from significantly larger errors. This suggests
that the key challenge for ultra-low-bit QAT lies in
the accumulation of quantization error. So inspired
by (Zhuang et al., 2018), we propose Bit-by-Bit, a
progressive framework for stable ultra-low-bit QAT.
Our main contributions are:

• A progressive strategy anneals precision from high to low, quantizing weights first and activations
later to provide a well-conditioned start for the subsequent low-bit stage.

• Rounding-aware outlier channel splitting, which mitigates both outlier effects and rounding errors
while preserving quantized outputs.

• Microscaling conventions (e.g., MXFP4, NVFP4-style), aligned with OCP/NVIDIA formats, to
effectively capture dynamic ranges of full precision values.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our comprehensive evaluation on LLaMA-2/3 and Mistral under both weight-only (w2a16) and
weight–activation (w2a2) shows that BIT-BY-BIT consistently surpasses strong QAT baselines under
the same training budget in ultra–low-bit regimes. On LLaMA-2 7B with w2a2 quantization, it incurs
only merely +2.25 perplexity increase on WikiText2 compared to FP16 (7.72 vs. 5.47), while on
LLaMA-3 family which is hard to quantize, Bit by Bit surpass other QAT methods.

2 RELATED WORK

2.1 QUANTIZATION FOR LLMS

Post-Training Quantization (PTQ) is a mainstream LLM compression method, with aggressive
strategies down to 2-bit (Liu et al., 2024b), ternary (Kaushal et al., 2024), and binary (Gu et al., 2025).
Most approaches aim to preserve a small set of salient weights to reduce error, e.g., AWQ (Lin et al.,
2024) uses activation-guided scaling, SqueezeLLM (Kim et al., 2023) mixes dense/sparse formats,
PB-LLM (Shang et al., 2023) combines binary and INT8, and BiLLM (Huang et al., 2024) adds
residual quantization. Despite effectiveness, these designs often introduce complex implementations
and kernel inefficiency.

Quantization-Aware Training (QAT) aims to address these issues by jointly optimizing the weights
along with the quantizer to mitigate quantization error, including: LLM-QAT (Liu et al., 2023)
operates without additional data but suffers from high computational overhead during teacher logits
computation; QuEST (Panferov et al., 2025) filters outlier gradients and employs RMS operations
combined with Gaussian and Hadamard transforms for distribution fitting; DB-LLM (Chen et al.,
2024a) introduces a dual binary representation along with a deviation-aware distillation loss and
BitNet (Ma et al., 2025) has demonstrated the potential of ternary weight representations, yet requires
as many as 2T tokens to establish a stable low-bit model.

Weight-Only Quantization stores LLM weights in low precision, with recent works pushing
below 1-bit representation (Gu et al., 2025; Dong et al., 2024), achieving up to 20× compres-
sion. Weight–Activation Quantization further quantizes activations, enabling low-precision
GEMM kernels and reducing IO (e.g., DeepSeek’s DeepGEMM (DeepSeek, 2025)). Methods
like SmoothQuant (Xiao et al., 2023a) shift quantization difficulty from activations to weights,
while rotation-based approaches (QuaRot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024c))
improve robustness via orthogonal transformations. Our QAT framework supports both ultra-low-bit
weight-only and weight–activation quantization.

2.2 GRANULARITY AND FORMAT

Quantization differs by format: uniform integers (fixed step), low-precision floats (non-uniform
levels), and codebook-based schemes (e.g., NF4 (Dettmers et al., 2023)). It also varies by granularity:
per-tensor, per-channel, per-group, or per-block. Recently, micro-scaling formats gained attention:
OCP MX (MXFP4 (Rouhani et al., 2023)) shares an E8M0 scale over 32 elements, while NVIDIA
NVFP4 (NVIDIA, 2025) uses 16-element blocks with E4M3 scales plus a FP32 master scale. Our
method adopts this microscaling-group design to capture dynamic distributions and extends it to 2-bit
quantization.

3 METHOD

In this section, we revisit quantization for LLMs and introduce our method, which integrates a progres-
sive QAT strategy with Once-for-any-precision training, outlier channel splitting, and microscaling
groups.

3.1 QUANTIZATION REVISITED

Quantization is applied to all linear layers except the LM head and the embedding layer. In group-wise
quantization, the weight matrix W ∈ Rm×n is partitioned into column groups of size g:

W =
[
W (1),W (2), . . . ,W (G)

]
, W (i) ∈ Rm×g, G = n

g .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝒐𝒓𝒊𝒈𝒏𝒊𝒂𝒍

𝒚𝒎 = 𝒙𝒎𝒘𝒎

𝒂𝒇𝒕𝒆𝒓	𝑶𝑪𝑺

𝒚𝒎 = 𝒙𝒎
(𝒘𝒎+𝒔/𝟐)

𝟐
+ 𝒙𝒎

(𝒘𝒎−𝒔/𝟐)
𝟐

𝑿 ∗

𝑾

𝑿

𝒘𝒎

𝑚𝑒𝑡𝑟𝑖𝑐 = |𝑥|! ⋅ |𝑤|

𝒙𝒎

∗

𝑾

(𝒘𝒎−𝒔/𝟐)
𝟐

(𝒘𝒎+𝒔/𝟐)
𝟐

𝒙𝒎 𝒙𝒎

𝒔𝒑𝒍𝒊𝒕𝒇𝒑𝟏𝟔

𝟖𝒃𝒊𝒕

𝟐𝒃𝒊𝒕

𝟒𝒃𝒊𝒕
𝒑𝒓𝒐𝒈𝒓𝒆𝒔𝒔𝒊𝒗𝒆

𝒅𝒊𝒓𝒆𝒄𝒕𝒍𝒚

𝒑𝒓𝒐𝒈𝒓𝒆𝒔𝒔𝒊𝒗𝒆

𝟐𝒃𝒊𝒕
𝒑𝒓𝒐𝒈𝒓𝒆𝒔𝒔𝒊𝒗𝒆

𝒂 	𝑷𝒓𝒐𝒈𝒓𝒆𝒔𝒔𝒊𝒗𝒆	𝑩𝒊𝒕	𝒃𝒚	𝑩𝒊𝒕	𝑸𝑨𝑻 𝒃 	𝑹𝒐𝒖𝒏𝒅𝒊𝒏𝒈	𝑨𝒘𝒂𝒓𝒆	𝒐𝒖𝒕𝒊𝒍𝒆𝒓	𝒄𝒉𝒂𝒏𝒏𝒆𝒍	𝒔𝒑𝒍𝒊𝒕

Figure 4: (a) Progressive Bit-by-Bit QAT: Direct 2-bit QAT drives weights into coarse clusters
under a non-smooth loss landscape, progressive schedule that lowers precision stage-by-stage, using
the higher-precision phase to stabilize and initialize the next stage. (b) Rounding-aware outlier
channel splitting: detect outlier channels via metric |x|2 · |w|, then apply identical, rounding-aware
halving that keeps the quantized output unchanged.

Each group is quantized independently. For any element x ∈W (i), we compute

q = round
(x
s
+ z
)
, q ← clip(q, 0, 2n − 1) , s =

Max−Min

2n − 1
, z = − round

(
Min

s

)
,

where Max = max(W (i)),Min = min(W (i)). In the following, we use the terms scale and step
size interchangeably to denote s. Since symmetric quantizer can only represent three distinct levels
at low bit-widths (e.g., 2-bit), or, as in strategies like SEQ (Liu et al., 2025b), map weights to a
symmetric codebook such as {−1.5,−0.5, 0.5, 1.5}. We adopt an asymmetric quantizer with a
zero-point in our methods. To incorporate the quantizer into training, we adopt the straight-through
estimator (STE) to address the non-differentiability of the rounding operation. Gradients flow only
through the weights, while the scale s and zero-point z obtained directly from closed-form expressions.
No additional clipping or heuristic adjustment (Shao et al., 2023) is applied to the weights, ensuring a
simple yet effective quantization scheme.

Lower-bit dequantized weights are contained in—and well-approximated by—the lattice of a slightly
higher precision: for every xlow there exists xhigh with |xlow − xhigh| ≤ 1

2shigh. Hence higher-bit grids
strictly refine lower-bit ones, motivating a coarse-to-fine progressive schedule.

3.2 PROGRESSIVELY BIT-BY-BIT QAT

As shown in Figure 1, directly optimizing at very low precision often produces a rugged loss landscape,
making training susceptible to suboptimal local minima. Examining the dequantized weights further
reveals that lower-bit representations collapse into only a few coarse clusters (Figure 2). Lower-bit
dequantized value are contained in, and well-approximated by, the lattice of higher precision: for
every xlow there exists xhigh with |xlow − xhigh| ≤ 1

2shigh. where xhigh denote the higher bit value and
shigh is the corresponding step size. This hierarchical relationship suggests a natural coarse-to-fine
progression: higher-bit grids act as smooth refinements of lower-bit representations, motivating us to
adopt progressive quantization as a more stable optimization path.

Directly training models at ultra-low precision is often unstable. To alleviate this issue, we adopt a
progressive quantization-aware training (QAT) strategy. We begin from a relatively high precision
setting, which closely matches full precision and introduces negligible quantization error, providing a
well-conditioned initialization. The bitwidth is then gradually reduced across stages (e.g., from 8-bit
to 4-bit and finally to 2-bit for weights), allowing the model to progressively adapt to the increasing
quantization noise. For weight–activation quantization, we apply the same principle: the model is first
stabilized under a configuration with low-bit weights but high-precision activations, and the activation
precision is then progressively lowered in subsequent stages. This staged reduction enables the model
to adapt step by step to the growing activation noise, thereby mitigating training instability. We also
explored alternative progressive schedules, and further details are provided in the Appendix B.1.

Following BRECQ (Li et al., 2021) and EfficientQAT Chen et al. (2024b), we employ a block-
wise objective to mitigate error accumulation. For block i, let x(i)

wka16 denote the input activation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Bit by Bit Progressive QAT and Once-for-any-precision
func ProgressiveQAT(Model)

1: for block i = 1, . . . , B do
2: y ← x

(i)
w16a16W

(i)
w16a16, xref ← x

(i)
w16a16

3: for k = 8 to 2 do
4: L ←MSE

(
xref W

(i)
wka16, y

)
5: xref ← x

(i)
wka16

6: end for
7: for k = 8 to 2 do
8: L ←MSE

(
xref W

(i)
w2ak, y

)
9: xref ← x

(i)
w2ak

10: end for
11: end for

func Once-for-any-precision(Model)

1: for block i do
2: for r ∈ R do
3: Wr = sshare ∗ q(r)
4: end for
5: minimize L =

∑
r∈R λr

(
xWR − y

)
6: end for
7: schedule λhigh ↓ , λlow ↑ every epoch

func Mapping(sshare,q
h)

1: ql = qh ≫ (h− l)
2: Wl = sshare ∗ (ql ≪ (h− l))

when all preceding blocks use k-bit weights (while activations remain FP16), and let x(i)
w(k+∆)a16

denote the activation obtained when the preceding blocks use a slightly higher precision, e.g., w4a16
as w(2 + ∆)a16 for stabilizing w2a16. The full-precision reference is denoted as w16a16. The
block-wise loss is formulated as

L(i) = MSE
[(
x
(i)
w(k+∆)a16W

(i)
wka16

)
−
(
x
(i)
w16a16W

(i)
w16a16

)]
.

This design leverages higher-bit block activations as a more accurate teacher, improving the robustness
of QAT across 8/4/2-bit regimes. A similar block-wise formulation is also applied to weight–activation
quantization, where activations are progressively reduced from a16 to lower precisions.

Once-for-any-precision. Supporting multiple precisions in practice usually requires storing several
models of different sizes, each obtained via separate QAT. Inspired by (Nair et al., 2025; Park et al.,
2024; Cai et al., 2019), we extend our Bit-by-Bit framework to a unified once-for-any-precision
paradigm, where a single model can be deployed at various bit-widths without additional retraining.

The key idea is that quantization maps a high-precision value onto a coarser grid defined by a scale
factor. The most common case is mapping from floating point to integers, wfp → s · q. However,
the same principle applies between different integer precisions. Given an integer quantization at h
bits, qh, the corresponding l-bit representation 2l (l < h) can be obtained:

s · q(h) −→ s · 2h−l ·
⌊

q(h)

2h−l

⌋
= s · 2h−l · q(l),

where q(l) =
⌊
q(h)/2h−l

⌋
is obtained by discarding the (h− l) least significant bits. This shows that

the l-bit grid is inherently nested within the h-bit grid.In practice, this mapping is implemented with
integer bit shifts: q(l) = q(h) ≫ (h− l), ŵ(l) = s ·

(
q(l) ≪ (h− l)

)
, using shift operation.

During training, we minimize a multi-precision objective L =
∑

r∈R λr

(
xWR − y

)
, where R is

the set of target bit-widths (e.g., R = {w8a16, w4a16, w2a16}), λr ≥ 0 controls the contribution
of each precision, WR denotes the weights quantized to r bits with shared scale and y denotes the
full precision output. Since lower-precision grids are nested within higher-precision ones, we adopt
a progressive strategy: we initially emphasize the highest bit-width to obtain a well-conditioned
initialization (large λ8), and then gradually ramp up the lower-bit losses (increasing λ4 and λ2) while
keeping the higher-precision terms non-zero to prevent forgetting. Finally, we store the high-precision
model and derive its low-precision variants via the above mapping procedure.

3.3 OUTILER CHANNEL SPLIT

The outlier issue has long been a major challenge in quantization, for uniform b-bit quantization,
the step size is s = max(W)−min(W)

2b−1
. Weight outliers enlarge the range R = max(W)−min(W),

thereby increasing s; activation outliers enlarge ∥x∥1. As a result, the quantization error is bounded
by
∣∣xW − xWquant

∣∣ ≤ 1
2s ∥x∥1, showing that both weight and activation outliers amplify the error

through range expansion and input magnitude. Prior works (Shao et al., 2023) often mitigate this
problem by clipping outliers with learnable parameters. However, outliers value encode important

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

distributional or semantic features (Sun et al., 2024), and discarding them directly can lead to
substantial performance degradation. Motivated by this, we adopt the Outlier Channel Splitting
(OCS) (Zhao et al., 2019), which duplicates channels containing extreme activations and redistributes
their contribution through an identity mapping, thereby retaining critical information while keeping
the quantization process efficient.

Consider a linear layer with input vector x ∈ Rm, weight matrix W ∈ Rm×n, and output y ∈ Rn:

y = xW, where yj =

m∑
i=1

xiWij .

Without loss of generality, assume that the last input channel xm is identified as an outlier channel.
OCS duplicates the outlier channel and halves its contribution across the two copies, keeping the
layer output unchanged. Formally, splitting the activation of outlier channel m into two identical
branches allows the output yj to be rewritten as

xmWmj →
(

1
2xm

)
Wmj +

(
1
2xm

)
Wmj = xm

(
1
2Wmj

)
+ xm

(
1
2Wmj

)
.

This operation can be equivalently applied to the outlier weight row. Both formulations are mathemat-
ically identical, OCS replaces a single outlier channel with two identical copies of reduced magnitude.
This operation reduces the dynamic range per channel, thereby alleviating the quantization error
caused by outliers, at the cost of a small increase in channel dimensionality.

Splitting increases layer width and increase computation, so we split only a small subset of channels.
For a linear layer with input x ∈ Rm and weights W ∈ Rm×n, we define an outlier metric for each
input channel i as

metrici = ∥Xi∥2 ·
1

n

n∑
j=1

|Wij |,

where ∥Xi∥2 denotes the ℓ2 norm of the i-th input feature aggregated across N × L tokens, and
1
n

∑n
j=1 |Wij | represents the average absolute weight magnitude of channel i across all output

dimensions. As shown in Fig. 3, quantization error accumulates along depth, so later blocks suffer
larger errors. To compensate, we adopt a block-wise schedule that linearly increases the split ratio
with depth. Index Transformer blocks by b = 1, . . . , B from shallow to deep. For block b, we set

rb = rmin +
b− 1

B − 1

(
rmax − rmin

)
,

and split the top ⌈rb m⌉ input channels (ranked by si), where m is the number of input channels in
that layer. This allocates fewer splits to early blocks and more to later blocks, matching the observed
depth-wise error accumulation.

For a selected outlier channel m with weight row Wm:, we apply a rounding-aware split. Let s be the
(post-split) step size; we replace its contribution by two half branches with opposite half-step offsets:

Wm: −→
(

Wm:−s/2
2 , Wm:+s/2

2

)
.

By nearest rounding, Qs

(
Wm:−s/2

2

)
+ Qs

(
Wm:+s/2

2

)
= Qs(Wm:), thus the quantized output is

preserved identical. With RoundErr(z) =
(
Round(z)− z

)
∈ [− 1

2 ,
1
2), the post-split error is

εRA = xm

(
Qs

(
Wm:−s/2

2

)
+Qs

(
Wm:+s/2

2

)
−Wm:

)
= xm sRoundErr

(
Wm:

s

)
.

In contrast, the naive half split (Wm:/2, Wm:/2) yields

εnaive = xm

(
Qs

(
Wm:

2

)
+Qs

(
Wm:

2

)
−Wm:

)
= xm 2sRoundErr

(
Wm:

2s

)
,

hence E[|εRA|] = 1
2 E[|εnaive|] (MSE is 1/4). If the pre-split step is sold and splitting halves the

range (s≈sold/2), then E[|εRA|] ≈ 1
2 E[|εbase|], while the naïve split is even with the baseline.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results on WikiText2 and C4 across different model sizes. Our method Bit-by-Bit
is highlighted.

Method Bits Group WikiText2 C4

2-7B 3.2-1B 3.2-3B 3-8B 2-7B 3.2-1B 3.2-3B 3-8B

FP16 - - 5.47 9.75 7.81 6.13 6.97 12.74 10.44 8.89

Weight Only Quantization (w2a16)

GPTQ w2a16 128 60.5 2775.63 379.23 43.34 33.7 1875.41 323.24 43.28
AWQ w2a16 128 2.2e5 1.7e7 7.2e6 5.2e5 1.75e5 1.9e7 7.7e6 5.1e5
OmniQuant w2a16 128 11.06 6260.71 1.4e51 2.2e6 15.02 2442.55 8315.17 8.3e5
ParetoQ w2a16 -1 10.89 42.82 26.88 100.04 12.40 35.08 24.08 94.97
EfficientQAT w2a16 128 7.19 23.89 14.08 11.31 8.79 26.09 18.26 15.26
BitDistiller w2a16 128 8.08 34.45 16.96 12.48 9.17 62.23 19.58 18.79
Bit-by-Bit (Ours) w2a16 32 6.50 17.07 11.25 8.87 9.22 27.40 17.41 15.18

Weight Activation Quantization (w2a2)

SmoothQuant w2a2 128 2.5e5 1.7e7 2.0e6 8.6e6 3.0e5 1.8e8 1.5e6 9.9e6
SpinQuant w2a2 128 5433.06 4059.73 4008.33 7931.37 7524.73 8222.23 8256.53 1.3e5
ParetoQ w2a2 -1 259.74 1091.78 1018.61 549.71 135.32 418.22 401.22 237.21
EfficientQAT w2a2 128 26.06 118.24 56.42 25.86 23.13 83.85 51.57 27.27
BitDistiller w2a2 128 29.66 45.56 37.32 24.26 43.08 61.11 46.91 26.81
Bit-by-Bit (Ours) w2a2 32 7.72 24.99 14.27 11.54 15.87 59.75 26.39 26.45

3.4 MICROSCALING

Ultra–low-bit quantization significantly reduces computational and I/O costs, but it also severely
restricts the representable dynamic range (Figure 2). To address this limitation, microscaling for-
mats—such as MXFP4 and NVFP4, introduce a shared scale factor applied to small blocks of weights.
In line with this approach, we apply per-group scaling over 32 elements and store each group scale
in FP8 to minimize overhead. Unlike MX-style formats that adopt FP8 with an 8-bit exponent and
no mantissa (E8M0, i.e., power-of-two scaling), our 2-bit (INT2) payload requires finer granularity
than what power-of-two steps can offer. Therefore, we employ FP8 with a 4-bit exponent and 3-bit
mantissa (E4M3) for group scales. This format provides sufficient mantissa precision for accurate
step-size adjustment, while adding only one 8-bit scale per 32 weights, resulting in a storage overhead
of just 8/32 = 0.25 bits per weight.

4 EXPERIMENT

We comprehensively evaluate Bit-by-Bit against both post-training quantization (PTQ) and
quantization-aware training (QAT) baselines. PTQ methods include GPTQ (Frantar et al., 2022),
AWQ (Lin et al., 2024), OmniQuant (Shao et al., 2023), SmoothQuant (Xiao et al., 2023b),
MatQuant (Nair et al., 2025), and SpinQuant (Liu et al., 2024c), while QAT baselines cover Effi-
cientQAT (Chen et al., 2024b), ParetoQ (Liu et al., 2025b), and BitDistiller (Du et al., 2024). All
experiments are run on a single H800 GPU.

4.1 EXPERIMENTAL SETTINGS

We test on the LLaMA (Dubey et al., 2024) and Mistral families, evaluating five zero-shot reason-
ing benchmarks (PIQA, ARC-Easy, ARC-Challenge, HellaSwag, Winogrande) and two language
modeling tasks (WikiText2 (Merity et al., 2017) and C4 (Raffel et al., 2020)).

For PTQ baselines, we use a 256-sample RedPajama subset (seq length 2048) for AWQ, GPTQ,
and SmoothQuant; OmniQuant follows its 40-epoch calibration, and SpinQuant is calibrated for 2
epochs. For QAT baselines, EfficientQAT adopts Block-AP (4096 RedPajama samples, 2 epochs)
followed by E2E on Alpaca; BitDistiller uses a 4096-sample Alpaca subset for KD-based QAT; and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot evaluation of LLaMA-3.2 3B on five downstream tasks. We report accuracy (%)
for PIQA, HellaSwag, Winogrande, ARC-c, and ARC-e, along with the average.

LLaMA-3.2-3B PIQA Hella. Wino. ARC-c ARC-e Avg

bfloat16 77.47 73.62 69.61 45.90 71.71 67.67

ParetoQ 66.70 43.48 52.49 21.93 44.36 45.79

w2a16 EfficientQAT 70.02 57.07 59.35 34.13 58.92 55.89
BitDistiller 70.65 57.42 59.78 34.71 58.34 56.18

Bit-by-Bit (ours) 71.87 58.03 60.38 35.58 58.71 56.91
ParetoQ 51.80 25.76 48.78 23.55 27.53 35.48

w2a2 EfficientQAT 56.53 34.76 52.17 21.84 35.23 40.10
BitDistiller 60.87 42.15 54.03 26.72 47.61 46.28

Bit-by-Bit (ours) 66.00 49.30 56.91 31.40 54.00 51.52

ParetoQ is trained on 4096 RedPajama + 4096 Alpaca samples for 2 epochs, aligned to our budget
(vs. 30B tokens in the original). Since these methods target weight-only quantization, we extend
them with activation quantizers: online dynamic scaling for EfficientQAT, asymmetric clipping for
BitDistiller, and 2-bit SEQ for ParetoQ. We train Bit-by-Bit on a 4096-sample subset of RedPajama.
For weight-only quantization, the model precision is progressively reduced from w8a16 to w4a16
and then to w2a16, switching every two epochs, while splitting 10% of weight channels as detected
by the metric. For weight–activation quantization, we first lower the weight precision to w2a16, then
reduce the activation precision to w2a2 progressively, splitting 10% of weight channels.

4.2 MAIN RESULTS

Table 1 reports perplexity results on WikiText2 and C4 under both weight-only (w2a16) and weight-
activation (w2a2) settings. Bit-by-Bit consistently surpasses ParetoQ, EfficientQAT, and BitDistiller
across model sizes and datasets. In w2a16, it requires fewer training tokens than ParetoQ, converges
faster than BitDistiller, and achieves more stable training than EfficientQAT, e.g., reaching 11.25/17.41
PPL on WikiText2/C4 with LLaMA-3.2 3B. The advantage is even more pronounced in w2a2, where
it reduces WikiText2 PPL on LLaMA-2 7B to 7.72, far below EfficientQAT (26.06) and BitDistiller
(29.66). Zero-shot results (Table 2) further confirm its robustness: Bit-by-Bit achieves the best
average accuracy under both w2a16 (56.91) and w2a2 (51.52), exceeding the strongest baseline by
over 5 points in the latter. These results demonstrate Bit-by-Bit’s effectiveness in preserving strong
generalization under ultra-low precision.

4.3 ONCE-FOR-ANY-PRECISION EVALUATION Table 3: Evaluation of Mistral-7B under different
quantization settings

Mistral-7B
Bits Method C4 ppl Task avg

bfloat16 8.24 73.99

w8a16
OmniQuant 8.24 73.77
MatQuant 8.43 73.46
Bit-by-Bit (ours) 8.33 73.51

w4a16
OmniQuant 8.47 73.62
MatQuant 8.63 73.13
Bit-by-Bit (ours) 8.79 72.21

w2a16
OmniQuant 50.99 59.74
MatQuant 13.05 65.99
Bit-by-Bit (ours) 10.73 65.37

Our once-for-any-precision method produces mod-
els at multiple bit-widths. To validate the gen-
erality of this approach, we compare against
MatQuant and OmniQuant on Mistral-7B. Specif-
ically, we perform a single QAT run with Bit-by-
Bit and directly apply the trained model to differ-
ent bit-widths (w8a16, w4a16, w2a16). In con-
trast, the baseline OmniQuant requires separate
training for each bit-width, while MatQuant also
employs a one-shot QAT strategy for multi-bit
adaptation. As shown in Table 3, our method
achieves competitive or superior results under
all settings. For w8a16 and w4a16, Bit-by-Bit
matches the full-precision baseline with only
marginal degradation, obtaining task averages
of 73.51 and 73.21, respectively. More impor-
tantly, in the challenging w2a16 setting, Bit-by-Bit
achieves a task average of 65.37 with C4 perplexity 10.73, substantially outperforming OmniQuant

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(59.74 / 50.99) and remaining on par with MatQuant (65.99 / 13.05). This demonstrates that a single
QAT run suffices to deploy models at multiple bit-widths, eliminating the additional cost of retraining
separate models for each configuration.

Table 4: Ablation study on Llama 3.2-1b on w2a16 setting, evaluation conducted on WikiText2 and 5
zero-shot tasks

Block-wise Progressive Ocs Metric group size WikiText2 ppl Task avg Memory

- - - - 32 1.7e3 35.09 0.33GB
✓ - - - 32 31.88 40.87 0.33GB
✓ ✓ - - 32 24.60 43.26 0.33GB
✓ ✓ ✓ Kurtosis 32 22.43 43.69 0.36GB
✓ ✓ ✓ wmax 32 20.37 44.26 0.36GB
✓ ✓ ✓ xmax 32 19.07 44.30 0.36GB
✓ ✓ ✓ |x|2 · |w| 32 17.07 45.18 0.36GB

✓ ✓ ✓ |x|2 · |w| 64 30.26 40.66 0.34GB
✓ ✓ ✓ |x|2 · |w| 128 38.92 38.60 0.32GB

4.4 ABLATION

We conduct a comprehensive ablation study of our proposed components on LLaMA3.2-1B, evalu-
ating WikiText2 perplexity and the average score across five zero-shot tasks. As shown in Table 4,
using block-wise loss yields substantially better results than end-to-end training with Negative Log-
Likelihood. Training directly on w2a16 performs poorly, whereas adopting our progressive training
strategy significantly improves convergence and accuracy. Incorporating outlier channel splitting
(OCS) brings further gains. We evaluate several metrics for detecting outlier channels, including
weight maximum (wmax), activation maximum (xmax), and kurtosis (DeCarlo, 1997; Nrusimha et al.,
2024) which measures the “tailedness” of a distribution, and find that the combined weight–activation
metric |x|2 · |w| yields the best performance. While OCS slightly widens the weight matrix, the
memory overhead remains modest (0.33GB→ 0.36GB). We also examine the impact of group size:
using group-128 saves only 0.04GB of memory but leads to a sharp degradation in performance that
task accuracy falls from 45.18 to 38.60.

4.5 SPEED MEASUREMENT 𝟏. 𝟗𝟓	×

𝒕𝒐
𝒌𝒆
𝒏	
𝒑𝒆
𝒓	
𝒔𝒆
𝒄𝒐
𝒏𝒅

𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆	𝒍𝒆𝒏𝒈𝒕𝒉

Figure 5: Decode throughput (tokens/s)
at different sequence lengths.

We measure end-to-end decode speed (tokens/s) of Llama-
3.2-1B under torch FP16 (w16a16), SpinQuant (w4a4),
and our BIT-BY-BIT (w2a16/w2a2). For each sequence
length (512–4k), we prefill the KV cache and report aver-
age decode speed over 256 tokens. Results show BIT-BY-
BIT delivers the highest throughput across all lengths, with
up to 1.95× gain at short sequences and steady advantages
at longer contexts.

5 CONCLUSION

We introduced BIT-BY-BIT, a stable low-bit QAT framework for LLMs that combines (i) progressive
precision decay—reducing weight bits before activation bits in a block-wise schedule, (ii) a once-for-
any-precision multi-target objective that trains a single model to operate at several bit-widths without
retraining, and (iii) rounding-aware outlier-channel splitting that preserves the quantized output while
shrinking rounding error. BIT-BY-BIT turns ultra-low-bit training into a coarse-to-fine adaptation
problem, yielding robust convergence, practical deployment flexibility (one trained model, many
precisions), and favorable accuracy–efficiency trade-offs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics. We have carefully considered the ethical
implications of our research and paper submission. Our work does not involve human subjects, and
it does not make use of data sets that could raise privacy or security concerns. We have ensured
that our methodology and applications do not introduce or perpetuate harmful biases, and we have
taken care to document our data sources and experimental procedures to promote transparency and
reproducibility. We have no known conflicts of interest or sponsorship to disclose.

7 REPRODUCIBILITY STATEMENT

We are committed to providing sufficient detail for the academic community to reproduce the results
presented in this paper. All experiments were performed on a NVIDIA H800 GPU. We utilized the
official implementations of all baseline methods where available, ensuring consistent environment
configurations. Our evaluations were conducted on two major model families: the LLaMA series
and the Mistral series. Performance was measured across seven standard benchmarks: Zero-Shot
Reasoning: PIQA, ARC-Easy, ARC-Challenge, HellaSwag, and Winogrande; Language Modeling:
WikiText2 and the C4 test set. We took measures to align the training cost across all QAT approaches
for an unbiased evaluation. - EfficientQAT was first subjected to the Block-AP stage, utilizing
a 4096-sample RedPajama subset over 2 epochs, and then proceeded to the E2E stage using the
entire Alpaca dataset. - For BitDistiller, knowledge distillation was performed on a 4096-sample
Alpaca subset synthesized by the teacher model. - ParetoQ’s training budget was limited to 2 epochs,
leveraging a combined dataset comprising a 4096-sample RedPajama subset and an equal-sized 4096-
sample Alpaca subset. Furthermore, because these QAT baselines were inherently weight-only, we
customized the activation quantization for each: EfficientQAT used a dynamic quantizer, BitDistiller
relied on asymmetric clipping, and ParetoQ was equipped with a 2-bit SEQ quantizer. We used a
4096-sample subset of RedPajama in our Bit-by-Bit training process. In the process of Weight-Only
Quantization, we incorporated the splitting of 10% of weight channels based on the metric at each
step. In the process of Weight-Activation Quantization, we maintain the 10% channel splitting rule.

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Hong Chen, Chengtao Lv, Liang Ding, Haotong Qin, Xiabin Zhou, Yifu Ding, Xuebo Liu, Min
Zhang, Jinyang Guo, Xianglong Liu, et al. Db-llm: Accurate dual-binarization for efficient llms.
arXiv preprint arXiv:2402.11960, 2024a.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024b.

Mengzhao Chen, Chaoyi Zhang, Jing Liu, Yutao Zeng, Zeyue Xue, Zhiheng Liu, Yunshui Li, Jin
Ma, Jie Huang, Xun Zhou, et al. Scaling law for quantization-aware training. arXiv preprint
arXiv:2505.14302, 2025.

Euntae Choi, Sumin Song, Woosang Lim, and Sungjoo Yoo. Rotate, clip, and partition: Towards
w2a4kv4 quantization by integrating rotation and learnable non-uniform quantizer. arXiv preprint
arXiv:2502.15779, 2025.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lawrence T DeCarlo. On the meaning and use of kurtosis. Psychological methods, 2(3):292, 1997.

DeepSeek. Deepgemm: High-performance gemm implementation, 2025. URL https://github.
com/deepseek-ai/DeepGEMM. Accessed: September 25, 2025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du, Ruibo Fan, Yuhan Chen, Zhenheng Tang, Qiang
Wang, Wei Xue, Yike Guo, et al. Stbllm: Breaking the 1-bit barrier with structured binary llms.
arXiv preprint arXiv:2408.01803, 2024.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Hao Gu, Lujun Li, Zheyu Wang, Bei Liu, Qiyuan Zhu, Sirui Han, and Yike Guo. Btc-llm: Efficient
sub-1-bit llm quantization via learnable transformation and binary codebook. arXiv preprint
arXiv:2506.12040, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
Spectra: Surprising effectiveness of pretraining ternary language models at scale. arXiv preprint
arXiv:2407.12327, 2024.

HyunJin Kim, Jungwoo Shin, and Alberto A Del Barrio. Ctmq: Cyclic training of convolutional
neural networks with multiple quantization steps. arXiv preprint arXiv:2206.12794, 2022.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of machine learning and systems, 6:
87–100, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint arXiv:2502.16982,
2025a.

11

https://github.com/deepseek-ai/DeepGEMM
https://github.com/deepseek-ai/DeepGEMM

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and Mao
Yang. Vptq: Extreme low-bit vector post-training quantization for large language models. arXiv
preprint arXiv:2409.17066, 2024b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024c.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit llm
quantization. arXiv preprint arXiv:2502.02631, 2025b.

Liqun Ma, Mingjie Sun, and Zhiqiang Shen. Fbi-llm: Scaling up fully binarized llms from scratch
via autoregressive distillation. arXiv preprint arXiv:2407.07093, 2024.

Shuming Ma, Hongyu Wang, Shaohan Huang, Xingxing Zhang, Ying Hu, Ting Song, Yan Xia, and
Furu Wei. Bitnet b1. 58 2b4t technical report. arXiv preprint arXiv:2504.12285, 2025.

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko, Kai Yi,
Dan Alistarh, and Peter Richtarik. Pv-tuning: Beyond straight-through estimation for extreme llm
compression. Advances in Neural Information Processing Systems, 37:5074–5121, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR, 2017.

Pranav Nair, Puranjay Datta, Jeff Dean, Prateek Jain, and Aditya Kusupati. Matryoshka quantization.
arXiv preprint arXiv:2502.06786, 2025.

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, and Yoon
Kim. Mitigating the impact of outlier channels for language model quantization with activation
regularization. arXiv preprint arXiv:2404.03605, 2024.

NVIDIA. Introducing NVFP4 for efficient and accurate low-precision in-
ference, 2025. URL https://developer.nvidia.com/blog/
introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/.

OpenAI. Gpt-5 system model card, 2025. URL https://openai.com/index/
gpt-5-system-card/.

Andrei Panferov, Jiale Chen, Soroush Tabesh, Roberto L Castro, Mahdi Nikdan, and Dan Alistarh.
Quest: Stable training of llms with 1-bit weights and activations. arXiv preprint arXiv:2502.05003,
2025.

Jungwoo Park, Taewhoo Lee, Chanwoong Yoon, Hyeon Hwang, and Jaewoo Kang. Outlier-safe pre-
training for robust 4-bit quantization of large language models. arXiv preprint arXiv:2506.19697,
2025.

Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun Sim, and Jae W Lee. Any-precision llm:
Low-cost deployment of multiple, different-sized llms. arXiv preprint arXiv:2402.10517, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data
formats for deep learning. arXiv preprint arXiv:2310.10537, 2023.

12

http://arxiv.org/abs/1907.11692
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large language
models. arXiv preprint arXiv:2310.00034, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Qitao Tan, Xiaoying Song, Jin Lu, Guoming Li, Jun Liu, Lingzi Hong, Caiwen Ding, Jundong Li,
Xiaoming Zhai, Shaoyi Huang, et al. Zeroqat: Your quantization-aware training but efficient. arXiv
preprint arXiv:2509.00031, 2025.

MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wentong
Chen, Xin Cong, Ganqu Cui, et al. Minicpm4: Ultra-efficient llms on end devices. arXiv preprint
arXiv:2506.07900, 2025.

Hongyu Wang, Shuming Ma, and Furu Wei. Bitnet v2: Native 4-bit activations with hadamard
transformation for 1-bit llms. arXiv preprint arXiv:2504.18415, 2025.

xAI. Grok-code-fast-1, 2025. URL https://x.ai/news/grok-code-fast-1.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 38087–38099. PMLR, 23–29 Jul 2023a. URL
https://proceedings.mlr.press/v202/xiao23c.html.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023b.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.
End-to-end open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718,
2019.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In International conference on
machine learning, pp. 7543–7552. PMLR, 2019.

Minghang Zheng, Peng Gao, Renrui Zhang, Kunchang Li, Xiaogang Wang, Hongsheng Li, and
Hao Dong. End-to-end object detection with adaptive clustering transformer. arXiv preprint
arXiv:2011.09315, 2020.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-
bitwidth convolutional neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7920–7928, 2018.

APPENDIX

A EXTENDED DISCUSSION

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model was utilized for grammatical and stylistic refinement of the manuscript.
Its role was strictly limited to text editing and polishing to enhance clarity. All research ideas,
experimental design, and analytical content are the original work of the authors.

13

https://x.ai/news/grok-code-fast-1
https://proceedings.mlr.press/v202/xiao23c.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 BROADER IMPACTS

Our work advances ultra-low-bit quantization of large language models through a progressive training
strategy with outlier channel splitting. By enabling stable training at 2-bit and below, Bit-by-Bit
reduces the memory footprint and computational cost of LLMs by orders of magnitude. This
improvement directly translates into lower inference latency, reduced energy consumption, and
smaller carbon emissions, making the deployment of LLMs more sustainable.

Beyond efficiency, democratization is another key impact: with drastically reduced hardware require-
ments, powerful LLMs become accessible to a wider range of users and organizations, including
those with limited computing resources. This may empower broader participation in AI research and
applications, bridging the gap between well-funded institutions and smaller labs or industry players.

On the societal side, compressed LLMs can be deployed in edge scenarios such as mobile devices, of-
fline environments, and privacy-sensitive settings, expanding the reach of AI to education, healthcare,
and accessibility applications. However, lowering the barriers to deployment also amplifies risks of
misuse, such as generating disinformation at scale or enabling harmful applications on inexpensive
hardware. Mitigating these risks requires complementary safeguards, responsible governance, and
continued community awareness.

Overall, we believe our work contributes to the ongoing effort of making LLMs greener, more
efficient, and more inclusive, while highlighting the importance of balancing technological progress
with responsible use.

A.3 LIMITATIONS

While BIT-BY-BIT improves stability at ultra–low bits, it has several limitations. (i) We observe
larger performance drops on the Qwen family, these models appear harder to quantize, leading to
greater quantization error, and a deeper analysis is left for future work. (ii) The block-wise training
schedule is less friendly to distributed training than end-to-end schemes, requiring nontrivial load-
balancing and communication engineering. (iii) We have not extensively explored direct end-to-end
progressive training; its convergence behavior and trade-offs remain open. (iv) We have not explored
directions include learning layerwise schedules and split ratios automatically, extending to MoE and
longer-context inference (e.g., KV-cache quantization), integrating hardware-aware mixed-precision
search, and combining our training with lightweight distillation.

B EXTENDED AND DETAIL METHOD

B.1 DIFFERENT PROGRESSIVE STRATEGIES

B.1.1 PRECISION PROGRESSIVE STRATEGIES

(A) Weights→ Activations (claimed in method). We first lower the weight precision to stabilize
the network under weight noise, and only then reduce the activation precision:

(w8, a16) → (w4, a16) → (w2, a16) → (w2, a8) → (w2, a4) → (w2, a2).

(B) Alternating W/A. We interleave the bit reductions of weights and activations:
(w8, a16) → (w8, a8) → (w4, a8) → (w4, a4) → (w2, a4) → (w2, a2).

(C) Cyclic Precision (Kim et al., 2022) Unlike monotone schedules, cyclic precision alternates
between (k+1)- and k-bit training before committing to k-bit. The idea is to leverage the smoother
loss landscape of (k+1)-bit to recalibrate scales and reduce STE bias, while gradually adapting to
the coarser k-bit lattice. A typical sequence is

(w16, a16)→(w3, a16)→(w2, a16)→(w3, a16)→(w2, a16) · · · → (w2, a2).

In practice, we first warm up from 8-bit down to (k+2)-bit, then run several short cycles between
(k+1) and k, and finally fine-tune at k-bit. This cyclic back-and-forth helps avoid representation
collapse at ultra-low bits (e.g., 2-bit) by ensuring parameters remain quantizable on both lattices.
While it introduces extra bit switches and hyperparameters, it often improves stability compared to a
one-shot drop.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Block-wise Progressive Strategy

1: Input: blocks 1..L, stages t = 1..T , bits {bt}, ratios {rt}, bias α
2: for t = 1 to T do ▷ progressively lower precision
3: Compute pj ∝ (L+1−j)α and sample St with |St| = ⌊rtL⌋
4: for j = 1 to L do
5: if j ∈ St then
6: Quantize block j to bit bt; (others stay at previous bit)
7: end if
8: end for
9: (Optional) apply OCS to top-rℓ channels in selected blocks

10: QAT for a fixed budget (steps/epochs) with short LR warmup
11: end for

Empirical observations. We typically find Schedule (A) more stable (smoother loss/PPL decay,
fewer divergence events), likely because it avoids simultaneous large shifts in both parameter and
activation distributions. The alternating scheme can work but is more sensitive to optimizer and
clipping hyperparameters and often requires longer warmup.

B.1.2 BLOCK-WISE PROGRESSIVE STRATEGY

We adopt a stochastic, depth-aware curriculum over transformer blocks. Let the model have L blocks
indexed from input to output as j = 1, . . . , L. At stage t (with target bit bt), we quantize only a
subset St ⊆ {1, . . . , L}, sampled with a bias toward earlier blocks and with an increasing coverage
over stages.

Depth-biased sampling. Define a per-block sampling probability

pj ∝ (L+ 1− j)α, α≥0,

so earlier blocks (small j) are more likely to be selected. Given a stage-wise coverage ratio rt∈(0, 1],
we sample |St| = ⌊rtL⌋ blocks without replacement according to {pj}.

Bit schedule. We follow a high-to-low bit curriculum, e.g.,

b1 = 8 → b2 = 4 → b3 = 2,

and optionally apply the same scheme to activations after weights. The coverage ratio increases with
t (e.g., rt linear or cosine from r1≈0.3 to rT =1.0).

Notes. (1) Depth bias (α) and coverage growth (rt) control stability/speed; we find α∈ [0.5, 1]
and linear rt robust. (2) This stochastic schedule avoids large simultaneous distribution shifts and
is more kernel-friendly than fully per-step rebitting. (3) For a deterministic variant, select the first
⌊rtL⌋ blocks at each stage instead of sampling.

B.2 MIXED-PRECISION OF DOWN-PROJECTION

As observed by (Chen et al., 2025), the inputs to the MLP down-projection (FC2 Proj) in Transformer
blocks exhibit persistent activation outliers (high kurtosis). Under ultra–low-bit W/A quantization
(e.g., W2A2), these heavy tails dominate the activation quantization error. To remove this bottleneck,
we adopt a layer-wise mixed-precision scheme that raises the activation bit-width only for outlier-
dominated sites while keeping the rest of the network at low precision. Concretely, we compute
per-layer activation kurtosis κ on a calibration set and mark layers with κ > τ as outlier-sensitive; for
these layers we set w2a4 (with the same group-wise scaling as elsewhere), while all remaining layers
use w2a2. This targeted relaxation substantially reduces activation quantization error—especially at
coarse group sizes—while incurring minimal overhead and preserves the benefits of ultra–low-bit
quantization in the rest of the model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.3 LORA FOR DISTRIBUTION-PRESERVING PROGRESSION

As illustrated in Fig. 4 (a), the higher-bit stage establishes a well-conditioned weight/activation
distribution that serves as a strong initialization for subsequent lower-bit stages. To preserve this
distribution while reducing precision progressively, we insert low-rank adapters (LoRA) (Hu et al.,
2022) and restrict updates to these adapters rather than the full quantized backbone.

Concretely, when moving from bitwidth bt to bt+1 (bt+1 < bt), we freeze the backbone weights W (t)

and optimize only a rank-r perturbation

W (t+1) = W (t) + αA(t)B(t)⊤, A(t) ∈ Rd×r, B(t) ∈ Rk×r,

with the forward pass quantized as

W (t+1)
q = Qs(t+1)

(
W (t) + αA(t)B(t)⊤).

To further stabilize the transition, we use a light distribution-matching regularizer that anchors
first/second-order statistics of either weights or activations across stages, e.g.,

Ldist =
∥∥µ(W (t+1)

q)− µ(W (t)
q)

∥∥
2
+ λ

∥∥σ(W (t+1)
q)− σ(W (t)

q)
∥∥
2
,

optionally combined with a KL term on layer activations. In practice we adopt small ranks (r ∈ {4, 8})
and reinitialize adapters at each stage. This distribution-preserving LoRA update significantly
mitigates representation drift and reduces instability at ultra-low bits (e.g., 2-bit), while cutting
trainable parameters to a r(d+k)

dk fraction of full fine-tuning. After convergence, adapters are merged
and requantized or discarded after re-estimating scales.

B.4 SYMMETRIC MICROSCALING VIA SEQ

Our main pipeline uses asymmetric integers for simplicity, whereas microscaling formats (e.g.,
MXFP4/NVFP4) favor symmetric payloads with zero-point fixed at 0. To avoid the 2-bit degeneration
to ternary under strict symmetric uniform grids, we adopt Stretched Elastic Quantization (SEQ) (Liu
et al., 2025b), an LSQ-style amendment tailored for low-bit settings.

WQ = α

(⌊
Clip

(
W
α ,−1, 1

)
· k2 −

1
2

⌋
+ 1

2

k

)
× 2,

which places centers at half-integers; for b=2 the normalized levels are {− 3
4 ,−

1
4 ,

1
4 ,

3
4}. Here

α ∈ FP8 is stored/rounded in FP8 per group, and ST ∈ FP32 is shared per tensor. The dequantized
values are

Ŵ = ST ·WQ = ST α ·
(
n+ 1

2

)
, n ∈

{
− k

2 , . . . ,
k
2 − 1

}
.

At b=2, the LUT becomes

CSEQ-2b = ST α · {−1.5,−0.5, 0.5, 1.5}.

This keeps a zero-point–free symmetric path, matches NVFP4’s FP8 group scale + FP32 master scale,
and fully uses all four codes at 2-bit.

B.5 MUON FOR LOW-BIT QAT: TRAINING DYNAMICS

We investigated whether the Muon (Liu et al., 2025a; Park et al., 2025) optimizer can stabilize training
dynamics in ultra–low-bit QAT. In our pipeline, the per-group scale and zero-point are computed
online; thus the only trainable variables are the full-precision 2D weight matrices, while quantizer
statistics are not explicitly optimized.

Setup. We keep the learning-rate schedule, batch size, and clipping identical to the AdamW baseline,
and apply STE for quantization with progressive bit reduction.

Observation. Across models and bit settings, Muon did not yield consistent gains over AdamW:
convergence speed and final perplexity were comparable or slightly worse, and we observed larger
short-horizon oscillations near quantization thresholds in some layers.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Possible causes (hypotheses). (i) Online rescaling induces non-stationary curvature that weakens
Muon’s preconditioning benefits under STE noise; (ii) gradient signals are dominated by rounding
discontinuities at ultra–low bits, reducing the utility of curvature-aware updates; (iii) block/group-wise
statistic updates interact with momentum, amplifying drift.

Next steps. We will explore (a) using Muon only on LoRA adapters while freezing the backbone; (b)
scale-aware trust-region or gradient clipping around threshold crossings; (c) layer-wise Muon/AdamW
hybrids. At present, Muon does not provide a clear advantage for our low-bit QAT setting.

17

	Introduction
	Related work
	Quantization for LLMs
	Granularity and Format

	Method
	Quantization Revisited
	Progressively Bit-by-Bit QAT
	Outiler Channel Split
	Microscaling

	Experiment
	Experimental Settings
	Main Results
	Once-for-any-precision evaluation
	Ablation
	Speed Measurement

	Conclusion
	Ethics statement
	Reproducibility statement
	Extended Discussion
	The Use of Large Language Models (LLMs)
	Broader Impacts
	Limitations

	Extended and detail Method
	Different Progressive Strategies
	Precision Progressive Strategies
	Block-wise Progressive Strategy

	Mixed-precision of down-projection
	LoRA for Distribution-Preserving Progression
	Symmetric Microscaling via SEQ
	Muon for Low-bit QAT: Training Dynamics

