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ABSTRACT

Training large language models (LLMs) at ultra–low precision remains challeng-
ing: direct low-bit quantization-aware training (QAT) often suffers from slow
convergence that demands substantial training budgets, as well as quantization
errors arising from heavy-tailed outlier channels and the accumulation of errors
across layers. To address these issues, we present BIT-BY-BIT, a progressive QAT
framework with outlier channel splitting. Our approach integrates three key com-
ponents: (1) block-wise progressive training that reduces precision stage by stage,
ensuring stable initialization for low-bit optimization; (2) rounding-aware outlier
channel splitting, which mitigates quantization error while acting as an identity
transform that preserves the quantized outputs; and (3) microscaling groups with
E4M3 scales to capture dynamic activation ranges aligned with OCP/NVIDIA
practices. Furthermore, we exploit the nested structure of integer quantization grids
to enable a single-run, once-for-any-precision model that can be directly deployed
at multiple bit-widths without retraining. We conduct comprehensive evaluations
under both weight-only and weight–activation quantization settings. Under W2A2
quantization, Bit-by-Bit narrows the perplexity gap with full-precision models
on WikiText2 to just 2.25, consistently outperforming BitDistiller by 24.19 and
EfficientQAT by 20.59 on Llama2-7b. Moreover, on the Llama3 family—known
for its quantization difficulty, Bit-by-Bit surpasses other QAT baselines. Code is
available in the Appendix.

1 INTRODUCTION

𝒂 	𝒇𝒖𝒍𝒍	𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒃 	𝟖𝒃𝒊𝒕

𝒄 	𝟒𝒃𝒊𝒕 𝒅 	𝟐𝒃𝒊𝒕

Figure 1: Loss landscapes under different pre-
cisions. The vertical axis denotes the loss, the
horizontal axes (α, β) represent random directions
in parameter space.

Large language models (LLMs), such as GPT-
5 (OpenAI, 2025) and DeepSeek (Liu et al.,
2024a), have demonstrated exceptional perfor-
mance on a wide range of natural language pro-
cessing tasks (Yang et al., 2019; Liu et al., 2019;
Talmor et al., 2018; Chowdhery et al., 2023;
Zheng et al., 2020) and have significantly im-
proved agent capabilities in applications such
as coding assistance (xAI, 2025). A key factor
behind this success is the scaling law (Kaplan
et al., 2020), which indicates that increasing
model size consistently improves performance.
However, rapid growth in parameter counts and
computational requirements introduces consid-
erable challenges: inference latency increases
sharply, and high resource demands hinder effi-
cient deployment, both in large-scale data cen-
ters and on resource-constrained edge devices.
These challenges have motivated extensive re-
search into LLM compression techniques, in-
cluding pruning, low-rank decomposition, and
quantization.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝒂 𝒑𝒆𝒓	𝒕𝒆𝒏𝒔𝒐𝒓 𝒃 𝒈𝒓𝒐𝒖𝒑 = 𝟏𝟐𝟖 𝒄 𝒈𝒓𝒐𝒖𝒑 = 𝟔𝟒 𝒅 𝒈𝒓𝒐𝒖𝒑 = 𝟑𝟐

Figure 2: Value distributions of various group granularities showing (a) Low-bit values are nested
in the high-bit grid, (b) lower bits collapse representations; larger groups improve dynamic-range.

Among various compression techniques, quantization has emerged as a particularly promising strategy.
It effectively reduces model size by encoding weights and activations with fewer bits, and lowers
computation by enabling low-precision arithmetic. Existing approaches fall into two families: post-
training quantization (PTQ) and quantization-aware training (QAT). PTQ quantizes a pretrained
model with little or no retraining and thus dominated early work; however, it often degrades sharply
at ultralow precisions (≤ 4-bit) (Lin et al., 2024). By contrast, quantization-aware training (QAT)
incorporates the quantization process directly into the training loop to mitigate the quant error caused
by low-precision representation.

To achieve low bit, existing QAT methods have explored primarily on several directions: (i) modifying
the optimization objective via variants of knowledge distillation (Du et al., 2024; Chen et al., 2024a)
to better align with full-precision output distributions; (ii) improving discrete gradient estimation
through enhanced Straight-Through Estimators (STE) (Panferov et al., 2025; Malinovskii et al.,
2024) to suppress large-error gradients; (iii) designing more robust quantizers such as clipping
strategies and quantization grid (Chen et al., 2024a; Liu et al., 2025b; Du et al., 2024) to mitigate the
influence of non-salient values; (iv) employing fine-grained, stage-wise schedules for learning rates
and weight decay (Ma et al., 2025; 2024; Team et al., 2025); and (v) inserting orthogonal or smooth
transformations (e.g., Hadamard) into training (Choi et al., 2025; Panferov et al., 2025; Tan et al.,
2025; Wang et al., 2025) to reduce quantization errors introduced by outliers. Despite these advances,
existing approaches still face critical stability challenges during training. They often rely on massive
token budgets to converge to usable low-bit representations; demand extensive hyperparameter “wind
tunnel” tuning, particularly of learning rates, since low-bit weights require larger yet inherently
unstable updates; and introduce significant computational overhead from complex distillation losses,
which slow training and inflate memory usage due to the need to retain both teacher and student
logits. These challenges naturally raise the question: How can we mitigate quantization error and
achieve stable ultra-low-bit QAT?

𝒆𝒓
𝒓𝒐
𝒓

𝒃𝒍𝒐𝒄𝒌	𝒊𝒏𝒅𝒆𝒙

Figure 3: Layer-wise reconstruction and
validation errors across Transformer blocks,
showing error accumulation in later layers.

To address this, we first examine the loss landscapes
under different precisions (Figure 1). We observe that
as precision decreases, the loss landscape becomes in-
creasingly uneven and discontinuous, which can trap
the model in poor local minima. Moreover, this in-
duced weight distributions are difficult to represent at
low bit widths (Figure 2), making QAT optimization
inherently unstable in the ultra-low-bit regime. And
by further examining the quantization error across
different blocks (Figure 3), we find that later layers
suffer from significantly larger errors. This suggests
that the key challenge for ultra-low-bit QAT lies in
the accumulation of quantization error. So inspired
by (Zhuang et al., 2018), we propose Bit-by-Bit, a
progressive framework for stable ultra-low-bit QAT.
Our main contributions are:

• A progressive strategy anneals precision from high to low, quantizing weights first and activations
later to provide a well-conditioned start for the subsequent low-bit stage.

• Rounding-aware outlier channel splitting, which mitigates both outlier effects and rounding errors
while preserving quantized outputs.

• Microscaling conventions (e.g., MXFP4, NVFP4-style), aligned with OCP/NVIDIA formats, to
effectively capture dynamic ranges of full precision values.
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Our comprehensive evaluation on LLaMA-2/3 and Mistral under both weight-only (w2a16) and
weight–activation (w2a2) shows that BIT-BY-BIT consistently surpasses strong QAT baselines under
the same training budget in ultra–low-bit regimes. On LLaMA-2 7B with w2a2 quantization, it incurs
only merely +2.25 perplexity increase on WikiText2 compared to FP16 (7.72 vs. 5.47), while on
LLaMA-3 family which is hard to quantize, Bit by Bit surpass other QAT methods.

2 RELATED WORK

2.1 QUANTIZATION FOR LLMS

Post-Training Quantization (PTQ) is a mainstream LLM compression method, with aggressive
strategies down to 2-bit (Liu et al., 2024b), ternary (Kaushal et al., 2024), and binary (Gu et al., 2025).
Most approaches aim to preserve a small set of salient weights to reduce error, e.g., AWQ (Lin et al.,
2024) uses activation-guided scaling, SqueezeLLM (Kim et al., 2023) mixes dense/sparse formats,
PB-LLM (Shang et al., 2023) combines binary and INT8, and BiLLM (Huang et al., 2024) adds
residual quantization. Despite effectiveness, these designs often introduce complex implementations
and kernel inefficiency.

Quantization-Aware Training (QAT) aims to address these issues by jointly optimizing the weights
along with the quantizer to mitigate quantization error, including: LLM-QAT (Liu et al., 2023)
operates without additional data but suffers from high computational overhead during teacher logits
computation; QuEST (Panferov et al., 2025) filters outlier gradients and employs RMS operations
combined with Gaussian and Hadamard transforms for distribution fitting; DB-LLM (Chen et al.,
2024a) introduces a dual binary representation along with a deviation-aware distillation loss and
BitNet (Ma et al., 2025) has demonstrated the potential of ternary weight representations, yet requires
as many as 2T tokens to establish a stable low-bit model.

Weight-Only Quantization stores LLM weights in low precision, with recent works pushing
below 1-bit representation (Gu et al., 2025; Dong et al., 2024), achieving up to 20× compres-
sion. Weight–Activation Quantization further quantizes activations, enabling low-precision
GEMM kernels and reducing IO (e.g., DeepSeek’s DeepGEMM (DeepSeek, 2025)). Methods
like SmoothQuant (Xiao et al., 2023a) shift quantization difficulty from activations to weights,
while rotation-based approaches (QuaRot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024c))
improve robustness via orthogonal transformations. Our QAT framework supports both ultra-low-bit
weight-only and weight–activation quantization.

2.2 GRANULARITY AND FORMAT

Quantization differs by format: uniform integers (fixed step), low-precision floats (non-uniform
levels), and codebook-based schemes (e.g., NF4 (Dettmers et al., 2023)). It also varies by granularity:
per-tensor, per-channel, per-group, or per-block. Recently, micro-scaling formats gained attention:
OCP MX (MXFP4 (Rouhani et al., 2023)) shares an E8M0 scale over 32 elements, while NVIDIA
NVFP4 (NVIDIA, 2025) uses 16-element blocks with E4M3 scales plus a FP32 master scale. Our
method adopts this microscaling-group design to capture dynamic distributions and extends it to 2-bit
quantization.

3 METHOD

In this section, we revisit quantization for LLMs and introduce our method, which integrates a progres-
sive QAT strategy with Once-for-any-precision training, outlier channel splitting, and microscaling
groups.

3.1 QUANTIZATION REVISITED

Quantization is applied to all linear layers except the LM head and the embedding layer. In group-wise
quantization, the weight matrix W ∈ Rm×n is partitioned into column groups of size g:

W =
[
W (1),W (2), . . . ,W (G)

]
, W (i) ∈ Rm×g, G = n

g .

3
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Figure 4: (a) Progressive Bit-by-Bit QAT: Direct 2-bit QAT drives weights into coarse clusters
under a non-smooth loss landscape, progressive schedule that lowers precision stage-by-stage, using
the higher-precision phase to stabilize and initialize the next stage. (b) Rounding-aware outlier
channel splitting: detect outlier channels via metric |x|2 · |w|, then apply identical, rounding-aware
halving that keeps the quantized output unchanged.

Each group is quantized independently. For any element x ∈W (i), we compute

q = round
(x
s
+ z
)
, q ← clip(q, 0, 2n − 1) , s =

Max−Min

2n − 1
, z = − round

(
Min

s

)
,

where Max = max(W (i)),Min = min(W (i)). In the following, we use the terms scale and step
size interchangeably to denote s. Since symmetric quantizer can only represent three distinct levels
at low bit-widths (e.g., 2-bit), or, as in strategies like SEQ (Liu et al., 2025b), map weights to a
symmetric codebook such as {−1.5,−0.5, 0.5, 1.5}. We adopt an asymmetric quantizer with a
zero-point in our methods. To incorporate the quantizer into training, we adopt the straight-through
estimator (STE) to address the non-differentiability of the rounding operation. Gradients flow only
through the weights, while the scale s and zero-point z obtained directly from closed-form expressions.
No additional clipping or heuristic adjustment (Shao et al., 2023) is applied to the weights, ensuring a
simple yet effective quantization scheme.

Lower-bit dequantized weights are contained in—and well-approximated by—the lattice of a slightly
higher precision: for every xlow there exists xhigh with |xlow − xhigh| ≤ 1

2shigh. Hence higher-bit grids
strictly refine lower-bit ones, motivating a coarse-to-fine progressive schedule.

3.2 PROGRESSIVELY BIT-BY-BIT QAT

As shown in Figure 1, directly optimizing at very low precision often produces a rugged loss landscape,
making training susceptible to suboptimal local minima. Examining the dequantized weights further
reveals that lower-bit representations collapse into only a few coarse clusters (Figure 2). Lower-bit
dequantized value are contained in, and well-approximated by, the lattice of higher precision: for
every xlow there exists xhigh with |xlow − xhigh| ≤ 1

2shigh. where xhigh denote the higher bit value and
shigh is the corresponding step size. This hierarchical relationship suggests a natural coarse-to-fine
progression: higher-bit grids act as smooth refinements of lower-bit representations, motivating us to
adopt progressive quantization as a more stable optimization path.

Directly training models at ultra-low precision is often unstable. To alleviate this issue, we adopt a
progressive quantization-aware training (QAT) strategy. We begin from a relatively high precision
setting, which closely matches full precision and introduces negligible quantization error, providing a
well-conditioned initialization. The bitwidth is then gradually reduced across stages (e.g., from 8-bit
to 4-bit and finally to 2-bit for weights), allowing the model to progressively adapt to the increasing
quantization noise. For weight–activation quantization, we apply the same principle: the model is first
stabilized under a configuration with low-bit weights but high-precision activations, and the activation
precision is then progressively lowered in subsequent stages. This staged reduction enables the model
to adapt step by step to the growing activation noise, thereby mitigating training instability. We also
explored alternative progressive schedules, and further details are provided in the Appendix B.1.

Following BRECQ (Li et al., 2021) and EfficientQAT Chen et al. (2024b), we employ a block-
wise objective to mitigate error accumulation. For block i, let x(i)

wka16 denote the input activation

4
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Algorithm 1 Bit by Bit Progressive QAT and Once-for-any-precision
func ProgressiveQAT(Model)

1: for block i = 1, . . . , B do
2: y ← x

(i)
w16a16W

(i)
w16a16, xref ← x

(i)
w16a16

3: for k = 8 to 2 do
4: L ←MSE

(
xref W

(i)
wka16, y

)
5: xref ← x

(i)
wka16

6: end for
7: for k = 8 to 2 do
8: L ←MSE

(
xref W

(i)
w2ak, y

)
9: xref ← x

(i)
w2ak

10: end for
11: end for

func Once-for-any-precision(Model)

1: for block i do
2: for r ∈ R do
3: Wr = sshare ∗ q(r)
4: end for
5: minimize L =

∑
r∈R λr

(
xWR − y

)
6: end for
7: schedule λhigh ↓ , λlow ↑ every epoch

func Mapping(sshare,q
h)

1: ql = qh ≫ (h− l)
2: Wl = sshare ∗ (ql ≪ (h− l))

when all preceding blocks use k-bit weights (while activations remain FP16), and let x(i)
w(k+∆)a16

denote the activation obtained when the preceding blocks use a slightly higher precision, e.g., w4a16
as w(2 + ∆)a16 for stabilizing w2a16. The full-precision reference is denoted as w16a16. The
block-wise loss is formulated as

L(i) = MSE
[(
x
(i)
w(k+∆)a16W

(i)
wka16

)
−
(
x
(i)
w16a16W

(i)
w16a16

)]
.

This design leverages higher-bit block activations as a more accurate teacher, improving the robustness
of QAT across 8/4/2-bit regimes. A similar block-wise formulation is also applied to weight–activation
quantization, where activations are progressively reduced from a16 to lower precisions.

Once-for-any-precision. Supporting multiple precisions in practice usually requires storing several
models of different sizes, each obtained via separate QAT. Inspired by (Nair et al., 2025; Park et al.,
2024; Cai et al., 2019), we extend our Bit-by-Bit framework to a unified once-for-any-precision
paradigm, where a single model can be deployed at various bit-widths without additional retraining.

The key idea is that quantization maps a high-precision value onto a coarser grid defined by a scale
factor. The most common case is mapping from floating point to integers, wfp → s · q. However,
the same principle applies between different integer precisions. Given an integer quantization at h
bits, qh, the corresponding l-bit representation 2l (l < h) can be obtained:

s · q(h) −→ s · 2h−l ·
⌊

q(h)

2h−l

⌋
= s · 2h−l · q(l),

where q(l) =
⌊
q(h)/2h−l

⌋
is obtained by discarding the (h− l) least significant bits. This shows that

the l-bit grid is inherently nested within the h-bit grid.In practice, this mapping is implemented with
integer bit shifts: q(l) = q(h) ≫ (h− l), ŵ(l) = s ·

(
q(l) ≪ (h− l)

)
, using shift operation.

During training, we minimize a multi-precision objective L =
∑

r∈R λr

(
xWR − y

)
, where R is

the set of target bit-widths (e.g., R = {w8a16, w4a16, w2a16}), λr ≥ 0 controls the contribution
of each precision, WR denotes the weights quantized to r bits with shared scale and y denotes the
full precision output. Since lower-precision grids are nested within higher-precision ones, we adopt
a progressive strategy: we initially emphasize the highest bit-width to obtain a well-conditioned
initialization (large λ8), and then gradually ramp up the lower-bit losses (increasing λ4 and λ2) while
keeping the higher-precision terms non-zero to prevent forgetting. Finally, we store the high-precision
model and derive its low-precision variants via the above mapping procedure.

3.3 OUTILER CHANNEL SPLIT

The outlier issue has long been a major challenge in quantization, for uniform b-bit quantization,
the step size is s = max(W )−min(W )

2b−1
. Weight outliers enlarge the range R = max(W )−min(W ),

thereby increasing s; activation outliers enlarge ∥x∥1. As a result, the quantization error is bounded
by
∣∣xW − xWquant

∣∣ ≤ 1
2s ∥x∥1, showing that both weight and activation outliers amplify the error

through range expansion and input magnitude. Prior works (Shao et al., 2023) often mitigate this
problem by clipping outliers with learnable parameters. However, outliers value encode important

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

distributional or semantic features (Sun et al., 2024), and discarding them directly can lead to
substantial performance degradation. Motivated by this, we adopt the Outlier Channel Splitting
(OCS) (Zhao et al., 2019), which duplicates channels containing extreme activations and redistributes
their contribution through an identity mapping, thereby retaining critical information while keeping
the quantization process efficient.

Consider a linear layer with input vector x ∈ Rm, weight matrix W ∈ Rm×n, and output y ∈ Rn:

y = xW, where yj =

m∑
i=1

xiWij .

Without loss of generality, assume that the last input channel xm is identified as an outlier channel.
OCS duplicates the outlier channel and halves its contribution across the two copies, keeping the
layer output unchanged. Formally, splitting the activation of outlier channel m into two identical
branches allows the output yj to be rewritten as

xmWmj →
(

1
2xm

)
Wmj +

(
1
2xm

)
Wmj = xm

(
1
2Wmj

)
+ xm

(
1
2Wmj

)
.

This operation can be equivalently applied to the outlier weight row. Both formulations are mathemat-
ically identical, OCS replaces a single outlier channel with two identical copies of reduced magnitude.
This operation reduces the dynamic range per channel, thereby alleviating the quantization error
caused by outliers, at the cost of a small increase in channel dimensionality.

Splitting increases layer width and increase computation, so we split only a small subset of channels.
For a linear layer with input x ∈ Rm and weights W ∈ Rm×n, we define an outlier metric for each
input channel i as

metrici = ∥Xi∥2 ·
1

n

n∑
j=1

|Wij |,

where ∥Xi∥2 denotes the ℓ2 norm of the i-th input feature aggregated across N × L tokens, and
1
n

∑n
j=1 |Wij | represents the average absolute weight magnitude of channel i across all output

dimensions. As shown in Fig. 3, quantization error accumulates along depth, so later blocks suffer
larger errors. To compensate, we adopt a block-wise schedule that linearly increases the split ratio
with depth. Index Transformer blocks by b = 1, . . . , B from shallow to deep. For block b, we set

rb = rmin +
b− 1

B − 1

(
rmax − rmin

)
,

and split the top ⌈rb m⌉ input channels (ranked by si), where m is the number of input channels in
that layer. This allocates fewer splits to early blocks and more to later blocks, matching the observed
depth-wise error accumulation.

For a selected outlier channel m with weight row Wm:, we apply a rounding-aware split. Let s be the
(post-split) step size; we replace its contribution by two half branches with opposite half-step offsets:

Wm: −→
(

Wm:−s/2
2 , Wm:+s/2

2

)
.

By nearest rounding, Qs

(
Wm:−s/2

2

)
+ Qs

(
Wm:+s/2

2

)
= Qs(Wm:), thus the quantized output is

preserved identical. With RoundErr(z) =
(
Round(z)− z

)
∈ [− 1

2 ,
1
2 ), the post-split error is

εRA = xm

(
Qs

(
Wm:−s/2

2

)
+Qs

(
Wm:+s/2

2

)
−Wm:

)
= xm sRoundErr

(
Wm:

s

)
.

In contrast, the naive half split (Wm:/2, Wm:/2) yields

εnaive = xm

(
Qs

(
Wm:

2

)
+Qs

(
Wm:

2

)
−Wm:

)
= xm 2sRoundErr

(
Wm:

2s

)
,

hence E[|εRA|] = 1
2 E[|εnaive|] (MSE is 1/4). If the pre-split step is sold and splitting halves the

range (s≈sold/2), then E[|εRA|] ≈ 1
2 E[|εbase|], while the naïve split is even with the baseline.
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Table 1: Evaluation results on WikiText2 and C4 across different model sizes. Our method Bit-by-Bit
is highlighted.

Method Bits Group WikiText2 C4

2-7B 3.2-1B 3.2-3B 3-8B 2-7B 3.2-1B 3.2-3B 3-8B

FP16 - - 5.47 9.75 7.81 6.13 6.97 12.74 10.44 8.89

Weight Only Quantization (w2a16)

GPTQ w2a16 128 60.5 2775.63 379.23 43.34 33.7 1875.41 323.24 43.28
AWQ w2a16 128 2.2e5 1.7e7 7.2e6 5.2e5 1.75e5 1.9e7 7.7e6 5.1e5
OmniQuant w2a16 128 11.06 6260.71 1.4e51 2.2e6 15.02 2442.55 8315.17 8.3e5
ParetoQ w2a16 -1 10.89 42.82 26.88 100.04 12.40 35.08 24.08 94.97
EfficientQAT w2a16 128 7.19 23.89 14.08 11.31 8.79 26.09 18.26 15.26
BitDistiller w2a16 128 8.08 34.45 16.96 12.48 9.17 62.23 19.58 18.79
Bit-by-Bit (Ours) w2a16 32 6.50 17.07 11.25 8.87 9.22 27.40 17.41 15.18

Weight Activation Quantization (w2a2)

SmoothQuant w2a2 128 2.5e5 1.7e7 2.0e6 8.6e6 3.0e5 1.8e8 1.5e6 9.9e6
SpinQuant w2a2 128 5433.06 4059.73 4008.33 7931.37 7524.73 8222.23 8256.53 1.3e5
ParetoQ w2a2 -1 259.74 1091.78 1018.61 549.71 135.32 418.22 401.22 237.21
EfficientQAT w2a2 128 26.06 118.24 56.42 25.86 23.13 83.85 51.57 27.27
BitDistiller w2a2 128 29.66 45.56 37.32 24.26 43.08 61.11 46.91 26.81
Bit-by-Bit (Ours) w2a2 32 7.72 24.99 14.27 11.54 15.87 59.75 26.39 26.45

3.4 MICROSCALING

Ultra–low-bit quantization significantly reduces computational and I/O costs, but it also severely
restricts the representable dynamic range (Figure 2). To address this limitation, microscaling for-
mats—such as MXFP4 and NVFP4, introduce a shared scale factor applied to small blocks of weights.
In line with this approach, we apply per-group scaling over 32 elements and store each group scale
in FP8 to minimize overhead. Unlike MX-style formats that adopt FP8 with an 8-bit exponent and
no mantissa (E8M0, i.e., power-of-two scaling), our 2-bit (INT2) payload requires finer granularity
than what power-of-two steps can offer. Therefore, we employ FP8 with a 4-bit exponent and 3-bit
mantissa (E4M3) for group scales. This format provides sufficient mantissa precision for accurate
step-size adjustment, while adding only one 8-bit scale per 32 weights, resulting in a storage overhead
of just 8/32 = 0.25 bits per weight.

4 EXPERIMENT

We comprehensively evaluate Bit-by-Bit against both post-training quantization (PTQ) and
quantization-aware training (QAT) baselines. PTQ methods include GPTQ (Frantar et al., 2022),
AWQ (Lin et al., 2024), OmniQuant (Shao et al., 2023), SmoothQuant (Xiao et al., 2023b),
MatQuant (Nair et al., 2025), and SpinQuant (Liu et al., 2024c), while QAT baselines cover Effi-
cientQAT (Chen et al., 2024b), ParetoQ (Liu et al., 2025b), and BitDistiller (Du et al., 2024). All
experiments are run on a single H800 GPU.

4.1 EXPERIMENTAL SETTINGS

We test on the LLaMA (Dubey et al., 2024) and Mistral families, evaluating five zero-shot reason-
ing benchmarks (PIQA, ARC-Easy, ARC-Challenge, HellaSwag, Winogrande) and two language
modeling tasks (WikiText2 (Merity et al., 2017) and C4 (Raffel et al., 2020)).

For PTQ baselines, we use a 256-sample RedPajama subset (seq length 2048) for AWQ, GPTQ,
and SmoothQuant; OmniQuant follows its 40-epoch calibration, and SpinQuant is calibrated for 2
epochs. For QAT baselines, EfficientQAT adopts Block-AP (4096 RedPajama samples, 2 epochs)
followed by E2E on Alpaca; BitDistiller uses a 4096-sample Alpaca subset for KD-based QAT; and
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Table 2: Zero-shot evaluation of LLaMA-3.2 3B on five downstream tasks. We report accuracy (%)
for PIQA, HellaSwag, Winogrande, ARC-c, and ARC-e, along with the average.

LLaMA-3.2-3B PIQA Hella. Wino. ARC-c ARC-e Avg

bfloat16 77.47 73.62 69.61 45.90 71.71 67.67

ParetoQ 66.70 43.48 52.49 21.93 44.36 45.79

w2a16 EfficientQAT 70.02 57.07 59.35 34.13 58.92 55.89
BitDistiller 70.65 57.42 59.78 34.71 58.34 56.18

Bit-by-Bit (ours) 71.87 58.03 60.38 35.58 58.71 56.91
ParetoQ 51.80 25.76 48.78 23.55 27.53 35.48

w2a2 EfficientQAT 56.53 34.76 52.17 21.84 35.23 40.10
BitDistiller 60.87 42.15 54.03 26.72 47.61 46.28

Bit-by-Bit (ours) 66.00 49.30 56.91 31.40 54.00 51.52

ParetoQ is trained on 4096 RedPajama + 4096 Alpaca samples for 2 epochs, aligned to our budget
(vs. 30B tokens in the original). Since these methods target weight-only quantization, we extend
them with activation quantizers: online dynamic scaling for EfficientQAT, asymmetric clipping for
BitDistiller, and 2-bit SEQ for ParetoQ. We train Bit-by-Bit on a 4096-sample subset of RedPajama.
For weight-only quantization, the model precision is progressively reduced from w8a16 to w4a16
and then to w2a16, switching every two epochs, while splitting 10% of weight channels as detected
by the metric. For weight–activation quantization, we first lower the weight precision to w2a16, then
reduce the activation precision to w2a2 progressively, splitting 10% of weight channels.

4.2 MAIN RESULTS

Table 1 reports perplexity results on WikiText2 and C4 under both weight-only (w2a16) and weight-
activation (w2a2) settings. Bit-by-Bit consistently surpasses ParetoQ, EfficientQAT, and BitDistiller
across model sizes and datasets. In w2a16, it requires fewer training tokens than ParetoQ, converges
faster than BitDistiller, and achieves more stable training than EfficientQAT, e.g., reaching 11.25/17.41
PPL on WikiText2/C4 with LLaMA-3.2 3B. The advantage is even more pronounced in w2a2, where
it reduces WikiText2 PPL on LLaMA-2 7B to 7.72, far below EfficientQAT (26.06) and BitDistiller
(29.66). Zero-shot results (Table 2) further confirm its robustness: Bit-by-Bit achieves the best
average accuracy under both w2a16 (56.91) and w2a2 (51.52), exceeding the strongest baseline by
over 5 points in the latter. These results demonstrate Bit-by-Bit’s effectiveness in preserving strong
generalization under ultra-low precision.

4.3 ONCE-FOR-ANY-PRECISION EVALUATION Table 3: Evaluation of Mistral-7B under different
quantization settings

Mistral-7B
Bits Method C4 ppl Task avg

bfloat16 8.24 73.99

w8a16
OmniQuant 8.24 73.77
MatQuant 8.43 73.46
Bit-by-Bit (ours) 8.33 73.51

w4a16
OmniQuant 8.47 73.62
MatQuant 8.63 73.13
Bit-by-Bit (ours) 8.79 72.21

w2a16
OmniQuant 50.99 59.74
MatQuant 13.05 65.99
Bit-by-Bit (ours) 10.73 65.37

Our once-for-any-precision method produces mod-
els at multiple bit-widths. To validate the gen-
erality of this approach, we compare against
MatQuant and OmniQuant on Mistral-7B. Specif-
ically, we perform a single QAT run with Bit-by-
Bit and directly apply the trained model to differ-
ent bit-widths (w8a16, w4a16, w2a16). In con-
trast, the baseline OmniQuant requires separate
training for each bit-width, while MatQuant also
employs a one-shot QAT strategy for multi-bit
adaptation. As shown in Table 3, our method
achieves competitive or superior results under
all settings. For w8a16 and w4a16, Bit-by-Bit
matches the full-precision baseline with only
marginal degradation, obtaining task averages
of 73.51 and 73.21, respectively. More impor-
tantly, in the challenging w2a16 setting, Bit-by-Bit
achieves a task average of 65.37 with C4 perplexity 10.73, substantially outperforming OmniQuant
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(59.74 / 50.99) and remaining on par with MatQuant (65.99 / 13.05). This demonstrates that a single
QAT run suffices to deploy models at multiple bit-widths, eliminating the additional cost of retraining
separate models for each configuration.

Table 4: Ablation study on Llama 3.2-1b on w2a16 setting, evaluation conducted on WikiText2 and 5
zero-shot tasks

Block-wise Progressive Ocs Metric group size WikiText2 ppl Task avg Memory

- - - - 32 1.7e3 35.09 0.33GB
✓ - - - 32 31.88 40.87 0.33GB
✓ ✓ - - 32 24.60 43.26 0.33GB
✓ ✓ ✓ Kurtosis 32 22.43 43.69 0.36GB
✓ ✓ ✓ wmax 32 20.37 44.26 0.36GB
✓ ✓ ✓ xmax 32 19.07 44.30 0.36GB
✓ ✓ ✓ |x|2 · |w| 32 17.07 45.18 0.36GB

✓ ✓ ✓ |x|2 · |w| 64 30.26 40.66 0.34GB
✓ ✓ ✓ |x|2 · |w| 128 38.92 38.60 0.32GB

4.4 ABLATION

We conduct a comprehensive ablation study of our proposed components on LLaMA3.2-1B, evalu-
ating WikiText2 perplexity and the average score across five zero-shot tasks. As shown in Table 4,
using block-wise loss yields substantially better results than end-to-end training with Negative Log-
Likelihood. Training directly on w2a16 performs poorly, whereas adopting our progressive training
strategy significantly improves convergence and accuracy. Incorporating outlier channel splitting
(OCS) brings further gains. We evaluate several metrics for detecting outlier channels, including
weight maximum (wmax), activation maximum (xmax), and kurtosis (DeCarlo, 1997; Nrusimha et al.,
2024) which measures the “tailedness” of a distribution, and find that the combined weight–activation
metric |x|2 · |w| yields the best performance. While OCS slightly widens the weight matrix, the
memory overhead remains modest (0.33GB→ 0.36GB). We also examine the impact of group size:
using group-128 saves only 0.04GB of memory but leads to a sharp degradation in performance that
task accuracy falls from 45.18 to 38.60.

4.5 SPEED MEASUREMENT 𝟏. 𝟗𝟓	×

𝒕𝒐
𝒌𝒆
𝒏	
𝒑𝒆
𝒓	
𝒔𝒆
𝒄𝒐
𝒏𝒅

𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆	𝒍𝒆𝒏𝒈𝒕𝒉

Figure 5: Decode throughput (tokens/s)
at different sequence lengths.

We measure end-to-end decode speed (tokens/s) of Llama-
3.2-1B under torch FP16 (w16a16), SpinQuant (w4a4),
and our BIT-BY-BIT (w2a16/w2a2). For each sequence
length (512–4k), we prefill the KV cache and report aver-
age decode speed over 256 tokens. Results show BIT-BY-
BIT delivers the highest throughput across all lengths, with
up to 1.95× gain at short sequences and steady advantages
at longer contexts.

5 CONCLUSION

We introduced BIT-BY-BIT, a stable low-bit QAT framework for LLMs that combines (i) progressive
precision decay—reducing weight bits before activation bits in a block-wise schedule, (ii) a once-for-
any-precision multi-target objective that trains a single model to operate at several bit-widths without
retraining, and (iii) rounding-aware outlier-channel splitting that preserves the quantized output while
shrinking rounding error. BIT-BY-BIT turns ultra-low-bit training into a coarse-to-fine adaptation
problem, yielding robust convergence, practical deployment flexibility (one trained model, many
precisions), and favorable accuracy–efficiency trade-offs.
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it does not make use of data sets that could raise privacy or security concerns. We have ensured
that our methodology and applications do not introduce or perpetuate harmful biases, and we have
taken care to document our data sources and experimental procedures to promote transparency and
reproducibility. We have no known conflicts of interest or sponsorship to disclose.

7 REPRODUCIBILITY STATEMENT

We are committed to providing sufficient detail for the academic community to reproduce the results
presented in this paper. All experiments were performed on a NVIDIA H800 GPU. We utilized the
official implementations of all baseline methods where available, ensuring consistent environment
configurations. Our evaluations were conducted on two major model families: the LLaMA series
and the Mistral series. Performance was measured across seven standard benchmarks: Zero-Shot
Reasoning: PIQA, ARC-Easy, ARC-Challenge, HellaSwag, and Winogrande; Language Modeling:
WikiText2 and the C4 test set. We took measures to align the training cost across all QAT approaches
for an unbiased evaluation. - EfficientQAT was first subjected to the Block-AP stage, utilizing
a 4096-sample RedPajama subset over 2 epochs, and then proceeded to the E2E stage using the
entire Alpaca dataset. - For BitDistiller, knowledge distillation was performed on a 4096-sample
Alpaca subset synthesized by the teacher model. - ParetoQ’s training budget was limited to 2 epochs,
leveraging a combined dataset comprising a 4096-sample RedPajama subset and an equal-sized 4096-
sample Alpaca subset. Furthermore, because these QAT baselines were inherently weight-only, we
customized the activation quantization for each: EfficientQAT used a dynamic quantizer, BitDistiller
relied on asymmetric clipping, and ParetoQ was equipped with a 2-bit SEQ quantizer. We used a
4096-sample subset of RedPajama in our Bit-by-Bit training process. In the process of Weight-Only
Quantization, we incorporated the splitting of 10% of weight channels based on the metric at each
step. In the process of Weight-Activation Quantization, we maintain the 10% channel splitting rule.
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APPENDIX

A EXTENDED DISCUSSION

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model was utilized for grammatical and stylistic refinement of the manuscript.
Its role was strictly limited to text editing and polishing to enhance clarity. All research ideas,
experimental design, and analytical content are the original work of the authors.
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A.2 BROADER IMPACTS

Our work advances ultra-low-bit quantization of large language models through a progressive training
strategy with outlier channel splitting. By enabling stable training at 2-bit and below, Bit-by-Bit
reduces the memory footprint and computational cost of LLMs by orders of magnitude. This
improvement directly translates into lower inference latency, reduced energy consumption, and
smaller carbon emissions, making the deployment of LLMs more sustainable.

Beyond efficiency, democratization is another key impact: with drastically reduced hardware require-
ments, powerful LLMs become accessible to a wider range of users and organizations, including
those with limited computing resources. This may empower broader participation in AI research and
applications, bridging the gap between well-funded institutions and smaller labs or industry players.

On the societal side, compressed LLMs can be deployed in edge scenarios such as mobile devices, of-
fline environments, and privacy-sensitive settings, expanding the reach of AI to education, healthcare,
and accessibility applications. However, lowering the barriers to deployment also amplifies risks of
misuse, such as generating disinformation at scale or enabling harmful applications on inexpensive
hardware. Mitigating these risks requires complementary safeguards, responsible governance, and
continued community awareness.

Overall, we believe our work contributes to the ongoing effort of making LLMs greener, more
efficient, and more inclusive, while highlighting the importance of balancing technological progress
with responsible use.

A.3 LIMITATIONS

While BIT-BY-BIT improves stability at ultra–low bits, it has several limitations. (i) We observe
larger performance drops on the Qwen family, these models appear harder to quantize, leading to
greater quantization error, and a deeper analysis is left for future work. (ii) The block-wise training
schedule is less friendly to distributed training than end-to-end schemes, requiring nontrivial load-
balancing and communication engineering. (iii) We have not extensively explored direct end-to-end
progressive training; its convergence behavior and trade-offs remain open. (iv) We have not explored
directions include learning layerwise schedules and split ratios automatically, extending to MoE and
longer-context inference (e.g., KV-cache quantization), integrating hardware-aware mixed-precision
search, and combining our training with lightweight distillation.

B EXTENDED AND DETAIL METHOD

B.1 DIFFERENT PROGRESSIVE STRATEGIES

B.1.1 PRECISION PROGRESSIVE STRATEGIES

(A) Weights→ Activations (claimed in method). We first lower the weight precision to stabilize
the network under weight noise, and only then reduce the activation precision:

(w8, a16) → (w4, a16) → (w2, a16) → (w2, a8) → (w2, a4) → (w2, a2).

(B) Alternating W/A. We interleave the bit reductions of weights and activations:
(w8, a16) → (w8, a8) → (w4, a8) → (w4, a4) → (w2, a4) → (w2, a2).

(C) Cyclic Precision (Kim et al., 2022) Unlike monotone schedules, cyclic precision alternates
between (k+1)- and k-bit training before committing to k-bit. The idea is to leverage the smoother
loss landscape of (k+1)-bit to recalibrate scales and reduce STE bias, while gradually adapting to
the coarser k-bit lattice. A typical sequence is

(w16, a16)→(w3, a16)→(w2, a16)→(w3, a16)→(w2, a16) · · · → (w2, a2).

In practice, we first warm up from 8-bit down to (k+2)-bit, then run several short cycles between
(k+1) and k, and finally fine-tune at k-bit. This cyclic back-and-forth helps avoid representation
collapse at ultra-low bits (e.g., 2-bit) by ensuring parameters remain quantizable on both lattices.
While it introduces extra bit switches and hyperparameters, it often improves stability compared to a
one-shot drop.
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Algorithm 2 Block-wise Progressive Strategy

1: Input: blocks 1..L, stages t = 1..T , bits {bt}, ratios {rt}, bias α
2: for t = 1 to T do ▷ progressively lower precision
3: Compute pj ∝ (L+1−j)α and sample St with |St| = ⌊rtL⌋
4: for j = 1 to L do
5: if j ∈ St then
6: Quantize block j to bit bt; (others stay at previous bit)
7: end if
8: end for
9: (Optional) apply OCS to top-rℓ channels in selected blocks

10: QAT for a fixed budget (steps/epochs) with short LR warmup
11: end for

Empirical observations. We typically find Schedule (A) more stable (smoother loss/PPL decay,
fewer divergence events), likely because it avoids simultaneous large shifts in both parameter and
activation distributions. The alternating scheme can work but is more sensitive to optimizer and
clipping hyperparameters and often requires longer warmup.

B.1.2 BLOCK-WISE PROGRESSIVE STRATEGY

We adopt a stochastic, depth-aware curriculum over transformer blocks. Let the model have L blocks
indexed from input to output as j = 1, . . . , L. At stage t (with target bit bt), we quantize only a
subset St ⊆ {1, . . . , L}, sampled with a bias toward earlier blocks and with an increasing coverage
over stages.

Depth-biased sampling. Define a per-block sampling probability

pj ∝ (L+ 1− j)α, α≥0,

so earlier blocks (small j) are more likely to be selected. Given a stage-wise coverage ratio rt∈(0, 1],
we sample |St| = ⌊rtL⌋ blocks without replacement according to {pj}.

Bit schedule. We follow a high-to-low bit curriculum, e.g.,

b1 = 8 → b2 = 4 → b3 = 2,

and optionally apply the same scheme to activations after weights. The coverage ratio increases with
t (e.g., rt linear or cosine from r1≈0.3 to rT =1.0).

Notes. (1) Depth bias (α) and coverage growth (rt) control stability/speed; we find α∈ [0.5, 1]
and linear rt robust. (2) This stochastic schedule avoids large simultaneous distribution shifts and
is more kernel-friendly than fully per-step rebitting. (3) For a deterministic variant, select the first
⌊rtL⌋ blocks at each stage instead of sampling.

B.2 MIXED-PRECISION OF DOWN-PROJECTION

As observed by (Chen et al., 2025), the inputs to the MLP down-projection (FC2 Proj) in Transformer
blocks exhibit persistent activation outliers (high kurtosis). Under ultra–low-bit W/A quantization
(e.g., W2A2), these heavy tails dominate the activation quantization error. To remove this bottleneck,
we adopt a layer-wise mixed-precision scheme that raises the activation bit-width only for outlier-
dominated sites while keeping the rest of the network at low precision. Concretely, we compute
per-layer activation kurtosis κ on a calibration set and mark layers with κ > τ as outlier-sensitive; for
these layers we set w2a4 (with the same group-wise scaling as elsewhere), while all remaining layers
use w2a2. This targeted relaxation substantially reduces activation quantization error—especially at
coarse group sizes—while incurring minimal overhead and preserves the benefits of ultra–low-bit
quantization in the rest of the model.
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B.3 LORA FOR DISTRIBUTION-PRESERVING PROGRESSION

As illustrated in Fig. 4 (a), the higher-bit stage establishes a well-conditioned weight/activation
distribution that serves as a strong initialization for subsequent lower-bit stages. To preserve this
distribution while reducing precision progressively, we insert low-rank adapters (LoRA) (Hu et al.,
2022) and restrict updates to these adapters rather than the full quantized backbone.

Concretely, when moving from bitwidth bt to bt+1 (bt+1 < bt), we freeze the backbone weights W (t)

and optimize only a rank-r perturbation

W (t+1) = W (t) + αA(t)B(t)⊤, A(t) ∈ Rd×r, B(t) ∈ Rk×r,

with the forward pass quantized as

W (t+1)
q = Qs(t+1)

(
W (t) + αA(t)B(t)⊤).

To further stabilize the transition, we use a light distribution-matching regularizer that anchors
first/second-order statistics of either weights or activations across stages, e.g.,

Ldist =
∥∥µ(W (t+1)

q )− µ(W (t)
q )

∥∥
2
+ λ

∥∥σ(W (t+1)
q )− σ(W (t)

q )
∥∥
2
,

optionally combined with a KL term on layer activations. In practice we adopt small ranks (r ∈ {4, 8})
and reinitialize adapters at each stage. This distribution-preserving LoRA update significantly
mitigates representation drift and reduces instability at ultra-low bits (e.g., 2-bit), while cutting
trainable parameters to a r(d+k)

dk fraction of full fine-tuning. After convergence, adapters are merged
and requantized or discarded after re-estimating scales.

B.4 SYMMETRIC MICROSCALING VIA SEQ

Our main pipeline uses asymmetric integers for simplicity, whereas microscaling formats (e.g.,
MXFP4/NVFP4) favor symmetric payloads with zero-point fixed at 0. To avoid the 2-bit degeneration
to ternary under strict symmetric uniform grids, we adopt Stretched Elastic Quantization (SEQ) (Liu
et al., 2025b), an LSQ-style amendment tailored for low-bit settings.

WQ = α

(⌊
Clip

(
W
α ,−1, 1

)
· k2 −

1
2

⌋
+ 1

2

k

)
× 2,

which places centers at half-integers; for b=2 the normalized levels are {− 3
4 ,−

1
4 ,

1
4 ,

3
4}. Here

α ∈ FP8 is stored/rounded in FP8 per group, and ST ∈ FP32 is shared per tensor. The dequantized
values are

Ŵ = ST ·WQ = ST α ·
(
n+ 1

2

)
, n ∈

{
− k

2 , . . . ,
k
2 − 1

}
.

At b=2, the LUT becomes

CSEQ-2b = ST α · {−1.5,−0.5, 0.5, 1.5}.

This keeps a zero-point–free symmetric path, matches NVFP4’s FP8 group scale + FP32 master scale,
and fully uses all four codes at 2-bit.

B.5 MUON FOR LOW-BIT QAT: TRAINING DYNAMICS

We investigated whether the Muon (Liu et al., 2025a; Park et al., 2025) optimizer can stabilize training
dynamics in ultra–low-bit QAT. In our pipeline, the per-group scale and zero-point are computed
online; thus the only trainable variables are the full-precision 2D weight matrices, while quantizer
statistics are not explicitly optimized.

Setup. We keep the learning-rate schedule, batch size, and clipping identical to the AdamW baseline,
and apply STE for quantization with progressive bit reduction.

Observation. Across models and bit settings, Muon did not yield consistent gains over AdamW:
convergence speed and final perplexity were comparable or slightly worse, and we observed larger
short-horizon oscillations near quantization thresholds in some layers.
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Possible causes (hypotheses). (i) Online rescaling induces non-stationary curvature that weakens
Muon’s preconditioning benefits under STE noise; (ii) gradient signals are dominated by rounding
discontinuities at ultra–low bits, reducing the utility of curvature-aware updates; (iii) block/group-wise
statistic updates interact with momentum, amplifying drift.

Next steps. We will explore (a) using Muon only on LoRA adapters while freezing the backbone; (b)
scale-aware trust-region or gradient clipping around threshold crossings; (c) layer-wise Muon/AdamW
hybrids. At present, Muon does not provide a clear advantage for our low-bit QAT setting.
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