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Abstract
Pathology images provide a unique challenge for
computer-vision-based analysis: a single whole
slide image is gigapixel-sized and often contains
hundreds of thousands to millions of objects of
interest across multiple resolutions. In this work,
we propose PathoLogy Universal TransfOrmer
(PLUTO): a light-weight pathology foundation
model (FM) that is pre-trained on a diverse dataset
of 195 million image tiles collected from mul-
tiple sites. We design task-specific adaptation
heads that utilize PLUTO’s output embeddings
for tasks ranging from subcellular- to slide-scale,
including instance segmentation, tile classifica-
tion, and slide-level prediction. We find that
PLUTO matches or outperforms existing task-
specific baselines and pathology-specific FMs,
some of which use orders-of-magnitude larger
datasets and model sizes. Our findings present
a path towards a universal embedding to power
pathology image analysis, and motivate further ex-
ploration around pathology FMs in terms of data
diversity, architectural improvements, sample effi-
ciency, and practical deployability in real-world
applications.

1. Introduction
1.1. Foundation Models in Pathology

Pathology as a medical discipline is instrumental in provid-
ing diagnostic and prognostic information to clinicians and
patients. In a pathology workflow, surgical tissue specimens
are collected, stained, and fixed for microscopy. Micro-
scopic analysis of the tissue is used to establish a diagnosis,
estimate disease severity, and identify relevant clinical fea-
tures for treatment (Walk, 2009; Madabhushi & Lee, 2016;
Ehteshami Bejnordi et al., 2017). Each whole slide image
(WSI) or slide contains up to millions of cells and can be gi-
gapixels in scale, making an exhaustive quantitative manual
analysis of WSIs nearly impossible. In addition, information
for making pathologic decisions may exist at multiple scales,
from several µm to several cm, complicating analysis.

Foundation Models (FMs) are promising for pathology as

they can take advantage of large amounts of unlabeled data
to build rich representations which can be easily adapted for
downstream tasks in a data-efficient manner. The diversity
of pre-training data powers these models to generate robust
representations, enabling them to generalize better than in-
dividual task-specific models trained on smaller datasets.
Additionally, these models can be used as a universal back-
bone across different tasks, reducing the development and
maintenance overhead associated with bespoke task-specific
models.

Given this prospect, the computational pathology commu-
nity has made rapid progress in applying self-supervised
techniques that have shown promise on natural images such
as DINO (Caron et al., 2021), iBOT (Zhou et al., 2021), and
DINOv2 (Oquab et al., 2023) to pathology. Most of these
efforts have relied on pre-training with a large amount of
proprietary data and scaling up the number of backbone pa-
rameters used in order to demonstrate high performance on
various downstream tasks including tissue classification, dis-
ease subtyping classification, and cancer histology segmen-
tation (Kang et al., 2023), (Filiot et al., 2023), (Vorontsov
et al., 2023), (Dippel et al., 2024), (Chen et al., 2024).

1.2. Our Approach

We designed and built the PathoLogy-Universal Trans-
fOrmer, or PLUTO, a state-of-the-art pathology foundation
model that, inspired by the dwarf planet, is based on a novel
light-weight ViT backbone that is pre-trained on a diverse
dataset from multiple sites and extracts meaningful repre-
sentations across the levels of the WSI pyramid outlined in
Figure 1. The key features of PLUTO are outlined below:

1. Pre-training Dataset We compiled a large dataset
across a diverse spectrum of histology stains, scan-
ners, and diseases across resolution scales from more
than 50 sources. This dataset is augmented with an ad-
ditional set of samples extracted from over four million
manual annotations of 200+ biologically-meaningful
objects and region types from board-certified patholo-
gists (Supplementary Section B).

2. Architecture We designed the PLUTO backbone to
generate multi-scale feature representations from a
compact ViT backbone using a self-supervised learning
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setup. We extended the FlexiViT scheme (Beyer et al.,
2023) for multiple magnifications, and modified the
DINOv2 loss with a Masked Autoencoder (MAE) (He
et al., 2022) objective and a Fourier-loss-based term to
modulate the preservation of low- and high-frequency
components (Section 2.1).

3. Multi-scale Adaptation and Evaluation We con-
structed a suite of adaptation heads through efficient
fine-tuning to perform diverse, challenging tasks across
the levels of the WSI pyramid, and evaluated per-
formance across different biologically-relevant bench-
marks (Section 3).

4. Deployability. Performing a computational pathology
task may require embedding tens to hundreds of thou-
sands of WSI tiles to make a single prediction. To
enable this, we focused on developing a model that
was efficient (Section 3.2).

2. Methods
2.1. PLUTO Architecture Overview

To design the PLUTO architecture, we start from the DI-
NOv2 architecture which was primarily developed for nat-
ural images that are often object-centric. Pathology WSIs
have thousands of objects such as nuclei, cells, and glands
with different sizes, observed at different image resolutions.
To create an encoder which can capture details of objects at
different levels of granularity, we add in a MAE objective
with multi-scale masking. The MAE setup tries to recon-
struct masked regions of the input image from the unmasked
regions. We perform masking by varying the patch sizes1

used for masking while using images across different res-
olutions of the WSI as shown in Figure 1. In addition to
the pixel-level reconstruction loss used in MAE, we add a
Fourier reconstruction loss to control the amount of low-
and high-frequency information preserved during the pre-
training process.

To enable the encoder and decoder to handle varying patch
sizes for multi-scale masking, we employ FlexiViT. Since
patch size controls the granularity of information captured
by the encoder, different downstream tasks may need differ-
ent patch sizes for optimal performance. FlexiViT allows
us to adapt the same backbone to different tasks without
needing to train a backbone for every patch size. The patch
size also determines the effective sequence length used in
ViTs, and FlexiViT allows us to cater to different compute
budgets by selecting the most suitable patch size at inference
time. Additional training details can be found in Section C.

1Note, we use tile and image interchangeably to refer to the
image tiles and patches to refer to the patch-tokens obtained by
dividing the tile into smaller patches for processing in ViTs.

2.2. PLUTO Adaptation

The backbone training process outlined above learns generic,
task-agnostic features. In order to leverage its general capa-
bilities, we add task-specific heads and adapt these heads
through supervised fine-tuning, while keeping the backbone
frozen. This adaptation process is efficient and provides the
flexibility to use the same pre-trained backbone for special-
ized tasks across the biological scales.

We adapt PLUTO to Level 1 slide-level tasks by performing
weak supervision on slide-level labels. In particular, MIL
(Ilse et al., 2018) is a weakly supervised learning technique
where sets of instances are grouped into a “bag” and used to
learn bag-level labels. We adapt our PLUTO backbone by
using it directly as a featurizer in an AdditiveMIL approach
(Javed et al., 2022), which enables interpretable model pre-
dictions and class-wise heatmaps.

We adapt PLUTO to tissue-level and cellular/subcellular-
level biological scales through fine-tuning either a tile clas-
sification or an instance segmentation adaptation head, de-
pending on the context of the dataset and task. We adapt
the SSL-pre-trained ViT backbone to instance segmenta-
tion tasks via two distinct frameworks: Mask R-CNN (He
et al., 2017) and Mask2Former (Cheng et al., 2021). To
the best of our knowledge, this is the first work comparing
Mask2Former to Mask R-CNN using ViT backbones on
histopathology tasks. We also experimented with combin-
ing the ViT with a ViT-Adapter (Chen et al., 2022), which
has been shown to improve segmentation performance. The
output feature maps of the adapter, corresponding to differ-
ent spatial resolutions of the input image, are used as the
input to Mask R-CNN and Mask2Former.

3. Results
3.1. Adaptation Performance

We evaluate the utility of PLUTO on slide-level prediction,
tile classification, and instance segmentation tasks2.

For slide-level prediction, we consider the prediction of
the cancer subtypes Adenocarcinoma and Squamous cell
carcinoma in non-small cell lung carcinoma (NSCLC) H&E-
stained WSIs from TCGA, a popular benchmark for slide-
level evaluation, and a proprietary out-of-domain (OOD)
set. Results are shown in Table 1.

For tile classification, we use two publicly available datasets.
The CRC-100K (Kather et al., 2018) dataset consists of im-
ages of human colorectal cancer (CRC) and normal tissue
classified into one of nine tissue classes. The Camelyon17-
WILDS (Bandi et al., 2019; Koh et al., 2021) dataset con-
tains images of breast cancer metastases in lymph node

2Additional dataset details can be found in Section D.
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PLUTO: Pathology-Universal Transformer

Figure 1. Overview of PLUTO. Panel A) outlines the PLUTO multi-resolution adaptation pipeline. Tiles are extracted from WSIs at
multiple resolutions and correspond to scales that capture different biological contexts. We organize pathology tasks according to these
biological contexts as slide level, tissue level, and cellular & subcellular level tasks, respectively. PLUTO generates embeddings that
are task-agnostic and can be used in a variety of downstream tasks, where adaptation to WSI-level prediction, tile classification, and
instance segmentation are shown. Panel B) demonstrates the PLUTO architecture in detail. WSI tiles at multiple resolutions are masked
with varying patch sizes and passed to the backbone for self-supervised pre-training. The architecture is optimized for flexibility across
multiple scales and patch sizes. In addition to DINO and iBOT losses, MAE and Fourier losses are applied across varying mask sizes to
control the amount of low- and high-frequency information that is preserved.
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Table 1. Performance of MIL models with different ViT- and CNN-based featurizers on NSCLC subtyping task. The mean and standard
deviation across 1, 000 bootstrapped runs are reported. We note that MIL models that use our frozen PLUTO model as a featurizer tend
to outperform models with both frozen and fine-tuned CNN backbones (ShuffleNet) and Imagenet-pre-trained ViT backbones. This is
especially evident in OOD performance, highlighting the robustness of PLUTO’s embeddings.

Model Dataset Patch Size Tuning In-domain F1 In-domain AUROC OOD F1 OOD AUROC
PLUTO NSCLC 16 Frozen 90.2(1.9) 94.0(1.6) 86.1(2.8) 91.2(2.5)

Meta-DINOv2 ViT-S NSCLC 14 Frozen 88.6(2.0) 92.0(1.9) 72.1(4.1) 81.9(3.8)
ShuffleNet NSCLC - Frozen 83.6(2.4) 90.1(2.0) 72.2(4.2) 83.5(3.5)
ShuffleNet NSCLC - Fine-tuned 88.1(2.2) 93.9(1.5) 42.5(8.0) 90.8(2.1)

Table 2. PLUTO performance summary on tile classification and
segmentation datasets. Using a frozen backbone with various
adaptation strategies, PLUTO, despite its smaller size, matches top
models on CRC-100K and Camelyon17-WILDS, achieves state-of-
the-art on GlaS, and outperforms fully supervised baselines while
competing with larger fine-tuned backbones reported on PanNuke.

Model Adaptation Head Benchmark Name Metrics
Acc. Bal. Acc.

PLUTO Linear Head CRC-100K 96.6 95.3
ResNet50* N/A CRC-100K 94.7 N/A

Acc. Bal. Acc.
PLUTO Linear Head C17-WILDS 96.2 -

DenseNet-121* N/A C17-WILDS 70.3 -
DICE IoU

PLUTO Mask2Former GlaS 91.2 84.5
PLUTO Mask R-CNN GlaS 88.0 79.6
UNet* N/A GlaS 85.5 74.8

bPQ mPQ
PLUTO HoverNet PanNuke 67.1 47.7
PLUTO Mask R-CNN PanNuke 58.6 -

(Shui et al., 2023)* N/A PanNuke 55.3 36.9
*Fully Supervised Baseline Model

sections. The task is to predict whether the central region
contains tumor tissue, and the dataset tests for robustness to
domain shift.

For instance segmentation, we additionally consider two
publicly available datasets. PanNuke (Gamper et al., 2019)
consists of exhaustive nuclei labels categorized into five
classes. GlaS (Sirinukunwattana et al., 2017) is a gland
segmentation dataset with images from colorectal adeno-
carcinoma. Results for tile classification and instance seg-
mentation in Table 2 demonstrate that PLUTO matches or
outperforms task-specific baselines (Nguyen et al., 2024)
for these datasets.

3.2. Deployability

To illustrate the efficiency of PLUTO, we compare the
throughput efficiency of various ViT backbones (ViT-S,
ViTB, ViT-L, ViT-H) for two common pathology tasks: tile
classification and slide-level prediction. We note that we
have not applied any inference-specific optimizations in this
setup. We use the same data-loading pipeline and hardware
(A40 GPU) for all the backbones. As seen in Figure 2, for

Figure 2. Throughput (tiles/sec) for tile- and slide-level classifica-
tion tasks using various backbones with a patch size of 16 and tile
size of 224×224. Linear probes and AdditiveMIL classifiers are
used for tile and slide-level tasks, respectively. Notable pathology
FMs use ViT-H (Vorontsov et al., 2023), ViT-L (Chen et al., 2024;
Dippel et al., 2024), and ViT-B (Filiot et al., 2023).

both the tasks, ViT-S is around 2.5× faster than ViT-B, 7.5×
faster than ViT-L, and 15× faster than ViT-H.

4. Conclusion
We present in this paper PLUTO: a competitive state-of-the-
art pathology Foundation Model based on a light-weight ViT.
PLUTO is designed to take advantage of the multi-scale na-
ture of WSIs and provide informative representations across
biological scales. We have quantified the performance of
PLUTO on a variety of adaptation tasks across biological
scales. Our work also demonstrates the importance of in-
corporation of biological priors in the construction of pre-
training datasets and the design of the model architecture for
large-scale self-supervised models. We hope that our efforts
with PLUTO further motivate building high-performing, de-
ployable FMs; drive FM adoption in pathology; and serve
real-world translational research and clinical applications.
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A. Pyramid Structure of Whole Slide Images
WSIs are digitized and stored in a multi-scale pyramidal
structure, where the base of the pyramid is the highest-
resolution image data as captured by the slide scanner. The
resulting scan of a WSI can reach 200, 000×200, 000 pixels
at a full resolution of 0.25 microns (µm) per pixel (mpp)
(Sellaro et al., 2013); however, different “levels” of the
pyramid may be accessed for different purposes.

Biological entities observed on WSIs vary dramatically in
scale, and therefore pathologists will commonly move be-
tween magnifications to assess different aspects of a tis-
sue sample on a pathology slide (Molin et al., 2016). At
low magnification, pathologists may scan across slides to
identify regions of interest in the tissue, with characteristic
lengths of approximately 1 mm–1 cm. At middle mag-
nification (such as 5–10×) pathologists commonly view
structures at length scales of 200 µm–1 mm. At this scale,
pathologists distinguish between tissue types, glands, tumor
growth patterns, histologic subtypes of diseases, or other
multicellular entities in the image. At high magnification
(20–40×) it is possible to resolve entities 1 µm–50 µm in
length, such as individual cell identities, subcellular struc-
tural morphology used in determining malignancy, or lo-
calization of immunohistochemical (IHC) staining (Magaki
et al., 2019).

The hierarchical nature of biological entities necessitates
considering the multiple scales at which information must
be extracted and used by ML algorithms. For example, pass-
ing a 224× 224 image tile at 0.25 mpp through an encoder
developed for encoding at 1 mpp may completely miss rele-
vant nuclear pleomorphism, whereas passing a 224× 224
tile at 1 mpp through an encoder developed for encoding
at 0.25 mpp may be unable to adequately distinguish be-
tween acinar and lepidic growth patterns. For clarity, we
organize pathology tasks according to such biological scales
as follows:

• Level 1: Slide Level This scale includes tasks that
label the entire slide such as predicting driver gene
mutations in cancer, histologic subtyping, or tumor
grading. However, it is uncommon that slide-level as-
sessments are made at slide-level magnification. Typ-
ically, assessments made at this scale are aggregated
across evaluation of higher-magnification tiles.

• Level 2: Tissue Level This is the scale at which it is
possible to identify and characterize tissue regions (e.g.
cancer regions and necrotic regions) and many-cellular
objects such as glands.

• Level 3: Cellular and Subcellular Level This is typi-
cally the maximal resolution of a WSI, where cellular
and subcellular morphology is evident.

B. Pre-training Data Characteristics
The dataset used for self-supervised pre-training comprises
public and proprietary datasets, totaling 195M image tiles
sampled at four resolutions from 158, 852 WSIs derived
from over 50 source sites (Figure 3). The WSIs span over
16 tissue groups and 28 disease areas, which capture a broad
range of benign, malignant, and inflammatory lesions. Ad-
ditionally, the training set is unique in the representation
covering 11 scanners and four stain groups: hematoxylin
and eosin (H&E) formalin-fixed paraffin-embedded (FFPE),
H&E frozen, IHC (capturing over 100 distinct IHC stains
including PD-L1, HER2, and Ki-67) and special stains (in-
cluding six stains such as trichrome and iron). The base
objective magnification of our training set consists of both
20× and 40× slides. Tiles are sampled from regions at up to
four different resolutions: 40× (0.25 mpp), 20× (0.5 mpp),
10× (1 mpp), and 5× (2 mpp).

Following findings from DINOv2 (Oquab et al., 2023) high-
lighting the significant value of incorporating curated data
into self-supervised pre-training, this dataset is augmented
with an additional set of samples extracted from over four
million manual annotations from board-certified patholo-
gists. These hand-drawn pathologist annotations correspond
to hundreds of different types of biological entities at vari-
ous scales (e.g., lymphocyte, blood vessel, Gleason pattern
3 prostate cancer, tumor bed). During pre-training, the la-
bels are discarded, but the inclusion of pathologist-curated
regions covering a wide range of biological patterns pro-
vides an implicit data diversity in the pre-training process.
This source of biological diversity, combined with the broad
range of stains, organs, diseases, and source sites, makes
this one of the most diverse large-scale digital pathology
datasets to date.

C. Backbone Training Details
We observe slightly better performance with the teacher
over the student, and thus use the teacher for all downstream
tasks. We use ViT-S for the student and teacher encoders,
and a shallower model is used for the MAE decoder. For
training, we use AdamW with a base learning rate of 0.002
and a learning rate warmup for the first 5 epochs. We use
a distributed training setup to scale the training across 64
NVIDIA A40 GPUs.

D. Adaptation Datasets
D.1. NSCLC subtyping

For NSCLC subtyping, we use slides from the publicly avail-
able TCGA Adenocarcinoma (LUAD) and Squamous Cell
Carcinoma (LUSC) groups. We use 500 slides for model de-
velopment and 247 (128 LUAD / 119 LUSC) slides for test
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Figure 3. Dataset characterization for the pre-training dataset. The distribution of the dataset by organ, disease, stain, scanner, and
objective magnification is shown, as well as the distribution of cell point and tissue region annotations which augment the pre-training
dataset (NOS: Not Otherwise Specified). Aggregate data characteristics are summarized above these distributions which also indicate the
number of biologically-meaningful objects and region types, which we term substances (e.g. lymphocyte, blood vessel, Gleason pattern 3
prostate cancer, tumor bed). The large number of source sites (50+) guarantees large diversity during PLUTO self-supervised pre-training.
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set evaluation. We evaluate out-of-distribution (OOD) per-
formance using a proprietary dataset of 205 WSIs (162 Ade-
nocarcinoma WSIs, 45 Squamous Cell Carcinoma WSIs)
collected from a different source site with varying image
acquisition and processing steps, resulting in visual differ-
ences from the TCGA WSIs. Since slide-level prediction
tasks are often limited by the number of slides available for
development, we limit our development set to 500 slides
for both of these tasks and evaluate model performance on
in-distribution (ID) and OOD test sets.

D.2. CRC-100k

The CRC-100K (Kather et al., 2018) dataset consists of
107, 180 images (224×224 at 0.5 mpp) of human colorectal
cancer (CRC) and normal tissue extracted from 136 H&E
histopathology WSIs from the NCT Biobank and the UMM
pathology archive, classified into one of nine tissue classes.
The training set consists of 100, 000 images (referred as
NCT-CRC-HE-100K) and the evaluation set consists of
7, 180 images (referred as CRC-VAL-HE-7K). Performance
was measured using accuracy (Acc.) and balanced accuracy
(Bal. Acc.).

D.3. Camelyon17-WILDS

The Camelyon17-WILDS (Bandi et al., 2019; Koh et al.,
2021) dataset contains 455, 954 images (96× 96 pixels at
1 mpp, downsampled from 0.25 mpp slides) from 50 WSIs
of breast cancer metastases in lymph node sections from
five different hospitals. The task is a binary classification
of whether the central 32× 32 region contains tumor tissue.
The training set consists of 302, 436 tiles from 30 WSIs
from three hospitals, the ID validation set of 33, 560 from
the same 30 WSIs, the OOD validation set of 34, 904 from
10 WSIs from the fourth hospital, and the OOD test set of
85, 054 from 10 WSIs from the fifth hospital. Each split has
a 50/50 class balance. Performance was evaluated using
accuracy in the OOD test set, measuring robustness to shifts
across hospitals.

D.4. GlaS

We evaluated the performance on the GlaS (Sirinukunwat-
tana et al., 2017) dataset, which consists of 85 images for
training and 80 images for testing for a total of 165 images
derived from 16 H&E-stained sections of stage T3 or T42
colorectal adenocarcinoma. These slides were scanned us-
ing a Zeiss MIRAX MIDI Slide Scanner with a resolution
of 0.465 mpp and varying image sizes (most commonly
775× 522). Performance was measured using dice coeffi-
cient (Dice) and Intersection over Union (IoU) in the test
set.

D.5. PanNuke

The PanNuke dataset (Gamper et al., 2019) consists of 481
visual fields across 19 different tissue types from WSIs
from TCGA and a local hospital, with a total of 189, 744
exhaustive nuclei labels categorized into five classes. The vi-
sual fields were randomly sampled from more than 20, 000
WSIs that were scanned at either 40× or 20× and re-sized
to 40×. Following the original publishers of this dataset,
we report binary panoptic quality (bPQ) and multi-class
panoptic quality (mPQ). For the ablation study comparing
different adaptation heads, experiments were conducted in
the binary configuration where nuclei were not classified,
and therefore only bPQ is reported. The experimental setup
used an inference patch size of 16 for the HoverNet archi-
tecture due to its design. All conducted experiments were
thus performed using this specified patch size.
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