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ABSTRACT

Deploying learned control policies in real-world environments poses a fundamen-
tal challenge: when system dynamics change unexpectedly, performance degrades
until models are retrained on new data. We introduce a dual control framework
that uses world model predictions as implicit reference trajectories for rapid adap-
tation, while preserving the policy’s optimal behavior. Our method separates the
control problem into long-term reward maximization through reinforcement learn-
ing and robust motor execution through rapid latent control. In continuous control
tasks under varying dynamics, this achieves significantly faster adaptation com-
pared to model-based RL baselines while maintaining near-optimal performance.
This dual architecture combines the benefits of flexible policy learning through
reinforcement learning with the robust adaptation capabilities of classical control,
providing a principled approach to maintaining performance in high-dimensional
locomotion tasks under varying dynamics.

1 INTRODUCTION

Model-based reinforcement learning has transformed continuous control by integrating learned
world models with policy optimization (Hafner et al., 2020; Hansen et al., 2022). Such methods
achieve impressive performance by using neural networks to predict future states, enabling both
efficient planning through trajectory sampling and stable policy improvement through value esti-
mation. However, deploying these systems in real-world settings reveals a fundamental limitation -
when system dynamics change due to environmental variation or physical wear, both planning and
value computation degrade until models are retrained on new data (Peng et al., 2018; Kumar et al.,
2021).

Control theory provides powerful tools for handling changing dynamics through adaptive control,
offering formal stability guarantees through Lyapunov analysis (Slotine & Li, 1991). These meth-
ods maintain performance by continuously adjusting control parameters based on tracking errors
between desired and actual trajectories. However, classical control approaches rely on explicit
reference trajectories and engineered cost functions, limiting their application to problems with
well-defined objectives and structured dynamics models (Narendra & Annaswamy, 2012). This
contrasts with reinforcement learning’s ability to learn flexible policies from abstract rewards and
high-dimensional observations (Sutton & Barto, 2018; Recht, 2019).

We present a framework that transforms world model predictions into reference trajectories for rapid
adaptation while preserving learned policy behavior. A reinforcement learning module determines
optimal trajectories in latent space, which the world model predicts forward in time to serve as refer-
ences for a control module that maintains performance through trajectory tracking. This architecture
is formalized through analysis of value functions, showing how they decompose into slow learning
and trajectory stabilization components. Our approach provides a novel mechanism for rapid adapta-
tion by transforming world model predictions into reference trajectories, enabling learned policies to
maintain performance under changing dynamics without requiring specific robustness procedures or
architectural constraints. In continuous control tasks including locomotion under varying dynamics,
this achieves significantly faster adaptation than standard methods while maintaining performance.
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2 BACKGROUND

Modern model-based reinforcement learning integrates several components through learned world
models. Given observations of system state, these models learn compressed latent representations
where planning and control occur (Hafner et al., 2020). TD-MPC exemplifies this approach through
a normalized latent space that enables stable trajectory sampling and value estimation (Hansen et al.,
2022). Previous work has explored different approaches to adaptation - Deep Model Reference
Adaptive Control (Joshi et al., 2019) combined neural networks with MRAC but required complex
dual architectures, while Rapid Motor Adaptation (Kumar et al., 2021) and Residual Policy Learning
(Silver et al., 2018) demonstrated online adaptation but required either specific architectural choices
or limited adaptation to particular types of system changes.

Adaptive control provides formal stability guarantees through Lyapunov analysis (Slotine & Li,
1991), achieving millisecond-scale adaptation by adjusting parameters based on trajectory tracking
errors. However, these methods require explicit reference trajectories, structured dynamics models,
and engineered cost functions (Narendra & Annaswamy, 2012). In contrast, reinforcement learning
learns flexible policies directly from rewards and high-dimensional observations (Sutton & Barto,
2018), but sacrifices adaptation speed and stability guarantees. Recent work on meta-learning and
domain randomization (Finn et al., 2017; Tobin et al., 2017) improves robustness but still requires
extensive offline training.

Previous attempts to bridge these approaches have either restricted policies to specific forms
amenable to control theory or limited adaptation to particular types of system changes (Recht, 2019).
A general framework for combining the flexibility of learned models with the rapid adaptation of
control theory has remained elusive. Our work addresses this gap by showing how world model
predictions can serve as implicit reference trajectories, enabling classical control techniques while
maintaining the benefits of learned policies.

3 MODEL DESIGN: IMPLICIT LATENT TRAJECTORY FOR ADAPTIVE CONTROL

Consider a continuous control Markov Decision Process (S,A, P,R) with learned policy π0 oper-
ating through a world model in latent space z = e(s). We assume that the latent space captures
task-relevant dynamics from observations s, with V = V (z(s)). A world model F predicts future
latent states conditioned on the current state and policy actions.

3.1 DECOMPOSITION OF THE VALUE OBJECTIVE

Locomotion involves fundamentally distinct learning processes operating at different timescales.
Policy learning gradually discovers behaviors that maximize long-term reward. This process re-
quires extensive exploration but develops robust policies for diverse tasks. In contrast, rapid adap-
tation maintains performance under changing dynamics without modifying the underlying policy.
This process responds quickly to errors but operates within the framework of existing behaviors.

This functional separation suggests decomposing motor learning into complementary objectives.
The policy learning system should discover behaviours that maximize expected value across tasks,
while the adaptation system should maintain stable execution under perturbations. We formalize
this approach by linking value-based learning with rapid error correction, decomposing the Taylor
expansion of the value function around optimal trajectories in a task-relevant latent space z:

V (zt+1 +∆z) = V (zt+1)−
1

2
∆zTH∆z +O(∥∆z∥3) (1)

where H = −∇2V (zt+1) is positive definite near the optimum. This decomposition suggests sepa-
rating the problem into maximizing mean value through policy optimization and minimizing devia-
tions through rapid adaptation.

3.2 FORWARD MODEL PREDICTIONS AS REFERENCES

We implement the functional separation through a dual architecture. The reinforcement learning
module uses soft actor-critic to learn a base policy, a0 = π0(z), that optimizes the mean value, as in
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classic RL models. We maintain a forward model F predicting future latent states:

ẑt+1 = F (zt, π0(zt)) (2)

Our framework builds on model-based reinforcement learning but changes how world model pre-
dictions drive behavior. A conceptual novelty is that we interpret the forward model predictions
as target states. Both the forward model and controller share the same error function measuring
discrepancy between predicted and actual states:

L = ∥ẑt+1 − zt+1∥2 (3)

However, they minimize this error in opposing ways. The forward model adapts its predictions to
match observations, following the standard gradient to improve predictions. In contrast, the control
module adapts actions to make the system behave as predicted.

3.3 ADAPTIVE CONTROL GRADIENTS

This approach inverts the standard relationship between models and control. Classical adaptive
control assumes reference trajectories and adapts a controller to track them. Model-based RL learns
models that predict actual outcomes and uses them for planning. Our framework generates reference
trajectories directly from world model predictions while adapting control to maintain their validity
under changing dynamics.

The control policy updates follow a modified gradient computation that reflects this inversion.
Rather than updating predictions to match observations, we update actions to make observations
match predictions:

θc ← θc − ηc

(
− ∂L
∂a0

)(
∂ac
∂θc

)
(4)

The update function leverages gradients through the world model to determine how actions should
change to reduce prediction error, inverting the standard approach to model learning. This differs
fundamentally from standard practice where gradients flow from predictions to parameters. The
control module instead treats predictions as fixed targets and adapts actions to achieve them.

The total action combines the base policy with these corrections:

at = π0(zt) + πc(zt) (5)

Operating in the world model’s latent space provides two key benefits. First, it ensures the control
module focuses adaptation on task-relevant features captured by the learned representation. Second,
it provides an interface between the RL policy operating on compressed latent states and the control
module maintaining prediction consistency.

Algorithm 1 World Model Reference Adaptive Control
Require: Trained policy π0, encoder e, world model F
Ensure: Adapted control policy πc

Initialize πc

while not done do
zt ← e(st)
a0 ← π0(zt); ac ← πc(zt)
Execute at = a0 + ac, observe st+1

zt+1 ← e(st+1)
ẑt+1 ← F (zt, a0)
et ← zt+1 − ẑt+1

θc ← θc − ηc

(
−∂∥et∥2

∂a0

)
∂ac

∂θc

end while

4 THEORETICAL GUARANTEES

The modularity of the dual system allows for theoretical guarantees of robustness to perturbations
in trajectory and performance:
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Assumption 4.1 (System Properties). The system satisfies:

1. ∥∂F/∂a∥ ≤ L (Lipschitz control)

2. σmin(∂F/∂a) ≥ α > LP (control authority)

3. ∥F (z, a)− f(z, a)∥ ≤ ϵ (model accuracy)

where P bounds external perturbations.
Theorem 4.2 (Control Error). Under Assumption 1, the control law ac = −η(∂F/∂a)T e(t)
achieves:

∥e(t)∥ ≤ γt∥e(0)∥+
√

ϵ2 +
P 2

α2
(6)

where γ = (1− ηα2 + ηL2) < 1 for η < 1/L2.
Theorem 4.3 (Value Bounds). If the error bound is sufficiently small, the value function satisfies:

V (z∗)− V (z) ≤ HM

2

(
ϵ2 +

P 2

α2

)
(7)

where HM bounds the eigenvalues of −∇2V near optimal trajectories.

These results show how world model accuracy (ϵ), control authority (α), and perturbation magnitude
(P ) determine performance bounds, with quadratic scaling reflecting the natural structure of value
functions around optimal trajectories. The proofs use standard Lyapunov techniques (see Appendix).

5 SIMULATIONS

5.1 DUAL-MODEL DESIGN

Our approach builds on model-based reinforcement learning methods such as Dreamer and TD-
MPC (Hafner et al., 2020; Hansen et al., 2022), primarily to leverage their task-related encoders.
In particular, TD-MPC uses latent, reward and value predictions to learn the encoder and forward
models. We reuse these pre-trained representations to focus on the novel control mechanism. As
baseline policy, we use TD-MPC without planning, equivalent to a variant of the Soft-Actor Critic
model (SAC) (Haarnoja et al., 2018). In simple environments where an encoder is unnecessary,
such as the point-mass task, we use direct state observations (zt = st). In these cases, SAC or
any alternative policy, including non-RL-based controllers, can be used as baseline policy, and the
forward model is learned through latent prediction.

The control gradient propagation differs from standard error minimization. The forward model
gradient is computed with respect to a0, and applying it directly to ac would reinforce deviations
instead of correcting them. The gradient sign is inverted before it is backpropagated to ensure the
corrective action counteracts the error (Fig. 1-A).

5.2 PERTURBATION EXPERIMENTS

We evaluate adaptation by introducing perturbations p(t) in the action space, with an effective actu-
ator aeff = (a0 + ac) · (1 + p), and measuring the controller’s ability to compensate for them (Fig.
1-B). Step perturbations involve sudden changes in the action signal at specific intervals, while slow
perturbations introduce gradual, non-stationary shifts that mimic actuator miscalibration. These per-
turbations allow us to analyze how the controller reacts to both abrupt and progressive deviations.

The experiment consists of two phases. In the first phase, a policy is trained or provided without
perturbations, and a forward model is learned using its trajectories. This phase establishes the base-
line model of the system’s behavior under normal conditions. In the second phase, perturbations are
introduced while simultaneously activating the controller. The controller uses the learned forward
model to adjust its outputs in response to the deviations introduced by the perturbations.

To assess adaptation performance, we measure the drop in task performance caused by the perturba-
tions and track the forward model error. The latter serves as an implicit measure of latent trajectory
deviation, reflecting how well the system follows the predictions of the forward model.
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Figure 1: (A) Network architecture showing the reinforcement learning policy (blue) and adaptive
control modules (green), with interface variables in orange. Each transformation is implemented
as a two-hidden-layer MLP. (B) Illustrative simulation of the adaptive control mechanism for a 2D
pointmass task (without encoder, z = s). When actuators are perturbed, the trajectory deviates from
the predicted future states ŝt+k under the base policy actions a0. This error triggers an update to
generate corrective actions ac. (C) Under alternating directional perturbations (red), the controller
corrects deviations from the optimal trajectory, exhibiting characteristic after-effects when perturba-
tions are removed.

5.3 CORRECTION FOR TRAJECTORY DEVIATIONS

The point mass system demonstrates the core interaction between policy and adaptation modules.
Under angular perturbation, the base policy’s trajectories systematically deviate from target while
the world model maintains predictions of intended paths (Fig. 1B). The control module uses these
predictions as references to generate corrective actions, recovering performance without modifying
the underlying policy.

The system exhibits characteristic aftereffects when perturbations are removed (Fig. 1C). Initial
overcorrection in the opposite direction indicates adaptation through internal model formation rather
than reactive control. This validates the method’s ability to learn and compensate for systematic
changes in dynamics while preserving the original policy.

5.4 ROBUST MOTOR CONTROL

The Walker2D environment demonstrates how adaptation can operate effectively in learned latent
space. Under step perturbations to actuator gains, the control module rapidly reduces the error be-
tween predicted and actual latent states (Fig. 2A). As the latent prediction error decreases, task per-
formance improves correspondingly, validating that world model predictions in latent space provide
effective references for adaptation.

For non-stationary environments, we apply filtered noise to actuator gains, simulating gradual
changes in dynamics (Fig. 2B). The dual architecture maintains a performance of 180.4 compared
to the non-perturbed baseline of 185.8. Standard RL adaptation achieves 158.3, with slower recov-
ery due to the sequential nature of updates - the forward model must first adapt to new dynamics,
followed by value function updates, before the policy can adjust. The fixed baseline policy degrades
to 109.1, highlighting the need for adaptation. The world model predictions provide a stable refer-
ence for continuous adaptation even as dynamics evolve, enabling rapid corrections without policy
retraining.

5.5 NATURALISTIC MOVEMENT

The 17-actuator Humanoid environment bridges artificial and biological motor control principles
(Fig. 2C). When perturbed, the system exhibits patterns analogous to ataxia - a condition where
damage to internal models in biological systems leads to poor movement coordination and timing
(Bastian, 2011). This manifests as increased variability and loss of synchronization between joints.
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Figure 2: (A) For step motor perturbations (red) to the Walker2d agent (inset), the controller adapts
to significantly reduce the control error (green; no adaptation in grey), improving the performance
(below), with a small reversal effect (stars). (B) For time-varying perturbations (red, above), the
dual-model (green) shows faster adaptation and better performance than the RL module alone (blue;
no adaptation in grey). (C) Humanoid models of normal gait and ataxia-like behavior. Sample
trajectories allow a quantitative analysis of motor variability and the adaptive control of the latent
mean trajectory.

The control module restores coordinated movement by tracking latent predictions that capture re-
lationships across multiple joints. This enables coherent adaptation - when one limb’s dynamics
change, the controller adjusts multiple actuators to maintain balance and symmetry. The dual ar-
chitecture thus provides a computational framework bridging artificial and biological motor control,
where policy learning encodes structured movement patterns while adaptation maintains robust ex-
ecution under changing conditions.

6 DISCUSSION

This work demonstrates how world model predictions can serve as implicit reference trajectories for
rapid adaptation. Rather than using world models primarily for planning (Hansen et al., 2022) or
policy modification (Kumar et al., 2021; Luo et al., 2020), our approach enables rapid adaptation
through error correction in latent space without modifying the underlying policy. The theoretical
decomposition of value functions into slow learning and rapid adaptation components provides a
principled foundation for this architecture.

Our framework addresses a fundamental challenge in motor control: classical adaptive methods
provide stability guarantees but require hand-designed reference trajectories, while learned policies
enable flexible behavior but lack formal robustness properties. By deriving references directly from
world model predictions, our approach maintains the guarantees of control theory while preserving
the flexibility of learned policies. The value function decomposition establishes concrete bounds on
performance under varying dynamics.

The dual timescales observed in our framework parallel mechanisms of biological motor control
(Franklin & Wolpert, 2011). Our value function decomposition into slow learning and rapid adapta-
tion mathematically formalizes the complementary learning systems observed in motor cortex and
cerebellum (Wolpert et al., 1998). The humanoid experiments demonstrate this directly - when per-
turbed, the system exhibits increased motor variability and loss of joint coordination similar to cere-
bellar ataxia, which our control module corrects through predicted movement patterns. These com-
putational parallels and characteristic adaptation signatures suggest common organizational princi-
ples between biological and artificial motor control that can guide the development of more robust
control architectures (Lee et al., 2020).
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Several directions for future work emerge naturally from this framework. First, maintaining predic-
tion accuracy for complex environments requires better uncertainty estimation in world models. Sec-
ond, developing simultaneous learning of policies and adaptation mechanisms would enable contin-
uous improvement during deployment, rather than treating them as separate phases. Finally, extend-
ing the framework to handle environmental perturbations beyond actuator dynamics would broaden
its practical applications. The success of the current approach suggests that leveraging world model
predictions as control targets may be a general principle for robust deployment of learned behav-
iors. While this paper establishes the theoretical framework and demonstrates proof-of-concept in
simulation environments, specific implementations for diverse robotic platforms present additional
engineering challenges to be addressed in future work.
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A THEORETICAL ANALYSIS

We provide proofs for the main theoretical results, showing how control error bounds lead to value
function guarantees.
Assumption A.1 (System Properties). The dynamics satisfy:

1. ∥∂F/∂a∥ ≤ L (Lipschitz control)

2. σmin(∂F/∂a) ≥ α > LP (control authority)

3. ∥F (z, a)− f(z, a)∥ ≤ ϵ (model accuracy)

4. ∥p(t)∥ ≤ P (bounded perturbation)

The condition α > LP ensures sufficient control authority relative to perturbations - the controller
must overcome both the Lipschitz growth (L) and perturbation magnitude (P ).
Theorem A.2 (Control Error Bounds). Under Assumption 1, the control law ac =
−η(∂F/∂a)T e(t) with η < 1/L2 achieves:

∥e(t)∥ ≤ γt∥e(0)∥+
√

ϵ2 +
P 2

α2
(8)

where γ = (1− ηα2 + ηL2) < 1.

Proof. The error evolves as:

e(t+ 1) = F (zt, at)− F (zt, a0)︸ ︷︷ ︸
control effect

+F (zt, a0)− f(zt, at)︸ ︷︷ ︸
model error

+p(t) (9)

For the control effect:

−F (z, a0 + ac) = −η(∂F/∂a)(∂F/∂a)T e(t) (first order) (10)

∥(∂F/∂a)(∂F/∂a)T ∥ ≥ α2 (by min singular value) (11)

∥F (z, a0 + ac)− F (z, a0)∥ ≤ (1− ηα2 + ηL2)∥e(t)∥ (Lipschitz) (12)

The model error satisfies:

∥F (z, a0)− f(z, at)∥ ≤ ϵ+ L∥ac∥ ≤ ϵ+
LP

α
(13)

Therefore:
∥e(t+ 1)∥ ≤ γ∥e(t)∥+ ϵ+

P

α
(14)

By condition (2) of Assumption 1 and η < 1/L2:

γ = 1− ηα2 + ηL2 < 1− η(LP )2 + ηL2 < 1 (15)

The bound follows from solving this recurrence, using the fact that for positive a, b:

(a+ b)2 ≤ 2(a2 + b2) (16)
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Theorem A.3 (Performance Guarantees). If
√
ϵ2 + P 2/α2 < δ where δ bounds the region of

quadratic approximation for V , then:

V (z∗)− V (z) ≤ HM

2

(
ϵ2 +

P 2

α2

)
(17)

where HM bounds the eigenvalues of −∇2V .

Proof. Around optimal trajectories, Taylor expansion gives:

V (z∗ +∆z) = V (z∗)− 1

2
∆zTH∆z +R(∆z) (18)

where |R(∆z)| ≤ C∥∆z∥3 for some C > 0.

The prediction error directly bounds state deviation:

∥∆z∥ = ∥z − z∗∥ ≤ ∥e(t)∥ ≤
√
ϵ2 +

P 2

α2
(19)

When this is less than δ, the quadratic term dominates since:

|R(∆z)|
∥∆z∥2

≤ C∥∆z∥ → 0 (20)

The bound follows from λmax(H) = HM and the error bound.

These results establish quantitative bounds linking world model accuracy (ϵ), control authority (α),
and perturbation magnitude (P ) to performance. The quadratic scaling reflects the natural structure
of value functions around optimal trajectories.
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