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ABSTRACT

Federated Learning (FL) algorithms using Knowledge Distillation (KD) have
received increasing attention due to their favorable properties with respect to
privacy, non-i.i.d. data and communication cost. These methods depart from
transmitting model parameters and instead communicate information about a
learning task by sharing predictions on a public dataset. In this work, we study
the performance of such approaches in the byzantine setting, where a subset of
the clients act in an adversarial manner aiming to disrupt the learning process.
We show that KD-based FL algorithms are remarkably resilient and analyze how
byzantine clients can influence the learning process. Based on these insights, we
introduce two new byzantine attacks and demonstrate their ability to break existing
byzantine-resilient methods. Additionally, we propose a novel defence method
which enhances the byzantine resilience of KD-based FL algorithms. Finally,
we provide a general framework to obfuscate attacks, making them significantly
harder to detect, thereby improving their effectiveness. Our findings serve as an
important building block in the analysis of byzantine FL, contributing through the
development of new attacks and new defence mechanisms, further advancing the
robustness of KD-based FL algorithms.

1 INTRODUCTION

Federated Learning (FL) has emerged as a popular paradigm to address privacy and communication
challenges in Deep Learning. Often, data collection occurs across multiple clients in a decentralized
fashion, making centralized collection of the data infeasible due to privacy constraints. Federated
Averaging (FedAVG) (McMahan et al., 2017), a standard FL algorithm, avoids transmitting private
data from clients to a central server. Instead, the clients train locally on their private data and send
their parameters to the server. The server aggregates these parameters and broadcasts the updated
model back to the clients, which then proceed training. While FedAVG has found success in diverse
applications (Rieke et al., 2020; Ramaswamy et al., 2019; Yang et al., 2018; Sheller et al., 2019;
Chen et al., 2019), it has notable limitations such as high communication costs due to repeatedly
transmitting the model parameters, susceptibility to inversion attacks which reconstruct private data
from the parameters (Melis et al., 2018; Nasr et al., 2019), or performance degradation due to non
identically independently distributed (i.i.d.) local data among the clients (Kairouz et al., 2019). Most
importantly for this work, standard FedAVG lacks robustness to byzantine clients, i.e., clients which
behave adversarially. This has fueled efforts to create provably byzantine-resilient FedAVG variants
(Allen-Zhu et al., 2021; Alistarh et al., 2018; Mhamdi et al., 2018; Chen et al., 2017; Zhu et al., 2023).

A recent line of work uses Knowledge Distillation (KD) (Hinton et al., 2015) in order address some of
these challenges. In general, KD transfers knowledge by training a student model on the aggregated
predictions of multiple teacher models. For FL, it can enhance or replace the transmission of model
parameters by sharing the clients’ predictions on a public dataset. The server then uses KD to distill
this information into its model. Such methods offer reduced communication overhead, enhanced
privacy and robustness to non-i.i.d. data (Sattler et al., 2020; 2021; Lin et al., 2020; He et al., 2020;
Cheng et al., 2021; Papernot et al., 2017; Chang et al., 2019; Gong et al., 2022; Fan et al., 2023), but
they are not well explored in the byzantine setting.

In this work, we investigate KD-based FL algorithms in the byzantine setting, restricting ourselves
to classification. While many different algorithms have been proposed in this area, we focus on
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a prototypical variant, referred to as Federated Learning using Distillation (FedDistill), which is
representative of KD-based FL algorithms. FedDistill is simple and crucially relies on clients
communicating with the server only through predictions on an unlabeled public dataset. We analyze
how this communication modality–sharing predictions instead of model parameters–impacts the
ability of byzantine clients to disrupt training, demonstrating that standard FedDistill offers greater
byzantine-resilience than standard FedAVG.

We attribute this robustness to two factors: First, the attack space for byzantine clients in FedDistill–
the probability simplex, representing class probability vectors–is more constrained than in FedAVG,
where the attack occurs in the high-dimensional, unbounded parameter space. In contrast, the
probability simplex is both bounded and relatively low-dimensional. Second, byzantine clients in
FedDistill can only influence the server model indirectly by affecting the distillation objective, rather
than directly modifying the model parameters as in FedAVG.

Guided by these insights, we introduce two novel FedDistill-specific attacks that successfully bypass
existing byzantine-resilient FedDistill variants. In response, we propose a new defence mechanism
that detects and filters byzantine clients by leveraging client information from both past and current
communication rounds. Additionally, we present a general framework to obfuscate attacks, making
byzantine clients harder to detect and hence calling for further research on defence mechanisms. To
summarize, our contributions are as follows:

1. We analyze FedDistill, a prototypical KD-based FL algorithm, in the byzantine setting,
focusing on its unique communication method of transmitting predictions rather than param-
eters to the server. Our analysis reveals that byzantine clients have only a limited impact on
vanilla FedDistill, rendering it more resilient than vanilla FedAVG.

2. We introduce LMA and CPA, two novel and effective byzantine attacks which are specifically
designed for FedDistill. Our extensive experiments demonstrate stronger disruption of the
training process than previous approaches, even when comparing against existing byzantine-
resilient FedDistill variants.

3. In response, we propose ExpGuard, a novel defence mechanism for FedDistill that incor-
porates information on client behavior in both current and past communication rounds.
ExpGuard significantly improves byzantine resilience compared to previous methods that
rely solely on robust aggregation applied independently to each sample.

4. Finally, we propose HIPS, a general method to obfuscate byzantine attacks, making them
harder to detect. In the presence of defence mechanisms, HIPS improves the effectiveness
of byzantine attacks.

Our findings represent an important step forward in the analysis of byzantine FL, providing insights
into both the vulnerabilities and defences of KD-based FL systems. By developing novel attack
and defence mechanisms, we further advance the robustness of KD-based FL. We hope that these
contributions lay the groundwork for future research in enhancing security and reliability of FL.

Outline. We begin by reviewing related work on byzantine FL and the use of KD in FL in Section 2.
In Section 3, we outline our setting, describe the FedDistill algorithm, and explain our experimental
setup. Section 4 compares FedDistill and FedAVG in terms of how byzantine clients influence the
server model, demonstrating FedDistill’s greater resilience by design. In Section 5.1, we introduce the
two novel byzantine attacks, followed by the new defence method in Section 5.2. Finally, Section 5.3
presents HIPS, a method for obfuscating byzantine attacks to make detection more difficult.

2 RELATED WORK

KD in FL. There are many FL algorithms employing KD in different ways. One common approach
is to transmit information from the clients to the server via predictions on a publicly available
unlabeled dataset (Li & Wang, 2019; Chang et al., 2019; Cheng et al., 2021; Gong et al., 2022; Lin
et al., 2020; Sturluson et al., 2021; Bistritz et al., 2020). Some works (Li & Wang, 2019; Cheng et al.,
2021) assume the availability of a labeled public dataset. Lin et al. (2020) and Sturluson et al. (2021)
study augmenting FedAVG-type algorithms using KD. In this setting clients send model parameters
as well as predictions on a public dataset to the server, meaning that they can disturb the training
process both via the parameters and predictions.
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Byzantine FedAVG. Byzantine FL has been primarily studied in the context of FedAVG. Some
byzantine-resilient variants replace the mean with more robust alternatives for aggregating client
updates (Blanchard et al., 2017; Mhamdi et al., 2018; Yin et al., 2021; Chen et al., 2017). Additionally,
Karimireddy et al. (2022); Allouah et al. (2023) propose simple preprocessing steps that can be used
to improve the byzantine-resilience. These approaches are orthogonal to the defences we propose
in this paper and could be used to further improve their performance. However, replacing the mean
with robust aggregation methods may disregard honest client data, hindering performance, and
remain vulnerable to more sophisticated attacks (Xie et al., 2020; Baruch et al., 2019; Shejwalkar
& Houmansadr, 2021). These issues have been addressed by considering historical client behavior
throughout the training process (Alistarh et al., 2018; Allen-Zhu et al., 2021; Karimireddy et al.,
2021). The previously mentioned approaches rely on the assumption that the data held by the clients
are homogeneous (i.i.d.). As the data becomes more heterogeneous (non-i.i.d.), it becomes harder to
distinguish between a malicious update and an update created by dissimilar data which holds valuable
information. Some recent works introduced variants of FedAVG that have limited byzantine-resilience
in the heterogeneous setting (Karimireddy et al., 2022; El-Mhamdi et al., 2021). Note however that
even in the benign setting, non-i.i.d. data poses serious issues (e.g. Kairouz et al., 2019), which is
why we restrict ourselves to the i.i.d. setting, discussing the non-i.i.d. setting in Appendix C.

Byzantine FedDistill. Federated Robust Adaptive Distillation (Sturluson et al., 2021) is a variant of
FedAVG that uses KD to increase its byzantine-resilience in the non-i.i.d. setting. After local training,
the server aggregates the updated parameters of the clients using a weighted sum. The weights are
computed based on how much the prediction of the clients conform to the prediction of the majority.
Since this method relies on sharing the parameters and predictions on a public dataset, attacks as well
as defences operate both in the prediction and parameter space. In contrast, this work focuses on
better understanding attacks and defences only in the prediction space. Most relevant to our work,
Federated Ensemble Distillation (Chang et al., 2019) uses predictions on a public dataset for both
client-server and server-client communication. The server only aggregates client predictions, sends
them back, and clients train both the public dataset using the aggregated predictions as labels and
their local data. They introduce Cronus, a byzantine-resilient aggregation method, which improves
the resilience but suffers from bad empirical performance in the benign setting. Both of these works
concentrate on designing byzantine-resilient algorithms and give limited attention to finding more
effective byzantine attacks, testing their algorithms only against simple label flip heuristics.

3 PRELIMINARIES

We limit ourselves to the supervised classification setting and assume that there are N clients in total.
LetH be the set of honest clients and B the set of byzantine clients, assuming that an α-fraction of
the clients are byzantine where α < 0.5, which is a standard assumption in byzantine FL to expect
reasonable outcomes. Each honest client i ∈ [N ] holds a private dataset Di sampled from the same
distribution as the publicly available but unlabeled dataset Dpub. The objective of FedDistill is to
train a classifier based only on Dpub using the predictions of the clients, which are computed and
transmitted in multiple communication rounds.

Given a sample x, we denote by Y t
i (x) the prediction of client i in communication round t using

neural network parameters wt
i . The honest clients infer their predictions by using their local model

h(x,wt
i) while the byzantine clients can send any vector in ∆c, the c-dimensional probability simplex

with c being the number of classes. We define Y t
i (Dpub)

def
= {Y t

i (x) : x ∈ Dpub} as the set of
predictions of client i on every datapoint in Dpub. We sometimes drop the dependence on x for
simplicity. Further, we denote the aggregated prediction of all clients by Ȳ t(x) and the aggregated
parameters of all clients by w̄t. At the end of each a communication round t, the server has received
the individual client predictions Y t

i (Dpub) of each client i, but is unaware which clients are byzantine.

We assume that the byzantine clients have access to the individual predictions of the honest clients
on Dpub before sending their own predictions, allowing to base their attack on them. Byzantine
clients are permitted to collude. However, their identities remain consistent across iterations, ensuring
that the server can discern which client generated which set of predictions. These assumptions are
analogous to byzantine FedAVG, where the byzantine clients also cannot change identity, can collude
and are assumed to have access to the individual parameter updates sent to the server by the clients
(Allen-Zhu et al., 2021; Alistarh et al., 2018; Karimireddy et al., 2021).
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Algorithm 1 Federated Learning (FL)
1: for communication round t = 0 to T − 1 do
2: SERVER: Broadcast parameters w̄t to the clients
3: CLIENTS: Train on private datasets

FedAVG
4: CLIENTS: Send updated parameters to server
5: SERVER: Aggregate parameters to obtain w̄t+1

FedDistill
6: CLIENTS: Send public dataset predictions to server
7: SERVER: Train on public dataset with aggregated

client predictions to obtain w̄t+1

8: end for
9: Output: w̄T

FedDistill. Algorithm 1 showcases
FedDistill and FedAVG in a unified
way. At the beginning of each com-
munication round, the server broad-
casts its parameters w̄t to the clients
(Line 2). The clients train on their
local datasets starting from these pa-
rameters (Line 3). In FedAVG, clients
directly send their updated parame-
ters wt+1

i to the server (Line 4). The
server aggregates these parameters
to obtain the new server parameters
w̄t+1 (Line 5). In FedDistill, clients
transmit information about the learn-
ing task via their predictions on a pub-
lic dataset (Line 6). The server aggre-
gates these and updates its model by
training on the public dataset using the
aggregated prediction as labels (Line 7). For each sample, the clients send the probability distribution
over the classes. Note that in FedDistill, the server can only be influenced by the clients predictions
on Dpub, allowing to study byzantine impact given this communication modality in isolation.

Experimental setup. We evaluate FedDistill on the CIFAR-10/100 (Krizhevsky et al., 2009),
CINIC-10 (Darlow et al., 2018) and Clothing1M (Xiao et al., 2015) datasets using the ResNet (He
et al., 2016) and WideResNet (Zagoruyko & Komodakis, 2016) architectures. We keep 5% of the
training datasets for validation and split the remaining data evenly among the clients. Each experiment
is performed with multiple random seeds and we report mean and standard deviation.

To ensure a feasible computational study, we set several parameters of the algorithms to fixed values,
such as the number of clients. We conduct ablations on these parameters in Appendix C. Specifically,
we set the number of clients to 20 and the number of communication rounds to 10. We set the number
of total local epochs each client performs, i.e., training on their private datasets, to a fixed value
depending on the dataset used. Similarly, we set a total number of communications and uniformly
distribute these communications among the local epochs. We train clients and server using SGD with
weight decay and a linearly decaying learning rate from 0.1 to 0, momentum is set to 0.9. Appendix B
contains a detailed account of the experimental setup, including the public datasets used.

4 THE BYZANTINE SETTING

0.0 0.1 0.2 0.3 0.4

Byzantine fraction α

20%

40%
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80%
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FedDistill: RLF

FedAVG: GN

Figure 1: ResNet-18 on CINIC-10: Final test
accuracy of FedAVG and FedDistill, varying
the fraction of byzantine clients for two naive
attacks.

Due to the different communication modalities of Fe-
dAVG and FedDistill, byzantine clients influence the
training in different ways. We refer to these modes of
influence as threat vectors. In this section, we inves-
tigate these threat vectors and their impact, first com-
paring the byzantine-resilience of vanilla FedAVG
and FedDistill as a motivating example.

Figure 1 compares how FedAVG and FedDistill are
impacted by byzantine clients when using two naive
attacks. We measured the final test accuracy when
varying the fraction of byzantine clients α. FedAVG:
GN denotes FedAVG where byzantine clients send
Gaussian noise instead of the updated model param-
eters. Analogously, FedDistill: RLF refers to Fed-
Distill where for each sample, all byzantine clients
return the same random label. While FedAVG col-
lapses with only 10% byzantine clients (α = 0.1),
FedDistill is remarkably byzantine-resilient, even at α = 0.45. These experiments underscore the
inherent robustness of FedDistill, which we now discuss from a theoretical perspective. Note that
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Figure 1 serves as a motivating example, more advanced aggregation schemes for FedAVG could
easily counter the Gaussian noise attack.

Threat vectors in byzantine FedAVG and FedDistill. In standard FedAVG, the updated parameters
are aggregated by taking their mean. In this case, we can highlight the threat vector by decomposing
the aggregation step (Line 5) into an honest and a byzantine part as follows,

w̄t+1 ← 1

N

∑
i∈H

wt+1
i +

1

N

∑
i∈B

wt+1
i

FedAVG threat vector

.

The byzantine clients can directly influence the new server parameters via their parameters wt+1
i .

Setting the weights of a single client to wt+1
j ← w̃N −

∑
i ̸=j w

t+1
i suffices to achieve w̄t+1 = w̃,

where w̃ can be chosen freely. In other words, just one byzantine client is sufficient to arbitrarily
perturb the new server parameters.

On the other hand, in FedDistill the clients can only alter the server model via their predictions on the
public dataset Dpub. The server distills the knowledge from the clients based on their predictions on
the public dataset (Line 7). Precisely, recalling that for sample x, the mean of the clients’ predictions
in round t is denoted by Ȳ t+1(x)

def
= 1

N

∑N
i=1 Y

t+1
i (x), the server solves the optimization problem

min
w

∑
x∈Dp

L(h(x,w), Ȳ t+1(x)

FedDistill threat vector

), (Pdistill)

with L being a loss function such as the Cross-Entropy Loss (CEL) or Mean-Squared Error (MSE).
By decomposing Ȳ t+1(x) into a byzantine Ȳ t+1

B (x)
def
= 1

αN

∑
i∈B Y t+1

i (x) and an honest part
Ȳ t+1
H (x)

def
= 1

(1−α)N

∑
i∈H Y t+1

i (x), we can highlight the threat vector more specifically,

Ȳ t+1(x) = αȲ t+1
B (x)

FedDistill threat vector

+(1− α)Ȳ t+1
H (x), (1)

where α is the fraction of byzantine clients.

The byzantine resilience of FedDistill. We argue that there are two main reasons why vanilla
FedDistill is less susceptible to byzantine attacks than vanilla FedAVG. First, the influence of
byzantine clients on the server parameters in FedDistill is indirect. They can only affect the distillation
objective (Pdistill), unlike FedAVG, where the impact is direct.

Second, the threat vector in FedDistill is confined to the bounded probability simplex ∆c, limiting
the impact of perturbations, unlike in FedAVG, where the threat vector operates in the higher-
dimensional, unbounded parameter space. Since the server cannot distinguish between honest and
byzantine clients, it has to resort to distilling the knowledge from the aggregated predictions from
all clients by minimizing (Pdistill), despite its true objective being to distill knowledge only from the
honest clients by solving

min
w

∑
x∈Dp

L(h(x,w), Ȳ t+1
H (x)). (Phonest)

We formally show that if a parameter w is a stationary point of the perturbed objective (Pdistill), it also
lies within a neighborhood of a stationary point of the true objective (Phonest). Therefore, running
gradient descent on (Pdistill) still enables the server to converge to a neighborhood of the solution it
would reach with (Phonest). We provide the informal theorem and key intuition of its proof below, see
Appendix D.1 for the full statement and proof.
Theorem 1 (Informal). If w̃ is a stationary point of (Pdistill), then it is also anO(C2α2)-approximate
stationary point of (Phonest), where C > 0 is a constant independent of the client predictions. Further,
in expectation, running Stochastic Gradient Descent (SGD) on (Pdistill) to achieve an ε-approximate
stationary point yields an O(ε+ C2α2)-approximate stationary point of (Phonest).

Note that (Pdistill) and (Phonest) differ only in their target labels, allowing us to demonstrate that the
difference between their computed gradients scales linearly with the distance between ȲH and ȲB:∥∥∇wL(w, Ȳ t+1

H )−∇wL(w, Ȳ t+1)
∥∥ ≤ Cα

∥∥Ȳ t+1
H − Ȳ t+1

B
∥∥ ≤ √2Cα,

5
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where we used the shorthand L(w, Y )
def
= L(h(w, x), Y (x)). Here, C is a constant independent of

the prediction and depending only on the parameter w and the data x ∈ Dpub. Note that the error
grows proportionally to the fraction of byzantine clients α and the distance between the aggregated
honest and the byzantine predictions. Furthermore, since both predictions lie in ∆c, their distance is
inherently bounded by

√
2.

5 ATTACKING AND DEFENDING KD-BASED FL

In the previous section, we compared standard variants of FedDistill and FedAVG in terms of their
susceptibility to byzantine attacks. Building on our insights into the threat vectors, this section
focuses on developing strategies to attack and defend KD-based FL. We first introduce two effective
attacks in Section 5.1, specifically tailored to exploit the threat vector of FedDistill. To counter
these attacks, we propose a novel defence mechanism in Section 5.2, which significantly enhances
byzantine-resilience compared to prior methods. Finally, Section 5.3 presents a general framework for
obfuscating byzantine attacks on KD-based FL, making them much harder to detect. In the following,
we omit the time superscripts on the prediction to simplify the notation.

5.1 ATTACKING FEDDISTILL: LMA & CPA

HONEST MEAN

Y1

ship 0.82
dog 0.04
cat 0.14

Y2

0.73
0.21
0.06

Y3

0.92
0.04
0.04

Y4

0.61
0.31
0.08

ȲH
ship 0.77
dog 0.15
cat 0.08

1
n

∑n
i=1 Yi

LMA ȲH
ship 0.77
dog 0.15
cat 0.08

ȲB
0
0
1

Ȳ
0.44
0.09
0.47

1−α α

CPA

ȲH
ship 0.77
dog 0.15
cat 0.08

C
ship 1 0.2 0.3
dog 0.2 1 0.8
cat 0.3 0.8 1

ship dog cat

ȲB
0
1
0

Ȳ
0.44
0.51
0.05

1−α α

Figure 2: Attack procedures for a three-class classification problem with four honest and three
byzantine clients, i.e., α = 3/7. The left part of the figure shows the computation of the honest mean.
LMA (upper right) assigns probability one to the least likely class based on the honest mean ȲH and
CPA (lower right) assigns probability one to the class that is least similar to the most likely class of
ȲH, according to the similarity matrix C. Note that all computations are done per sample x, which
was omitted from the notation for legibility.

In FedDistill, byzantine clients can only degrade the server model through their predictions. Since the
threat vector is confined to the c-dimensional probability simplex ∆c rather than the parameter space,
many attacks from the byzantine FedAVG literature, such as gradient sign flipping, cannot be applied
to FedDistill. Previous work on byzantine FedDistill has been limited to basic label-flipping attacks.

Recall that while the server trains on the aggregated predictions from all clients Ȳ (Dpub), its true
objective is to match the mean predictions ȲH(Dpub) made by the honest clients. Hence, one can
interpret the aim of the byzantines as selecting their predictions ȲB(Dpub) to maximize the disparity
between the aggregated predictions Ȳ (Dpub) and the predictions of the honest clients ȲH(Dpub).

Loss Maximization Attack (LMA). One way to measure the difference between Ȳ (Dpub) and
ȲH(Dpub) is via the loss function L the server aims to minimize. To that end, we propose LMA by
choosing the byzantine predictions that maximize this loss for each sample x ∈ Dpub, i.e., by solving

max
ȲB(x)∈∆c

L
(
(1− α)ȲH(x) + αȲB(x), ȲH(x)

)
. (2)
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For typical loss functions, LMA corresponds to choosing the least likely class according to the
aggregated predictions of all honest clients ȲH(x), see Lemma 5 in Appendix D.2. For each x ∈ Dpub,
the byzantine clients compute the argmin of the mean honest prediction ȲH(x), corresponding to
the least likely class assigned to x, and then assign probability 1 to this class. An example is shown
in the top right of Figure 2. According to ȲH, the least likely class is cat, hence all byzantine clients
will assign probability one to cat. As a result, the mean of all clients Ȳ predicts the class cat.

Class Prior Attack (CPA). Another way to measure how different two predictions are is to take
semantic information about the classes into account, i.e., what these classes represent and how they
relate to each other. For example, the class dog is more similar to the class cat than to the class
ship . The second attack we propose, CPA, uses information about such inter-class relationships to
select the most misleading predictions. To measure the similarity between the c classes, CPA requires
access to a similarity matrix C ∈ Rc×c. We obtain this similarity matrix by computing the sample
covariance matrix of the predictions Y (Dpub) of a pretrained model, i.e.,

C ← 1

|Dpub|
∑

x∈Dpub

(Y (x)− Ȳ )(Y (x)− Ȳ )T , Ȳ ← 1

|Dpub|
∑

x∈Dpub

Y (x).

Then, for each sample x, CPA computes the class which is least similar to the class predicted by the
honest clients per ȲH(x), where similarity is measured using the similarity matrix C. The byzantine
clients now assign probability 1 to that class. In other words: if the honest clients agree on predicting
class i, the byzantine clients attack by predicting j ← argminj Cij (see Figure 2). An example is
shown in the bottom right of Figure 2. According to ȲH, the most likely class is ship, and based on
C, dog is the least similar class to ship. Hence all byzantine clients will assign probability one to dog.
As a result, the mean of all clients Ȳ predicts the class dog.

While access to a pretrained model is not a realistic assumption in practice, we use such a model to
assess the upper bounds of CPAs effectiveness and explore its potential capabilities. A more realistic
approach could be to use the server model from previous rounds instead of a pretrained model or to
construct a similarity matrix based on the byzantine’s prior knowledge about class relationships.

0 2 4 6 8 10

Communication rounds

25%

50%

75%

T
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t
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u
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LMA

CPA

No attack

RLF

Figure 3: ResNet-18 on CIFAR-10: Test ac-
curacy evolution over communication rounds
when attacking FedDistill with 9 byzantine
out of overall 20 clients.

Figure 3 illustrates the effects of LMA and CPA over
multiple communication rounds, where we compare
to the naive baseline Random Label Flip (RLF) attack,
where all byzantine clients assign the same random
label to each sample. Both CPA and LMA are signif-
icantly more effective than RLF and heavily impact
the final test accuracy. Notably, while the final test ac-
curacy of both methods is similar, CPA has a stronger
effect in the early rounds.

5.2 DEFENDING FEDDISTILL: EXPGUARD

Unlike the baseline attack RLF, both LMA and CPA
can severely disturb the training process. In order to
improve the resilience against such attacks, we inves-
tigate replacing the mean aggregation of the clients’
predictions with more robust aggregation methods.

Let us first consider existing defence approaches, namely Cronus (Chang et al., 2019), a method based
on filtering-based approaches from the high-dimensional robust statistics literature (Diakonikolas
et al., 2017) and the geometric median (GM), a multivariate generalization of the median defined
as GM(Y1, . . . , YN )

def
= argminy∈∆c

∑N
i=1 ∥Yi − y∥2. Some commonly used robust aggregation

methods further include the coordinate-wise trimmed mean or the coordinate-wise median; however,
these cannot be used to aggregate predictions, as the aggregated vectors do not necessarily reside in
the probability simplex, see Appendix D.3 for more details.

Filtering-based approaches compute the empirical covariance matrix of the data, obtain the leading
eigenvector of that matrix and then project the data onto the subspace spanned by the eigenvector.
The intuition behind these approaches is that, if an adversary wants to perturb the mean by modifying
a fraction of the data without creating obvious outliers, it has to set the datapoints relatively close to
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the benign data but all biased in a similar direction, such that the perturbation caused by the individual
datapoints do not counteract each other. This causes the variance along this direction to increase.

In the setting discussed in Diakonikolas et al. (2017), outliers along this eigenvector are then filtered
based on a specific rule relying on statistical assumptions. Since these assumptions do not hold in
the FedDistill setting, Cronus relies on a simple heuristic: it filters out the 25% worst outliers, then
recomputes the empirical covariance matrix and leading eigenvector based on the remaining 75% of
the data and further filters out until 50% of the original data remains.

Neither Cronus nor GM can be computed using a simple closed-form solution and require numerical
algorithms. Applying them to aggregated parameters in Byzantine FedAVG can lead to a large
computational overhead. However, for FedDistill, we only aggregate predictions, which are of much
smaller dimensions, making their computational requirements negligible compared to training (cf.
Table 7, Appendix C).

ExpGuard. Both GM and Cronus only use information from the current datapoint x ∈ Dpub. To
further improve the resilience of FedDistill, we propose ExpGuard, which incorporates additional
information available to the server from the predictions on other samples within each communication
round as well as information about the predictions in past communication rounds.

ExpGuard, outlined in Algorithm 2, is a meta-algorithm that can be used to enhance any robust
aggregation method. First, a robust aggregation method AGG is used to compute an outlier score
σi for each client based on its prediction on the whole dataset Dpub. Then, these outlier scores are
used to update the weight pti for each client based on the exponential weights algorithm (Littlestone
& Warmuth, 1994) such that clients with low outlier scores σi are assigned higher weight and the
weight of clients with high outlier scores σi is reduced.

For any robust aggregation method, the outlier score can be computed as the sum of the distances
between the clients prediction and the robust estimate for each x ∈ Dpub. However, for filtering-based
methods, we can skip the filtering, i.e., deciding which samples should be considered outliers, and
simply use the distance of the clients prediction along the eigenvector as the outlier score. We refer to
this approach as ExpGuard+Filter (EG+F). While ExpGuard substantially improves the byzantine
resilience of all aggregation methods, EG+F leads to the best results, see Table 8 in Appendix C.
Therefore, we only show the results for EG+F in Table 1.

Table 1 presents a comparison of robust aggregation methods against our proposed attacks and the
RLF baseline. The results show that robust aggregation methods improve robustness over simple mean
aggregation and EG+F consistently outperforms both GM and Cronus across all datasets, highlighting
the benefits of utilizing all available information. Interestingly, GM generally outperforms Cronus
while ExpGuard+GM is less byzantine-resilient than EG+F. This shows that filtering-based methods
are effective, but that the filtering heuristic employed by Cronus might be suboptimal.

Table 1: FedDistill: 20 clients of which nine are byzantine (α = 0.45). Final test accuracy averaged
over multiple runs with standard deviation for different attacks and defences. BA refers to the baseline
accuracy, i.e., the final accuracy of FedDistill if all clients are honest.

CINIC-10 (ResNet-18), BA=80.2±0.1 CIFAR-10 (ResNet-18), BA=87.7±1.2

Mean GM Cronus EG+F Mean GM Cronus EG+F

RLF 76.9±0.4 79.3±0.3 76.6±0.0 78.8±0.1 84.6±0.1 85.4±0.6 84.7±0.3 85.4±0.0
LMA 54.6±1.2 75.0±0.6 71.1±1.7 77.4±1.1 73.4±8.6 83.3±0.2 80.6±2.3 85.4±0.1
CPA 45.9±0.4 71.2±5.2 65.9±3.3 79.2±0.2 68.4±0.8 78.4±0.9 74.5±0.6 85.5±0.8

CIFAR-100 (WideResNet-28), BA=66.8±0.5 Clothing1M (ResNet-50), BA=69.0±0.3

Mean GM Cronus EG+F Mean GM Cronus EG+F

RLF 65.2±0.7 65.2±0.3 44.3±1.7 63.9±0.6 69.4±1.2 68.7±0.8 68.6±0.4 68.7±1.1
LMA 41.8±4.4 51.3±0.1 44.6±0.2 57.2±1.2 40.3±3.3 58.3±0.7 61.4±0.5 68.3±0.7
CPA 43.3±1.2 56.7±0.9 55.3±0.3 62.1±1.4 33.7±2.7 58.4±0.3 43.9±12.9 68.5±1.0
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5.3 HIDING IN PLAIN SIGHT (HIPS)

Algorithm 2 ExpGuard

1: Input: Predictions Y t+1
i (Dpub) and weights

pti for all i ∈ N , aggregation method AGG.

2: Compute outlier scores:
σi ← AGG(Y t+1

i (Dpub)),∀i ∈ [n]
3: Update weights:

pt+1
i ← pti exp(−σi),∀i ∈ [n]

4: Compute weighted sum for all x ∈ Dpub:
Ȳ t+1(x)← 1∑n

j=1 pt+1
j

∑N
i=1 p

t+1
i Y t+1

i (x)

5: Output: Ȳ t+1(Dpub), pt+1
i ,∀i ∈ [N ]

The reason ExpGuard is so effective at mitigat-
ing the attacks in our experiments is that these
attacks aim to maximally disrupt the learning pro-
cess without considering detectability. However,
in the presence of defences, a tradeoff arises be-
tween an attack’s strength and its detectability.
Even the most potent attack is ineffective if con-
sistently detected and filtered out by a defence
mechanism.

To address this tradeoff, we propose Hiding In
Plain Sight (HIPS), a method that obfuscates at-
tacks to make them harder to detect. The key idea
behind HIPS is that small perturbations to proper
predictions can sufficiently disrupt the learning
process while avoiding detection, as they are less distinguishable from honest predictions. We note
that similar concepts have been explored in the byzantine FedAVG literature (Baruch et al., 2019;
Xie et al., 2020), but as these approaches where designed for the parameter space, they do not apply
to FedDistill.

y1 y2

y3

ȲH

YB

Ȳ

(a) Attack in ∆3

y1 y2

y3

ȲH

YB
Ȳ

(b) Attack in A

Figure 4: Attack spaces in ∆3: The blue dots
represent the predictions by the honest clients
and ȲH is their mean. The attack space is
highlighted. ȲB is the byzantine prediction,
and Ȳ denotes the mean of all clients for
α = 0.5. The red line joining them repre-
sents the mean Ȳ corresponding to different
α ∈ [0, 0.5].

For each sample x, HIPS operates by reducing the
attack space from ∆c to the convex hull of the honest
predictions A(x) def

= conv{Yi(x) : i ∈ H} such that
the predictions of the byzantine clients do not differ
much from the honest predictions. We illustrate this
concept in Figure 4 for a three-class classification
problem. In Figure 4a, the byzantine clients can
choose any point in ∆3, whereas in Figure 4b, due to
the constraints imposed by HIPS, the attack space is
reduced to A. Given that HIPS introduces additional
constraints to the attack space, it becomes necessary
to modify the attacks accordingly. In the following,
we omit the dependence on x for legibility. We begin
by extending CPA with HIPS.

Extending CPA with HIPS. Recall that for each
sample x, CPA computes the class least similar to
the class predicted by the honest clients, measuring
similarity using the similarity matrix C. Let Ci denote the i-th row of C, i.e., Ci is a vector containing
the similarity of i to all other classes. If i is the class predicted according to the mean honest prediction
ȲH(x), then CPA can be rephrased as the solution to miny∈∆c

yTCi. Applying HIPS now requires
restricting the constraints from ∆c to A.

Unlike CPA, this attack can no longer be computed in closed form. However, since miny∈A yTCi

is a linear program, it is sufficient to consider the extreme points of A, which correspond to the
predictions of each honest client. Thus, the solution can still be efficiently obtained by evaluating the
function for each honest client’s prediction and selecting the one with the smallest value. Intuitively,
a prediction minimizes the objective by assigning low probability to classes similar to i and high
probability to those dissimilar to i.

Extending LMA with HIPS. Similarly, restricting the attack space of LMA to A prevents us from
directly solving (2). However, we can show that solving (2) within the constraints of A also requires
only evaluating the vertices of A, which correspond to the honest predictions. Thus, we can compute
the loss for each honest prediction and select the one that maximizes (2), which we formally prove in
Corollary 7 in Appendix D.2.

Table 2 shows that HIPS improves the effectiveness of CPA and LMA against EG+F, GM and Cronus
but reduces its effectiveness against the mean. We remind the reader that we are interested in reducing
the effect of the defences, consequently lower test accuracy is considered better. Recall that the
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Table 2: FedDistill: 20 clients of which nine are byzantine (α = 0.45). We report the final test
accuracy averaged over multiple runs with standard deviation for different attacks (corresponding to
rows) and defences (corresponding to columns). BA refers to the baseline accuracy, i.e., the final
accuracy of FedDistill if all clients are honest.

CINIC-10 (ResNet-18), BA=80.2±0.1 CIFAR-100 (WideResNet-28), BA=66.8±0.5

Mean GM Cronus EG+F Mean GM Cronus EG+F

LMA 54.6±1.2 75.0±0.6 71.1±1.7 77.4±1.1 41.8±4.4 51.3±0.1 44.6±0.2 57.2±1.2
CPA 45.9±0.4 71.2±5.2 65.9±3.3 79.2±0.2 43.3±1.2 56.7±0.9 55.3±0.3 62.1±1.4

HIPS+LMA 75.3±0.1 68.7±0.1 67.7±1.0 73.3±0.9 50.3±3.3 34.3±0.4 34.4±2.8 49.3±0.5
HIPS+CPA 74.2±1.1 65.8±0.5 66.4±0.1 72.9±0.7 47.2±4.2 32.6±4.5 28.1±0.5 46.4±0.0

objective of HIPS is to reduce the strength of attacks in order to make it harder to detect. Therefore,
the fact that HIPS reduces the effectiveness of the attacks against the mean is to be expected as in the
absence of a defence mechanism, making an attack less detectable does not have any advantage.

In consequence, the mean is slightly more resilient to HIPS attacks than EG+F, while EG+F is more
resilient towards non-HIPS attacks by a large margin. Since we don’t know in advance which attack
strategy byzantine clients will use, the best defence is the one that experiences the smallest drop
in accuracy even against its most effective attack. This ensures that, regardless of which attack is
employed, the defence performs reliably and minimizes the worst possible impact on model accuracy

6 DISCUSSION

We analyzed to what extent byzantine clients can perturb KD-based FL, exemplified by the prototypi-
cal algorithm FedDistill, allowing us to better understand and characterize its byzantine resilience.

By proposing two effective new attacks specifically for FedDistill, namely LMA and CPA, we
highlighted vulnerabilities of FedDistill. We remark that while FedAVG attacks can not be directly
applied to FedDistill, attacks for FedDistill can in turn always be applied to FedAVG by computing
gradients based on the byzantine predictions. In fact, attacks based on computing gradients based on
simple label-flipping attacks have been considered in the FedAVG literature (Allen-Zhu et al., 2021).
Applying our attacks to FedAVG might pose an interesting direction for further research.

To increase the reliability of KD-based FL, we introduced the novel defence mechanism ExpGuard,
which we demonstrated to be more resilient to previously proposed as well as to our new attacks.
Since ExpGuard does not have a significant impact on the accuracy of FedDistill in the absence of
byzantine clients, does not require hyperparameter tuning and can be efficiently computed, it is a
promising method to reduce the impact of arbitrary failures when using KD-based FL methods.

To obfuscate attacks by navigating the tradeoff between their strength and detectability, we proposed
HIPS. Using this method, our attacks are able to reduce the accuracy of FedDistill even when using
ExpGuard. We hope that our contributions lay the groundwork for future research in the domain of
byzantine FL.
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A BROADER IMPACTS

FL has the potential to harness previously inaccessible data, overcoming privacy concerns and which
could have positive impact in domains like healthcare. This underscores the necessity of enhancing
our comprehension of these methods. However, the adoption of distributed training setups introduces
new challenges and risks.

Studying FL in the byzantine setting is often motivated as an avenue to study the resilience of these
methods to network errors or bugs, the increasing deployment of FL in critical real-world contexts
amplifies the urgency of addressing threats posed by adversarial actors. The notable case of the
“Google Maps Hacks”, an art performance by Simon Weckert, serves as a compelling illustration.
Weckert simulated a virtual traffic jam in Google Maps by strolling around Berlin with 99 smartphones,
manipulating the digital representation of streets. This demonstration had tangible consequences
in the physical world, rerouting cars to avoid perceived traffic congestion. Extrapolating such
exploits to critical infrastructure, like a smart grid reliant on usage information for energy production,
underscores the potential ramifications of malicious interventions.

B EXPERIMENTAL DETAILS

Public datasets For CIFAR-10, we use the unlabeled split of the STL-10 dataset (Coates et al.,
2011), consisting of 100k samples. For CINIC-10 we use the validation split of CINIC-10 consisting
of 90k samples. For Clothing1M, we use the noisily labeled split of Clothing1M, consisting of 1M
samples.

For CIFAR-100, we use the train split both for the public dataset and as the private datasets. While
this does not reflect a realistic use-case, we did not find an unlabeled dataset that was sufficiently
in-domain and large enough to achieve good performance.

We explored two alternative public datasets for CIFAR-100: Imagenet32 (Chrabaszcz et al., 2017), a
downscaled version of the Imagenet dataset (Russakovsky et al., 2014) and an extended version of the
CIFAR-100 dataset consisting of 30k images, found on Kaggle 1. Using both of these datasets, we
were not able to achieve good performance, which is probably due to domain drift. Since the goal of
this paper is not to achieve high accuracy using KD-based FL methods but rather to evaluate byzantine
attacks and defences we chose to use the same data for the local and public data. Alternatively, one
could try to generate a public dataset using either a pretrained generative model or by training a
generative model in via FL, see e.g. (Zhu et al., 2021).

Hyperparameters We run the experiments with two different random seeds and provide the
standard deviation. In the following, we provide some additional details about the training procedure
of FedDistill, see Appendix B for the specific values for each dataset. In each communication
round, the server collects the soft predictions of the clients, i.e., the probability distribution over
the classes, and aggregates them using either the mean or one of defence methods. The server then
trains the model on the public dataset using the aggregated predictions as a target. In each round, it
uses SGD+momentum with a linearly decaying learning rate. Then, the clients train the model on
their private data. The clients also use SGD with momentum and a linearly decaying learning rate.
However, their linear decay stretches across the all total epochs, meaning that they do not restart the
schedule in each communication round as the server. For both the server and clients, we calculate
the accuracy on the validation dataset after each epoch and implement early stopping to prevent
overfitting.

CIFAR-10 CIFAR-100 CINIC-10 Clothing1M

Architecture ResNet-18 WideResNet-28 ResNet-18 ResNet-50
Batch size 128 256 128 256
Server epochs per round 80 100 80 10
Total local epochs 400 250 200 300

1https://www.kaggle.com/datasets/dunky11/cifar100-100x100-images-extension/
data
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FedDistill training. To achieve good performance with FedDistill, we reinitialize the server model
and train it to convergence in every communication round. Without re-initializing, we were not
able to achieve high server test accuracy even with longer training. This aligns with the observation
made by Achille et al. (2018) and Ash & Adams (2020) that using noisy data in the beginning of
training permanently damages the model, even if the data quality improves later on. In the early
communication rounds, the clients predictions on the public dataset are inaccurate. Hence, even if the
clients models were to improve over time, the early training on inaccurate labels prevents the server
from learning an accurate classifier. By re-initializing the server, this problem can be circumvented
and the server can learn from the progressively improving clients predictions.

C ABLATIONS

Further results. Table 3 shows the effect of different attacks and defences in the same setting as in
Table 1 and Table 2 but for different datasets.

Table 3: FedDistill: 20 clients of which nine are byzantine (α = 0.45). Final test accuracy averaged
over multiple runs with standard deviation for different attacks and defences. BA refers to the baseline
accuracy, i.e., the final accuracy of FedDistill if all clients are honest.

CIFAR-10 (ResNet-18), BA=87.7±1.2 Clothing1M (ResNet-50), BA=69.0±0.3

Mean GM Cronus EG+F Mean GM Cronus EG+F

RLF 69.4±1.2 68.7±0.8 68.6±0.4 68.7±1.1 84.6±0.1 85.4±0.6 84.7±0.3 85.4±0.0
LMA 40.3±3.3 58.3±0.7 61.4±0.5 68.3±0.7 73.4±8.6 83.3±0.2 80.6±2.3 85.4±0.1
CPA 33.7±2.7 58.4±0.3 43.9±12.9 68.5±1.0 68.4±0.8 78.4±0.9 74.5±0.6 85.5±0.8

HIPS+LMA 33.7±2.7 58.4±0.3 43.9±12.9 68.5±1.0 84.8±0.1 78.0±1.6 78.5±1.1 83.8±0.2
HIPS+CPA 63.4± 55.2±1.1 54.8±2.1 57.7±0.5 85.0±0.1 79.4±0.8 77.3±0.1 83.2±0.9

Comparing FedDistill and FedAVG in the benign setting. We compare the performance of
FedDistill and FedAVG in the benign setting. The experimental setup for FedDistill follows the same
configuration as in Table 1, utilizing 20 clients, 10 communication rounds, however no byzantine
clients. For FedAVG, we follow this setup as closely as possible, however for CIFAR-100 and
Clothing1M, we had to use 100 communication rounds to achieve competitive performance.

Our findings indicate that FedAVG performs significantly worse on Clothing1M, even with 100
communication rounds. This discrepancy is likely due to FedAVG’s inability to utilize the unlabeled
public dataset, highlighting the distinct assumptions under which these methods operate.

Table 4: Comparison of final test accuracy between FedAVG and FedDistill across different datasets.
Results are averaged over multiple runs with standard deviation included.

CIFAR-10 CINIC-10 CIFAR-100 Clothing1M

FedAVG 88.6±0.1 75.1±0.2 67.2±0.3 61.2±1.1
FedDistill 86.8±1.0 80.2±0.1 66.8±0.5 69.0±0.3

Performance of defenses in benign settings. We evaluate the performance of different defense
mechanisms in the benign setting. The results, as detailed in Table 5, demonstrate that the accuracy
of the defenses remains largely consistent with the mean baseline, exhibiting only minor reductions.
These experiments were conducted without altering any hyperparameters, indicating that the slight
accuracy variations observed could potentially be minimized through hyperparameter tuning.

Comparison to state-of-the-art FedAVG defence mechanisms. In general, we think that a
direct byzantine comparison between FedDistill and FedAVG is hard to interpret. Nevertheless, we
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Table 5: Performance of FedDistill with different defense strategies in the benign setting without
byzantine clients. Results are averaged over multiple runs with standard deviation included.

CIFAR-10 CINIC-10 CIFAR-100 Clothing1M

FedDistill (E+F) 86.2±1.0 80.5±0.2 64.9±1.9 68.0±0.2
FedDistill (GM) 87.0±0.1 81.1±0.5 66.4±0.4 69.4±0.0
FedDistill (Cronus) 86.4±0.3 80.4±0.2 62.6±0.8 64.9±0.2
FedDistill (mean) 87.7±1.2 80.2±0.1 66.8±0.5 69.0±0.3

implemented the state-of-the-art approach of using D-SGD with momentum and nearest neighbour
mixing (NNM) with coordinate-wise median (CWMED) aggregation for CINIC-10 against the ALIE
attack, as outlined in Allouah et al. (2023). In the absence of attacks, D-SGD achieves an accuracy
of 80.8 with mean aggregation and 77.7 with NNM+CWMED. Table 6 presents the accuracy for
varying the number of byzantine clients and attack magnitudes η.

Byzantine clients can still significantly disrupt the learning process, reducing accuracy to below 20%
with 9 byzantine clients. This represents a more than fourfold decrease in accuracy compared to the
scenario without byzantine clients, whereas FedDistill only experiences a 1.1-fold reduction. We
have not optimized the attack amplitude for ALIE, as suggested by Allouah et al. (2023).

Table 6: Accuracy of D-SGD under ALIE attack with different byzantine client numbers and attack
magnitudes η.

# byz. clients | η 0.05 0.1 0.5 1 2

1 78.7±0.40 78.3±0.70 69.0±2.40 75.8±0.00 79.9±0.00
5 77.2±0.80 70.0±4.00 27.6±1.50 24.1±0.20 71.5±0.00
9 55.8±26.0 55.3±5.80 25.8±2.90 19.8±0.20 62.2±13.7

Computational cost of aggregation methods In Table 7, we show the runtime of GM and EG+F
for multiple datasets. Even for large datasets with many classes, the computational overhead is
negligible compared to the cost of training the models. Note that the runtime is for the whole dataset.
This means that for the experimental setting we consider throughout the paper with 10 communication
rounds, the total time spent on aggregating the predictions is about 32 seconds, even for CIFAR-100.

Table 7: Runtime per communication round of different defence methods for datasets of different
size and with different number of classes.

STL-10 CIFAR-100 Clothing1M

Samples 100k 60k 1M
Classes 10 100 14

Runtime: EG+F 0.08s 3.2s 0.8s
Runtime: GM 0.15s 0.62s 0.77s

ExpGuard with other defences. Table 8 compares the performance of different robust aggregation
methods combined with ExpGuard. The resilience of all aggregation methods is significantly
improved by ExpGuard, cf. Tables 1 and 2. Further, EG+F clearly outperforms ExpGuard combined
with the other aggregation methods while ExpGuard+Cronus is the least robust among all methods,
except for the ExpGuard+mean. This shows that the modifications of EG+F are crucial to achieve
good performance.
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Table 8: FedDistill: 20 clients of which nine are byzantine (α = 0.45). Final test accuracy averaged
over multiple runs with standard deviation for different attacks and defences used in combination
with ExpGuard. BA refers to the baseline accuracy, i.e., the final accuracy of FedDistill if all clients
are honest.

CINIC-10 (ResNet-18), BA=80.2±0.1 CIFAR-10 (ResNet-18), BA=87.7±1.2

Mean GM Filter Cronus Mean GM Filter Cronus

RLF 77.1 ±0.4 79.3 ±0.9 78.8±0.1 76.3 ±0.2 77.1 ±0.4 86.0 ±0.3 85.4±0.0 85.9 ±0.8
LMA 53.0 ±4.8 73.8 ±2.0 77.4±1.1 71.2 ±1.3 53.0 ±4.8 84.1 ±0.9 85.4±0.1 51.5 ±14.9
CPA 45.8 ±0.7 71.9 ±0.6 79.2±0.2 66.1 ±0.5 45.8 ±0.7 10.7 ±18.2 85.5±0.8 2.3 ±0.4

HIPS+LMA 75.1 ±0.8 67.9 ±0.7 73.3±0.9 67.5 ±0.9 75.1 ±0.8 76.5 ±0.9 83.8±0.2 76.5 ±0.8
HIPS+CPA 72.7 ±0.4 66.2 ±0.2 72.9±0.7 65.7 ±0.0 72.7 ±0.4 77.5 ±0.8 83.2±0.9 76.9 ±0.4

Number of clients and communication rounds In Figure 5, we ablate the impact of the number
of clients and communication rounds on FedDistill in the honest setting, while keeping the other
parameters such as the total number of local epochs and server training epochs per round fixed.

On the left side of Figure 5, we see that increasing the number of clients leads to decreasing accuracy.
This is due to the fact that the datasets we use are of fixed size and so the amount of private data per
client decreases as the number of clients increases. This is especially problematic before the first
communication round, as the models have to train a model from scratch that encodes some useful
information only based on their private dataset.

On the right side of Figure 5, we see that at first, increasing the number of communication rounds
leads to an improvement, but as the number of communication rounds decreases, we first experience
diminishing returns at some point even a decrease in accuracy. This in part due to the fact that we
kept the total number of local epochs fixed, but we observed similar result when increasing the total
number of local epochs.
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Figure 5: (Left) ResNet-18 on CINIC-10 with 10 communication rounds: Final test accuracy of
FedDistill with different number of clients. (Right) ResNet-18 on CINIC-10 with 20 clients: Final
test accuracy of FedDistill with different number of communication rounds.

Measuring the impact of Byzantine Clients on EG+F Performance. We conducted an ablation
study to assess the impact of varying the number of byzantine clients on the performance of EG+F on
the CINIC-10 dataset. We selected LMA with and without HIPS as the attack strategy, as it was the
most effective attack on CINIC-10 with 9 byzantine clients. For reference, the baseline performance
of FedDistill using mean aggregation without byzantine clients is 80.2.

Evaluating byzantine robustness on non-i.i.d. data. While it is essential to first gain a clear
understanding of the i.i.d. setting, it is of high importance to discuss KD-based FL in the non-i.i.d.
setting. To that end, we implemented the Dirichlet distribution with parameter β, which is commonly
used to generate non-i.i.d. data in the FL literature (Lin et al., 2020). Note that in Lin et al. (2020)
this parameter is referred to as α, however we stick to β, since we use α to denote the fraction of
byzantine clients. We follow the same setting as in Table 1, except that the client datasets do not
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Table 9: Test accuracy of EG+F on CINIC-10 with varying numbers of byzantine clients. Results are
averaged over multiple runs with standard deviation included.

# Byzantine Clients 0 3 5 7 9

HIPS+LMA 80.5±1.2 79.7±1.0 79.8±0.4 78.9±0.1 72.9±0.7
LMA 80.5±1.2 79.7±0.1 79.9±0.0 79.9±0.2 77.4±1.1

follow a uniform class distribution, but rather a skewed one depending on the parameter β, where
smaller β means more heterogeneity and vice-versa. In Table 10 we provide complete experiments
for the CINIC-10 and CIFAR-10 datasets.

We conducted a comprehensive evaluation of all attack and defense strategies, varying the β parameter
between 10, 5, and 1. The table differentiates the defense mechanisms, presenting the final test
accuracies for various attacks (listed as rows for each defense) in both the i.i.d. and non-i.i.d. scenarios
with different β values. Notably, for attacks without HIPS, E+F demonstrates superior resilience
compared to all other defenses, with the disparity being even more pronounced in the non-i.i.d.
setting, particularly at lower β values. Specifically, for β = 1, both GM and Cronus underperform
relative to the mean, whereas E+F achieves more than double the accuracy of the mean. Unlike other
defense methods, E+F retains its robustness amidst higher heterogeneity, making it an ideal choice
for non-i.i.d. byzantine-resilient aggregation.

As in the i.i.d. scenario, the mean shows slightly better robustness against HIPS attacks than E+F.
However, the mean lacks resilience against non-HIPS attacks. Consequently, if the server is uncertain
about the type of attacks it might face, E+F remains the preferable choice, offering solid worst-case
performance with only a minor reduction in performance against HIPS attacks. Generally, HIPS
proves to be significantly more potent in the non-i.i.d. setting than in the i.i.d. one. This is expected,
as increased heterogeneity in client data results in more heterogeneous predictions. HIPS narrows
the attack space from the entire probability simplex to the convex hull of honest client predictions.
Thus, greater heterogeneity in honest predictions provides more opportunities for attackers to evade
detection while disrupting the server.
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Table 10: Test accuracy of different defense mechanisms on CINIC-10 and CIFAR-10 datasets with
varying non-i.i.d. levels (β). Results are averaged over multiple seeds, but we omitted standard
deviations for the sake of legibility. The table is divided into sections for each defense mechanism.

CINIC-10 CIFAR-10
i.i.d. β = 10 β = 5 β = 1 i.i.d. β = 10 β = 5 β = 1

Mean
RLF 76.9 75.5 73.9 62.0 84.6 83.9 80.6 71.0
CPA 45.9 37.2 28.1 18.5 68.4 57.9 38.2 15.4
LMA 54.6 52.0 47.4 27.2 73.4 69.5 65.6 35.5
HIPS+CPA 74.2 60.7 53.4 32.6 85.0 76.2 59.5 32.3
HIPS+LMA 75.3 61.2 52.8 28.9 84.9 75.6 54.0 32.0

EG+F
RLF 78.8 75.8 73.0 63.8 85.4 83.8 80.3 69.1
CPA 73.3 77.9 73.6 58.4 85.5 85.6 83.5 52.9
LMA 77.4 75.8 73.8 62.0 85.4 85.0 83.4 74.0
HIPS+CPA 72.9 57.4 41.4 24.3 57.7 68.3 42.8 25.3
HIPS+LMA 73.4 59.1 44.0 24.4 68.5 68.2 44.6 23.0

GM
RLF 79.3 76.3 75.2 62.5 85.4 73.1 82.4 85.2
CPA 71.2 44.5 37.6 9.5 78.4 67.4 43.8 10.4
LMA 75.0 55.3 47.2 10.4 83.3 75.0 58.7 9.6
HIPS+CPA 65.8 38.6 31.4 18.4 55.2 59.7 30.2 13.5
HIPS+LMA 68.7 36.9 30.1 15.1 58.4 45.6 28.2 10.0

Cronus
RLF 76.6 70.8 62.6 39.1 84.7 79.4 75.3 42.7
CPA 65.9 40.1 25.7 9.1 74.5 60.0 34.9 10.1
LMA 71.1 51.4 35.1 10.0 80.6 71.8 48.0 7.8
HIPS+CPA 66.4 38.3 29.5 17.4 54.8 48.1 28.9 16.8
HIPS+LMA 67.7 37.3 28.6 16.1 43.9 42.7 21.0 10.4

D THEORETICAL RESULTS

In this section, we present the formal statements and proof discussed in the main part of the paper.

D.1 BOUNDING THE BYZANTINE ERROR

First we show in Lemma 2 that for the two most common loss functions, namely the MSE and CEL,
the gradient of the Loss with respect to the parameters of the classifier w are linear with respect to
the difference between the models prediction and the target label and it’s slope is defined only by the
model parameters w and the data x. In Theorem 3, we show based on Lemma 2 that if a parameter
w̃ is a stationary point of (Pdistill), then it is also in the neighbourhood of an approximate stationary
point of (Phonest). The size of this neighbourhood is determined by the fraction of byzantines α and
a constant C depending on the data x ∈ Dpub and w̃. In particular as α goes to zero the size of the
neighbourhood goes to zero as well.

Lemma 2. Consider a function L(h(x,w), y) where h : X ×W → ∆c such that w 7→ h(x,w) is
differentiable and y ∈ ∆c. Assume that one of the two statements hold

1. L(a, b) = MSE(a, b)

2. L(a, b) = CEL(b, a) and h(x,w) = σ ◦ Φ where Φ : X ×W → Rc and σ is the softmax
function.
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Then there is a linear function g : ∆c → W such that g(h − y) = ∇wL(h(x,w), y) which is
Lp-Lipschitz, where Lp depends on x and w.

Proof of Lemma 2.

Case 1. We have MSE(p, q) = 1
2 ∥p− q∥2. Then using the shorthand hi for the i-th element of

h(x,w) and by applying the chain rule, we have

∂ MSE(h(x,w), y)

∂wj
=

c∑
i=1

∂ MSE(h(x,w), y)

∂hi

∂hi

∂wj
=

c∑
i=1

(yi − hi)
∂hi

∂wj
.

Hence we can write the gradient as follows

∇w MSE(h(x,w), y) = Jh(w)(y − h(x,w)),

where Jh is the Jacobian of h. Let g(h(x,w) − y)
def
= Jh(w)

T (y − h(x,w)). Then g is linear and
Lp-Lipschitz, where Lp ≤ ∥Jh(w)∥. Note that Jh(w) depends only on x ∈ Dpub and w.

Case 2. We have that CEL(p, q)
def
= −

∑n
i=1 pi log(qi) and ∇q CEL(p, q) =

−(p1/q1, . . . , pN/qN )T . Furthermore, σi(p)
def
= exp(pi)∑n

i=1 exp(pi)
and ∂σi(p)

∂pj
= σi(p)(δij − σj(p))

where δij = 1 if i = j and δij = 0 otherwise.

∂σi(p)

∂pj
= σi(p)(δij − σj(p)), with δij =

{
1, i = j

0, otherwise.

Hence, using the chain rule,

∂ CEL(y, σ(Φ))

∂Φi
=

c∑
j=1

∂ CEL(y, σ(Φ))

∂σj(Φ)
· ∂σj(Φ)

∂Φi
=

c∑
j=1

(yj/σj(Φ))σj(Φ)(δij − σi(Φ))

=

c∑
j=1

yj(δij − σi(Φ)) = −σi(Φ)

 c∑
j=1

yj

+ yi = yi − σi(Φ).

Then,

∂ CEL(y, σ(Φ))

∂wj
=

c∑
i=1

∂ CEL(y, σ(Φ))

∂Φi

∂Φi

∂wj
=

c∑
i=1

(yi − σi(Φ))
∂Φi

∂wj
.

It follows that
∇w CEL(y, σ(Φ)) = JΦ(w)

T (y − h(x,w)),

where Jh is the Jacobian of h. Now let g(h(x,w)− y)
def
= JΦ(w)

T (y − h(x,w)). Then g is linear
and Lp-Lipschitz, where Lp ≤ ∥Jh(w)∥. Note that Jh(w) depends only on x ∈ Dpub and w.

Theorem 3. Consider the optimization problem defined in (Phonest), i.e.,

min
w∈W

F (w)
def
=

1

|Dpub|
∑

x∈Dpub

L(h(x,w), ȲH(x))

 .

and the optimization problem defined in (Pdistill), i.e.,

min
w∈W

F̃ (w)
def
=

1

|Dpub|
∑

x∈Dpub

L(h(x,w), Ȳ (x))

 .

Assume that one of the following holds:
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1. L(p, q) = CEL(q, p) and h(x,w) = σ ◦ Φ with function Φ : X ×W → Rc and σ is the
softmax function.

2. L(p, q) = MSE(p, q).

Then, if w̃ is a stationary point of F̃ , i.e.,
∥∥∥∇F̃ (w̃)

∥∥∥ = 0, it also holds that

∥∇F (w̃)∥ ≤ 1

|Dpub|
∑

x∈Dpub

Cα
∥∥ȲH(x)− ȲB(x)

∥∥ ≤ √2αC,
where C > 0 is a constant which depends only on Dpub and w, and is independent of the client
predictions. If further, L(h(x, ·), w) is L-smooth, then running SGD on F̃ initialized at w0 for

T = O
(

L2F (w0)
2+σ4

ε2

)
iterations, where σ is the gradient variance, then it holds that ∥∇F (w̄T )∥2 =

O(ε+ C2α2).

Proof of Theorem 3. We prove the theorem in two parts. First we bound the norm of the gradient
error and then we show approximate convergence of SGD given the gradient error bound. Note that
∇F (w) and ∇F̃ (w) only differ in the second argument of L. By Lemma 2, we have that

∇F (w) =
1

|Dpub|
∑

x∈Dpub

∇L(h(x,w), ȲH(x)), ∇F̃ (w) =
1

|Dpub|
∑

x∈Dpub

∇L(h(x,w), Ȳ (x)),

are C-Lipschitz function with respect to the second argument, where C depends on w and x ∈ Dpub

only. Denote by ∥B(w)∥ def
=
∥∥∥∇F (w)−∇F̃ (w)

∥∥∥ the gradient error, then

∥B(w)∥ ≤
∑

x∈Dpub

1

|Dpub|
∥∥ȲH(x)− Ȳ (x)

∥∥ =
∑

x∈Dpub

αC

|Dpub|
∥∥ȲH(x)− ȲB(x)

∥∥ ≤ √2αC, (3)

where the first inequality holds by the Lipschitzness, the second inequality holds since Ȳ = (1 −
α)ȲH + αȲB and the last inequality holds since the maximum ℓ2 distance between two points in ∆c

is
√
2. Now let w̃ be a stationary point of F̃ , then we have

∥∇F (w̃)∥ =
∥∥∥∇F (w̃)−∇F̃ (w̃)

∥∥∥ = ∥B(w̃)∥ ,

which together with Equation (3) shows the first part of the theorem.

For the second part of the proof, we define

fi(w) = L(h(xi, w), ȲH(xi)), f̃i(w) = L(h(xi, w), Ȳ (xi))

and it follows that

F (w) = Ei[fi(w)] =
1

|Dpub|

|Dpub|∑
i=1

fi(w) and F̃ (w) = Ei[f̃i(w)] =
1

|Dpub|

|Dpub|∑
i=1

f̃i(w).

The update rule of SGD is defined as wt+1 ← wt − γ∇f̃i(wt), where i is sampled uniformly at
random. We have that

∇f̃i(wt) = ∇F (wt) +∇f̃i(wt)−∇fi(wt) +∇fi(wt)−∇F (wt)

By the L smoothness of L(h(x, ·), y) and the SGD update rule, we have

fi(wt+1)− fi(wt) ≤ ⟨∇fi(wt), wt+1 − wt⟩+
L

2
∥wt+1 − wt∥2

= −γ⟨∇fi(wt),∇f̃i(wt)⟩+
Lγ2

2

∥∥∥∇f̃i(wt)
∥∥∥2 .
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Now, taking the expectation with respect to i on both sides, we obtain

F (wt+1)− F (wt) ≤ −γ⟨∇F (wt),∇F̃ (wt)⟩+
Lγ2

2
E
[∥∥∥∇f̃i(wt)

∥∥∥2]
= −γ⟨∇F (wt),∇F̃ (wt)⟩+

Lγ2

2

(
E
[∥∥∥∇f̃i(wt)−∇F̃ (wt)

∥∥∥2]+ ∥∥∥∇F̃ (wt)
∥∥∥2) ,

where the second inequality holds by noting that E[X2] = Var(X) + E[X]2. We bound,

E
[∥∥∥∇f̃i(wt)−∇F̃ (wt)

∥∥∥2] = E
[∥∥∥∇f̃i(wt)−∇fi(wt) +∇fi(wt)−∇F (wt)−∇F (wt) +∇F̃ (wt)

∥∥∥2]
≤ 3E

[∥∥∥∇f̃i(wt)−∇fi(wt)
∥∥∥2]+ 3E [∥∇fi(wt)−∇F (wt)∥] + 3 ∥B(wt)∥2

≤ 6C2α2 + 3σ2 + 3 ∥B(wt)∥2

where the last line follows by noting σ2 def
= E

[
∥∇fi(wt)−∇F (wt)∥2

]
and since

E
[∥∥∥∇f̃i(wt)−∇fi(wt)

∥∥∥2] = 1

|Dpub|

|Dpub|∑
i=1

∥∥∥f̃i(wt)−∇fi(wt)
∥∥∥2 ≤ 2C2α2.

Using these terms, we further bound

F (wt+1)− F (wt) ≤ −γ⟨∇F (wt),∇F̃ (wt)⟩+
Lγ2

2

(
6C2α2 + 3σ2 + 3 ∥B(wt)∥2 +

∥∥∥∇F̃ (wt)
∥∥∥2)

= −γE
[
∥∇fi(wt)∥2

]
+ 6γC2α2 +

3Lγ2σ2

2
,

where the last inequality follows by choosing γ ≤ 2
3L and since by Equation (3), we have ∥B(wt)∥2 ≤

2α2C2. Rearranging, summing from t = 0, . . . , T − 1 and dividing by T , we obtain

1

T

T−1∑
t=0

E
[
∥∇fi(wt)∥2

]
≤ F (w0)− F (wT )

γT
+ 6α2C2 +

3Lγσ2

2

Then, choosing γ = 2
3L

√
T

, we obtain

1

T

T−1∑
t=0

E
[
∥∇fi(wt)∥2

]
≤ 3LF (w0)

2
√
T

+ 6α2C2 +
σ2

√
T

Hence, choosing T = O(L
2F (w0)

2+σ4

ε2 ) ensures that

1

T

T−1∑
t=0

E
[
∥∇fi(wt)∥2

]
= O

(
ε+ α2C2

y

)
.

Note that 1
T

∑T−1
t=0 E

[
∥∇fi(wt)∥2

]
is equal to E

[
∥∇fi(w̄T )∥2

]
, where w̄T is drawn uniformly at

random from {w0, . . . , wT+1}. This concludes the proof.

D.2 ATTACK OPTIMALITY

In this subsection, we discuss the results concerning the attacks discussed in the paper. In Lemma 4,
we prove that optimization problem satisfying certain conditions, of which the optimization problems
corresponding to our attacks are instances, always admit an optimizer on the extreme point of the
constraint set X . Based on this result, we solve the optimization problem associated to (2) and its
HIPS variant in closed form in Lemma 5 and Corollary 7.
Lemma 4. Let X ⊂ Rc be a convex polytope. Let f : Rc → R be continuous and convex in X . Then
the optimization problem

max
x∈X

f(x),

admits an optimizer on an extreme point of X .
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Proof of Lemma 4. By the extreme value theorem, f attains a maximum x∗ in X . Since X is a
convex polytope, each x ∈ X can be represented as a convex combination of the extreme points of X
denoted by Ext(X ). Denote by {xi}i∈[n] the extreme points of X . In particular we can represent the
maximum as x∗ =

∑n
i=1 pixi where p ∈ ∆n. By Jensen’s inequality, we have

f(x∗) = f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pif(xi)

Since all pi are non-negative, there exists at least one xi such that f(xi) ≥ f(x∗), by the optimality of
x∗, we have that f(x∗) ≥ f(x) for all x ∈ X , hence f(xi) = f(x∗), which concludes the proof.

Lemma 5. The prediction Ȳ ∗
B = 1i with i ∈ argmin ȲH is an optimizer of (2) if one of the two

statements hold

1. L(a, b) = CEL(b, a) and ȲH ∈ Int(∆c)

2. L(a, b) = MSE(a, b) .

Remark 6. The image of the softmax function is Int(∆c). This means that if the honest clients use
the softmax activation function in order to obtain a probability distribution over the classes, which is
standard practice in training neural networks, the assumption ȲH ∈ Int(∆c) in Lemma 5 is always
satisfied.

Proof of Lemma 5. For the sake of simplicity, we write y
def
= ȲH(x) and x

def
= ȲB(x) throughout this

proof.

Case 1. The MSE is convex and differentiable, hence by Lemma 4, there is an optimizer of
Equation (2) on an extreme point of ∆c, i.e., the one-hot vector 1i for all i ∈ [c]. Using L = MSE
and the characterization of the optimizer, we rewrite Equation (2) as follows

max
x∈∆c

1

2
∥y − ((1− α)y + αx)∥2 = max

x∈∆c

α

2
∥y − x∥2 =

α

2
max
i∈[c]
∥y − 1i∥2 .

We rewrite the problem

α

2
max
i∈[c]
∥y − 1i∥2 =

α

2
max
i∈[c]

∑
j ̸=i

y2j + (yi − 1)2


Note that for a ∈ [0, 1], a2 is monotonically increasing and (1 − a)2 is monotonically decreasing.
Hence the first summand of the right hand side is maximized by choosing the largest entries of y
and second summand of the right hand side is maximized by choosing the smallest entry of y. We
conclude that argmaxi∈[c] yi is an optimizer of Equation (2).

Case 2. Note that v 7→ CEL(w, v) is continuous for v ∈ Ext(∆c) and w ∈ ∆c and convex for
v ∈ ∆c. By assumption, y ∈ Int(∆c) and α > 0, hence αx + (1 − α)y ∈ Int(∆c), meaning that
x 7→ CEL(y, αx+ (1− α)y) is continuous for all x ∈ ∆c. Hence by Lemma 4, there is an optimizer
of Equation (2) on an extreme point of ∆c, i.e., the one-hot vector 1i for all i ∈ [c]. We explicit
Equation (2),

max
x∈∆c

CEL(x, (1− α)y + αy) = max
x∈∆c

−
c∑

i=1

xi log((1− α)yj + αxi).

Since Equation (2) admits an optimizer on an extreme point of ∆c, we can write

k = argmax
j∈[c]

−yj log((1− α)yj + α)−
c∑

i ̸=j

yi log((1− α)yi)

 .
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We rewrite the problem as follows

max
j∈[c]
−

c∑
i=1

yi log((1− α)yi) + yj log((1− α)yj)− yj log((1− α)yj + α)

= −
c∑

i=1

yi log((1− α)yi) + max
j∈[c]

yj log

(
(1− α)yj

(1− α)yj + α

)
Note that (1−α)yj

(1−α)yj+α < 1 for all α ∈ [0, 1] and yj ∈ (0, 1), hence the logarithm is negative
and since yj > 0, the term we want to optimize is monotonically decreasing. We conclude that
k = argminj∈[c] yj optimizes the problem and 1k is an optimizer of Equation (2).

Corollary 7 (HIPS+LMA). Consider the following optimization problem

max
ȲB(x)∈A

L
(
(1− α)ȲH(x) + αȲB(x), ȲH(x)

)
, (4)

where A def
= conv{(Y t+1

i (x))i∈H}. Then under the assumption of Lemma 5, the problem admits a
solution on an extreme point of A.

Proof of Corollary 7. As shown in the proof of Lemma 5, for both cases L is differentiable and
convex, hence the statement follows directly from Lemma 4.

D.3 COUNTEREXAMPLE

Consider the following three predictions

y1 =

(
0.7
0.2
0.1

)
, y2 =

(
0.8
0.1
0.1

)
, y3 =

(
0
0
1

)
, (5)

which all lie in ∆3. Then the coordinate-wise median (which is a special case of the 50 % coordinate-
wise trimmed mean) would yield ỹ = (0.7, 0.1, 0.1)T , which lies outside of the simplex.
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