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Abstract001

Retrieval-augmented generation (RAG) en-002
hances LLMs by integrating external knowl-003
edge, but generation remains fragile due to the004
uncertain placement of relevant chunks and005
retrieval-induced information overload, lead-006
ing to hallucinations. We propose Ext2Gen,007
a novel extract-then-generate model that en-008
hances RAG robustness by first extracting009
query-relevant sentences before generating an-010
swers. To optimize this model, we employ pref-011
erence alignment through pairwise feedback012
learning, enabling the model to generate robust013
answers regardless of variations in retrieval re-014
sults. Extensive experiments demonstrate that015
Ext2Gen effectively identifies query-relevant016
sentences with high precision and recall, lead-017
ing to highly reliable answers. Furthermore,018
deploying our model in a RAG environment019
reveals that it not only boosts the performance020
of the base LLM but also synergizes with ad-021
vanced retrieval strategies like query expansion.022
The dataset and model will be available upon023
acceptance. A portion of the dataset is available024
beforehand at https://bit.ly/4b2gSzc.025

1 Introduction026

Retrieval-augmented generation (RAG) has proven027

its effectiveness in reducing hallucinations in large028

language models (LLMs), when their knowledge029

is incomplete, outdated, or lacks sufficient detail030

to accurately address specific queries (Gao et al.,031

2023b; Fan et al., 2024). A critical aspect of RAG032

is the "retrieval" process, which involves identify-033

ing and selecting relevant text chunks. The quality034

of these retrieved chunks plays a pivotal role in the035

overall performance of RAG, as they form the ba-036

sis for generating factual and contextually relevant037

answers aligned with the query intent (Asai et al.,038

2024; Wang et al., 2023; Zhang et al., 2024).039

In this regard, most recent works have primarily040

focused on improving retrieval accuracy to increase041

the likelihood of relevant chunks being included in042

the Top-k search results, such as query expansion 043

(Wang et al., 2023; Zhang et al., 2024), re-ranking 044

(Reddy et al., 2024; Hwang et al., 2024), and self- 045

critique (Asai et al., 2024; Li et al., 2024). These 046

methods work by expanding contextual informa- 047

tion to the query, re-scoring retrieved chunks to pri- 048

oritize relevance, and validating the chunks against 049

the query to ensure consistency. 050

Despite advancements in retrieval accuracy, bot- 051

tlenecks still persist in the "generation" process, 052

due to uncertain placement, where relevant chunks 053

appear unpredictably within retrieved results, and 054

information overload, where irrelevant chunks are 055

included with varying degrees. These issues re- 056

sult in hallucinations even when retrieved results 057

contain correct information, as generation models 058

struggle to utilize relevant content due to forget- 059

ting by the "lost in the middle" phenomenon (Liu 060

et al., 2024a) and distraction caused by "informa- 061

tion overload" from irrelevant chunks (Cuconasu 062

et al., 2024). These challenges are particularly se- 063

vere in RAG, where smaller models, more suscep- 064

tible to noise-related vulnerabilities, are adopted in 065

generation (see Section 4.1.1). 066

In this paper, we go beyond accurate retrieval 067

to emphasize robust generation that remains re- 068

silient to forgetting and distraction by the two 069

challenges. Our key idea for enhancing robust- 070

ness is an extract-then-generate approach named 071

Ext2Gen, where the model first extracts query- 072

relevant sentences from the retrieved chunks and 073

then refine the information to generate a precise an- 074

swer. The extraction step here serves as a chain-of- 075

thought (CoT) process (Wei et al., 2022; Chu et al., 076

2023), where the model provides the evidence first 077

before generating the final answer. However, solely 078

relying on Ext2Gen via prompt engineering is in- 079

sufficient to ensure satisfactory robustness, since 080

the model is not explicitly guided to pinpoint the 081

exact positions of relevant chunks and to filter out 082

the noisy information. 083
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Figure 1: Overview of preference alignment through Ext2Gen.

We frame these challenges as an alignment prob-084

lem (Zhou et al., 2024; Wang et al., 2024b), where085

a discrepancy exists between the model’s desired086

capability and actual behavior. Ideally, the model087

should accurately identify query-relevant chunks088

regardless of their position and noise in the input,089

but in practice, it is often distracted by their place-090

ment and the unavoidable noise from the retrieval091

step. To bridge this gap, we enhance our Ext2Gen092

approach via preference alignment (Rafailov et al.,093

2024; Guan et al., 2024; Ethayarajh et al., 2024),094

introducing explicit training signals that guide the095

generation model. This process for Ext2Gen en-096

tails a sophisticated construction of an alignment097

training dataset, incorporating pairwise comparison098

feedback, as illustrated in Figure 1.099

Specifically, we construct a large-scale dataset100

that mimics real-world retrieval conditions, where101

retrieved results include both relevant and irrelevant102

information. Firstly, we generate question and an-103

swer pairs using LLMs from multi-domain source104

datasets, including HotPotQA (wiki), MS-MARCO105

(web search), PubMed (medical), CNNDM (news),106

and GovReport (report). Secondly, for each query,107

we collect "relevant chunks" that contain the correct108

answer, along with multiple "irrelevant chunks" fil-109

tered from the chunk set obtained by a retrieval110

strategy. To simulate realistic RAG input, chunks111

are mixed with up to 25 sampled irrelevant chunks112

and an unpredictably placed relevant chunk. This113

design mirrors critical challenges in the generation114

step of RAG, namely uncertain placement, as well115

as information overload.116

For effective preference alignment, the construc-117

tion of high-quality feedback data is crucial, as it118

provides explicit signals that guide the model to-119

ward robust generation. By reinforcing preferred120

(chosen) outputs over rejected ones, the model re-121

duces forgetting and minimizes distraction from122

noisy retrieval results, ensuring more reliable an-123

swers. To achieve this, we collect output com-124

pletions using eight popular LLMs,1 applying the125

Ext2Gen pipeline. We then construct pairwise feed-126

back by evaluating these outputs with four popular 127

QA metrics, including Accuracy (Acc), LLM-based 128

evaluation (LLMEval), ROUGE-L, and BERTScore. 129

This feedback offers direct supervision for prefer- 130

ence alignment methods, such as DPO (Rafailov 131

et al., 2024) and KTO (Ethayarajh et al., 2024). 132

Our main contributions are: (1) We introduce 133

Ext2Gen, a novel extract-then-generate model that 134

mitigates hallucination by explicitly separating evi- 135

dence extraction from generation. (2) We construct 136

the first preference alignment dataset tailored for 137

RAG, enabling models to learn to prioritize rel- 138

evant information while effectively filtering out 139

noise. (3) Our experiments reveal several findings: 140

Ext2Gen significantly enhances generation robust- 141

ness, reducing hallucinations caused by uncertain 142

placement and information overload; it achieves 143

strong alignment, demonstrating that balancing 144

inclusion- and similarity-based feedback leads to 145

better Pareto-optimal performance; and it syner- 146

gizes with advanced retrieval strategies, resulting 147

in superior performance for RAG. 148

2 Related Work 149

Retrieval in RAG is an essential process to fetch 150

the most relevant text chunks to ground the re- 151

sponses to the given query. Two traditional ap- 152

proaches are employed for retrieval: sparse re- 153

trieval, which relies on lexical-based methods such 154

as BM25 (Robertson et al., 2009), and dense re- 155

trieval, which uses text embeddings from both 156

queries and text chunks (Zhao et al., 2024). With 157

the recent advance in RAG, significant efforts 158

have been made to maximize retrieval performance. 159

These include techniques: query expansion en- 160

riches the original query with semantically related 161

terms to improve recall using LLMs (Gao et al., 162

2023a; Wang et al., 2023; Zhang et al., 2024; 163

Rashid et al., 2024); re-ranking refines the initial 164

retrieval results using more sophisticated models, 165

1Eight LLMs, varying in performance levels, are selected
to ensure diverse response quality, enabling the construction
of varied pairwise feedback for alignment tuning.
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often leveraging cross-encoders for better relevance166

estimation (Reddy et al., 2024; Hwang et al., 2024;167

Yu et al., 2024b); and self-critique iteratively veri-168

fies retrieved content for factual consistency (Asai169

et al., 2024; He et al., 2024; Ye et al., 2024) and170

can integrate web search for up-to-date information171

(Yan et al., 2024).172

Despite improving retrieval accuracy, hallucina-173

tions during generation necessitate complementary174

research (Laban et al., 2024; Islam et al., 2024).175

Generation in RAG is the crucial process of pro-176

ducing responses grounded in retrieved content.177

However, hallucinations still persist due to the in-178

ability of the LLM on noisy and overloaded infor-179

mation (Cuconasu et al., 2024). In particular, La-180

ban et al. (2024) evaluated 50 RAG systems on the181

"Summary of a Haystack" benchmark, revealing182

that robust generation remains an open challenge183

even with high retrieval accuracy. To the best of184

our knowledge, efforts to enhance the robustness185

of generation models against uncertain placement186

and information overload are limited.187

A few recent works highlight additional chal-188

lenges. Jain et al. (2024) integrated retrieval into189

generation, eliminating their separation for im-190

proved performance. Islam et al. (2024) enhanced191

reasoning capabilities using Mixture-of-Experts192

models. Xu et al. (2024a) reduced inference costs193

by compressing retrieved chunks into summaries.194

Preference Alignment is essential for bridging195

the gap between human intent and the outputs gen-196

erated by LLMs (Wang et al., 2024b; Guan et al.,197

2024). In this process, preference optimization198

plays a crucial role by guiding LLMs to priori-199

tize human-preferred responses. There are several200

techniques, including PPO (Schulman et al., 2017),201

DPO (Rafailov et al., 2024), and KTO (Ethayarajh202

et al., 2024) . These methods have proven effective203

in aligning LLMs with human preferences, partic-204

ularly in reducing hallucinations, harmful outputs,205

and biased content (Wang et al., 2024b).206

Unlike traditional alignment approaches focused207

on general preferences, our research explores the208

use of alignment techniques to address RAG-209

specific alignment in generation.210

3 Alignment with Ext2Gen211

3.1 Overview212

To achieve the desired robustness in RAG genera-213

tion models, direct model training is essential, as214

prompt engineering with LLMs proves insufficient 215

even with the sophisticated prompt (Song et al., 216

2025; Liu et al., 2024b). To this end, we explicitly 217

teach LLMs to extract key sentences from a given 218

set of chunks, encouraging a CoT-based reasoning 219

process where the model first identifies grounding 220

sentences for the query before generating the final 221

answer. At a high level, the process follows the 222

three steps: data generation and feedback collec- 223

tion outlined in Figure 1, followed by alignment 224

through Ext2Gen feedback via preference optimiza- 225

tion, as summarized below. 226

Step 1: Data Generation. We begin with a col- 227

lection of <Question,Answer> pairs sourced from 228

multiple domains, where each QA pair is aligned 229

with a set of mixed text chunks containing both 230

relevant and irrelevant context. 231

Then, we filter the collected data based on two 232

perspectives: "answer validity," ensuring the an- 233

swer in QA is derivable from the relevant chunk; 234

and "chunk validity," confirming that none of the 235

noisy chunks can infer the answer. 236

Step 2: Feedback Collection. We collect a di- 237

verse set of possible output completions, achieved 238

by prompting eight LLMs with the Ext2Gen 239

prompt (in Table 17) along with the filtered query 240

and mixed chunks. The outputs are then validated 241

for format compliance, ensuring they include both 242

extractive sentences and the final answer. 243

To assign ratings of each output completion, we 244

apply four popular QA metrics. Based on these 245

ratings, we build a set of pairwise feedback for 246

each query by comparing multiple completions. 247

Step 3: Preference Optimization. We train 248

LLMs using preference optimization, leveraging 249

pairwise feedback to minimize the alignment gap 250

in generation for RAG. We investigate the effective- 251

ness of several optimization techniques, including 252

supervised fine-tuning (SFT) and DPO. 253

3.2 Dataset Generation 254

QA Generation. The diversity of source domain 255

is crucial for comprehensive QA pairs, helping the 256

model learn diverse aspects. Therefore, we gener- 257

ate 4K <Question,Answer> pairs from each of the 258

five domain-diverse datasets, including HotPotQA 259

(Wiki) (Yang et al., 2018), MS-MARCO (Web 260

Search) (Craswell et al., 2021), PubMed (Medical) 261

(Cohan et al., 2018), CNNDM (News) (Nallapati 262

et al., 2016), and GovReport (Report) (Huang et al., 263
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2021). For QA generation, we first divide all docu-264

ments from each dataset (in the "train" split) into265

text chunks of 256 words to ensure sufficient con-266

text. We then randomly sample 4K chunks from267

each dataset and generate QA pairs using GPT-4o.2268

In particular, we define five query types to cover269

various short- and long-form answers, namely fact-270

based, instruction-based, explanation, opinion, and271

binary queries. The query examples and the prompt272

used are in Tables 7 and 18 in the Appendix.273

Chunk Collection. To simulate generation in274

RAG, we align the query in QAs with the set of275

retrieved chunks. We treat the selected chunk in276

QA generation as the "relevant" one. For irrele-277

vant ones, we first store all text chunks in a vector278

database (we use ChromaDB) and perform dense279

retrieval using the "multilingual-e5-large-instruct"280

model (Wang et al., 2024a), retrieving the Top-50281

text chunks for each query. The retrieved chunks282

are considered "noisy" after filtering out those iden-283

tical to the relevant chunks. This step yield 4K sets284

per dataset, each consisting of a QA pair aligned285

with chunks, totaling 20K sets over five sources.286

Data Filtering. LLM-based QA generation can287

introduce hallucinations, leading to undesirable bi-288

ases into the dataset (Das et al., 2024; Li et al.,289

2023). To mitigate this potential issue, we inspect290

QA pairs and their associated chunks, as hallucina-291

tions may produce answers unsupported by relevant292

chunks. Moreover, beyond hallucinations, chunks293

considered "noisy" may contain information that294

supports correct answers despite not being labeled295

as relevant. Hence, to prevent their adverse effects296

on alignment, we design an additional filtering step297

that refines our initial QA pairs and chunks. In this298

step, we use Llama3.3-70b-instruct as a filtering299

model to reduce GPT-4o’s self-bias, since using the300

same LLM for multiple tasks could introduce bias301

toward its own outputs (Xu et al., 2024b).302

Specifically, we prompt the Llama3.3 model303

with the validity check prompt in Table 19 of the304

Appendix to assess: "Answer Validation," where305

the answer is evaluated to ensure that it is fully de-306

rived from the relevant chunk — if not, the QA pair307

is filtered out as incorrectly generated (i.e., halluci-308

nation); and "Chunk Validation," where each noisy309

2For HotPotQA and MS-MARCO, well-curated QA pairs
already exist. So, we sample QA pairs from each dataset. In
MS-MARCO, we consider "description" queries as long-form
and others as short-form, sampling 2K pairs for each. In total,
8K queries are sampled from the two datasets.

chunk is checked to confirm that the answer cannot 310

be derived from it — if it can, the chunk is removed 311

from the noisy set (i.e., incorrect labels). We use 312

the same prompt for both checks, as they perform 313

the same task of verifying whether a given chunk 314

can support the answer, regardless of its label. This 315

process yields 18K QA pairs with clearly labeled 316

chunks as either "relevant" or "irrelevant," with the 317

answers serving as "true" references. 318

Input Consolidation. The query and its corre- 319

sponding chunks in the 18K subset will form the 320

input to mimic the generation step of RAG. To bet- 321

ter reflect realistic input, we combine the relevant 322

chunk with up to 25 chunks, sampled uniformly 323

from the irrelevant set, and apply random shuf- 324

fling to the combined chunks, forming a chunk 325

list. This chunk list simulates a chunk set retrieved 326

with varying Top-k values in RAG, reflecting the 327

unpredictable placement of the relevant chunk and 328

varying levels of irrelevant ones in the input. There- 329

fore, the final input prompt for answer generation 330

follows the Ext2Gen prompt in Table 17, using the 331

query and the processed chunk list. 332

3.3 Feedback Collection 333

Output Generation. With the realistic input for 334

RAG, we collect multiple Ext2Gen output com- 335

pletions from eight LLMs with varying perfor- 336

mance levels, by prompting the input to them. 337

We specifically utilize four Llama series mod- 338

els, varying in both version and model size, i.e., 339

Llama3.1-8b/405b-instruct, Llama3.2-3b-instruct, 340

and Llama3.3-70b-instruct, along with four other 341

well-known LLMs, i.e., Mistral-nemo-12b-instruct, 342

Gemma2-27b-it, Wizardlm2-8x22b, and GPT-4o- 343

mini. This is crucial for effective alignment, as it 344

allows us to gather responses of varying quality, 345

facilitating the creation of diverse pairwise feed- 346

back even for the same input (Song et al., 2024; 347

Chaudhari et al., 2024; Song et al., 2025). Hence, 348

these LLMs generate rich output completions with 349

varying quality, producing 192K input–response 350

pairs for alignment with Ext2Gen. 351

Output Compliance. To align with the expected 352

Ext2Gen output, we normalize LLMs’ output com- 353

pletions by removing unintended ones, such as 354

those containing only extracted sentences, direct 355

answers to the query without sentences extracted, 356

or outputs that follow an incorrect format. In align- 357

ment, this process helps the model maintain the 358

consistent completion format as: 359
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LLMs Llama3.2-
3b-inst.

Llama3.1-
8b-inst.

Nemo-
12b-inst.

Gemma2-
27b-it

Wizardlm-
2-8x22b

GPT-4o-
mini

Llama3.3-
70b-inst.

Llama3.1-
405b-inst.

Chosen 7.9% 9.6% 11.0% 11.0% 12.7% 14.4% 16.5% 16.9%
Rejected 22.7% 17.5% 15.5% 15.1% 11.9% 6.7% 5.0% 5.6%

Table 1: Distribution of "chosen" and "rejected" output completions for eight LLMs, with Rule 2 applied for
pairwise comparison. The models are sorted in ascending order from left to right based on MMLU and OpenLLM
benchmark scores (see the details in Table 8). That is, stronger LLMs positioned further to the right.

Ext2Gen Output Completion

Extracted Sentences:
- sentence 1.
- sentence 2.

Answer: generated answer.
360

Feedback Composition. We configure pairwise361

feedback for preference alignment by contrasting362

the correctness of multiple output completions. We363

use four metrics to evaluate the correctness of the364

output from two perspectives: Accuracy (Acc)365

and LLMEval for assessing the "inclusion" of the366

true answer in the generated one3, and ROUGE-L367

and BERTScore for measuring lexical and semantic368

"similarity" between the true and generated one.369

The details of the metrics are in Appendix B.1.370

Based on the rated score, we design two rules371

for determining "chosen" and "rejected" output372

completions: one considers only inclusion metrics,373

which are more important than similarity metrics in374

RAG (Yu et al., 2024a), while the other considers375

all metrics, prioritizing them accordingly, as:376

Rule 1: Inclusion-only. This considers only bi-377

nary inclusion metrics (Acc and LLMEval), where378

1 indicates the generated answer includes the true379

answer, and 0 indicates it does not. An output is380

considered "chosen" if either metric equals 1. The381

condition holds for any chosen output i:382

Acci + LLMEvali ≥ 1, (1)383

indicating at least one of the inclusion metrics384

confirms the presence of the true answer, where385

{metric}i denotes the metric score for the output i.386

Then, for any chosen output i, another output j is387

considered a "rejected" output if:388

Acci + LLMEvali > Accj + LLMEvalj , (2)389

ensuring that the chosen one has a stronger inclu-390

sion signal than the rejected one.391

Rule 2: Inclusion → Similarity. This rule consid-392

ers both inclusion and similarity metrics, giving393

3We use only the answer parsed from Ext2Gen output
completions to compute all metric scores.

higher priority to Acc and LLMEval over ROUGE-L 394

and BERTScore. The basic criteria for determin- 395

ing chosen and rejected outputs are the same as 396

in Rule 1, defined in Eqs. (1) and (2). However, 397

for rejected outputs, in addition to the condition 398

in Eq. (2), we introduce an additional criterion to 399

generate more chosen-rejected feedback pairs when 400

two outputs, i and j, have identical inclusion scores, 401

i.e., Acci = Accj and LLMEvali = LLMEvalj . 402

Specifically, even if output j has the same inclu- 403

sion score as the chosen output i, it is considered 404

"rejected" if: 405

ROUGE-Li + BERTScorei
> ROUGE-Lj + BERTScorej + ϵ.

(3) 406

This guarantees that outputs are preferred not only 407

for including the true answer but also for exhibiting 408

higher lexical and semantic similarity to it. The ϵ is 409

set to 0.30 for the chosen one to have a sufficiently 410

higher similarity score than the rejected one. 411

Finally, we obtain 120K feedback pairs using 412

Rule 1 while 150K using Rule 2 (Statistics in Ap- 413

pendix H). Table 1 shows the proportion of each 414

LLM’s outputs judged as chosen or rejected in the 415

150K feedback. While stronger (right) LLMs are 416

more frequently chosen, not all of their outputs are 417

preferred, and weaker (left) LLMs often produce 418

better completions. Thus, our feedback composi- 419

tion promotes diverse LLM feedback in align- 420

ment training, enabling models to learn from a 421

wide range of quality variations rather than relying 422

on a single LLM’s outputs. The distribution under 423

Rule 1 follows a consistent trend, as the 150K pairs 424

form a superset that includes all 120K pairs. 425

3.4 Preference Optimization 426

Using pairwise feedback, we directly train the gen- 427

eration model4 to prefer the chosen output over the 428

rejected one. The chosen output is more robust to 429

uncertain placement and information overload in 430

the input prompt. Here, we mainly consider seven 431

possible setups based on SFT and DPO: 432

4We mainly use Llama3.2-3b-instruct and Llama3.1-8b-
instruct as generation models for alignment tuning.
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Backbone Llama3.1-8b-instruct Llama3.2-3b-instruct

Metric Acc LLMEval ROUGE BERT Avg. Acc LLMEval ROUGE BERT Avg.

Ideal 0.439 0.918 0.339 0.881 0.644 0.446 0.877 0.310 0.876 0.627

Default 0.341 0.733 0.212 0.859 0.536 0.286 0.595 0.162 0.849 0.473
SFT-Best 0.363 0.763 0.282 0.871 0.570 0.295 0.649 0.226 0.861 0.508

Ext2Gen-R1 0.481 0.889 0.212 0.860 0.610 0.401 0.773 0.179 0.854 0.552
Ext2Gen-R2 0.463 0.860 0.370 0.885 0.644 0.390 0.750 0.228 0.860 0.557

Table 2: Evaluation results of five methods using Llama3.1-8b and Llama3.2-3b as the backbone, where ROUGE
and BERT refer to ROUGE-L and BERTScore, respectively.

• SFT-Best: We first identify the best Ext2Gen out-433

put for each query from the eight LLMs, selecting434

the one with the highest average score across four435

QA metrics. This output is then used as the unique436

reference completion for SFT.437

• SFT-{Metric}: Similar to SFT-Best, but the best438

output is selected based on a single metric rather439

than the average of all four. This setup includes440

four more SFT variants: SFT-Acc, SFT-LLMEval,441

SFT-ROUGE, and SFT-BERT.442

• Ext2Gen-{Rule}: Unlike the SFT variants,443

which rely on a single reference, we leverage mul-444

tiple pairwise feedback instances as optimization445

signals, even for the same query. We optimize our446

model using DPO based on the two feedback com-447

position rules separately, resulting in two models:448

Ext2Gen-R1 and -R2. In addition to DPO, other449

alignment tuning methods can be applied. We com-450

pare DPO with KTO (Ethayarajh et al., 2024) and451

SimPO (Meng et al., 2024) in Appendix E.2.452

4 Evaluation453

This section presents two assessments: (i) Section454

4.1: Robustness against uncertain placement and455

information overload in generation; and (ii) Section456

4.2: Deployment to a real RAG environment.457

We primarily compare our two main models458

(Ext2Gen-R1/R2) with other variants trained with459

or without SFT. For both SFT and DPO, we460

fine-tune Llama3.2-3b-instruct and Llama3.1-8b-461

instruct using QLoRA (Dettmers et al., 2024) on462

four NVIDIA H100 GPUs. For evaluation metrics,463

we employ the four metrics, Acc, LLMEval (using464

GPT-4o), ROUGE-L, and BERTScore, to assess the465

correctness of the generated answer against the true466

answer. Further details on the metrics and setup467

are provided in Appendices B.1 and C.468

4.1 Robustness Evaluation469

Test Dataset. We construct the test set using the470

same pipeline as the Ext2Gen training set to assess471

robustness in QA generation, but with the "test472

split" of the five source datasets. Since only the 473

input is required, the process in Figure 1 runs only 474

up to the input consolidation step for the test split. 475

This results in a total of 1K QA pairs, with 200 476

QA pairs generated from each of the five source 477

datasets. Note that in the Ext2Gen input prompt, 478

each query is paired with a list of chunks containing 479

both relevant chunks and up to 25 irrelevant ones, 480

i.e., noisy chunks. The positions of the relevant 481

chunks within the list are randomly assigned. 482

4.1.1 Main Results 483

Table 2 summarizes the generation performance of 484

five models for the test set. Default (base model) 485

refers to the results obtained using the Ext2Gen 486

prompt in Table 17 without preference alignment, 487

neither SFT nor DPO is applied, while Ideal rep- 488

resents those obtained with Default when only 489

relevant chunks are provided as the chunk list. 490

Firstly, the base model, Default, is highly vul- 491

nerable to uncertain placement and information 492

overload, with a significant performance drop, es- 493

pecially in smaller models like Llama3.2-3b. This 494

issue becomes more critical in scenarios favoring 495

compact models like RAG. 496

Secondly, alignment with Ext2Gen signifi- 497

cantly improves generation scores across all 498

QA metrics. Particularly, the use of constructed 499

pairwise feedback yields much greater improve- 500

ments, as evidenced by the performance gains of 501

the Ext2Gen series over SFT-Best. This enhance- 502

ment is attributed to increased robustness (see Sec- 503

tion 4.1.2 for a detailed analysis). 504

Lastly, Ext2Gen-R2 reveals that balancing in- 505

clusion and similarity metrics leads to better 506

Pareto alignment, resulting in the best model 507

based on the average score. With Llama3.1-8b, 508

Ext2Gen-R2 exhibits strong robustness, achieving 509

performance on par with Ideal even when up to 25 510

irrelevant chunks were added to the input. Mean- 511

while, Ext2Gen-R1 surpasses Ext2Gen-R2 in inclu- 512

sion metrics but falls behind in similarity metrics. 513

See the qualitative analysis in Appendix G. 514
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Figure 2: Robustness to (left) relevant chunk position (moving down as it shifts right) and (right) the number of
added irrelevant chunks (increasing noise to the right). Results are based on the Llama3.1-8b-instruct backbone.

Backbone Llama3.1-8b Llama3.2-3b

Method Pre. Rec. Pre. Rec.

Default 0.43 0.76 0.30 0.68
SFT-Best 0.50 0.75 0.41 0.69
Ext2Gen-R1 0.46 0.91 0.36 0.86
Ext2Gen-R2 0.62 0.81 0.42 0.82

Table 3: Precision (Pre.) and recall (Rec.) of the ex-
tracted sentences in output by four models.

4.1.2 Robustness to Uncertain Placement and515

Information Overload516

Figure 2 details the results from Table 2, showing517

how the average score (Avg.) of four metrics varies518

with the relevant chunk’s position (left) and the ad-519

dition of irrelevant ones (right) in the input prompt.520

Note that Ideal maintains a constant score, unaf-521

fected by uncertain placement or information over-522

load, as only relevant chunks are provided.523

For uncertain placement, Ext2Gen-R2 consis-524

tently outperforms all other methods across all rel-525

evant chunk positions, even surpassing Ideal, in-526

dicating its strong adaptability to positional shifts.527

SFT-Best and Ext2Gen-R1 also exhibit improve-528

ments over Default, but their robustness is less529

pronounced. Similarly, for information overload,530

Ext2Gen-R2 demonstrates superior resistance to531

the degradation caused by added irrelevant chunks,532

maintaining a significantly higher performance533

compared to other baselines.534

4.1.3 Additional Analysis535

Quality of Extracted Sentences. The quality of536

extracted sentences is crucial for grounding the537

generated answer. In Table 3, we evaluate preci-538

sion for accuracy in selecting sentences from rel-539

evant chunks and recall for how much they cover540

the relevant ones (see Appendix B.2 for details).541

Ext2Gen-R1 achieves the highest recall by favor-542

ing longer extractions due to the lack of lexical543

similarity in alignment, leading to lower precision.544

In contrast, Ext2Gen-R2 considers all QA metrics,545

balancing precision and recall, enhancing robust-546

Method Sentence Number Answer Latency

Default 4.81 (115) 46 6.66
Ext2Gen-R1 5.10 (127) 59 7.52
Ext2Gen-R2 3.26 (77) 43 5.34

Table 4: Statistics of the Ext2Gen output on average: the
number of extracted sentences (with their word count
in parentheses), the word count of the answer, and the
query processing latency (seconds per query). The input
prompt length is 2,161 words on average.

Method Acc LLMEval ROUGE BERT

SFT-Best 0.363 0.763 0.282 0.871

SFT-Acc 0.376 0.763 0.282 0.871
SFT-LLMEval 0.360 0.777 0.220 0.861
SFT-ROUGE 0.368 0.748 0.284 0.869
SFT-BERT 0.357 0.744 0.280 0.873

Table 5: Comparison of SFT variants for alignment.

ness in Section 4.1.2. Thus, robustness improve- 547

ments depend on balancing sentence extraction 548

precision and recall. 549

Output and Latency. Table 4 presents the statis- 550

tics of the generated outputs from the Ext2Gen 551

series compared to Default, along with their la- 552

tency when using a single NVIDIA H100 with a 553

batch size of 1. Incorporating lexical similarity 554

(ROUGE) in Ext2Gen-R2 improves latency, re- 555

sulting in even faster inference than Default due 556

to its more concise extracted sentences and answers. 557

In contrast, Ext2Gen-R1 produces more extracted 558

sentences and longer answers, as it considers only 559

inclusion metrics (ACC and LLMEval). 560

SFT Variants. Table 5 compares Ext2Gen-R2 561

with other SFT variants that rely on a single QA 562

metric. Focusing on a specific metric can im- 563

poses an alignment tax, degrading performance 564

on other QA metrics. Each variant excels in its 565

target metric but at the cost of others. For instance, 566

SFT-LLMEval achieves the highest LLMEval score 567

but the lowest ROUGE-L score, while SFT-ROUGE 568

maximizes the ROUGE-L score at the expense of 569

the LLMEval score. 570
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Figure 3: Accuracy (Acc) of Ext2Gen using the Llama3.1-8b backbone in a RAG environment, where three different
retrieval approaches are applied: a naive dense retrieval (Naive) and its enhanced versions with two query expansion
methods, namely HyDE (Gao et al., 2023a) and MuGI (Zhang et al., 2024).

Other Experiments. Additional experimental re-571

sults are provided in Appendix E, offering an in-572

depth analysis of Ext2Gen, including (1) the im-573

pact of feedback size on alignment, (2) comparison574

with alternative alignment methods like KTO and575

SimPO, (3) an Ext2Gen model without sentence576

extraction in generation, (4) comparison with SFT577

using gold references, and (5) its application to578

another backbone (Qwen2.5-3b-instruct).579

4.2 Deployment to RAG580

Test Dataset. We deploy Ext2Gen-R2 in a real581

RAG environment, retrieving text chunks online582

from a large corpus in a vector database and583

prompting LLMs with the target query and the Top-584

k retrieved chunks.We sample 200 query-answer585

pairs from each of the three RAG datasets, Natural586

Questions (NQ), MS-MARCO, and HotpotQA, to-587

taling 600 pairs. For the search corpus, we follow588

the BEIR benchmark (Thakur et al., 2021), using589

2.7M and 5M text chunks for NQ and HotpotQA,590

respectively, and adopt the official MS-MARCO591

setup (Bajaj et al., 2016) with 88M chunks.592

Retrieval. Before generation, we retrieve the593

Top-k text chunks for each query, varying k in594

{10, 20, 30}. To verify the generalization per-595

formance of our model, we apply three retrieval596

methods – Naive: a naive dense retrieval using the597

multilingual-e5-large-instruct model (Wang et al.,598

2024a) and two advanced retrieval combined with599

query expansion methods, namely HyDE (Gao et al.,600

2023a) and MuGI (Zhang et al., 2024). The retrieved601

chunks are added to the Ext2Gen prompt to extract602

key sentences and generate the answer.603

4.2.1 Main Results604

Figure 3 compares answer accuracy across three605

benchmark datasets for two model categories: one606

using three retrieval approaches with the canonical607

Llama3.1-8b-instruct backbone, Default, and the608

other with our Ext2Gen-R2 backbone. The trend 609

is consistent across other metrics. Please see Ap- 610

pendix F for details. 611

A key observation is that increasing Top-k im- 612

proves retrieval recall by including more relevant 613

chunks, yet the Default model shows accuracy 614

drops in NQ and only marginal gains in HotPotQA. 615

This suggests that Default struggles with infor- 616

mation overload and sensitivity to chunk position, 617

limiting its ability to utilize additional evidence. 618

In contrast, Ext2Gen-R2 demonstrates strong 619

robustness, effectively closing the alignment 620

gap, where human expectations demand consis- 621

tency despite retrieval-induced overload and un- 622

certain placement, which standard models fail 623

to handle. By better integrating retrieved con- 624

tent, Ext2Gen-R2 achieves significant performance 625

gains in real RAG environments. 626

Moreover, while Ext2Gen-R2 performs well 627

with naive dense retrieval, advanced query ex- 628

pansion methods (HyDE, MuGI) exhibit even 629

stronger synergy with Ext2Gen-R2, achieving 630

the highest accuracy on NQ and HotPotQA. This 631

underscores how the combination of enhanced re- 632

trieval quality and Ext2Gen not only improves an- 633

swer accuracy but also strengthens the model’s abil- 634

ity to effectively utilize retrieved information, ulti- 635

mately enhancing RAG effectiveness. 636

5 Conclusion 637

We introduce an extract-then-generate model, we 638

call Ext2Gen, designed for robust RAG, mitigating 639

retrieval-induced overload and uncertainty in chunk 640

placement. By leveraging preference-aligned pair- 641

wise feedback, it effectively balances precision and 642

recall in sentence extraction, ensuring reliable an- 643

swer generation. Extensive evaluations across di- 644

verse datasets and real-world RAG scenarios estab- 645

lish Ext2Gen as a powerful and synergistic genera- 646

tion model for robust RAG. 647
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Limitation. While Ext2Gen enhances robustness648

in RAG, it has several limitations.649

Firstly, Ext2Gen relies on retrieved chunks for650

extraction and generation in RAG. When no rele-651

vant chunks are available in database, the model652

struggles to produce accurate responses. To address653

this, the Ext2Gen prompt in Table 17 is designed to654

return "no answer" when no relevant information655

is available. Furthermore, this issue is not unique656

to our model but is a fundamental challenge for657

all models used in RAG systems. Handling cases658

with no relevant information remains a research659

problem, requiring further exploration to improve660

robustness and reliability in RAG.661

Secondly, compared to standard RAG, Ext2Gen662

introduces an additional extraction step before gen-663

eration, increasing processing time. This added la-664

tency may become significant when handling long665

documents or deploying the model in real-time ap-666

plications. However, providing explicit evidence667

for generated answers is essential for enhancing ex-668

plainability, which is a crucial factor for real-world669

applications. Moreover, as shown in Appendix E.3,670

removing the extraction step in Ext2Gen slightly671

reduces performance but significantly improves la-672

tency while still outperforming baseline models,673

demonstrating a practical trade-off between effi-674

ciency and robustness.675

Our research serves as an initial step toward im-676

proving the robustness of generation in RAG sys-677

tems and is expected to inspire many future studies678

addressing these challenges.679

Ethics Statement. Our research focuses on align-680

ing LLMs through a unified extraction and gener-681

ation framework (Ext2Gen) to enhance robustness682

in RAG. Since our work primarily involves model683

training on publicly available datasets and does684

not include the collection of sensitive or person-685

ally identifiable data, it does not pose direct ethical686

concerns related to privacy or data security.687

Scientific Artifacts. The QA pairs and output688

completions were generated using various LLMs689

to enhance the diversity of model outputs. For690

open-source models, we utilized publicly available691

checkpoints from Hugging Face to ensure trans-692

parency and reproducibility. For the proprietary693

model, GPT-4o, we accessed OpenAI’s paid API694

services. A detailed overview of the models is695

provided in Table 6 in the Appendix.696
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Model Name Checkpoints

Llama3.2-3b-inst meta-llama/Llama-3.2-3B-Instruct
Llama3.1-8b-inst meta-llama/Llama-3.1-8B-Instruct
Nemo-12b-inst nvidia/Mistral-NeMo-12B-Instruct
Gemma2-27b-inst google/gemma-2-27b-it
Wizardlm2-8x22b alpindale/WizardLM-2-8x22B
GPT-4o-mini gpt-4o-mini-2024-07-18 (OpenAI)
Llama3.3-70b-inst meta-llama/Llama-3.3-70B-Instruct
Llama3.1-405b-inst meta-llama/Llama-3.1-405B-Instruct

Table 6: Checkpoints for the eight LLMs. For open-
source models, we use publicly available checkpoints
from Hugging Face, whereas for proprietary models, we
access them through OpenAI’s paid API services.

A Query Category909

We define five query types to cover various short-910

and long-form answers, namely fact-based, in-911

struction-based, explanation, opinion, and binary912

queries. This enables the model to grasp the char-913

acteristics of diverse queries, allowing it to better914

identify key sentences and generate more accurate915

responses. We generate <query, answer> pairs916

using GPT-4o by using the prmopt in Table 18.917

THe description and example of each query type is918

presented in Table 7.919

B Evaluation Metric920

B.1 Four QA Metrics921

To assess the correctness of the generated answers,922

we employ four widely used evaluation metrics:923

two inclusion-based metrics, Acc and LLMEval,924

and two similarity-based metrics, ROUGE-L and925

BERTScore. Please refer to (Yu et al., 2024a) for926

the detailed evaluation of RAG systems.927

Accuracy (Acc) evaluates whether the true an-928

swer is contained within the predicted answer. Un-929

like exact match (EM), this metric checks for the930

inclusion of the reference answer in the generated931

response, making it more flexible for assessing cor-932

rectness in RAG systems.933

LLMEval assesses whether the true answer is934

contained within the predicted answer, like Acc,935

but leverages LLMs to judge correctness beyond936

exact lexical matching, enabling a more flexible937

and context-aware evaluation. We prompt GPT-4o938

with the evaluation prompt in Table 20.939

ROUGE measures lexical similarity between the940

true and predicted answers. Specifically, we use the941

F1-score of ROUGE-L, which evaluates the longest942

common subsequence to capture both precision and943

recall, assessing key phrase and word order overlap 944

between the true and predicted answers. 945

BERTScore measures semantic similarity be- 946

tween the true and predicted answers using token- 947

level cosine similarity from contextual embeddings, 948

capturing nuanced meaning beyond lexical overlap. 949

We use the F1-score of BERTScore. 950

B.2 Precision and Recall 951

The quality of extracted sentences is crucial for 952

grounding the generated answer. Therefore, we 953

define two metrics, which can evaluate the perfor- 954

mance in sentence extraction. 955

Let CN = {C1, ..., Ck|} denote the set of re- 956

trieved Top-k chunks for a query Q, where CR ⊆ 957

CN is the set of relevant chunks within the retrieved 958

set. Then, suppose that S = {S1, ..., S|S|} be the 959

set of extracted sentences by running Ext2Gen for 960

the same query. 961

To evaluate the extracted sentences, we define 962

extraction precision as the proportion of extracted 963

sentences that originate from the relevant chunks: 964

Precision =
|{Si | match(Si) ∈ CR}|

|S|
965

where match(·) is a function that returns the chunk 966

in CN that is lexically closest to the target sentence. 967

Similarly, we define extraction recall as the pro- 968

portion of relevant chunks in CR successfully ex- 969

tracted by running Ext2Gen. 970

Recall =
|{match(Si) | match(Si) ∈ CR}|

|CR|
, 971

Note that all redundant sentences and chunks 972

should be removed during pre-processing to ensure 973

accurate computation of precision and recall. 974

C Training Configuration 975

For preference alignment, we explore four ap- 976

proaches. The specifics of each configuration are 977

outlined below. 978

Supervised Fine-tuning (SFT). We fine-tune the 979

model using QLoRA (Dettmers et al., 2024) and 980

DeepSpeed (Stage-2) (Rasley et al., 2020) on a 981

cluster of four NVIDIA H100 GPUs. The fine- 982

tuning process runs for 9,000 steps with AdamW 983

as the optimizer, employing a batch size of 32, an 984

initial learning rate of 5e-4, and a weight decay of 985

0.05. To maintain consistency across different SFT 986

approaches, we use the same training setup for all 987
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Query Type Description Example

Fact
A query that asks for specific details like dates,
names, locations, etc., and provide a concise
factual answer.

What were some of the reasons Premier League clubs
were hesitant to sign Ravel Morrison?

Instruction
A query asking how to perform an action, and
provide a concise step-by-step guide or
instruction.

How can Ravel Morrison improve his chances of
securing a contract with a Premier League club?

Explanation
A query asking for a brief definition or
explanation of a term or concept, and provide a
clear explanation.

What does it mean when a football club is "paralysed
by fear" in the context of signing a player?

Opinion
A query that seeks advice or a recommendation
based on the document content, and provide a
brief opinion or recommendation.

Should a Premier League club take the risk of signing
Ravel Morrison?

Yes/No A yes/no query based on the document chunk
and answer it with "Yes" or "No."

Has Ravel Morrison been made available on a free
transfer by West Ham?

Table 7: Descriptions for the five query types, with examples generated from the same chunk in CNN/DM.

LLMs Llama3.2-
3b-inst.

Llama3.1-
8b-inst.

Nemo-
12b-inst.

Gemma2-
27b-it

Wizardlm-
2-8x22b

GPT-4o-
mini

Llama3.3-
70b-inst.

Llama3.1-
405b-inst.

MMLU 54.5 66.7 68.0 75.2 - 82.0 86.0 88.6
OpenLLM 24.1 28.2 - 32.3 33.0 - - 36.8

Table 8: MMLU and OpenLLM benchmark scores for the eight LLMs used in Ext2Gen output generation.

SFT variants (SFT-{Best, Acc, LLMEval, ROUGE,988

BERT}) regardless of how the best output comple-989

tion is determined. The primary distinction in SFT990

lies in how the model is conditioned: it is trained991

on the input paired with a single reference output,992

which is chosen based on a specific selection crite-993

rion. For example, this reference may correspond994

to the Ext2Gen output that achieves the highest995

average score across four evaluation metrics.996

Direct Preference Optimization (DPO). We997

fine-tune the model using DPO (Rafailov et al.,998

2024). Since the model has already undergone in-999

struction tuning, we directly apply DPO for further1000

optimization. Similar to SFT, we utilize QLoRA1001

and DeepSpeed (Stage-2) to train the model on a1002

four NVIDIA H100 GPU setup. The training pro-1003

cess spans 9,000 steps, employing AdamW as the1004

optimizer with a batch size of 32, an initial learning1005

rate of 5e-6, and a weight decay of 0.05.1006

Others. For further analysis on feedback size i(n1007

Table 10) and comparisons with other optimization1008

techniques, including KTO and SimPO (in Table1009

11), we follow the exact same setup as DPO.1010

D MMLU and OpenLLM Benchmark1011

We present the MMLU5 and OpenLLM6 bench-1012

mark scores of the eight LLMs used to generate1013

Ext2Gen output completions in Table 8.1014

E Further Analysis of Ext2Gen 1015

Additional experimental results are presented, offer- 1016

ing an in-depth analysis of Ext2Gen, including (1) 1017

the impact of feedback size on alignment, (2) com- 1018

parison with alternative alignment methods like 1019

KTO and SimPO, (3) an Ext2Gen model without 1020

sentence extraction in generation, (4) comparison 1021

with SFT using gold references, and (5) its applica- 1022

tion to another backbone (Qwen2.5-3b-instruct). 1023

E.1 Impact of Feedback Size 1024

Table 10 summarizes the performance of Ext2Gen- 1025

R2 in LLM alignment via DPO across varying 1026

feedback sizes. The model’s robustness increases 1027

with more feedback, as reflected in the rising 1028

metric scores from 0K to 150K feedback. How- 1029

ever, the most significant performance gain occurs 1030

within the first 30K feedback, suggesting that if 1031

high-quality alignment feedback can be curated, a 1032

smaller amount may suffice. 1033

E.2 Ext2Gen with KTO and SimPO 1034

With the rapid advancement of preference optimiza- 1035

tion, several techniques beyond DPO (Rafailov 1036

et al., 2024) have been proposed recently. Un- 1037

like DPO, kahneman-tversky optimization (KTO) 1038

5https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard

6https://paperswithcode.com/sota/
multi-task-language-understanding-on-mmlu
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Method Generation Quality Number of Words Latency

Method Acc LLMEval ROUGE BERT Avg. Sent. Answer Latency

Default 0.341 0.733 0.212 0.859 0.536 115 46 6.66
wo. Extraction 0.314 0.602 0.206 0.856 0.495 - 86 3.00

Ext2Gen-R2 0.463 0.860 0.370 0.885 0.644 77 43 5.34
wo. Extraction 0.447 0.850 0.361 0.880 0.634 - 50 1.74

Table 9: Evaluation results for Default and Ext2Gen-R2, with and without the sentence extraction step in
the input prompt (as specified in Table 17), before generating the final answer. The results are based on the
Llama3-8b-Instruct backbone and the test dataset introduced in Section 4.1.

Size Acc LLMEval ROUGE BERT Avg.

0K 0.341 0.733 0.212 0.859 0.536
30K 0.435 0.815 0.348 0.883 0.620
60K 0.448 0.822 0.363 0.884 0.629
90K 0.445 0.821 0.352 0.882 0.625

120K 0.467 0.847 0.354 0.882 0.637
150K 0.463 0.859 0.370 0.885 0.644

Table 10: Impact of the feedback size for Ext2Gen-R2.

(Ethayarajh et al., 2024) does not require paired1039

preference data. Instead, it relies on binary feed-1040

back indicating whether an output is desirable ("1")1041

or not ("0"). For KTO, we convert our pairwise1042

dataset to the binary-wise dataset.1043

On the other hand, simple preference optimiza-1044

tion (SimPO) (Meng et al., 2024) does not require1045

a reference model. Instead, it utilizes the average1046

log probability of a sequence as an implicit reward.1047

This approach enhances alignment between the re-1048

ward function and generation metrics, leading to1049

improved computational and memory efficiency.1050

Table 11 compares the performance of Ext2Gen1051

trained with three different optimization methods1052

using the Llama3.1-8b-instruct backbone. Overall,1053

all methods improve QA performance, with DPO1054

yielding the highest gains in Acc, LLMEval, and1055

ROUGE-L. This is why we chose DPO as the primary1056

optimization method in our main experiments.1057

More specifically, KTO performs on par with1058

DPO despite not utilizing paired chosen and re-1059

jected feedback, as it simply assigns them binary1060

labels. This suggests that SimPO could be more1061

efficient than DPO, as it simplifies the construc-1062

tion of the feedback set. In contrast, it appears that1063

SimPO does not perform well than others.1064

E.3 Ext2Gen without Sentence Extraction1065

We demonstrate the trade-off in latency by compar-1066

ing Ext2Gen with and without its extraction step1067

during generation. Table 9 summarizes the answer1068

quality of four models along with their latency.1069

Explicitly extracting evidence during generation1070

leads to more accurate answers compared to omit-1071

Size Acc LLMEval ROUGE BERT

Default 0.34 0.73 0.21 0.86

DPO 0.46 (+0.12) 0.86 (+0.13) 0.37 (+0.16) 0.86 (+0.00)

KTO 0.44 (+0.10) 0.85 (+0.12) 0.35 (+0.14) 0.85 (-0.01)

SimPO 0.32 (-0.02) 0.74 (+0.02) 0.34 (+0.13) 0.88 (+0.02)

Table 11: Comparison of DPO, KTO, and SimPO for
using Ext2Gen on the Llama3.1-8b backbone.

ting the extraction step. Specifically, both Default 1072

and Ext2Gen-R2 exhibit a performance drop when 1073

the extraction step is removed. In terms of latency, 1074

models with sentence extraction incur additional 1075

inference time overhead. However, note that this 1076

does not undermine our contributions. 1077

Firstly, it is evident that the preference align- 1078

ment we introduce remains effective in both cases 1079

of Ext2Gen, showing improvements over Default 1080

in terms of both accuracy and latency; specifi- 1081

cally, compare to the Default family, Ext2Gen 1082

without extraction achieves significantly higher an- 1083

swer accuracy while ensuring much faster infer- 1084

ence. Secondly, providing evidence for the answer 1085

is a crucial process that enhances the explainability 1086

of LLMs’ responses, making it essential for real- 1087

world application. Therefore, if latency is a critical 1088

factor, opting for Ext2Gen without extraction is 1089

preferable. Conversely, if evidence retrieval and 1090

higher accuracy are the priorities, Ext2Gen with 1091

extraction is the better choice. 1092

E.4 SFT with Gold Reference 1093

We define the Ext2Gen output completions ob- 1094

tained by Llama3.3-70b-instruct when given only 1095

relevant chunks as the chunk list. This definition is 1096

reasonable because it uses a stronger model instead 1097

of our main 3B/8B models, ensuring better rea- 1098

soning and generation. Additionally, only relevant 1099

chunks are provided, eliminating noise and reduc- 1100

ing the risk of hallucination. As a result, the output 1101

closely approximates the gold standard, making it 1102

a strong reference for evaluation. We denote the 1103

model trained using SFT with the gold reference as 1104
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Figure 4: LLMEval scores of Ext2Gen using the Llama3.1-8b backbone in a RAG environment, where three different
retrieval approaches are applied: a naive dense retrieval (Naive) and its enhanced versions with two query expansion
methods, namely HyDE (Gao et al., 2023a) and MuGI (Zhang et al., 2024).

Backbone Llama3.1-8b-instruct Llama3.2-3b-instruct

Metric Acc LLMEval ROUGE BERT Avg. Acc LLMEval ROUGE BERT Avg.

Default 0.341 0.733 0.212 0.859 0.536 0.286 0.595 0.162 0.849 0.473

SFT-GT 0.339 0.689 0.253 0.866 0.537 0.266 0.591 0.226 0.861 0.486
SFT-Best 0.363 0.763 0.282 0.871 0.570 0.295 0.649 0.226 0.861 0.508
Ext2Gen-R2 0.463 0.860 0.370 0.885 0.644 0.390 0.750 0.228 0.860 0.557

Table 12: Comparison with SFT-GT trained based on Llama3.1-8b and Llama3.2-3b as the backbone, where
ROUGE and BERT refer to ROUGE-L and BERTScore, respectively.

Backbone Qwen2.5-3b-instruct

Metric Acc LLMEval ROUGE BERT

Ideal 0.417 0.877 0.271 0.871
Default 0.258 0.516 0.141 0.843
SFT-Best 0.305 0.609 0.217 0.859
Ext2Gen-R2 0.318 0.649 0.267 0.851

Table 13: Evaluation results of five methods using
Qwen2.5-3b as the backbone, where ROUGE and
BERT refer to ROUGE-L and BERTScore, respectively.

SFT-GT and compare it with Default, SFT-Best,1105

and Ext2Gen-R2 in Table 12.1106

Even though the gold reference is used to su-1107

pervise the model, there is no improvement in the1108

"Avg" score, compared to Default. Even worse,1109

its performance is significantly worse than that of1110

SFT-Best. This demonstrates that leveraging gold1111

learning as the supervisory signal is too ideal for1112

the model to effectively learn. On the other hand,1113

using the best output provided by other LLMs in the1114

same noisy setup (SFT-Best), where both relevant1115

and irrelevant chunks are mixed, is a more plausible1116

solution. This approach aligns with knowledge dis-1117

tillation, specifically sequence-level knowledge dis-1118

tillation (Kim and Rush, 2016; Song et al., 2023).1119

E.5 Ext2Gen with Qwen2.5-3b1120

We validate the generalization of our alignment1121

pipeline by training Qwen2.5-3b-instruct as the1122

backbone, instead of our two primary models,1123

Llama3.2-3b-instruct and Llama3.1-8b-instruct.1124

Table 13 summarizes the QA accuracies using1125

four different metrics across four approaches: 1126

Ideal, Default, SFT-Best, and Ext2Gen-R2, all 1127

of which are trained with the Qwen backbone. 1128

In general, Ext2Gen-R2 consistently outper- 1129

forms other baseline methods. Notably, its perfor- 1130

mance gain over Default (the base model) is sig- 1131

nificant for the two key metrics, Acc and LLMEval. 1132

F Details in Deployment to RAG 1133

Since we present only the results for the Acc met- 1134

ric in Section 4.2.1, we provide additional results 1135

using another metric here. Note that we observe 1136

consistent results across the four QA metrics; how- 1137

ever, ROUGE-L and BERTScore exhibit smaller per- 1138

formance variations than others. So, we focus on 1139

analyzing LLMEval as the key metric. 1140

Figure 4 compares the LLMEval scores over 1141

Default and Ext2Gen-R2 incorporated with three 1142

different retrieval strategies, including Naive, 1143

HyDE, and MuGI. Similar to the results with Acc, 1144

Ext2Gen-R2 enhances the answer quality in terms 1145

of LLMEval for all datasets and, additionally, makes 1146

more synergies with advanceds retrieval methods 1147

on MS-MARCO and HotPotQA. 1148

G Qualitative Comparison 1149

We present an example from MS-MARCO for qual- 1150

itative analysis, with its input (query and chunk list) 1151

shown in Table 15 and the generated Ext2Gen out- 1152

puts from four models displayed in Table 16. For 1153
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the output, we present the four QA metric scores1154

along with its output completions.1155

As highlighted in our main results in Sec-1156

tion 4.1.1, only Ext2Gen-R2 generates accurate1157

and concise responses with a correct answer to1158

the query, as evidenced by its ACC and LLMEval1159

scores of 1.0, as well as its higher ROUGE-L and1160

BERTScore compared to other methods. Interest-1161

ingly, Ext2Gen-R1 achieves an ACC score of 1.01162

but a LLMEval score of 0.0, as it includes excessive1163

irrelevant information in its answer. This clearly1164

demonstrates that incorporating both inclusion and1165

similarity metrics is crucial for achieving prefer-1166

ence alignment with Ext2Gen.1167

Meanwhile, the other methods, including1168

Default and SFT-Best, fail to pinpoint the rel-1169

evant information from the noisy chunk list, result-1170

ing in incorrect answers of 150,000–500,000 in-1171

stead of the correct one, 150–300,000. This qualita-1172

tive analysis complements our experimental results1173

and analysis, providing a clearer understanding1174

of the relationship between Ext2Gen-R2’s perfor-1175

mance and the evaluation metrics.1176

H Data Statistics1177

Table 14 presents the statistics of the Ext2Gen train-1178

ing dataset (150K feedback for Ext2Gen-R2). To1179

ensure dataset balance across types, we processed1180

the data so that each source contains the same num-1181

ber of feedback samples. For HotPotQA and MS-1182

MARCO using original QA and chunks, the input1183

prompt length is shorter than that of the three other1184

datasets, i.e., CNN/DM, PubMed, and GovReport,1185

we created for a more challenging scenario.1186

16



Dataset Domain # of
Instances

Prompt
Word count

Chosen Answer
Word count

Rejected Answer
Word count

HotPotQA Wiki 25,000 746 74 76
MS-MARCO (Desc.) Web Search 25,000 1,105 130 138
MS-MARCO (Non-desc.) Web Search 25,000 1,097 157 166
CNN/DM News 25,000 3,090 133 177
PubMed Medical 25,000 3,875 151 157
GovReport Report 25,000 3,563 177 184

Table 14: Statistics of the Ext2Gen training set. We prsent the number of pairwise feedback from each source data
and the average number of words in its prompt, chosen, and rejected answers.

Query How many people died at chelmno?

Chunk List

["And none of you who said Just ******* google it or stop being lazy and google it do not get 10 points! I
googled it for days!!! hours on end!!! Like i said before, please, i need the statistics of the deaths. Update
2: I need to know how many germans, how many americans, italinas... I need to know the statistics of
deaths. Edit1: You people are not helping. Either you state what I know or you tell me to google it. I have
googled it!!!", "there was no real count on how many were actually there but most estimates are between
450,000 and 500,000.", "The extermination camp at Chelmno demands special attention, because during
the German occupation only a very few people in Poland ever knew of its existence and the hundreds of
thousands of its victims. The village of Chelmno (district of Kolo) is situated 14 km.", "By the end of
1943 the Germans closed down the death camps built specifically to exterminate Jews. The death tolls for
the camps are as follows: Treblinka, (750,000 Jews); Belzec, (550,000 Jews); Sobibor, (200,000 200000);
Jews, (150,000 150000) jews And (lublin also Called, 50,000 50000). jews", "These vans were used until
the completion of the first death camp, Chelmno, which began operations in late 1941. Nazi
correspondence detailing the operation of gassing vans. Nazi testimony regarding gassing vans.", "The
estimates for the Jadovno concentration camp generally offer a range of 10,000 2̆013 72,000 deaths at the
camp over a period of 122 days (May to August 1941). Most commonly Jadovno victims were bound
together in a line and the first few victims were murdered with rifle butts or other objects.", "189 people
died in the Pentagon. Another 59 died in the plane. (not counting the five terrorists). 63 were injured.",
"Tortured by the SS-men, they were forced to pull the dead bodies out of the gas-vans and bury them in
mass graves. Whilst there is no idea of how many unsuccessful escape attempts there were, it is known
that only four people managed to escape from the death camp at Chelmno.", "Industrialization - 500,000
deaths. Stalin embarked on a huge industrialization drive during his rule and many many people were
punished for resisting. At least half a million and possibly a greater number of people were killed during
his rule for opposing these policies. Holodomor - 3-7 million deaths In 1932-1933, the USSR was struck
by a massive famine.", "By Frederick Taylor. The question of how many people died in the World War II
Allied bombing of Dresden has been politically charged for decades. Now, a commission of historians has
said the real total could be much lower than previously thought. But the debate likely won’t go away.",
"Major Soviet Paper Says 20 Million Died As Victims of Stalin. Published: February 4, 1989. MOSCOW,
Feb. 32̆014 A Soviet weekly newspaper today published the most detailed accounting of Stalin’s victims
yet presented to a mass audience here, indicating that about 20 million died in labor camps, forced
collectivization, famine and executions.", "How Many People Died at2̆026. How Many People Died in the
Korean War. The Korean War stared on 25th of June, 1950 and ended on 27th of July, 1953. This war is
actually a battle between the Communists and the Capitalists.", "We know that Stalin killed 60 million, are
the 27 million people who died in WW2 counted with them? How many of them were killed in the civil
war? Update Cancel", "Wow many americans died in world war 2?, how many people died in world war
2?, how many jews died during the holocaust?, how many bombs were dropped in world war II?", "The
reasons for choosing the village of Chelmno as a site for an extermination camp included 2̆013 its location
by the road connecting the town of Kolo The town was called Warthbruecken warthbr0̆0fccken during the,
occupation an important regional, centre with A jewish population of approximately 2300. people", "Part
II. The aim of the Chelmno camp was the extermination of the Jews from the Warthegau, the part of
Poland which consisted of the 1939 province (voivodship) of Poznania, almost the whole province of
Lodz, and a part of the province of Warsaw, inhabited altogether by 4,546,000 People (including 450,000
Jews).", "The estimated number of deaths is 150-300,000, mainly Jews. Chelmno, also known as
Kulmhof, was a small town roughly 50 miles from the city of Lodz. It was here that the first mass killings
of Jews by gas took place as part of the Final Solution.. The murder process was set up by a
Sonderkommando, under the command of Herbert Lange.", "LEAD: A Soviet weekly newspaper today
published the most detailed accounting of Stalin’s victims yet presented to a mass audience here,
indicating that about 20 million died in labor camps, forced collectivization, famine and executions.",
"How many were killed in the Cambodian genocide? The exact number of people who died (either from
torture, execution or starvation is unknown), but estimates range from 200,000 to two million (out of a
population of 8,000,002̆0260 at the time).", "Update: I need to know how many germans, how many
americans, italinas... I need to know the statistics of deaths. Edit1: You people are not helping. Either you
state what I know or you tell me to google it. I have googled it!!!"],

Table 15: [Input] A qualitative example from MS-MARCO, where the relevant chunk in the chunk list is colored
in blue.
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Model Output

Default

Extracted Sentences:
- there was no real count on how many were actually there but most estimates are between 450,000 and
500,000.
- The estimated number of deaths is 150-300,000, mainly Jews.

Answer: The estimated number of deaths at Chelmno is between 150,000 to 500,000, with the majority
being Jewish victims.

### QA Metric Scores:
{"ACC": 0.0, "ROUGE-L": 0.066, "BERTScore": 0.833, "LLMEval": 0.0}

SFT-Best

Extracted Sentences:
- There was no real count on how many were actually there but most estimates are between 450,000 and
500,000.
- The extermination camp at Chelmno demands special attention, because during the German occupation
only a very few people in Poland ever knew of its existence and the hundreds of thousands of its victims.
- By the end of 1943 the Germans closed down the death camps built specifically to exterminate Jews. The
death tolls for the camps are as follows: Treblinka, (750,000 Jews); Belzec, (550,000 Jews); Sobibor,
(200,000 200000); Jews, (150,000 150000) jews And (lublin also Called, 50,000 50000). jews
- The estimates for the Jadovno concentration camp generally offer a range of 10,000 2̆013 72,000 deaths
at the camp over a period of 122 days (May to August 1941).
- The estimated number of deaths is 150-300,000, mainly Jews.
- The exact number of people who died (either from torture, execution or starvation is unknown), but
estimates range from 200,000 to two million (out of a population of 8,000,002̆0260 at the time).
- Answer: The estimated death toll at Chelmno concentration camp ranges from 450,000 to 500,000
people, with the majority of those being Jews, according to most estimates.

Answer: The estimated number of deaths at Chelmno is between 150,000 to 500,000, with the majority
being Jewish victims.

### QA Metric Scores:
{"ACC": 0.0, "ROUGE-L": 0.173, "BERTScore": 0.831, "LLMEval": 0.0}

Ext2Gen-R1

Extracted Sentences:
- There was no real count on how many were actually there but most estimates are between 450,000 and
500,000.
- The extermination camp at Chelmno demands special attention, because during the German occupation
only a very few people in Poland ever knew of its existence and the hundreds of thousands of its victims.
- The estimated number of deaths is 150-300,000, mainly Jews.
- These vans were used until the completion of the first death camp, Chelmno, which began operations in
late 1941.
- Tortured by the SS-men, they were forced to pull the dead bodies out of the gas-vans and bury them in
mass graves. Whilst there is no idea of how many unsuccessful escape attempts there were, it is known
that only four people managed to escape from the death camp at Chelmno.

Answer: The estimated number of deaths at Chelmno is 150-300,000, mainly Jews, and there is no real
count on how many were actually there but most estimates are between 450,000 and 500,000. However,
it’s worth noting that the exact number of victims is not known, but it is considered to be hundreds of
thousands.

### QA Metric Scores:
{"ACC": 1.0, "ROUGE-L": 0.098, "BERTScore": 0.829, "LLMEval": 0.0}

Ext2Gen-R2

Extracted Sentences:
- The estimated number of deaths is 150-300,000, mainly Jews.

Answer: The estimated number of deaths at Chelmno is 150-300,000, mainly Jews.

### QA Metric Scores:
{"ACC": 1.0, "ROUGE-L": 0.375, "BERTScore": 0.854, "LLMEval": 1.0}

Table 16: [Output] A qualitative example from MS-MARCO, where the key content of the predicted answers is
highlighted in blue if correct and in red otherwise.
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Ext2Gen Prompt

You are an expert assistant trained to extract essential sentences from document chunks and generate answers based on the
extracted sentences. Your task is twofold:
- Extraction: Identify sentences that contribute to constructing a precise and accurate response to the given query.
- Generation: Formulate a concise and coherent answer based on the extracted sentences.

### Extraction Instruction:
- A query will be provided for you to answer.
- Extract only the sentences that contribute to forming an answer to the query.
- Ensure that the extracted sentences are sufficient to derive a correct and complete answer.
- If no relevant sentences are found in the provided chunks, return an empty list.

### Generation Instruction:
- Use the extracted sentences to generate a well-formed answer to the query.
- If no sentences are extracted, return "No Answer".

### Output Example:
Extracted Sentences:
- Sentence 1
- Sentence 2

Answer: Your Answer

### Query: {query}

### Chunk List: {chunk list}

### Output:

Table 17: Base Prompt for Ext2Gen. The prompt instructs the model to extract the essential sentences from
document chunks and then to response to the query.

Data Generation: QA Generation Prompt

You are a Question and Answer generation system.
Your task is to create a relevant query and provide a corresponding answer based on the given document chunk.
The query should be concise, clear, and directly relevant to the content of the document chunk.
The answer must be concise, factually grounded by the chunk, and formatted as either a phrase or a single sentence, aligned with
one of the following categories:

1. Fact-based: Generate a query that asks for specific details like dates, names, locations, etc., and provide a concise factual
answer.
2. Instruction-based: Generate a query asking how to perform an action, and provide a concise step-by-step guide or instruction.
3. Definition or Explanation: Generate a query asking for a brief definition or explanation of a term or concept, and provide a
clear explanation.
4. Opinion: Formulate a query that seeks advice or a recommendation based on the document content, and provide a brief
opinion or recommendation.
5. Yes/No: Create a yes/no question based on the document chunk and answer it with "Yes" or "No."

Your output must include a single query and its corresponding answer in JSON format:
{
"query": "your query belong to the five categories",
"answer": "your answer"
}

### Document Chunk: {target chunk}

### JSON Output:

Table 18: QA Generation Prompt. The prompt instructs the model to generate one of five QA types, including
fact-based, instruction-based, explanation, opinion, and binary QAs.
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Filtering: Answer–Chunk Validity Check Prompt

You are responsible for evaluating whether the provided answer to the query can be derived from the given chunk.

### Instructions:
1. Analyze the provided answer in response to the query, using the information available in the chunk.
2. If the answer can be fully derived from the chunk, respond with "Supported".
3. If the answer cannot be fully derived from the chunk, respond with "Not Supported".

Your output must be in JSON format. The output should be a dictionary whose a single key is "response".
{
"response": "Supported",
}

### Query: {query}

### Answer: {answer}

### Chunk: {relevant chunk}

### JSON Output:

Table 19: Answer–Chunk Validity Check Prompt. For "answer validity ," if the answer is not supported by the
relevant chunk, the corresponding QA pair is removed. For "noisy chunk validity," if the answer is supported by a
noisy chunk, that noisy chunk is removed from the noisy chunk set.

LLMEval Prompt

Your task is to evaluate the correctness of the predicted answer based on the true answer.

### Instructions:
- Read the QUERY and then compare the ANSWER and the Predicted ANSWER.
- Check if the Predicted Answer includes the core content of the True Answer (True/False in text).

### QUERY: {query}

### TRUE ANSWER: {true answer}

### Predicted ANSWER: {predicted answer}

### Output Format: { "Correctness": "True or False" }

### Output (Only JSON):

Table 20: LLMEval Prompt. This prompt is used to verify the faithfulness of the generated answer and the
correctness of relevant and irrelevant chunks.
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