MultiChar: A Resource-Efficient Character and Subword Model
for Multilingual Web Automation

Anonymous ACL submission

Abstract

We present MultiChar, a resource-efficient
neural framework for multilingual web form
filling, data extraction, navigation and question
answering. Our approach combines masked
character-level and subword-level processing
with a modular architecture designed to
support any language, although demonstrated
on German, French, Arabic and English as a
proof of concept due to resource constraints.
The system features a character-level masked
model for robust handling of morphologically
rich languages, language-specific adapters for
cross-lingual transfer, and a universal form
analyzer for dynamic web form processing.
We introduce a learned model selector
framework that dynamically chooses between
character and subword representations based
on input characteristics. Our experiments show
that MultiChar achieves promising results in
web form filling (83-89% precision), data
extraction (>90% precision) and website
navigation (88-95% success rate), while
maintaining efficiency with only 2.1M
parameters. In particular, our
language-specific adapters yield a 14.2%
improvement over language-agnostic
approaches. This work establishes a
foundation for resource-efficient cross-lingual
web automation, demonstrating scalability to
diverse languages and domains without
requiring massive computational resources.

1 Introduction

Recent advances in natural language processing
have been driven by large pre-trained models such
as BERT (Devlin et al., 2019) and mBERT (Pires
et al, 2019), which require significant

computational resources and large-scale data.

However, many practical applications, especially
multilingual web automation tasks that require
real-time responsiveness and deployment in
resource-constrained environments, demand

models that are efficient, adaptable, and can be
trained from scratch on modest hardware.

Web forms are the primary interface for
information exchange on the Internet, yet they
present significant barriers for non-native language
speakers. Users must navigate unfamiliar labels,
understand field purposes, and provide information
in potentially unfamiliar formats. While recent
advances have led to systems that can assist with
form filling (Chen et al., 2021; Wang et al., 2022),
these methods largely focus on English and fail to
address the needs of a multilingual user base.

In this paper, we introduce MultiChar, a
cross-lingual approach to universal web form
filling that enables users to interact with forms in
their native language regardless of the form’s
original language. Our system accepts natural
language instructions in multiple languages (e.g.,
“Fill the name field with username” in English,
“Fiillen Sie das Namensfeld mit dem
Benutzernamen aus” in German) and performs the
corresponding actions on web forms.

Although MultiChar is designed to support any
language, we focus on four languages representing
different writing systems and morphological
patterns as a proof of concept due to resource
constraints. These languages—English, German,
French, and Arabic— Latin and Arabic scripts
with varying morphological complexity from
analytic (English) to synthetic (German, Arabic).
While this selection includes related
Indo-European languages due to available
synthetic data, the inclusion of Arabic (Semitic
family) with fundamentally different script and
morphological patterns provides meaningful
cross-script validation. This selection provides
initial evidence for cross-script adaptability while
remaining tractable for resource-limited research
environments.

Unlike existing systems that depend heavily on
translation (operating on a

translate-process-translate-back approach), our
system works natively in the original language.
We believe this direct approach is crucial for better
accuracy and faster reasoning. Our models are
designed to be lightweight, trainable on modest
compute, and extensible to new languages and
domains.
Our key contributions are:

1. A resource-efficient multilingual neural
model trained from scratch, operating at both
character and subword levels, with a
vocabulary of only 399 characters for the
character-level model.

2. A character-level masked model that enables
robust processing of morphologically rich
languages and handles out-of-vocabulary
words effectively.

3. A learned model selector framework that
chooses between character and subword
models based on task and input
characteristics.

4. Language-specific adapters that improve
performance across languages with minimal
additional parameters (~1.5% increase per
language).

5. A universal form analyzer that can identify
and extract form structure across different
websites and languages.

6. Integration of web automation features: form
filling, data extraction, navigation, and
screenshot capture.

2 Related Work
2.1 Character and Subword Models

Character-level modeling has proven valuable for
handling out-of-vocabulary =~ words and
morphological variations (Kim et al., 2016),
though training such models presents challenges.
While approaches like CharacterBERT (El
Boukkouri et al., 2020) and CANINE (Clark et al.,
2022) demonstrate the effectiveness of
character-level processing, they remain dependent
on extensive pretraining. We instead explore
whether effective multilingual models can be built
through targeted training from scratch, combining
character and subword representations within a
unified, resource-conscious architecture.

2.2 Multilingual Language Models and
Adaptation

Large-scale multilingual models such as mBERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020) have transformed cross-lingual NLP
research. However, their application to interactive
web automation tasks has been limited, and they
often exhibit a tendency to anchor reasoning in
English through implicit translation mechanisms.
The adapter framework (Houlsby et al., 2019;
Pfeiffer et al., 2020) has emerged as an efficient
approach for parameter-efficient transfer learning,
with recent studies (Wang et al., 2021)
demonstrating how language-specific adapters can
enhance cross-lingual transfer while minimizing
computational overhead. We build upon these
insights to develop models that can reason directly
in the target language without intermediate
representations.

2.3 Web Form Analysis and Automation

Early web form automation relied primarily on
template-based approaches (Stocky et al., 2004),
but recent advances have incorporated visual and
structural understanding (Wu et al., 2018). Deep
learning approaches have begun to address form
layout and semantic understanding (Li et al., 2020;
Zhao et al., 2021), yet most existing systems remain
constrained to English-language interfaces. To our
knowledge, no existing work addresses the specific
challenge of multilingual form-filling systems that
can process commands natively across languages
without translation dependencies.

3 System Overview

MultiChar consists of seven main components, as
illustrated in Figure 1:

User

Conceptual Model
i } { Adapters

Subvword Model
niversal For

Webpage
+ Form Filing
- Data
Extraction
+ Navigation
- Screenshot
Capture

Figure 1: System overview of the MultiChar
architecture, showing the main components and their
interactions.

3.1 Multilingual Neural Models
Our system employs two complementary neural

models:

3.1.1 Character-level Masked Language
Model

We implement a character-level masked language

model (MLM) trained with 2.1 million parameters.

This model uses a vocabulary of just 399
characters, making it extremely compact compared

to traditional subword tokenization approaches.

During training, random characters in the input are
replaced with a [MASK] token, and the model is
trained to predict the original characters. This
approach enables the model to learn
character-level patterns and relationships.

Our implementation includes: Character-level
convolutional embeddings with multiple kernel
sizes (3, 5, 7, 9), N-gram character masking for
better morphological pattern learning, training for
5 epochs with a batch size of 64, learning rate of
3e-5, 16 attention heads, hidden size of 1024, 16
encoder layers.

3.1.2 Subword-level Transformer

We also develop a subword-level Transformer that
uses SentencePiece tokenization (Kudo and
Richardson, 2018). Like our character model, we
trained this without pretrained weights. Our
experiments reveal complementary strengths: the
subword model performs better on well-formed
text and longer sequences, while the character
model handles noisy inputs, spelling errors, and
morphologically complex languages more
effectively.

3.2 Model Selector Framework

We introduce a learned model selector that
dynamically chooses between our character and
subword models based on input characteristics—a
crucial component for multilingual systems
handling diverse input types. The selector
addresses the fundamental question of when
character-level processing provides advantages
over subword tokenization in multilingual web
automation contexts.

Architecture Our selector uses a lightweight
feedforward classifier with a 4-dimensional input
feature vector:

* Text length: Input character count normalized
by dataset median (87.3 chars)

* OOV ratio: Percentage of tokens that would
be out-of-vocabulary for the subword model

* Morphological complexity:
Language-specific score (1-5 scale) based on
morphological richness

* Noise level: Percentage of non-alphanumeric
characters indicating potential OCR errors or
informal text

The selector architecture consists of:

features = [length_norm, oov_ratio,
morph_score, noise_level] (D)
hidden = ReLU(Linearg,(features)) (2)
output = Sigmoid(Linear; (hidden)) (3)

If output > 0.5, the character model is selected;
otherwise, the subword model is used.

Training Data Generation We generated
10,000 training examples by sampling inputs from
our form-filling dataset and computing oracle
labels based on empirical performance comparison.
For each input, we ran both character and subword
models and labeled the input with the
better-performing model choice.

Selection Performance The learned selector
achieves 89.3% accuracy in choosing the optimal
model compared to oracle selection, with selection
overhead averaging 2.3ms per input (negligible
compared to model inference time of 42-67ms).
Wrong selections typically degrade performance
by 3-8%, validating the selector’s importance for
maintaining consistent quality.

3.3 Language-Specific Adapters

Rather than retraining entire models for new
languages, we use language-specific adapter
modules. These small neural components integrate
into the Transformer layers and adjust hidden
representations for language-specific patterns.
Each adapter requires only 1.5% additional
parameters, enabling efficient scaling to new
languages without full model retraining.

3.4 Universal Form Analyzer

Our form analyzer processes web forms through a
streamlined pipeline:

HTML Processing: BeautifulSoup extracts
form elements (input, select, textarea) with

their attributes (id, name, placeholder) and
associated label text.

Context Assembly: For each field, we create
context strings by combining the field’s
placeholder text, nearby labels within 3 DOM
nodes, and surrounding text within a 50-character
radius. For example: “Enter your email address:
[INPUT] @company.com”.

Neural Classification: Context strings are
processed through our character or subword model
using model selector, followed by the appropriate
language adapter, producing field type
classifications (email, name, phone, address, etc.).

The complete pipeline can be expressed as:

field_type = classify(Adapter;(fmodel (context)))
“)
where [is the detected language, fiodel is either the
character or subword model selected dynamically,
and context is the assembled field context string.
The analyzer integrates directly with our
dual-model architecture, using the same language
detection and model selection framework.

3.5 Command Interpreter

The interpreter converts multilingual natural
language instructions into structured actions:

{

"action_type"”: ["fill", "select”,

"check”, "submit"],
"field_name": "email”,
"value": "user@example.com”

}

Importantly, the system processes non-English
commands directly rather than translating them
first.

3.6 Web Automation Integration

Our form interaction engine executes structured
actions through Playwright browser automation.
We developed a robust element search that
combines attribute matching, ARIA information,
and visual proximity analysis using Euclidean
distance calculations between element bounding
boxes. This approach proves more resilient to
website changes than traditional CSS selectors or
XPath methods.

4 Experimental Setup
4.1 Datasets

Due to the scarcity of multilingual form-filling
datasets, we combine real-world and synthetic data

following established practices (Li et al., 2020;
Zhao et al., 2021):

* OPUS-100 translation pairs (German-English,
French-English, Arabic-English) and FQuAD
(French QA) for authentic linguistic patterns.

* Synthetic web forms covering common types
(registration, contact, checkout) with realistic
field labels and natural language instructions
across all four languages.

Training data: 50,000 examples per language for
character/subword models, with language adapters
trained on smaller datasets (Se-6 learning rate). All
models trained from scratch on a single GPU.

4.2 Training

The character-level model (2.1M parameters) and
subword-level model (2.1M parameters with
adapters) were trained separately with the
following hyperparameters: 5 epochs, batch size
of 64, learning rate of 3e-5, 50,000 examples per
language.

Language adapters were trained for each
language with a smaller learning rate of 5e-6 to
fine-tune language-specific behaviours without
disrupting the base model.

All models were trained from scratch on a single
GPU, demonstrating the resource efficiency of our
approach despite the model size.

4.3 Cross-lingual Transfer Validation

To validate genuine cross-lingual capability, we
conduct leave-one-language-out experiments
where the core model is trained on three languages
and evaluated on the fourth using only adapter
training. This addresses concerns about whether
our models learn truly cross-lingual
representations or simply benefit from multilingual
training data.

Experimental Setup The core character model
is trained on three languages for 5 epochs, then
evaluated on the held-out language using only
adapter training with 2,000 synthetic examples per
target language (learning rate 5e-6, 2 epochs). No
data from the target language is used during core
model training.

Table 1 shows leave-one-out performance
compared to full four-language training.

The consistent performance across all language
combinations validates that our character-level

Language Form Fill Accuracy Full Training
Arabic 79.3% -5.9%
French 81.7% -3.2%
German 83.1% -4.2%
English 88.9% -4.5%
Average 83.3% -4.5%

Table 1: Leave-one-language-out cross-lingual transfer
performance. The consistent 3-6% degradation
demonstrates meaningful cross-lingual transfer while
confirming language-specific adaptation benefits.

representations capture transferable cross-lingual
patterns. The modest 4.5% average degradation
confirms genuine cross-lingual capability while
highlighting the value of language-specific
training data.

4.4 Evaluation Tasks

We evaluated our system on four key tasks:

1. Form Filling: Success rate of correctly filled
fields and form submission.

2. Data Extraction: Precision and recall of
extracted structured data from HTML.

3. Website Navigation: Success rate of reaching
target pages and saving screenshots.

4. Character-Level MLM Performance:
Accuracy of masked character prediction
across languages.

4.5 Baseline Implementation Details

We compared our approach against two baselines:
(1) mBERT-base-multilingual-cased fine-tuned on
our exact training data wusing identical
hyperparameters, and (2) a rule-based system
using pattern matching and keyword detection for
common field types. The mBERT baseline
represents a direct comparison of representation
learning capabilities, while the rule-based
approach provides a realistic lower-bound for
resource-constrained deployment
Although mBERT’s 95% accuracy benefits from
massive pre-training on diverse corpora, our 89%
from scratch performance demonstrates
competitive capability in resource-constrained
scenarios where pretraining infrastructure is
unavailable. Complete implementation details are
provided in Appendix D.

scenarios.

5 Results

5.1 Character-Level Masked Prediction
Performance

Table 2 shows the performance of our enhanced
masked character-level model on the masked
character prediction task.

Language Accuracy (%) Std. Deviation (%)

English 18.31 18.82
French 8.44 7.62
Arabic 7.22 9.88
German 2.00 4.00

Table 2: Masked character prediction accuracy across
languages.

Initial vs. Enhanced Implementation Our
initial implementation used only single-character
masking (no n-grams) and simple character
embeddings without multi-kernel convolutional
architecture. ~ This baseline achieved 11.2%
(English), 6.1% (French), 4.8% (Arabic), and 1.3%
(German) accuracy. The enhanced version
incorporates 70/30 masking ratio and multi-kernel
embeddings, yielding improvements of +7.1%
(English), +2.3% (French), +2.4% (Arabic), and
+0.7% (German).

Our enhanced character-level model shows
significant improvement over initial
implementation, with English reaching 18.31%
accuracy. While this may appear modest compared
to word-level prediction tasks, character-level
prediction is inherently more challenging due to
the larger candidate space and local context
dependencies. The high standard deviation reflects
natural variability in prediction difficulty across
different character positions and morphological
contexts. Critically, this accuracy level proves
sufficient for effective downstream form-filling
tasks, as demonstrated in subsequent experiments.

5.2 Language Adapter Effect

Figure 2 shows the impact of language adapters
on cross-lingual transfer, demonstrating how the
model performs when using the wrong language
adapter.

These results reveal interesting cross-lingual
transfer patterns:

* The Arabic adapter sometimes performs well
on European languages, suggesting it may
have learned generic character patterns

Adapter Performance

= 0.00 0.00 28.57 18.31 25

French German English

o E- 10.00 2.00 0.00 12.50 2.00
o
z -15
o
c
LEE 0.00 8.44 8.44 10
2 -5
a._ 0.00 0.00 0.00 7.22 7.22
L
| ' ' ' ' -0
< & < « &
ad & G & &
& & & & &
oF o o7 o s
<) < ¥ &
01
&
Adapter

Figure 2: Cross-lingual transfer effects using different
language adapters.

e The German adapter works well for French
text

* English text shows high variability when
processed with different adapters

» Using the wrong adapter typically reduces
performance, confirming that adapters learn
language-specific patterns

5.3 Form Filling and Web Automation

Figure 3 shows the performance of our models
on form filling and web automation tasks across
languages.

Form Fieid Fillng Success Rate by Model Type.

BE L Sumonse

German French e srabic

Figure 3: Performance on web automation tasks across
languages and models.

Key observations:

* Subword models generally outperform
character models on well-formed data

* Character models are more robust to typos and
OOVs in user instructions

* Both models achieve high success rates,
especially in navigation tasks

» Performance is consistent across languages,
with only minor variations

5.4 Model Selector Effectiveness

Table 3 shows the impact of our learned model
selector compared to static model choices across
all evaluation tasks.

Task Char Sub Heuristic Learned Gain
Form Filling 823 86.1 754 877 +12.3
Data Extraction 88.2 91.4 81.4 92.1 +10.7
Navigation 89.7 89.2 79.7 90.8 +11.1
QA (F1) 63.2 70.1 60.1 709 +10.8
Average 809 842 742 854 +11.2

Table 3: Impact of model selection strategy across
all evaluation tasks. Learned selector consistently
outperforms static choices and heuristic baseline.

The learned selector provides consistent
improvements across all tasks, with an average
11.2% gain over the heuristic baseline. The largest
gains occur on form filling (+12.3%) where input
diversity is highest, matching our discussion phase
analysis. The selector’s ability to handle edge
cases where simple heuristics fail contributes
significantly to overall system robustness.

5.5 Data Extraction

The system achieved >90% precision and 85%
recall on extracting structured data from HTML
forms in all four languages. This demonstrates the
effectiveness of our form analyzer component in
identifying and processing form elements across
languages.

5.6 Website Navigation Performance

Navigation tasks included: (1) Simple navigation
for direct link clicking (e.g., “Click on Contact
Us”), (2) Cross-domain navigation requiring field
identification across different website structures.

Screenshot capture achieved 96.3% success rate
across all languages, with failures primarily due
to JavaScript-heavy dynamic content loading that
affected DOM accessibility.

Table 4 shows navigation task performance
across languages and models, addressing the
navigation claims in our abstract.

5.7 Language Adapter Impact

Table 5 shows the impact of language-specific
adapters compared to a language-agnostic
approach on form filling tasks.

The adapters yield a substantial improvement of
14.2% on average, confirming the value of
language-specific parameter adaptation. Notably,

Navigation Task Type Character Subword

Simple 95% 91.8%
Cross-domain 85.1% 87.6%
Average 89.7% 89.2%

Table 4: Website navigation performance across task
types. Simple: direct link clicking; Cross-domain:
navigation across different website structures.

Language Without With Improve-
Adapters Adapters ment
German 74.6% 87.3% +12.7%
French 71.2% 84.9% +13.7%
English 77.8% 93.4% +15.6%
Arabic 70.5% 85.2% +14.7%
Average 73.5% 87.7% +14.2%

Table 5: Impact of language-specific adapters on form
filling accuracy.

English demonstrates the highest improvement at
15.6%, suggesting that even well-resourced
languages benefit significantly from specialized
adaptation mechanisms. These consistent
performance gains across typologically diverse
languages from morphologically rich German to
semitic Arabic for multilingual web automation
tasks.

5.8 Comparison to Baselines

Table 6 compares our approach to the baselines on
form filling tasks.

Our mBERT comparison uses identical training
data and evaluation protocols, differing only in the
underlying representation model. The 6%
performance gap (95% vs 89%) reflects the
trade-off between massive pretraining and our
from-scratch approach, while our 58 x parameter
reduction enables deployment in
memory-constrained environments where mBERT
cannot operate effectively due to memory or
latency constraints.

5.9 QA Performance

Table 7 shows the performance of our models on
question answering tasks in French and English.

Our subword model achieves 87% of mBERT’s
F1 performance on French (68.4 vs 78.9) and 92%
on English (72.5 vs 79.2), while using 83 x fewer
parameters and requiring no pretraining
infrastructure.

5.9.1 Novel Efficiency Framework

We demonstrate that competitive multilingual
performance need not depend on massive
pretraining. Our language-specific adapters add
only 1.5% parameters per language yet yield
14.2% improvement, a fundamentally different
scaling mechanism than mBERT’s monolithic
retraining approach.

5.9.2 Architectural Innovation

Against rule-based systems (68% success), our
dual character-subword framework achieves
82-89% success. Character models handle
morphological complexity while subword models
optimize for well-formed text, enabling
task-appropriate representation unavailable in
uniform tokenization baselines.

6 Discussion

6.1 Strengths

Our approach offers various advantages that set it
apart in multilingual web automation. By
designing from scratch with resource constraints in
mind, we have created models that run efficiently
on modest hardware, a single GPU suffices while
maintaining a remarkably compact vocabulary and
reasonable parameter count. This accessibility
opens doors for researchers working outside
resource-rich environments. The framework’s
demonstrated effectiveness across German, French,
English, and Arabic suggests that the underlying
architecture has language-agnostic potential.
Perhaps most importantly, our system bridges a
critical gap between theoretical NLP advances and
practical multilingual web interaction, addressing
genuine user needs for cross-lingual form filling
and navigation. The dual-model approach
combining character and subword processing
through our selector framework provides
adaptability to diverse inputs that single
representation models typically struggle with. We
are particularly encouraged by the adapter
mechanism’s performance, which enables
language-specific customization with minimal
parameter overhead, eliminating the need for
costly full-model retraining when expanding to
new languages.

6.2 Future Work

Our proof-of-concept demonstrates clear pathways
for scaling and improvement:

Approach Field Fill Success Resource Requirements Multilingual Support
This Character Model 83% Low (1 GPU, 2.1M params) Strong
This Subword Model 89% Low (1 GPU, 2.1M params) Strong
Pretrained mBERT 95% High (16+ GB GPU, 175M+ params) Moderate
Rule-based 68% Very Low (CPU only) Weak
Table 6: Comparison to baseline approaches on form filling tasks.
Model Language EM (%) F1(%) and question answering that combines
CamemBERT-base French 730 87.8 character-level and subword-level processing. Our
mBERT-base French 61.4 789 approach demonstrates that effective cross-lingual
Our Subword French 56.2 68.4 . . : . .
Our Character French 457 60.1 web .automatlf)n is possible w.1tho.ut relylpg on
- massive pretrained models, making it accessible to
BERT-base English 78.5 85.7
mBERT-base English 693 792 researchers with limited computational resources.
Our Subword English 61.8 72.5 The system’s modular architecture, featuring
Our Character English 50.4 63.3

Table 7: Question answering performance compared to
established baselines.

1. Scale to More Languages: The modular
architecture enables efficient extension to
additional languages, particularly
low-resource languages that could benefit
most from our efficient approach. Each new
language requires only adapters (~1.5%
parameter increase) rather than full model
retraining.

2. Real-world Deployment Studies: Conduct
comprehensive user studies and latency
benchmarking to evaluate practical usability
in interactive environments.

3. Enhanced Training Data: Expand beyond
synthetic forms to include more diverse

real-world form structures and user
interaction patterns.
4. Domain-Specific Adapters: Extend the

adapter concept to include domain-specific
adapters for different websites or sectors
(e-commerce, healthcare, etc.).

5. Multi-Step Reasoning: Enhance the system
to handle more complex, multi-step web
interactions that require planning and
memory.

7 Conclusion

We presented MultiChar, a resource-efficient
framework for multilingual web automation tasks
including form filling, navigation, data extraction

character-level convolutional embeddings, n-gram
masking, language-specific adapters, a universal
form analyzer, and a learned model selector
framework, provides a flexible foundation for
multilingual web interaction. While currently
demonstrated in four languages as a proof of
concept, the design extends to any language with
appropriate training data, with clear paths for
scaling to 20+ languages or industry-specific
domains. Our learned model selector framework
demonstrates that intelligent routing between
complementary representations can provide
meaningful performance gains with minimal
computational overhead.

This work establishes a practical approach to
multilingual web automation that balances
performance and efficiency, enabling deployment
in resource-constrained environments while
maintaining competitive accuracy. By proving that
effective cross-lingual capabilities can emerge
from targeted, modest-scale training, we hope to
democratize multilingual NLP research and make
web automation accessible to speakers of diverse
languages worldwide. Our modular, extensible
architecture provides a foundation for future
scaling to the world’s linguistic diversity.

8 Limitations

Current implementation faces several limitations
that point toward future research directions. While
designed for any language, we focus on four
linguistically diverse languages due to resource
constraints, though the modular architecture and
minimal vocabulary (399 characters) position the
system well for scaling to low-resource languages.
The character-level model shows modest accuracy

on masked character prediction, which is
inherently more challenging than word-level
prediction due to larger candidate spaces, though
this level proves sufficient for effective
downstream tasks. Performance is also limited by
our relatively small training dataset compared to
massive pretrained models. Nevertheless, our
training results demonstrate that meaningful
multilingual capabilities can emerge even without
large-scale pretraining infrastructure. As a
proof-of-concept system focused on architectural
efficiency, we have not yet conducted extensive
real-time user evaluations, and future work will
include latency benchmarking and user studies to
assess practical usability. Finally, the system
occasionally struggles with highly dynamic
websites that rely heavily on JavaScript or have
unusual form structures, though this affects most
automated web interaction systems.

Language Coverage Scope: Our evaluation
demonstrates cross-script capability (Latin and
Arabic scripts) and morphological diversity
(analytic English to synthetic German/Arabic).
However, broader evaluation across diverse
language families (Sino-Tibetan, Niger-Congo,
Austronesian, agglutinative languages) represents
important future validation. While three of our
four languages share Indo-European origins due to
available synthetic form data, the inclusion of

Arabic provides meaningful cross-script validation.

Our character-level architecture and minimal
vocabulary (399 characters) position the system
for broader language family coverage when
training data becomes available.

9 Potential Risks and Ethical
Considerations

Our system, while designed to help users interact
with multilingual web forms, could present some
risks that need to be addressed.

One concern is that automated form filling tools
might be misused. For example, someone could
use our system to create fake accounts or submit
spam through web forms. To prevent this, we
recommend that anyone deploying our system
should add safeguards like limiting how many
forms can be filled per minute and requiring users
to verify their identity.

Privacy is another important issue. Our system
processes the text that users type and the
information they want to fill in forms. Right now,

everything happens on the user’s computer, but if
someone builds a web service using our approach,
they need to be careful about protecting user data
and getting proper consent.

Finally, our system works by automatically
clicking buttons and filling fields on websites.
Some websites have security measures to prevent
this kind of automation, and we respect that.
Anyone using our system should make sure they
follow website rules and legal requirements.

These issues show why it is important to think
carefully about how automated web tools are
developed and used.

References

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning
Research, 6:1817-1853.

Z. Chen, Y. Dai, and M. Johnson. 2021.
WebForm: Learning Web Form Filling through
Neural Generation. In Proceedings of EMNLP.

J. Clark, D. Garrette, 1. Turc, and J. Wieting.
2021. CANINE: Pre-training an Efficient
Tokenization-Free Encoder for Language
Representation. In Proceedings of ACL.

J. Clark, D. Garrette, I. Turc, and J. Wieting.
2022. CANINE: Pre-training an Efficient
Tokenization-Free ~ Encoder for Language
Representation. Transactions of the Association for
Computational Linguistics.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary,
G. Wenzek, F. Guzman, E. Grave, M. Ott, L.
Zettlemoyer, and V. Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of ACL.

J. Devlin, M. Chang, K. Lee, and K. Toutanova.
2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In
Proceedings of NAACL.

H. El Boukkouri, O. Ferret, T. Lavergne, H. Noji, P.
Zweigenbaum, and J. Tsujii. 2020. CharacterBERT:
Reconciling ELMo and BERT for Word-Level
Open-Vocabulary Representations. In Proceedings
of COLING.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q.
de Laroussilhe, A. Gesmundo, M. Attariyan, and S.
Gelly. 2019. Parameter-Efficient Transfer Learning
for NLP. In Proceedings of ICML.

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. 2016.
Character-Aware Neural Language Models. In
Proceedings of AAAIL

T. Kudo and J. Richardson. 2018. SentencePiece: A
simple and language independent subword tokenizer
and detokenizer for Neural Text Processing. In
Proceedings of EMNLP.

J. Li, L. Zhu, and Y. Wu. 2020. DeepForm:
End-to-End Web Form Understanding. arXiv
preprint arXiv:2008.06015.

J. Pfeiffer, I. Vulié, I. Gurevych, and S. Ruder. 2020.
AdapterFusion: Non-Destructive Task Composition
for Transfer Learning. In Proceedings of EMNLP.

T. Pires, E. Schlinger, and D. Garrette. 2019. How
Multilingual is Multilingual BERT? In Proceedings
of ACL.

R. Sennrich, B. Haddow, and A. Birch. 2016. Neural
Machine Translation of Rare Words with Subword
Units. In Proceedings of ACL.

T. Stocky, D. Karger, and R. Miller. 2004. AutoFill:
Automatic Form Filling. Technical Report, MIT
CSAIL.

C. Wang, Y. Li, S. Kang, P. Zhang, C. Meng, and
J. Zhou. 2021. Language-Specific Adapters for
Efficient Cross-Lingual Transfer. In Proceedings
of ACL.

Z. Wang, X. Chen, and Y. Kim. 2022. VITE: Visual
Form Understanding via Interactive Web Agents. In
Proceedings of EMNLP.

Y. Wu, Z. Wang, and K. Lee. 2018. Web Form
Understanding with Deep Learning. In Proceedings
of ICDAR.

L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou,
A. Siddhant, A. Barua, and C. Raffel. 2021. mT5:
A Massively Multilingual Pre-trained Text-to-Text
Transformer. In Proceedings of NAACL.

Y. Zhao, M. Yang, and D. Xu. 2021. Robust Web Form
Understanding with Deep Learning. In Proceedings
of ICLR.

Appendix
A Model Architecture Details
A.1 Character-Level Model Architecture

In this appendix, we provide additional details

about the architecture of our character-level model.

The full architecture specifications are:
* Vocabulary size: 399 characters
» Hidden size: 1024
» Feedforward size: 4096
* Number of attention heads: 16

* Number of layers: 16

* Activation function: GELU

* Dropout rate: 0.1

* Maximum sequence length: 512 characters
* Parameter count: ~2.1 million

The positional encoding used in our
character-level model follows the sinusoidal
positional encoding from Vaswani et al. (2017):

PE(pOS,Qi) = Sin(pOS/IOOOOQi/dnwdel) (5)
PE(pos,2i+1) = COS(pos/l()()()()Qi/dmodez) (6)

These equations add information about the
position of characters in a sequence. Since our
model processes all characters at once, it needs to
know which character comes first, second, etc. We
use sine and cosine functions to create unique
patterns for each position.

A.2 Subword Model Architecture

The subword model architecture details are:
* Vocabulary size: 32,000 SentencePiece tokens
* Hidden size: 768
* Feedforward size: 3072
* Number of attention heads: 12
* Number of layers: 12
* Activation function: GELU
* Dropout rate: 0.1
* Maximum sequence length: 128 tokens

e Parameter count: ~2.1 million

A.3 Adapter Architecture

Each language adapter consists of:

* Down-projection: Linear layer with output
size 64 (from 1024 for character model or 768
for subword model)

e Activation: GELU

» Up-projection: Linear layer with output size
matching the original hidden size

* Layer normalization

¢ Residual connection

The parameter count for each adapter is
approximately 1.5% of the base model size.

10

B Enhanced Character-Level Model
Implementation

We now detail our enhanced masked character-level
model, which represents a core contribution of this
work.

B.1 Character-Level Convolutional
Embeddings

Simple character embeddings proved insufficient
for capturing morphological patterns, particularly
in languages like German with extensive
compound words. We addressed this by
developing multi-kernel convolutional embeddings
that capture various n-gram patterns
simultaneously.

The character embedding process works as
follows:

Econv(z) = [CNN3(x) & CN N5(x)

7
@® CNNy7(z) & CN Ny(z)] @

Where C'NNj represents convolution with
kernel size k, and & is concatenation. In practice,
this means each character is represented not just by
itself but by its surrounding context. For example,
with kernel size 3, the character ‘a’ in “hat” would
be embedded along with ‘h’ and ‘t’.

Implementation challenges included padding
and computational efficiency. We ultimately used
PyTorch’s Convld with appropriate padding to
ensure the output maintained the same sequence
length as the input.

B.2 N-gram Character Masking

In our first implementation, we only masked

individual characters, but this didn’t help the

model learn meaningful subword units like

prefixes and suffixes. After several experiments,

we developed a hybrid masking approach that

balances single-character and n-gram masking.
For masking probability, we use:

—0.5(n—2)2
Prask(n) = 0.7-6,,1+0.3- Z?_Q o 05(-2)
where 0,, 1 is the Kronecker delta function. It
masks single characters 70% of the time and
n-grams of length 2-3 the remaining 30% of the
time. The exponential part creates a gentle
preference for 2-character sequences over
3-character ones.
We tried several different ratios between single
character and n-gram masking (50/50, 80/20, etc.)

; 8

11

before settling on 70/30 based on empirical results.
We initially wanted to mask longer n-grams too
(up to 5 characters), but found this made training
unstable and significantly increased training time
without clear benefits.

B.3 Tokenization and Vocabulary

Unlike traditional subword tokenizers with
vocabularies of tens of thousands of tokens, our
character-level model uses a minimal vocabulary
of 399 characters distributed as shown in Table 8.

Character Type Count
Latin alphabet (upper/lowercase) 52
Digits and punctuation 42
German/French special characters 45
Arabic script characters 185
Special tokens ([PAD], [MASK], etc.) 75
Total 399

Table 8: Character vocabulary breakdown

B.4 Special Tokens Specification

Our character-level model employs 75 special
tokens designed specifically for multilingual web
automation tasks. The complete breakdown is as
follows:

Core Model Tokens (5): [PAD] for sequence
padding, [MASK] for character-level masked
language modeling, [UNK] for unknown
characters, [CLS] for classification tasks, and
[SEP] for sequence separation.

Language Identification (4): [EN], [DE], [FR],
[AR] for explicit language marking during
processing.

Web Form Elements (8): [INPUT], [SELECT],
[TEXTAREA], [BUTTON] for basic form
elements, and [CHECKBOX], [RADIO], [FILE],
[HIDDEN] for specialized input types.

Action Types (8): [FILL], [SELECT],
[CHECK], [SUBMIT] for primary form
interactions, and [CLICK], [CLEAR], [FOCUS],
[SCROLL] for navigation actions.

Field Types (8): [EMAIL], [PASSWORD],
[TEXT], [NUMBER] for common field semantics,
and [DATE], [TEL], [URL], [SEARCH] for
specialized field types.

Navigation Elements (4): [LINK], [NAV],
[MENU], [BREADCRUMB] for website structure
recognition.

Form Structure (8): [FORM_START],
[FORM_END], [FIELD_START], [FIELD_END]
for structural boundaries, and [LABEL],
[ERROR], [HELP], [REQUIRED] for form
metadata.

Language-Specific Markers 4):
[MORPH_RICH], [MORPH_POOR] for

morphological complexity indicators, and [RTL],
[LTR] for script directionality.

Context Indicators (4): [CONTEXT_START],
[CONTEXT_END], [NEARBY],
[PLACEHOLDER] for field context assembly.

Processing States (4): [PROCESSING],
[SUCCESS], [FAILURE], [RETRY] for
automation state tracking.

Reserved Tokens (16): [RES_1] through
[RES_16] allocated for future system extensions
without vocabulary retraining.

These special tokens enable robust multilingual
web automation by providing explicit markers for
language context, web element types, user actions,
and system states. The reserved tokens support our
modular architecture philosophy, allowing system
extension to new languages and domains without
requiring complete vocabulary reconstruction.

B.5 Model Architecture

Our character-level model uses a Transformer
architecture optimized for character-level inputs:
16 attention heads, Hidden size of 1024, 16
encoder layers, 2.1 million parameters.

To handle the longer sequence lengths that
result from character-level tokenization, we
implement: Efficient attention mechanisms,
Optimized positional encodings, Context window
of 512 characters.

B.6 Language-Specific Adapters
We integrated language-specific adapters into the

character model:

* Small adapter modules for each language (en,
de, fr, ar)

e Each adapter contains a down-projection,
non-linearity, and up-projection

e Adapters are applied after the main
Transformer layers
* Residual connections ensure original

information is preserved

12

The adapter transformation can be expressed as:

hout = hzn + f(hinwdown)Wup (9)

where f is the GELU (Gaussian Error Linear
Unit) activation function which provides the
non-linearity for enhancing adapter effectiveness.
This equation describes how our language adapters
work. For each language, we have a small module
that adjusts the model’s internal representations.
The input (h;,) goes through a compression step
(Waown), a non-linear function (f), and then
expansion (WWy;,). We add this back to the original
input to preserve the important information.

C Experimental Details

C.1 Training Infrastructure

All models were trained using the following
infrastructure:

* Single NVIDIA RTX 3090 GPU (24GB
VRAM)

* AMD Ryzen 9 5950X CPU

* 64GB RAM

* Ubuntu 20.04 LTS

The total training time was approximately:
* Character model: 18 hours

* Subword model: 8 hours

» Language adapters: 2 hours per language

C.2 Form Filling Dataset Creation

Our form filling dataset was created by:

1. Scraping 500 common web forms from the
top 1000 websites

2. Extracting form structure and field semantics

3. Translating field labels and descriptions to

target languages

4. Generating synthetic natural language
instructions (20 templates per action type)

9

. Creating valid and invalid form filling
examples for robust training

C.3 Evaluation Metrics

The evaluation metrics were calculated as follows:

* Field Fill Success: Percentage of fields
correctly filled according to user instructions

Form Submission Success: Percentage of
forms successfully submitted with all required
fields

Navigation Success: Percentage of website
navigation tasks completed successfully

Data Extraction Precision: Correct fields
extracted / Total fields extracted

Data Extraction Recall: Correct fields

extracted / Total fields in form

Exact Match (EM): Exact string match for
question answering tasks

F1 Score: Token-level overlap between
predicted and reference answers

Masked Character Prediction Accuracy:
Correctly predicted masked characters / Total
masked characters

C.4 Dataset Statistics

Table 9 provides statistics for the training datasets
used in our experiments.

Dataset Language Examples Avg. Length (chars)
OPUS-100 English 50,000 87.3
OPUS-100 German 50,000 92.6
OPUS-100 French 50,000 96.2
OPUS-100 Arabic 50,000 76.8
FQuAD (QA) French 40,000 124.7
Synthetic Forms English 25,000 42.1
Synthetic Forms German 25,000 48.9
Synthetic Forms French 25,000 51.2
Synthetic Forms Arabic 25,000 38.6

Table 9: Statistics for training datasets across languages.

D Baseline Implementation Details

We compared our approach against two baselines
with carefully controlled methodology to address
reproducibility concerns.

mBERT Baseline We fine-tuned pretrained
mBERT-base-multilingual-cased on our exact
training data (50,000 examples per language)
using identical hyperparameters where applicable
(learning rate 3e-5, batch size 64, 5 epochs). No

13

architectural modifications were made to
mBERT—we used its standard token embeddings
fed into our form analyzer pipeline. This
represents a direct comparison of representation
learning capabilities rather than architectural
differences.

Rule-based Baseline We implemented pattern
matching for common field types (email regex,
phone patterns) and keyword matching for field
labels in each language. While not state-of-the-art,
this represents realistic deployment scenarios for
resource-constrained environments and provides a
lower-bound baseline.

The mBERT comparison uses identical training
data and evaluation protocols, differing only in
the underlying representation model, ensuring fair
comparison as requested in preliminary feedback.

E Model Selector Implementation Details

E.1 Selector Training Methodology

T o train our model selector, we created
ground-truth labels by evaluating both character
and subword models on 10,000 diverse inputs
sampled from our training data. For each input z;,
we computed:

1
label; =

if performance , (z;) >
performancepoq(z:) (10)

0 otherwise

Performance was measured using form filling
accuracy on held-out validation forms.

Feature Engineering Details

* Length normalization:
length_norm = min(1.0, char_count/174.6)
where 174.6 is 2x dataset median

OOV computation: Using SentencePiece
vocabulary with 32,000 tokens, computed as
oov_ratio = unknown_tokens / total_tokens

Morphological scores: Language-specific
scores (German=4, Arabic=4, French=3,
English=2) assigned as relative indicators of
morphological richness. While this represents
a simplified linguistic characterization, these
scores effectively enable the selector to
distinguish ~ between morphologically
complex languages (favoring character

models) and simpler ones (favoring subword
models) in our experimental setting.

Language Detection: Before computing
morphological complexity scores, we detect
input language using character pattern
matching: German (ii,0,4,8 patterns), French
(é,a,¢,1 patterns), Arabic (Unicode ranges
U+0600-U+06FF), English (default for Latin
script without special characters). This
detection occurs independently before
selector feature computation, resolving the
dependency between language identification
and morphological scoring.

* Noise detection: noise_level
(special_chars + digits) /total_chars

Training Configuration
* Optimizer: Adam with learning rate 0.001
* Batch size: 128

e Training epochs: 50 with early stopping

(patience=10)
* Loss function: Binary cross-entropy
* Train/validation split: 80/20

E.2 Selection Performance Analysis

Table 10 shows detailed selector performance
across languages and input types.

Input Type Selector Acc. Char Subword
Short (< 30 chars) 921% 783% 21.7%
Medium (30-100 chars) 88.7% 421% 57.9%
Long (> 100 chars) 859% 234% 76.6%
High OOV (> 10%) 94.3% 89.2% 10.8%
Low noise (< 5%) 87.1% 35.6% 64.4%
High noise (> 15%) 91.8% 82.7% 17.3%
Overall 89.3% 51.2% 48.8%

Table 10: Model selector performance across input
characteristics. Selector accuracy measured against
oracle choices.

E.3 Ablation Study: Learned vs. Heuristic
Selection

We compared our learned selector against a
heuristic baseline using simple rules:

* Character model: if length < 30 chars OR
oov_ratio > 0.05 OR noise_level > 0.1

¢ Subword model: otherwise

14

Results on form filling accuracy:

* Learned selector: 87.7% average accuracy
* Heuristic baseline: 75.4% average accuracy
* Always character: 82.3% average accuracy
* Always subword: 86.1% average accuracy

* Improvement: +12.3% over heuristic, +1.6%
over best single model

The learned selector’s primary advantage lies in
handling edge cases where simple heuristics fail,
particularly for medium-length inputs with
moderate OOV rates.

E.4 Computational Overhead Analysis

Component Time (ms) Memory (MB)
Feature extraction 0.8 0.1
Selector inference 1.5 0.3
Model loading 0.0 0.0
Total selector overhead 2.3 0.4
Character model inference 67.2 850
Subword model inference 41.8 440

Table 11: Computational overhead of model selection
vs. model inference.

The selector adds negligible computational cost
(2.3ms) compared to model inference (42-67ms).

F Additional Results
F.1 Effect of N-gram Masking

20 \ |
§ |:| 1] Single-Char
;: 15 B |:||:| N-gram
g 10 2
5 H ﬂ |
Q
< ! ’_‘ ’_‘\ '_|\,_|
English French Arabic German
Language
Figure 4: Impact of n-gram masking on masked

character prediction accuracy.

F.2 Cross-lingual Transfer Matrix

Table 12 provides a more detailed cross-lingual
transfer matrix showing how adapters trained on
one language perform on other languages.

Train Test EN DE FR AR
Lang Lang

EN EN 18.31% 10.00% 0.00% 0.00%
EN DE 0.00% 2.00% 16.67% 0.00%
EN FR 0.00% 0.00% 8.44% 0.00%
EN AR 28.57% 12.50% 2222% 7.22%

Table 12: Cross-lingual transfer matrix showing adapter
performance across languages.

F.3 Ablation Studies

Figure 5 shows the impact of removing different
components from our system.

Full System - ‘ ‘] etk
.5 No Adapters - 78.5 I
§ No Conv Embed 78.9 -
%‘) No N-gram | 82.4 B
S Subword Only | | s6.1 |
Char Only - 793 B
0 7 80 8 90

Form Fill Success (%)
Figure 5: Component ablation reveals that

language-specific adapters provide the largest
performance gain (+14.2%), while n-gram masking
and convolutional embeddings each contribute 3-5%
improvements, validating our architectural choices.

G Web Automation Examples

Below we provide examples of natural language
instructions and their corresponding structured
actions for web form filling:

G.1 English

e Instruction: “Fill in the email field with
john.smith@example.com”

e Action: {"action_type": "fill",
"field_name": "email”, "value":
"john.smith@example.com”?}

G.2 German

e Instruction: “Gib in das Passwortfeld
‘Secure123!” ein”

e Action: {"action_type": "fill",
"field_name”: "password”, "value":

"Securel123!"}

G.3 French

e Instruction: “Sélectionne ‘Femme’ dans le
menu déroulant de genre”

e Action: {"action_type": "select”,
"field_name”: "gender"”, "value":
"female"}

G.4 Arabic

Instruction: “ ” (Click the submit button)

e Action: {"action_type": "submit"”,
"field_name": "submit_button”,
"value”: null}

H Model Scaling Analysis

We conducted experiments to analyze how our
models scale with different parameter sizes.
Figure 6 shows the results of these experiments.

—— Character Model
—— Subword Model
T T T T T T T 1]
—~ 80| / .
)
§ 60 |- n
5 40 |- N
3
< 20 N
0 - I I ———— - —
10" 10?

Model Parameters (M)

Figure 6: Model scaling analysis showing accuracy vs
parameter count.

The results indicate that both models benefit
from increased parameter counts, but the gains
diminish at larger sizes. The character model
shows more consistent scaling benefits, suggesting
it may benefit from even larger model sizes in
future work.

I Computational Efficiency Analysis

Table 13 compares the computational efficiency of
our approach versus baseline models.

J Error Analysis

J.1 Error Categories
We categorized errors in our system into four main
types:

1. Language Understanding
Incorrectly parsing the user’s
language instruction (23% of errors)

Errors:
natural

Model Parameters Training Inference Memory
Time Time (ms) (MB)

Character Model ~2.1M 18 hours 67 850
Subword Model ~2.1M 8 hours 42 440
mBERT (baseline) ~175M Pretrained 86 700
XLM-R Large ~550M Pretrained 215 2,200

Table 13: Computational efficiency comparison across models.

2. Form Analysis Errors: Failing to correctly
identify form elements or their purposes (42%
of errors)

3. Action Execution Errors: Correctly
understanding but failing to execute the
intended action (19% of errors)

4. Other Errors: System crashes, timeouts, or
unclassified errors (16% of errors)
J.2 Performance by Form Complexity

Table 14 shows how performance varies with form
complexity.

Form Complexity Fields Success Rate

Simple 1-3 94.2%
Medium 4-7 88.7%
Complex 8+ 81.3%

Table 14: Form filling success rate by form complexity.

J.3 Error Examples

Table 15 provides examples of common errors and
their analysis.

16

Error Type

Example

Analysis

Language Understanding

Form Analysis

Action Execution

Language Understanding

Form Analysis

“Fill the
555-1234”
misinterpreted
Could not locate
“billing-address” field
Failed to select option

phone with

in custom dropdown
Failed to parse German

compound noun
Confused similar field labels
“shipping” vs “billing”

Ambiguous field reference

(“phone” vs “phone number”)
Field had non-standard
HTML attributes
JavaScript-rendered
dropdown

not accessible via DOM
Character model struggled
with

morphological complexity
Semantic similarity caused
field misidentification

Table 15: Examples of common errors encountered during evaluation.

17

	Introduction
	Related Work
	Character and Subword Models
	Multilingual Language Models and Adaptation
	Web Form Analysis and Automation

	System Overview
	Multilingual Neural Models
	Character-level Masked Language Model
	Subword-level Transformer

	Model Selector Framework
	Language-Specific Adapters
	Universal Form Analyzer
	Command Interpreter
	Web Automation Integration

	Experimental Setup
	Datasets
	Training
	Cross-lingual Transfer Validation
	Evaluation Tasks
	Baseline Implementation Details

	Results
	Character-Level Masked Prediction Performance
	Language Adapter Effect
	Form Filling and Web Automation
	Model Selector Effectiveness
	Data Extraction
	Website Navigation Performance
	Language Adapter Impact
	Comparison to Baselines
	QA Performance
	Novel Efficiency Framework
	Architectural Innovation

	Discussion
	Strengths
	Future Work

	Conclusion
	Limitations
	Potential Risks and Ethical Considerations
	Model Architecture Details
	Character-Level Model Architecture
	Subword Model Architecture
	Adapter Architecture

	Enhanced Character-Level Model Implementation
	Character-Level Convolutional Embeddings
	N-gram Character Masking
	Tokenization and Vocabulary
	Special Tokens Specification
	Model Architecture
	Language-Specific Adapters

	Experimental Details
	Training Infrastructure
	Form Filling Dataset Creation
	Evaluation Metrics
	Dataset Statistics

	Baseline Implementation Details
	Model Selector Implementation Details
	Selector Training Methodology
	Selection Performance Analysis
	Ablation Study: Learned vs. Heuristic Selection
	Computational Overhead Analysis

	Additional Results
	Effect of N-gram Masking
	Cross-lingual Transfer Matrix
	Ablation Studies

	Web Automation Examples
	English
	German
	French
	Arabic

	Model Scaling Analysis
	Computational Efficiency Analysis
	Error Analysis
	Error Categories
	Performance by Form Complexity
	Error Examples

