
MultiChar: A Resource-Efficient Character and Subword Model
for Multilingual Web Automation

Anonymous ACL submission

Abstract001

We present MultiChar, a resource-efficient002
neural framework for multilingual web form003
filling, data extraction, navigation and question004
answering. Our approach combines masked005
character-level and subword-level processing006
with a modular architecture designed to007
support any language, although demonstrated008
on German, French, Arabic and English as a009
proof of concept due to resource constraints.010
The system features a character-level masked011
model for robust handling of morphologically012
rich languages, language-specific adapters for013
cross-lingual transfer, and a universal form014
analyzer for dynamic web form processing.015
We introduce a learned model selector016
framework that dynamically chooses between017
character and subword representations based018
on input characteristics. Our experiments show019
that MultiChar achieves promising results in020
web form filling (83-89% precision), data021
extraction (>90% precision) and website022
navigation (88-95% success rate), while023
maintaining efficiency with only 2.1M024
parameters. In particular, our025
language-specific adapters yield a 14.2%026
improvement over language-agnostic027
approaches. This work establishes a028
foundation for resource-efficient cross-lingual029
web automation, demonstrating scalability to030
diverse languages and domains without031
requiring massive computational resources.032

1 Introduction033

Recent advances in natural language processing034

have been driven by large pre-trained models such035

as BERT (Devlin et al., 2019) and mBERT (Pires036

et al., 2019), which require significant037

computational resources and large-scale data.038

However, many practical applications, especially039

multilingual web automation tasks that require040

real-time responsiveness and deployment in041

resource-constrained environments, demand042

models that are efficient, adaptable, and can be 043

trained from scratch on modest hardware. 044

Web forms are the primary interface for 045

information exchange on the Internet, yet they 046

present significant barriers for non-native language 047

speakers. Users must navigate unfamiliar labels, 048

understand field purposes, and provide information 049

in potentially unfamiliar formats. While recent 050

advances have led to systems that can assist with 051

form filling (Chen et al., 2021; Wang et al., 2022), 052

these methods largely focus on English and fail to 053

address the needs of a multilingual user base. 054

In this paper, we introduce MultiChar, a 055

cross-lingual approach to universal web form 056

filling that enables users to interact with forms in 057

their native language regardless of the form’s 058

original language. Our system accepts natural 059

language instructions in multiple languages (e.g., 060

“Fill the name field with username” in English, 061

“Füllen Sie das Namensfeld mit dem 062

Benutzernamen aus” in German) and performs the 063

corresponding actions on web forms. 064

Although MultiChar is designed to support any 065

language, we focus on four languages representing 066

different writing systems and morphological 067

patterns as a proof of concept due to resource 068

constraints. These languages—English, German, 069

French, and Arabic— Latin and Arabic scripts 070

with varying morphological complexity from 071

analytic (English) to synthetic (German, Arabic). 072

While this selection includes related 073

Indo-European languages due to available 074

synthetic data, the inclusion of Arabic (Semitic 075

family) with fundamentally different script and 076

morphological patterns provides meaningful 077

cross-script validation. This selection provides 078

initial evidence for cross-script adaptability while 079

remaining tractable for resource-limited research 080

environments. 081

Unlike existing systems that depend heavily on 082

translation (operating on a 083

1



translate-process-translate-back approach), our084

system works natively in the original language.085

We believe this direct approach is crucial for better086

accuracy and faster reasoning. Our models are087

designed to be lightweight, trainable on modest088

compute, and extensible to new languages and089

domains.090

Our key contributions are:091

1. A resource-efficient multilingual neural092

model trained from scratch, operating at both093

character and subword levels, with a094

vocabulary of only 399 characters for the095

character-level model.096

2. A character-level masked model that enables097

robust processing of morphologically rich098

languages and handles out-of-vocabulary099

words effectively.100

3. A learned model selector framework that101

chooses between character and subword102

models based on task and input103

characteristics.104

4. Language-specific adapters that improve105

performance across languages with minimal106

additional parameters (∼1.5% increase per107

language).108

5. A universal form analyzer that can identify109

and extract form structure across different110

websites and languages.111

6. Integration of web automation features: form112

filling, data extraction, navigation, and113

screenshot capture.114

2 Related Work115

2.1 Character and Subword Models116

Character-level modeling has proven valuable for117

handling out-of-vocabulary words and118

morphological variations (Kim et al., 2016),119

though training such models presents challenges.120

While approaches like CharacterBERT (El121

Boukkouri et al., 2020) and CANINE (Clark et al.,122

2022) demonstrate the effectiveness of123

character-level processing, they remain dependent124

on extensive pretraining. We instead explore125

whether effective multilingual models can be built126

through targeted training from scratch, combining127

character and subword representations within a128

unified, resource-conscious architecture.129

2.2 Multilingual Language Models and 130

Adaptation 131

Large-scale multilingual models such as mBERT 132

(Devlin et al., 2019) and XLM-R (Conneau et al., 133

2020) have transformed cross-lingual NLP 134

research. However, their application to interactive 135

web automation tasks has been limited, and they 136

often exhibit a tendency to anchor reasoning in 137

English through implicit translation mechanisms. 138

The adapter framework (Houlsby et al., 2019; 139

Pfeiffer et al., 2020) has emerged as an efficient 140

approach for parameter-efficient transfer learning, 141

with recent studies (Wang et al., 2021) 142

demonstrating how language-specific adapters can 143

enhance cross-lingual transfer while minimizing 144

computational overhead. We build upon these 145

insights to develop models that can reason directly 146

in the target language without intermediate 147

representations. 148

2.3 Web Form Analysis and Automation 149

Early web form automation relied primarily on 150

template-based approaches (Stocky et al., 2004), 151

but recent advances have incorporated visual and 152

structural understanding (Wu et al., 2018). Deep 153

learning approaches have begun to address form 154

layout and semantic understanding (Li et al., 2020; 155

Zhao et al., 2021), yet most existing systems remain 156

constrained to English-language interfaces. To our 157

knowledge, no existing work addresses the specific 158

challenge of multilingual form-filling systems that 159

can process commands natively across languages 160

without translation dependencies. 161

3 System Overview 162

MultiChar consists of seven main components, as 163

illustrated in Figure 1: 164

Figure 1: System overview of the MultiChar
architecture, showing the main components and their
interactions.

2



3.1 Multilingual Neural Models165

Our system employs two complementary neural166

models:167

3.1.1 Character-level Masked Language168

Model169

We implement a character-level masked language170

model (MLM) trained with 2.1 million parameters.171

This model uses a vocabulary of just 399172

characters, making it extremely compact compared173

to traditional subword tokenization approaches.174

During training, random characters in the input are175

replaced with a [MASK] token, and the model is176

trained to predict the original characters. This177

approach enables the model to learn178

character-level patterns and relationships.179

Our implementation includes: Character-level180

convolutional embeddings with multiple kernel181

sizes (3, 5, 7, 9), N-gram character masking for182

better morphological pattern learning, training for183

5 epochs with a batch size of 64, learning rate of184

3e-5, 16 attention heads, hidden size of 1024, 16185

encoder layers.186

3.1.2 Subword-level Transformer187

We also develop a subword-level Transformer that188

uses SentencePiece tokenization (Kudo and189

Richardson, 2018). Like our character model, we190

trained this without pretrained weights. Our191

experiments reveal complementary strengths: the192

subword model performs better on well-formed193

text and longer sequences, while the character194

model handles noisy inputs, spelling errors, and195

morphologically complex languages more196

effectively.197

3.2 Model Selector Framework198

We introduce a learned model selector that199

dynamically chooses between our character and200

subword models based on input characteristics—a201

crucial component for multilingual systems202

handling diverse input types. The selector203

addresses the fundamental question of when204

character-level processing provides advantages205

over subword tokenization in multilingual web206

automation contexts.207

Architecture Our selector uses a lightweight208

feedforward classifier with a 4-dimensional input209

feature vector:210

• Text length: Input character count normalized211

by dataset median (87.3 chars)212

• OOV ratio: Percentage of tokens that would 213

be out-of-vocabulary for the subword model 214

• Morphological complexity: 215

Language-specific score (1-5 scale) based on 216

morphological richness 217

• Noise level: Percentage of non-alphanumeric 218

characters indicating potential OCR errors or 219

informal text 220

The selector architecture consists of: 221

features = [length_norm, oov_ratio, 222

morph_score, noise_level] (1) 223

hidden = ReLU(Linear64(features)) (2) 224

output = Sigmoid(Linear1(hidden)) (3) 225

If output > 0.5, the character model is selected; 226

otherwise, the subword model is used. 227

Training Data Generation We generated 228

10,000 training examples by sampling inputs from 229

our form-filling dataset and computing oracle 230

labels based on empirical performance comparison. 231

For each input, we ran both character and subword 232

models and labeled the input with the 233

better-performing model choice. 234

Selection Performance The learned selector 235

achieves 89.3% accuracy in choosing the optimal 236

model compared to oracle selection, with selection 237

overhead averaging 2.3ms per input (negligible 238

compared to model inference time of 42-67ms). 239

Wrong selections typically degrade performance 240

by 3-8%, validating the selector’s importance for 241

maintaining consistent quality. 242

3.3 Language-Specific Adapters 243

Rather than retraining entire models for new 244

languages, we use language-specific adapter 245

modules. These small neural components integrate 246

into the Transformer layers and adjust hidden 247

representations for language-specific patterns. 248

Each adapter requires only 1.5% additional 249

parameters, enabling efficient scaling to new 250

languages without full model retraining. 251

3.4 Universal Form Analyzer 252

Our form analyzer processes web forms through a 253

streamlined pipeline: 254

HTML Processing: BeautifulSoup extracts 255

form elements (input, select, textarea) with 256

3



their attributes (id, name, placeholder) and257

associated label text.258

Context Assembly: For each field, we create259

context strings by combining the field’s260

placeholder text, nearby labels within 3 DOM261

nodes, and surrounding text within a 50-character262

radius. For example: “Enter your email address:263

[INPUT] @company.com”.264

Neural Classification: Context strings are265

processed through our character or subword model266

using model selector, followed by the appropriate267

language adapter, producing field type268

classifications (email, name, phone, address, etc.).269

The complete pipeline can be expressed as:270

field_type = classify(Adapterl(fmodel(context)))
(4)271

where l is the detected language, fmodel is either the272

character or subword model selected dynamically,273

and context is the assembled field context string.274

The analyzer integrates directly with our275

dual-model architecture, using the same language276

detection and model selection framework.277

3.5 Command Interpreter278

The interpreter converts multilingual natural279

language instructions into structured actions:280

{281

"action_type": ["fill", "select",282

"check", "submit"],283

"field_name": "email",284

"value": "user@example.com"285

}286

Importantly, the system processes non-English287

commands directly rather than translating them288

first.289

3.6 Web Automation Integration290

Our form interaction engine executes structured291

actions through Playwright browser automation.292

We developed a robust element search that293

combines attribute matching, ARIA information,294

and visual proximity analysis using Euclidean295

distance calculations between element bounding296

boxes. This approach proves more resilient to297

website changes than traditional CSS selectors or298

XPath methods.299

4 Experimental Setup300

4.1 Datasets301

Due to the scarcity of multilingual form-filling302

datasets, we combine real-world and synthetic data303

following established practices (Li et al., 2020; 304

Zhao et al., 2021): 305

• OPUS-100 translation pairs (German-English, 306

French-English, Arabic-English) and FQuAD 307

(French QA) for authentic linguistic patterns. 308

• Synthetic web forms covering common types 309

(registration, contact, checkout) with realistic 310

field labels and natural language instructions 311

across all four languages. 312

Training data: 50,000 examples per language for 313

character/subword models, with language adapters 314

trained on smaller datasets (5e-6 learning rate). All 315

models trained from scratch on a single GPU. 316

4.2 Training 317

The character-level model (2.1M parameters) and 318

subword-level model (2.1M parameters with 319

adapters) were trained separately with the 320

following hyperparameters: 5 epochs, batch size 321

of 64, learning rate of 3e-5, 50,000 examples per 322

language. 323

Language adapters were trained for each 324

language with a smaller learning rate of 5e-6 to 325

fine-tune language-specific behaviours without 326

disrupting the base model. 327

All models were trained from scratch on a single 328

GPU, demonstrating the resource efficiency of our 329

approach despite the model size. 330

4.3 Cross-lingual Transfer Validation 331

To validate genuine cross-lingual capability, we 332

conduct leave-one-language-out experiments 333

where the core model is trained on three languages 334

and evaluated on the fourth using only adapter 335

training. This addresses concerns about whether 336

our models learn truly cross-lingual 337

representations or simply benefit from multilingual 338

training data. 339

Experimental Setup The core character model 340

is trained on three languages for 5 epochs, then 341

evaluated on the held-out language using only 342

adapter training with 2,000 synthetic examples per 343

target language (learning rate 5e-6, 2 epochs). No 344

data from the target language is used during core 345

model training. 346

Table 1 shows leave-one-out performance 347

compared to full four-language training. 348

The consistent performance across all language 349

combinations validates that our character-level 350

4



Language Form Fill Accuracy Full Training

Arabic 79.3% -5.9%
French 81.7% -3.2%
German 83.1% -4.2%
English 88.9% -4.5%

Average 83.3% -4.5%

Table 1: Leave-one-language-out cross-lingual transfer
performance. The consistent 3-6% degradation
demonstrates meaningful cross-lingual transfer while
confirming language-specific adaptation benefits.

representations capture transferable cross-lingual351

patterns. The modest 4.5% average degradation352

confirms genuine cross-lingual capability while353

highlighting the value of language-specific354

training data.355

4.4 Evaluation Tasks356

We evaluated our system on four key tasks:357

1. Form Filling: Success rate of correctly filled358

fields and form submission.359

2. Data Extraction: Precision and recall of360

extracted structured data from HTML.361

3. Website Navigation: Success rate of reaching362

target pages and saving screenshots.363

4. Character-Level MLM Performance:364

Accuracy of masked character prediction365

across languages.366

4.5 Baseline Implementation Details367

We compared our approach against two baselines:368

(1) mBERT-base-multilingual-cased fine-tuned on369

our exact training data using identical370

hyperparameters, and (2) a rule-based system371

using pattern matching and keyword detection for372

common field types. The mBERT baseline373

represents a direct comparison of representation374

learning capabilities, while the rule-based375

approach provides a realistic lower-bound for376

resource-constrained deployment scenarios.377

Although mBERT’s 95% accuracy benefits from378

massive pre-training on diverse corpora, our 89%379

from scratch performance demonstrates380

competitive capability in resource-constrained381

scenarios where pretraining infrastructure is382

unavailable. Complete implementation details are383

provided in Appendix D.384

5 Results 385

5.1 Character-Level Masked Prediction 386

Performance 387

Table 2 shows the performance of our enhanced 388

masked character-level model on the masked 389

character prediction task. 390

Language Accuracy (%) Std. Deviation (%)
English 18.31 18.82
French 8.44 7.62
Arabic 7.22 9.88
German 2.00 4.00

Table 2: Masked character prediction accuracy across
languages.

Initial vs. Enhanced Implementation Our 391

initial implementation used only single-character 392

masking (no n-grams) and simple character 393

embeddings without multi-kernel convolutional 394

architecture. This baseline achieved 11.2% 395

(English), 6.1% (French), 4.8% (Arabic), and 1.3% 396

(German) accuracy. The enhanced version 397

incorporates 70/30 masking ratio and multi-kernel 398

embeddings, yielding improvements of +7.1% 399

(English), +2.3% (French), +2.4% (Arabic), and 400

+0.7% (German). 401

Our enhanced character-level model shows 402

significant improvement over initial 403

implementation, with English reaching 18.31% 404

accuracy. While this may appear modest compared 405

to word-level prediction tasks, character-level 406

prediction is inherently more challenging due to 407

the larger candidate space and local context 408

dependencies. The high standard deviation reflects 409

natural variability in prediction difficulty across 410

different character positions and morphological 411

contexts. Critically, this accuracy level proves 412

sufficient for effective downstream form-filling 413

tasks, as demonstrated in subsequent experiments. 414

5.2 Language Adapter Effect 415

Figure 2 shows the impact of language adapters 416

on cross-lingual transfer, demonstrating how the 417

model performs when using the wrong language 418

adapter. 419

These results reveal interesting cross-lingual 420

transfer patterns: 421

• The Arabic adapter sometimes performs well 422

on European languages, suggesting it may 423

have learned generic character patterns 424

5



Figure 2: Cross-lingual transfer effects using different
language adapters.

• The German adapter works well for French425

text426

• English text shows high variability when427

processed with different adapters428

• Using the wrong adapter typically reduces429

performance, confirming that adapters learn430

language-specific patterns431

5.3 Form Filling and Web Automation432

Figure 3 shows the performance of our models433

on form filling and web automation tasks across434

languages.435

Figure 3: Performance on web automation tasks across
languages and models.

Key observations:436

• Subword models generally outperform437

character models on well-formed data438

• Character models are more robust to typos and439

OOVs in user instructions440

• Both models achieve high success rates,441

especially in navigation tasks442

• Performance is consistent across languages,443

with only minor variations444

5.4 Model Selector Effectiveness 445

Table 3 shows the impact of our learned model 446

selector compared to static model choices across 447

all evaluation tasks. 448

Task Char Sub Heuristic Learned Gain

Form Filling 82.3 86.1 75.4 87.7 +12.3
Data Extraction 88.2 91.4 81.4 92.1 +10.7
Navigation 89.7 89.2 79.7 90.8 +11.1
QA (F1) 63.2 70.1 60.1 70.9 +10.8

Average 80.9 84.2 74.2 85.4 +11.2

Table 3: Impact of model selection strategy across
all evaluation tasks. Learned selector consistently
outperforms static choices and heuristic baseline.

The learned selector provides consistent 449

improvements across all tasks, with an average 450

11.2% gain over the heuristic baseline. The largest 451

gains occur on form filling (+12.3%) where input 452

diversity is highest, matching our discussion phase 453

analysis. The selector’s ability to handle edge 454

cases where simple heuristics fail contributes 455

significantly to overall system robustness. 456

5.5 Data Extraction 457

The system achieved >90% precision and 85% 458

recall on extracting structured data from HTML 459

forms in all four languages. This demonstrates the 460

effectiveness of our form analyzer component in 461

identifying and processing form elements across 462

languages. 463

5.6 Website Navigation Performance 464

Navigation tasks included: (1) Simple navigation 465

for direct link clicking (e.g., “Click on Contact 466

Us”), (2) Cross-domain navigation requiring field 467

identification across different website structures. 468

Screenshot capture achieved 96.3% success rate 469

across all languages, with failures primarily due 470

to JavaScript-heavy dynamic content loading that 471

affected DOM accessibility. 472

Table 4 shows navigation task performance 473

across languages and models, addressing the 474

navigation claims in our abstract. 475

5.7 Language Adapter Impact 476

Table 5 shows the impact of language-specific 477

adapters compared to a language-agnostic 478

approach on form filling tasks. 479

The adapters yield a substantial improvement of 480

14.2% on average, confirming the value of 481

language-specific parameter adaptation. Notably, 482

6



Navigation Task Type Character Subword

Simple 95% 91.8%
Cross-domain 85.1% 87.6%

Average 89.7% 89.2%

Table 4: Website navigation performance across task
types. Simple: direct link clicking; Cross-domain:
navigation across different website structures.

Language Without With Improve-
Adapters Adapters ment

German 74.6% 87.3% +12.7%
French 71.2% 84.9% +13.7%
English 77.8% 93.4% +15.6%
Arabic 70.5% 85.2% +14.7%
Average 73.5% 87.7% +14.2%

Table 5: Impact of language-specific adapters on form
filling accuracy.

English demonstrates the highest improvement at483

15.6%, suggesting that even well-resourced484

languages benefit significantly from specialized485

adaptation mechanisms. These consistent486

performance gains across typologically diverse487

languages from morphologically rich German to488

semitic Arabic for multilingual web automation489

tasks.490

5.8 Comparison to Baselines491

Table 6 compares our approach to the baselines on492

form filling tasks.493

Our mBERT comparison uses identical training494

data and evaluation protocols, differing only in the495

underlying representation model. The 6%496

performance gap (95% vs 89%) reflects the497

trade-off between massive pretraining and our498

from-scratch approach, while our 58× parameter499

reduction enables deployment in500

memory-constrained environments where mBERT501

cannot operate effectively due to memory or502

latency constraints.503

5.9 QA Performance504

Table 7 shows the performance of our models on505

question answering tasks in French and English.506

Our subword model achieves 87% of mBERT’s507

F1 performance on French (68.4 vs 78.9) and 92%508

on English (72.5 vs 79.2), while using 83× fewer509

parameters and requiring no pretraining510

infrastructure.511

5.9.1 Novel Efficiency Framework 512

We demonstrate that competitive multilingual 513

performance need not depend on massive 514

pretraining. Our language-specific adapters add 515

only 1.5% parameters per language yet yield 516

14.2% improvement, a fundamentally different 517

scaling mechanism than mBERT’s monolithic 518

retraining approach. 519

5.9.2 Architectural Innovation 520

Against rule-based systems (68% success), our 521

dual character-subword framework achieves 522

82-89% success. Character models handle 523

morphological complexity while subword models 524

optimize for well-formed text, enabling 525

task-appropriate representation unavailable in 526

uniform tokenization baselines. 527

6 Discussion 528

6.1 Strengths 529

Our approach offers various advantages that set it 530

apart in multilingual web automation. By 531

designing from scratch with resource constraints in 532

mind, we have created models that run efficiently 533

on modest hardware, a single GPU suffices while 534

maintaining a remarkably compact vocabulary and 535

reasonable parameter count. This accessibility 536

opens doors for researchers working outside 537

resource-rich environments. The framework’s 538

demonstrated effectiveness across German, French, 539

English, and Arabic suggests that the underlying 540

architecture has language-agnostic potential. 541

Perhaps most importantly, our system bridges a 542

critical gap between theoretical NLP advances and 543

practical multilingual web interaction, addressing 544

genuine user needs for cross-lingual form filling 545

and navigation. The dual-model approach 546

combining character and subword processing 547

through our selector framework provides 548

adaptability to diverse inputs that single 549

representation models typically struggle with. We 550

are particularly encouraged by the adapter 551

mechanism’s performance, which enables 552

language-specific customization with minimal 553

parameter overhead, eliminating the need for 554

costly full-model retraining when expanding to 555

new languages. 556

6.2 Future Work 557

Our proof-of-concept demonstrates clear pathways 558

for scaling and improvement: 559

7



Approach Field Fill Success Resource Requirements Multilingual Support
This Character Model 83% Low (1 GPU, 2.1M params) Strong
This Subword Model 89% Low (1 GPU, 2.1M params) Strong
Pretrained mBERT 95% High (16+ GB GPU, 175M+ params) Moderate
Rule-based 68% Very Low (CPU only) Weak

Table 6: Comparison to baseline approaches on form filling tasks.

Model Language EM (%) F1 (%)

CamemBERT-base French 73.2 87.8
mBERT-base French 61.4 78.9
Our Subword French 56.2 68.4
Our Character French 45.7 60.1

BERT-base English 78.5 85.7
mBERT-base English 69.3 79.2
Our Subword English 61.8 72.5
Our Character English 50.4 63.3

Table 7: Question answering performance compared to
established baselines.

1. Scale to More Languages: The modular560

architecture enables efficient extension to561

additional languages, particularly562

low-resource languages that could benefit563

most from our efficient approach. Each new564

language requires only adapters (∼1.5%565

parameter increase) rather than full model566

retraining.567

2. Real-world Deployment Studies: Conduct568

comprehensive user studies and latency569

benchmarking to evaluate practical usability570

in interactive environments.571

3. Enhanced Training Data: Expand beyond572

synthetic forms to include more diverse573

real-world form structures and user574

interaction patterns.575

4. Domain-Specific Adapters: Extend the576

adapter concept to include domain-specific577

adapters for different websites or sectors578

(e-commerce, healthcare, etc.).579

5. Multi-Step Reasoning: Enhance the system580

to handle more complex, multi-step web581

interactions that require planning and582

memory.583

7 Conclusion584

We presented MultiChar, a resource-efficient585

framework for multilingual web automation tasks586

including form filling, navigation, data extraction587

and question answering that combines 588

character-level and subword-level processing. Our 589

approach demonstrates that effective cross-lingual 590

web automation is possible without relying on 591

massive pretrained models, making it accessible to 592

researchers with limited computational resources. 593

The system’s modular architecture, featuring 594

character-level convolutional embeddings, n-gram 595

masking, language-specific adapters, a universal 596

form analyzer, and a learned model selector 597

framework, provides a flexible foundation for 598

multilingual web interaction. While currently 599

demonstrated in four languages as a proof of 600

concept, the design extends to any language with 601

appropriate training data, with clear paths for 602

scaling to 20+ languages or industry-specific 603

domains. Our learned model selector framework 604

demonstrates that intelligent routing between 605

complementary representations can provide 606

meaningful performance gains with minimal 607

computational overhead. 608

This work establishes a practical approach to 609

multilingual web automation that balances 610

performance and efficiency, enabling deployment 611

in resource-constrained environments while 612

maintaining competitive accuracy. By proving that 613

effective cross-lingual capabilities can emerge 614

from targeted, modest-scale training, we hope to 615

democratize multilingual NLP research and make 616

web automation accessible to speakers of diverse 617

languages worldwide. Our modular, extensible 618

architecture provides a foundation for future 619

scaling to the world’s linguistic diversity. 620

8 Limitations 621

Current implementation faces several limitations 622

that point toward future research directions. While 623

designed for any language, we focus on four 624

linguistically diverse languages due to resource 625

constraints, though the modular architecture and 626

minimal vocabulary (399 characters) position the 627

system well for scaling to low-resource languages. 628

The character-level model shows modest accuracy 629

8



on masked character prediction, which is630

inherently more challenging than word-level631

prediction due to larger candidate spaces, though632

this level proves sufficient for effective633

downstream tasks. Performance is also limited by634

our relatively small training dataset compared to635

massive pretrained models. Nevertheless, our636

training results demonstrate that meaningful637

multilingual capabilities can emerge even without638

large-scale pretraining infrastructure. As a639

proof-of-concept system focused on architectural640

efficiency, we have not yet conducted extensive641

real-time user evaluations, and future work will642

include latency benchmarking and user studies to643

assess practical usability. Finally, the system644

occasionally struggles with highly dynamic645

websites that rely heavily on JavaScript or have646

unusual form structures, though this affects most647

automated web interaction systems.648

Language Coverage Scope: Our evaluation649

demonstrates cross-script capability (Latin and650

Arabic scripts) and morphological diversity651

(analytic English to synthetic German/Arabic).652

However, broader evaluation across diverse653

language families (Sino-Tibetan, Niger-Congo,654

Austronesian, agglutinative languages) represents655

important future validation. While three of our656

four languages share Indo-European origins due to657

available synthetic form data, the inclusion of658

Arabic provides meaningful cross-script validation.659

Our character-level architecture and minimal660

vocabulary (399 characters) position the system661

for broader language family coverage when662

training data becomes available.663

9 Potential Risks and Ethical664

Considerations665

Our system, while designed to help users interact666

with multilingual web forms, could present some667

risks that need to be addressed.668

One concern is that automated form filling tools669

might be misused. For example, someone could670

use our system to create fake accounts or submit671

spam through web forms. To prevent this, we672

recommend that anyone deploying our system673

should add safeguards like limiting how many674

forms can be filled per minute and requiring users675

to verify their identity.676

Privacy is another important issue. Our system677

processes the text that users type and the678

information they want to fill in forms. Right now,679

everything happens on the user’s computer, but if 680

someone builds a web service using our approach, 681

they need to be careful about protecting user data 682

and getting proper consent. 683

Finally, our system works by automatically 684

clicking buttons and filling fields on websites. 685

Some websites have security measures to prevent 686

this kind of automation, and we respect that. 687

Anyone using our system should make sure they 688

follow website rules and legal requirements. 689

These issues show why it is important to think 690

carefully about how automated web tools are 691

developed and used. 692

References 693

Rie Kubota Ando and Tong Zhang. 2005. A framework 694
for learning predictive structures from multiple tasks 695
and unlabeled data. Journal of Machine Learning 696
Research, 6:1817–1853. 697

Z. Chen, Y. Dai, and M. Johnson. 2021. 698
WebForm: Learning Web Form Filling through 699
Neural Generation. In Proceedings of EMNLP. 700

J. Clark, D. Garrette, I. Turc, and J. Wieting. 701
2021. CANINE: Pre-training an Efficient 702
Tokenization-Free Encoder for Language 703
Representation. In Proceedings of ACL. 704

J. Clark, D. Garrette, I. Turc, and J. Wieting. 705
2022. CANINE: Pre-training an Efficient 706
Tokenization-Free Encoder for Language 707
Representation. Transactions of the Association for 708
Computational Linguistics. 709

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, 710
G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. 711
Zettlemoyer, and V. Stoyanov. 2020. Unsupervised 712
Cross-lingual Representation Learning at Scale. In 713
Proceedings of ACL. 714

J. Devlin, M. Chang, K. Lee, and K. Toutanova. 715
2019. BERT: Pre-training of Deep Bidirectional 716
Transformers for Language Understanding. In 717
Proceedings of NAACL. 718

H. El Boukkouri, O. Ferret, T. Lavergne, H. Noji, P. 719
Zweigenbaum, and J. Tsujii. 2020. CharacterBERT: 720
Reconciling ELMo and BERT for Word-Level 721
Open-Vocabulary Representations. In Proceedings 722
of COLING. 723

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. 724
de Laroussilhe, A. Gesmundo, M. Attariyan, and S. 725
Gelly. 2019. Parameter-Efficient Transfer Learning 726
for NLP. In Proceedings of ICML. 727

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. 2016. 728
Character-Aware Neural Language Models. In 729
Proceedings of AAAI. 730

9



T. Kudo and J. Richardson. 2018. SentencePiece: A731
simple and language independent subword tokenizer732
and detokenizer for Neural Text Processing. In733
Proceedings of EMNLP.734

J. Li, L. Zhu, and Y. Wu. 2020. DeepForm:735
End-to-End Web Form Understanding. arXiv736
preprint arXiv:2008.06015.737

J. Pfeiffer, I. Vulić, I. Gurevych, and S. Ruder. 2020.738
AdapterFusion: Non-Destructive Task Composition739
for Transfer Learning. In Proceedings of EMNLP.740

T. Pires, E. Schlinger, and D. Garrette. 2019. How741
Multilingual is Multilingual BERT? In Proceedings742
of ACL.743

R. Sennrich, B. Haddow, and A. Birch. 2016. Neural744
Machine Translation of Rare Words with Subword745
Units. In Proceedings of ACL.746

T. Stocky, D. Karger, and R. Miller. 2004. AutoFill:747
Automatic Form Filling. Technical Report, MIT748
CSAIL.749

C. Wang, Y. Li, S. Kang, P. Zhang, C. Meng, and750
J. Zhou. 2021. Language-Specific Adapters for751
Efficient Cross-Lingual Transfer. In Proceedings752
of ACL.753

Z. Wang, X. Chen, and Y. Kim. 2022. VITE: Visual754
Form Understanding via Interactive Web Agents. In755
Proceedings of EMNLP.756

Y. Wu, Z. Wang, and K. Lee. 2018. Web Form757
Understanding with Deep Learning. In Proceedings758
of ICDAR.759

L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou,760
A. Siddhant, A. Barua, and C. Raffel. 2021. mT5:761
A Massively Multilingual Pre-trained Text-to-Text762
Transformer. In Proceedings of NAACL.763

Y. Zhao, M. Yang, and D. Xu. 2021. Robust Web Form764
Understanding with Deep Learning. In Proceedings765
of ICLR.766

Appendix767

A Model Architecture Details768

A.1 Character-Level Model Architecture769

In this appendix, we provide additional details770

about the architecture of our character-level model.771

The full architecture specifications are:772

• Vocabulary size: 399 characters773

• Hidden size: 1024774

• Feedforward size: 4096775

• Number of attention heads: 16776

• Number of layers: 16777

• Activation function: GELU 778

• Dropout rate: 0.1 779

• Maximum sequence length: 512 characters 780

• Parameter count: ∼2.1 million 781

The positional encoding used in our 782

character-level model follows the sinusoidal 783

positional encoding from Vaswani et al. (2017): 784

PE(pos,2i) = sin(pos/100002i/dmodel) (5) 785

PE(pos,2i+1) = cos(pos/100002i/dmodel) (6) 786

These equations add information about the 787

position of characters in a sequence. Since our 788

model processes all characters at once, it needs to 789

know which character comes first, second, etc. We 790

use sine and cosine functions to create unique 791

patterns for each position. 792

A.2 Subword Model Architecture 793

The subword model architecture details are: 794

• Vocabulary size: 32,000 SentencePiece tokens 795

• Hidden size: 768 796

• Feedforward size: 3072 797

• Number of attention heads: 12 798

• Number of layers: 12 799

• Activation function: GELU 800

• Dropout rate: 0.1 801

• Maximum sequence length: 128 tokens 802

• Parameter count: ∼2.1 million 803

A.3 Adapter Architecture 804

Each language adapter consists of: 805

• Down-projection: Linear layer with output 806

size 64 (from 1024 for character model or 768 807

for subword model) 808

• Activation: GELU 809

• Up-projection: Linear layer with output size 810

matching the original hidden size 811

• Layer normalization 812

• Residual connection 813

The parameter count for each adapter is 814

approximately 1.5% of the base model size. 815

10



B Enhanced Character-Level Model816

Implementation817

We now detail our enhanced masked character-level818

model, which represents a core contribution of this819

work.820

B.1 Character-Level Convolutional821

Embeddings822

Simple character embeddings proved insufficient823

for capturing morphological patterns, particularly824

in languages like German with extensive825

compound words. We addressed this by826

developing multi-kernel convolutional embeddings827

that capture various n-gram patterns828

simultaneously.829

The character embedding process works as830

follows:831

Econv(x) = [CNN3(x)⊕ CNN5(x)

⊕ CNN7(x)⊕ CNN9(x)]
(7)832

Where CNNk represents convolution with833

kernel size k, and ⊕ is concatenation. In practice,834

this means each character is represented not just by835

itself but by its surrounding context. For example,836

with kernel size 3, the character ‘a’ in “hat” would837

be embedded along with ‘h’ and ‘t’.838

Implementation challenges included padding839

and computational efficiency. We ultimately used840

PyTorch’s Conv1d with appropriate padding to841

ensure the output maintained the same sequence842

length as the input.843

B.2 N-gram Character Masking844

In our first implementation, we only masked845

individual characters, but this didn’t help the846

model learn meaningful subword units like847

prefixes and suffixes. After several experiments,848

we developed a hybrid masking approach that849

balances single-character and n-gram masking.850

For masking probability, we use:851

Pmask(n) = 0.7·δn,1+0.3· e−0.5(n−2)2∑3
i=2 e

−0.5(i−2)2
(8)852

where δn,1 is the Kronecker delta function. It853

masks single characters 70% of the time and854

n-grams of length 2-3 the remaining 30% of the855

time. The exponential part creates a gentle856

preference for 2-character sequences over857

3-character ones.858

We tried several different ratios between single859

character and n-gram masking (50/50, 80/20, etc.)860

before settling on 70/30 based on empirical results. 861

We initially wanted to mask longer n-grams too 862

(up to 5 characters), but found this made training 863

unstable and significantly increased training time 864

without clear benefits. 865

B.3 Tokenization and Vocabulary 866

Unlike traditional subword tokenizers with 867

vocabularies of tens of thousands of tokens, our 868

character-level model uses a minimal vocabulary 869

of 399 characters distributed as shown in Table 8. 870

Character Type Count

Latin alphabet (upper/lowercase) 52
Digits and punctuation 42
German/French special characters 45
Arabic script characters 185
Special tokens ([PAD], [MASK], etc.) 75

Total 399

Table 8: Character vocabulary breakdown

B.4 Special Tokens Specification 871

Our character-level model employs 75 special 872

tokens designed specifically for multilingual web 873

automation tasks. The complete breakdown is as 874

follows: 875

Core Model Tokens (5): [PAD] for sequence 876

padding, [MASK] for character-level masked 877

language modeling, [UNK] for unknown 878

characters, [CLS] for classification tasks, and 879

[SEP] for sequence separation. 880

Language Identification (4): [EN], [DE], [FR], 881

[AR] for explicit language marking during 882

processing. 883

Web Form Elements (8): [INPUT], [SELECT], 884

[TEXTAREA], [BUTTON] for basic form 885

elements, and [CHECKBOX], [RADIO], [FILE], 886

[HIDDEN] for specialized input types. 887

Action Types (8): [FILL], [SELECT], 888

[CHECK], [SUBMIT] for primary form 889

interactions, and [CLICK], [CLEAR], [FOCUS], 890

[SCROLL] for navigation actions. 891

Field Types (8): [EMAIL], [PASSWORD], 892

[TEXT], [NUMBER] for common field semantics, 893

and [DATE], [TEL], [URL], [SEARCH] for 894

specialized field types. 895

Navigation Elements (4): [LINK], [NAV], 896

[MENU], [BREADCRUMB] for website structure 897

recognition. 898

11



Form Structure (8): [FORM_START],899

[FORM_END], [FIELD_START], [FIELD_END]900

for structural boundaries, and [LABEL],901

[ERROR], [HELP], [REQUIRED] for form902

metadata.903

Language-Specific Markers (4):904

[MORPH_RICH], [MORPH_POOR] for905

morphological complexity indicators, and [RTL],906

[LTR] for script directionality.907

Context Indicators (4): [CONTEXT_START],908

[CONTEXT_END], [NEARBY],909

[PLACEHOLDER] for field context assembly.910

Processing States (4): [PROCESSING],911

[SUCCESS], [FAILURE], [RETRY] for912

automation state tracking.913

Reserved Tokens (16): [RES_1] through914

[RES_16] allocated for future system extensions915

without vocabulary retraining.916

These special tokens enable robust multilingual917

web automation by providing explicit markers for918

language context, web element types, user actions,919

and system states. The reserved tokens support our920

modular architecture philosophy, allowing system921

extension to new languages and domains without922

requiring complete vocabulary reconstruction.923

B.5 Model Architecture924

Our character-level model uses a Transformer925

architecture optimized for character-level inputs:926

16 attention heads, Hidden size of 1024, 16927

encoder layers, 2.1 million parameters.928

To handle the longer sequence lengths that929

result from character-level tokenization, we930

implement: Efficient attention mechanisms,931

Optimized positional encodings, Context window932

of 512 characters.933

B.6 Language-Specific Adapters934

We integrated language-specific adapters into the935

character model:936

• Small adapter modules for each language (en,937

de, fr, ar)938

• Each adapter contains a down-projection,939

non-linearity, and up-projection940

• Adapters are applied after the main941

Transformer layers942

• Residual connections ensure original943

information is preserved944

The adapter transformation can be expressed as: 945

hout = hin + f(hinWdown)Wup (9) 946

where f is the GELU (Gaussian Error Linear 947

Unit) activation function which provides the 948

non-linearity for enhancing adapter effectiveness. 949

This equation describes how our language adapters 950

work. For each language, we have a small module 951

that adjusts the model’s internal representations. 952

The input (hin) goes through a compression step 953

(Wdown), a non-linear function (f ), and then 954

expansion (Wup). We add this back to the original 955

input to preserve the important information. 956

C Experimental Details 957

C.1 Training Infrastructure 958

All models were trained using the following 959

infrastructure: 960

• Single NVIDIA RTX 3090 GPU (24GB 961

VRAM) 962

• AMD Ryzen 9 5950X CPU 963

• 64GB RAM 964

• Ubuntu 20.04 LTS 965

The total training time was approximately: 966

• Character model: 18 hours 967

• Subword model: 8 hours 968

• Language adapters: 2 hours per language 969

C.2 Form Filling Dataset Creation 970

Our form filling dataset was created by: 971

1. Scraping 500 common web forms from the 972

top 1000 websites 973

2. Extracting form structure and field semantics 974

3. Translating field labels and descriptions to 975

target languages 976

4. Generating synthetic natural language 977

instructions (20 templates per action type) 978

5. Creating valid and invalid form filling 979

examples for robust training 980

12



C.3 Evaluation Metrics981

The evaluation metrics were calculated as follows:982

• Field Fill Success: Percentage of fields983

correctly filled according to user instructions984

• Form Submission Success: Percentage of985

forms successfully submitted with all required986

fields987

• Navigation Success: Percentage of website988

navigation tasks completed successfully989

• Data Extraction Precision: Correct fields990

extracted / Total fields extracted991

• Data Extraction Recall: Correct fields992

extracted / Total fields in form993

• Exact Match (EM): Exact string match for994

question answering tasks995

• F1 Score: Token-level overlap between996

predicted and reference answers997

• Masked Character Prediction Accuracy:998

Correctly predicted masked characters / Total999

masked characters1000

C.4 Dataset Statistics1001

Table 9 provides statistics for the training datasets1002

used in our experiments.1003

Dataset Language Examples Avg. Length (chars)

OPUS-100 English 50,000 87.3
OPUS-100 German 50,000 92.6
OPUS-100 French 50,000 96.2
OPUS-100 Arabic 50,000 76.8
FQuAD (QA) French 40,000 124.7
Synthetic Forms English 25,000 42.1
Synthetic Forms German 25,000 48.9
Synthetic Forms French 25,000 51.2
Synthetic Forms Arabic 25,000 38.6

Table 9: Statistics for training datasets across languages.

D Baseline Implementation Details1004

We compared our approach against two baselines1005

with carefully controlled methodology to address1006

reproducibility concerns.1007

mBERT Baseline We fine-tuned pretrained1008

mBERT-base-multilingual-cased on our exact1009

training data (50,000 examples per language)1010

using identical hyperparameters where applicable1011

(learning rate 3e-5, batch size 64, 5 epochs). No1012

architectural modifications were made to 1013

mBERT—we used its standard token embeddings 1014

fed into our form analyzer pipeline. This 1015

represents a direct comparison of representation 1016

learning capabilities rather than architectural 1017

differences. 1018

Rule-based Baseline We implemented pattern 1019

matching for common field types (email regex, 1020

phone patterns) and keyword matching for field 1021

labels in each language. While not state-of-the-art, 1022

this represents realistic deployment scenarios for 1023

resource-constrained environments and provides a 1024

lower-bound baseline. 1025

The mBERT comparison uses identical training 1026

data and evaluation protocols, differing only in 1027

the underlying representation model, ensuring fair 1028

comparison as requested in preliminary feedback. 1029

E Model Selector Implementation Details 1030

E.1 Selector Training Methodology 1031

T o train our model selector, we created 1032

ground-truth labels by evaluating both character 1033

and subword models on 10,000 diverse inputs 1034

sampled from our training data. For each input xi, 1035

we computed: 1036

labeli =


1 if performancechar(xi) >

performancesubword(xi)

0 otherwise

(10) 1037

Performance was measured using form filling 1038

accuracy on held-out validation forms. 1039

Feature Engineering Details 1040

• Length normalization: 1041

length_norm = min(1.0, char_count/174.6) 1042

where 174.6 is 2× dataset median 1043

• OOV computation: Using SentencePiece 1044

vocabulary with 32,000 tokens, computed as 1045

oov_ratio = unknown_tokens/total_tokens 1046

• Morphological scores: Language-specific 1047

scores (German=4, Arabic=4, French=3, 1048

English=2) assigned as relative indicators of 1049

morphological richness. While this represents 1050

a simplified linguistic characterization, these 1051

scores effectively enable the selector to 1052

distinguish between morphologically 1053

complex languages (favoring character 1054

13



models) and simpler ones (favoring subword1055

models) in our experimental setting.1056

Language Detection: Before computing1057

morphological complexity scores, we detect1058

input language using character pattern1059

matching: German (ü,ö,ä,ß patterns), French1060

(é,à,ç,î patterns), Arabic (Unicode ranges1061

U+0600-U+06FF), English (default for Latin1062

script without special characters). This1063

detection occurs independently before1064

selector feature computation, resolving the1065

dependency between language identification1066

and morphological scoring.1067

• Noise detection: noise_level =1068

(special_chars + digits)/total_chars1069

Training Configuration1070

• Optimizer: Adam with learning rate 0.0011071

• Batch size: 1281072

• Training epochs: 50 with early stopping1073

(patience=10)1074

• Loss function: Binary cross-entropy1075

• Train/validation split: 80/201076

E.2 Selection Performance Analysis1077

Table 10 shows detailed selector performance1078

across languages and input types.1079

Input Type Selector Acc. Char Subword

Short (< 30 chars) 92.1% 78.3% 21.7%
Medium (30-100 chars) 88.7% 42.1% 57.9%
Long (> 100 chars) 85.9% 23.4% 76.6%
High OOV (> 10%) 94.3% 89.2% 10.8%
Low noise (< 5%) 87.1% 35.6% 64.4%
High noise (> 15%) 91.8% 82.7% 17.3%

Overall 89.3% 51.2% 48.8%

Table 10: Model selector performance across input
characteristics. Selector accuracy measured against
oracle choices.

E.3 Ablation Study: Learned vs. Heuristic1080

Selection1081

We compared our learned selector against a1082

heuristic baseline using simple rules:1083

• Character model: if length < 30 chars OR1084

oov_ratio > 0.05 OR noise_level > 0.11085

• Subword model: otherwise1086

Results on form filling accuracy: 1087

• Learned selector: 87.7% average accuracy 1088

• Heuristic baseline: 75.4% average accuracy 1089

• Always character: 82.3% average accuracy 1090

• Always subword: 86.1% average accuracy 1091

• Improvement: +12.3% over heuristic, +1.6% 1092

over best single model 1093

The learned selector’s primary advantage lies in 1094

handling edge cases where simple heuristics fail, 1095

particularly for medium-length inputs with 1096

moderate OOV rates. 1097

E.4 Computational Overhead Analysis 1098

Component Time (ms) Memory (MB)

Feature extraction 0.8 0.1
Selector inference 1.5 0.3
Model loading 0.0 0.0

Total selector overhead 2.3 0.4
Character model inference 67.2 850
Subword model inference 41.8 440

Table 11: Computational overhead of model selection
vs. model inference.

The selector adds negligible computational cost 1099

(2.3ms) compared to model inference (42-67ms). 1100

F Additional Results 1101

F.1 Effect of N-gram Masking 1102

English French Arabic German
0

5

10

15

20

Language

A
cc

ur
ac

y
(%

)

Single-Char

N-gram

Figure 4: Impact of n-gram masking on masked
character prediction accuracy.

F.2 Cross-lingual Transfer Matrix 1103

Table 12 provides a more detailed cross-lingual 1104

transfer matrix showing how adapters trained on 1105

one language perform on other languages. 1106

14



Train Test EN DE FR AR
Lang Lang

EN EN 18.31% 10.00% 0.00% 0.00%
EN DE 0.00% 2.00% 16.67% 0.00%
EN FR 0.00% 0.00% 8.44% 0.00%
EN AR 28.57% 12.50% 22.22% 7.22%

Table 12: Cross-lingual transfer matrix showing adapter
performance across languages.

F.3 Ablation Studies1107

Figure 5 shows the impact of removing different1108

components from our system.1109

70 75 80 85 90

Char Only
Subword Only

No N-gram
No Conv Embed

No Adapters
Full System

79.3

86.1

82.4

78.9

73.5

87.7

Form Fill Success (%)

C
on

fig
ur

at
io

n

Figure 5: Component ablation reveals that
language-specific adapters provide the largest
performance gain (+14.2%), while n-gram masking
and convolutional embeddings each contribute 3-5%
improvements, validating our architectural choices.

G Web Automation Examples1110

Below we provide examples of natural language1111

instructions and their corresponding structured1112

actions for web form filling:1113

G.1 English1114

• Instruction: “Fill in the email field with1115

john.smith@example.com”1116

• Action: {"action_type": "fill",1117

"field_name": "email", "value":1118

"john.smith@example.com"}1119

G.2 German1120

• Instruction: “Gib in das Passwortfeld1121

‘Secure123!’ ein”1122

• Action: {"action_type": "fill",1123

"field_name": "password", "value":1124

"Secure123!"}1125

G.3 French 1126

• Instruction: “Sélectionne ‘Femme’ dans le 1127

menu déroulant de genre” 1128

• Action: {"action_type": "select", 1129

"field_name": "gender", "value": 1130

"female"} 1131

G.4 Arabic 1132

• Instruction: “ ” (Click the submit button) 1133

• Action: {"action_type": "submit", 1134

"field_name": "submit_button", 1135

"value": null} 1136

H Model Scaling Analysis 1137

We conducted experiments to analyze how our 1138

models scale with different parameter sizes. 1139

Figure 6 shows the results of these experiments. 1140

101 102
0

20

40

60

80

Model Parameters (M)

A
cc

ur
ac

y
(%

)
Character Model
Subword Model

Figure 6: Model scaling analysis showing accuracy vs
parameter count.

The results indicate that both models benefit 1141

from increased parameter counts, but the gains 1142

diminish at larger sizes. The character model 1143

shows more consistent scaling benefits, suggesting 1144

it may benefit from even larger model sizes in 1145

future work. 1146

I Computational Efficiency Analysis 1147

Table 13 compares the computational efficiency of 1148

our approach versus baseline models. 1149

J Error Analysis 1150

J.1 Error Categories 1151

We categorized errors in our system into four main 1152

types: 1153

1. Language Understanding Errors: 1154

Incorrectly parsing the user’s natural 1155

language instruction (23% of errors) 1156

15



Model Parameters Training Inference Memory
Time Time (ms) (MB)

Character Model ∼2.1M 18 hours 67 850
Subword Model ∼2.1M 8 hours 42 440
mBERT (baseline) ∼175M Pretrained 86 700
XLM-R Large ∼550M Pretrained 215 2,200

Table 13: Computational efficiency comparison across models.

2. Form Analysis Errors: Failing to correctly1157

identify form elements or their purposes (42%1158

of errors)1159

3. Action Execution Errors: Correctly1160

understanding but failing to execute the1161

intended action (19% of errors)1162

4. Other Errors: System crashes, timeouts, or1163

unclassified errors (16% of errors)1164

J.2 Performance by Form Complexity1165

Table 14 shows how performance varies with form1166

complexity.1167

Form Complexity Fields Success Rate

Simple 1-3 94.2%
Medium 4-7 88.7%
Complex 8+ 81.3%

Table 14: Form filling success rate by form complexity.

J.3 Error Examples1168

Table 15 provides examples of common errors and1169

their analysis.1170

16



Error Type Example Analysis

Language Understanding “Fill the phone with
555-1234”

Ambiguous field reference

misinterpreted (“phone” vs “phone number”)
Form Analysis Could not locate Field had non-standard

“billing-address” field HTML attributes
Action Execution Failed to select option JavaScript-rendered

dropdown
in custom dropdown not accessible via DOM

Language Understanding Failed to parse German Character model struggled
with

compound noun morphological complexity
Form Analysis Confused similar field labels Semantic similarity caused

“shipping” vs “billing” field misidentification

Table 15: Examples of common errors encountered during evaluation.

17


	Introduction
	Related Work
	Character and Subword Models
	Multilingual Language Models and Adaptation
	Web Form Analysis and Automation

	System Overview
	Multilingual Neural Models
	Character-level Masked Language Model
	Subword-level Transformer

	Model Selector Framework
	Language-Specific Adapters
	Universal Form Analyzer
	Command Interpreter
	Web Automation Integration

	Experimental Setup
	Datasets
	Training
	Cross-lingual Transfer Validation
	Evaluation Tasks
	Baseline Implementation Details

	Results
	Character-Level Masked Prediction Performance
	Language Adapter Effect
	Form Filling and Web Automation
	Model Selector Effectiveness
	Data Extraction
	Website Navigation Performance
	Language Adapter Impact
	Comparison to Baselines
	QA Performance
	Novel Efficiency Framework
	Architectural Innovation


	Discussion
	Strengths
	Future Work

	Conclusion
	Limitations
	Potential Risks and Ethical Considerations
	Model Architecture Details
	Character-Level Model Architecture
	Subword Model Architecture
	Adapter Architecture

	Enhanced Character-Level Model Implementation
	Character-Level Convolutional Embeddings
	N-gram Character Masking
	Tokenization and Vocabulary
	Special Tokens Specification
	Model Architecture
	Language-Specific Adapters

	Experimental Details
	Training Infrastructure
	Form Filling Dataset Creation
	Evaluation Metrics
	Dataset Statistics

	Baseline Implementation Details
	Model Selector Implementation Details
	Selector Training Methodology
	Selection Performance Analysis
	Ablation Study: Learned vs. Heuristic Selection
	Computational Overhead Analysis

	Additional Results
	Effect of N-gram Masking
	Cross-lingual Transfer Matrix
	Ablation Studies

	Web Automation Examples
	English
	German
	French
	Arabic

	Model Scaling Analysis
	Computational Efficiency Analysis
	Error Analysis
	Error Categories
	Performance by Form Complexity
	Error Examples


